Roll No.

(01/23-11)

4477

B.Com. (Gen./Voc.) EXAMINATION

(For Batch 2017 & Onwards)

(First Semester)

BUSINESS MATHEMATICS

BC-1.5/BCCA-1.5

Time: Three Hours Maximum Marks: 80

Note: Attempt Five questions in all, selecting at least one question from each Section.

Q. No. 10 is compulsory.

Section I

1. (a) Let
$$f(x) = x^2 - 5x + 6$$
, find $f(A)$ if
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$
7

(3-15/22)B-4477

P.T.O.

(b) If
$$A = \frac{1}{3}\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$$
; verify that : 8
$$AA' = A'A = I_3.$$

2. (a) Prove that:

 $\begin{vmatrix} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)$

(b) Find the value of x so that the given matrix is singular:

$$\begin{bmatrix} 1 & -2 & 3 \\ 1 & 2 & 1 \\ x & -2 & 3 \end{bmatrix}$$

3. (a) For the matrix $A = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix}$, find x and y so that $A^2 + xI = yA$. Hence find A^{-1} .

B-4477

2

(b) Solve the following system of equations: 8
$$x + 2y + 5z = 10$$

$$x - y - z = -2$$

$$2x + 3y - z = -11.$$

Section II

- - given by $f(x) = \begin{cases} 2x 1, & x < 2 \\ a, & x = 2 \\ x + 1, & x > 2 \end{cases}$ is

Find the value of a if the function f

continuous at x = 2.

5. (a) If $y = \frac{x}{x+4}$, show that : $x\frac{dy}{dx} = y(1-y).$

(3-15/23)B-4477

3

P.T.O.

- (b) If $y\sqrt{x^2+1} = \log(\sqrt{x^2+1}-x)$, prove that:
 - $(x^2 + 1)\frac{dy}{dx} + xy + 1 = 0.$
- 6. (a) Show that a cylinder of given volume, open at the top, has minimum total surface area provided its height is equal to the radius of its base.
 - (b) If the demand law is $p = \frac{10}{(x+1)^2}$, find the elasticity of demand in terms of x. 7

Section III

7. (a) Exhibit graphically the solution set of the linear constraints:

$$2x + 3y - 12 \ge 0$$

 $2x - y + 2 \ge 0$
 $3x - 4y + 12 \ge 0$
 $x \le 4$
 $y \ge 2$

B-4477

,

(b) Maximize Z = 3x + 4y, if possible, subject to constraints:

$$x - y \le -1$$

$$-x + y \le 0,$$

$$x \ge 0$$

$$y \ge 0.$$

8. Using simplex method, solve the following LPP:

Maximize Z = 3x + 5y + 4z, Subject to constraints:

$$2x + 3y \le 8$$
$$2y + 5z \le 10$$
$$3x + 2y + 4z \le 15$$
$$x, y, x \ge 0.$$

9. (a) Find the compound interest on ₹ 6,950 for 3 years if interest is payable half yearly, the rate of interest for the first two years being 6% p.a. and for the third year is 9% p.a.

(3-15/24)B-4477

5

P.T.O.

(b) Find the effective rate of interest equivalent to nominal rate 6% p.a. compounded continuously [Take e = 2.71828].

(Compulsory Question)

- 10. (a) Construct a 2 × 2 matrix C = $[C_{ij}]$, where $C_{ij} = \frac{|2i-3j|}{2}.$
 - (b) For what value of x, the given matrix $A = \begin{bmatrix} 3-2x & x+1 \\ 2 & 4 \end{bmatrix}$ is a singular matrix.
 - (c) Differentiate $\log (1 + x^2)$.
 - (d) For a supply function $x = 15 + 5p^2$, find the elasticity of supply at p = 2.
 - (e) What is the present value of ₹ 1,000 to be received after 2 years compounded annually at 10%?

brittle order out both as or new method 21607 Over