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Preface to the Second Edition

The author feels pleasure that the present book. entitled ‘Classrcal Mechamu “has been warmly
welcomed and liked by the readers. That is why the first edition of the book was finished soon and it
. was reprinted four times. Now he is presenting thoroughly revised and enlarged edition of the book in
_' view of the latest syllabi of varlous Indian Umversrtles and Model Syllabus, approved by the U.G.C,,

New Delhi.

In the last few décades, a lot of work has been done in the field of non-linear dynamics and chaos.
Looking at the importance and wide applications of this subject, several universities in India and abroad
have introduced this topic in the syllabi of Classical: Mechanics. In the present edition a chapter on -
‘Non-linear Dynamics and Chaos’ has been added to meet this requirement of the students.

The author shall be grateful to the readers who would be kind enough to send their useful and
constructive criticisms for the 1mprovement of the subject matter.

July 12,2005 | | J.C. Upadhyaya
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- students of B.Se. (Honours), M.Sc. (Physics) and B.E. classes. In.addition to-a course boak, it has -

' student to be familiar with and command many of the mathematical techniques needed in quantum

" course has been partly drified to B.Sc. (Honours) classes in some universities and conventionally
taught at M.Sc. level in-the different universities. During teaching, the author had a feeling that the- & - -

Preface to the First Edition

Present book deals with an advanced course on mechanics, namely classical mechanics, for the - =

been written for the candidates, struggling to qulify competitive examinations at national and state -
levels such as NET, GATE; SLET, L.A.S. etc. The concepts and formulatations involved in classical 3
mechanics form the base to construct the entire building of physics. Of course, quantum mechanics
plays the key role to study the phenomena at atomic scale, specially in the frelds-of atomic. and
nuclear physics. The role of classical mechanics is of extreme importance on one hand in modem

‘ " calculations involved in la._unch_ing of satellites motion of rockets and relativily massive bodies, and on ;
the other hand it makes essential background to switch over and move with couriosity and enthusiasm

in the various branches.of modern-physics. In fact classical. mechanics provides:an opportunity to.a

mechanics.

Classical mechanics had been developed over several centuries in particular by Nev__vton, Lagrange,' 7
Hamilton and others. At lower level, the Newtonian mechanics and at higher level, the Lagrangian and
Hamiltonian dynamics, involving advanced topics are taught Here we mean by classical me(‘:hanics 3

basis of observations on moving bodies at relatively low speeds. Of course, the relativistic theery of
Einstein deals with all particle-speeds, but it does not modify the classical ideas regarding the basic.

" nature of matter and radiation and hence ‘the relativistic theory is generally studied in classical

mechanics. Therefore, in the present book, we also include the special theory of relativity and
relevant advanced formulations, e.g:, four dimensional Minkowski space and convariant formulation . -
of electrodynamics. This course is conceptual in nature and involves intricate formulations. The -

students need a textbook which deals the subject matter of classical mechanics with simplified
treatments and good number of illustrations. Keeping this idea in mind, the author has made an effort
to write a book on the subject in a simplified way with proper explanations so that an average student
may not feel difficulty in following the text. g

In the universities, a course on Newtonian mechanics and conservation prin01ples is given at
lower level. Generally, the students feel much difficulty when at higher level they are taught Lagrangian
and Hamiltonian dynamics. This is also the purpose of the book that a student moves smoothly from
the Newtonian mechanics to the Lagrangian, Hamiltonian and relativistic mechanics.

In order to be ligible for Lecturership and to obtian Research Fellowship, one has to qualify the
competitive tests at state and national levels such as NET, GATE, SLET etc. In these competitive
examinations, problem oriented and objective type questions are asked. In order to fulfil the:need of
such candidates, a good number of problems and objective type questions have been set at the end of
each chapter. : : .

For a clear grasp of the physical concepts.and to clarify the implications of the theory, the

~



(viii)

* students must have a good practlce of solving the relevant problems. Therefore we have included a

good number of selected, instructive and modern problems in each chapter of the book. In a chapter,

‘some solved problems have been given-as examples and several unsolved problems have been

systematically and methodically arranged generally in two sets — Set [ and Set II. When an average
student solves the problems of Set I, he is encouraged to tackle relatively difficult problems. However
a good student feels pleasure and mtellectually satisfied by solvmg the most difficult problems..
confained in Set IL.

