Roll No.

(12/24)

5198

B.Sc. EXAMINATION

(Third Semester)

PHYSICS

PH-302

Wave and Optics-I

Time: Three Hours Maximum Marks: 40

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks. Use of non-programmable calculator is allowed.

(Compulsory Question)

1. (a) How can we locate the central fringe in Fresnel Biprism Experiment? 1½

(3-53/21)B-5198

- (b) What will happen if air is replaced by some transparent liquid in Newton's Ring Experiment?
- (c) In what respect a zone plate is different from a convex lens?
- (d) What is the dispersive power of a grating? On what factors does it depend?
- (e) How does Resolving power of a telescope change with change of λ of light used ?

Make Attempt Fine mestions in all, scienting one

(f) What is the relation between phase difference and path difference?

Unit I

2. (a) Describe Fresnel's Biprism experiment to determine the thickness of a thin sheet of transparent material.

- (b) A Biprism of Angle 1° and Refractive index 1.5 is placed at a distance of 40 cm from the slit. Find the fringe width on a screen placed at a distance of 60 cm from the biprism when wavelength of light used is 5893 Å.
- 3. (a) Describe the Lloyd's Mirror experiment to obtain the interference Fringes. Give the conditions Bright and Dark Fringes in this method.
 - (b) Describe Stoke's Law of Reflection. 3

Unit II

4. (a) Explain in details the conditions for maxima and minima for interference by Transmitted light in Newton's ring experiment and hence calculate wave length of light.

- (b) A soap film of μ = 4/3 is illuminated by white light incident at an angle of 30°. The transmitted light is examined by a spectroscope and bright band is found to be of wavelength 6 × 10⁻⁵ cm. Find the thickness of film.
- 5. Describe the construction of a Michelson's Interferometer and explain its application to:
 - (a) Standardization of a meter
 - (b) Determination of wavelength.

Unit III

6. Discuss the phenomenon of Diffraction at a straight edge and find the position of maxima and minima.

- 7. (a) What is a Zone Plate? How is it formed?

 Show that a zone plate has a multiple focii.
 - (b) Find the Radii of first three clear half period zones of a zone plate designated to bring a parallel beam of light of wavelength 6000 Å to its focus at a distance of 2 m.

Unit IV

- 8. Describe analytically the Fraunhoffer diffraction at a Double Slit. Find the conditions for the missing orders in the spectrum.
- 9. (a) Explain how a plane transmission grating can be used to determine the wavelength of monochromatic light.

(3-53/23)B-5198

5

P.T.O.

- (b) What is Resolving Power? Discuss Rayleigh's criterion of Resolution.
- Find the missing orders in the diffraction pattern of a Double slit if the slit width is 0.16 mm and opaque width is 0.8 mm. to bring a parallel beam of light of