Roll No.	
(05/25)	

5259

B.A./B.Sc. EXAMINATION

(Sixth Semester)
MATHEMATICS
BM-361

Real and Complex Analysis

Time: Three Hours $Maximum\ Marks: \begin{cases} B.Sc.: 40 \\ B.A.: 27 \end{cases}$

Note: Attempt *Five* questions in all, selecting *one* question from each Section. Q. No. 1 is compulsory.

(Compulsory Question)

- 1. (a) Describe Beta and Gamma functions. 2(1)
 - (b) Define Dirichlet's condition. $1\frac{1}{2}(1)$
 - (c) Define analytic function and give example of analytic function. $1\frac{1}{2}(1)$

P.T.O.

(8-02/16)B-5259

Section III

- Determine the image or stereographic projection of the following points on the sphere of radius $\frac{1}{2}$ and centre $\left(0,0,\frac{1}{2}\right)$:
 - (i) 1 + i
 - (ii) 1 i
 - (iii) 2 + 3i. 4(3)
 - (b) Show that the function $f(z) = |z|^2$ is continuous everywhere but nowhere differentiable except at the origin.

 $4(2\frac{1}{2})$

- 7. (a) Show that the function $f(z) = e^{-z^{-4}} (z \neq 0)$ and f(0) = 0 is not analytic at z = 0 although C R equations are satisfied at that point. 4(3)
 - (b) State and prove sufficient conditions for f(z) to be analytic in a domain D.

 $4(2\frac{1}{2})$

Section IV

- 8. (a) Let the rectangular region D in the z plane be bounded by x = 0, y = 0, x = 1, y = 2. Determine the region D' of the coplane into which D is mapped under the transformation $W = \sqrt{2}e^{i\frac{\pi}{4}}z^{2}$ $4(2\frac{1}{2})$
 - (b) Find the image of |z 3i| = 3 under the mapping $W = \frac{1}{z}$.
- 9. (a) Find the fixed points, normal form and nature of Mobius transformation $W = \frac{3z-4}{z-1}.$ 4(3)
 - (b) Prove that every Mobius transformation maps circles or straight lines into circles or straight lines. $4(2^{1}/2)$

Section III

- Determine the image or stereographic projection of the following points on the sphere of radius $\frac{1}{2}$ and centre $\left(0,0,\frac{1}{2}\right)$:
 - (i) 1 + i
 - (ii) 1 i
 - (iii) 2 + 3i. 4(3)
 - (b) Show that the function $f(z) = |z|^2$ is continuous everywhere but nowhere differentiable except at the origin.

 $4(2\frac{1}{2})$

- 7. (a) Show that the function $f(z) = e^{-z^{-1}}(z \neq 0)$ and f(0) = 0 is not analytic at z = 0 although C R equations are satisfied at that point. 4(3)
 - (b) State and prove sufficient conditions for f(z) to be analytic in a domain D.

 $4(2\frac{1}{2})$

Section IV

- 8. (a) Let the rectangular region D in the z plane be bounded by x = 0, y = 0, x = 1, y = 2. Determine the region D' of the coplane into which D is mapped under the transformation $W = \sqrt{2}e^{i\frac{\pi}{4}}z^{2}$ $4(2\frac{1}{2})$
 - (b) Find the image of |z 3i| = 3 under the mapping $W = \frac{1}{z}$.
- 9. (a) Find the fixed points, normal form and nature of Mobius transformation $W = \frac{3z-4}{z-1}.$ 4(3)
 - (b) Prove that every Mobius transformation maps circles or straight lines into circles or straight lines.
 4(2½)