-T"wish to ,declicate-_' this book to my wife,-Raj Kumari, and my -children,- -Dr. .Sharad, Ram and .-

Tanuja, for their patience and assistance in several ways throughout the writing and preparation of the
_ manuscript. The author is especially thankful to Miss Anita for carefully typing the manuscript on the

computer

‘I-shall feel highly satlsﬁed and amply rewarded in case the student community 1s beriefitted to
any substantial extent.

" Any suggestion for the 1mprovement of subject matter wrll be gratefully received.

—~
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Introductory Ideas
(Newtonian Mechanics)

CHAPTER

1.1.INTRODUCTION

Mechanics is a branch of physms which deals with physncal ob]ects in mation and at rest under the
influence of external and internal interactions. Mechanics had developed since ancient times on the basis of
-observations on the motion of material particles. Although efforts were made earlier to propose-théoretical.
hypotheses regarding the relationship between force and motion, but it was not until Newton arnounced
his famous laws of motion in 1687. The mechanics based on Newton’s laws of motion and alternativély
" “developed by Lagrange, Hamiltori and others is called classical mechanics. When this méchanics deals -
with the Newton's laws ‘and their consequences, it may be called as Newtonian or vectorial mechanics,
because in this scheme, the quantities such as force, acceleration, momentum etc. are used which are
essentially vectors. The alternative and superior schemes in classical mechanics, developed by D’Alembert,
Lagrange, Hamilton and others constitute what is known as analytical mechanics. In the later, the basic
quatities are scalars (e.g., energy) rather than vectors and the dynamical relations are obtained by a
systematic process of differentiation. This analytical approach has the further advantage that it can be
generalized to quantum mechanics where Newton’s laws are not applicable. In the present book, wesplan to
develop the analytical mechanics in detail. Actually classical mechanics was developed over:several
centuries on the basis of observations on the -meving objects, having reIatlvely low speeds. In':1905,
Einstein, by including the experimental fact of constancy of speed of light in vacuum, proposed the’special
theory of relativity which modifies.the classical ideas of space and time and deals with all particle-speeds.

- The relativistic mechanics of Einstein yeilds the results of Newtonian mechanics at relatively low speeds.

_' H()wevu the relativistic- theory of Einstein does not modlfy -the classical ideas regarding the basic natwe
of matter and radiation and hence it is often studied in classical mechanics. - e ‘
Classical mechanics is found to be inadequate to déscribe the behaviour of particles of MICIoscopic
size such as electrons in atoms, nuclear particles etc. For the description of the small scale phenomena of
atomic and nuclear physics, a new theory, known as quantum mechanics, has been formulated which, when
applied to large bodies, gives the results obtained by using classical mechanics. Although classical mechanics
fails to the two kinds of extremes, discussed above, but this theory is remarkably successful to deal with
. the motion of relatively massive particles-and relatively slow moving objects, which we come across in
innumerable situations. Many of the results of classical mechanics, such as the conservation laws of
* energy, linear momentum and angular momentum, are of universal validity even in relativistic mechanics
and quantum mechanics. )

Before starting to study the classical mechanics in depth, we discuss this chapter to summarize some
basic concepts of interest from introductory mechanics.

1.2. SPACE AND TlME‘\-(Fr'ame of Referehce)

F rom ouf experlence vJe have some idea about the meaning of space and time. It is assumed (i) that
the $pace and tithe are contmuous "(ii) that the motion of 2 partlcle in space can be described by knowing
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its position at different mstants of time, and (7ii) that there are umversal ‘standards of length and time. S.I.
units of measurement of length and time are meter and second respectively.

If a physical phenomenon (e.g., passing of a particle through some pomt P)-occurs in space, its
- position is known as the point; the time of occurrence and the point taken ‘together are called an event. In
classical- mechanics, we further assume (i) that there is a universal time scale, which' means- that two
observers who have synchronized their clocks will always agree about the nme of an event (u) that the

geometry of the space is Euclidean, and (ii7) that there is no limit, in S Y
principle; to the_ accuracy with which we can measure the positionand -~ . | o '
niomentum. - : ; e T CLOCKL P(‘ Pa¥: f)

In ordei to describe the motion of a particle in space, we need to -
know its position at different instants of time. This needs the choice - .
of reference body or coordinate system. If we imagine a coordinate
system attached to a rigid body and we describe the position of any .
particle relative to it, then such a coordinate system is called frame
of reference. For the location of the objects, the position vectors are
drawn from the origin O of the coordinate system (Fig. 1.1). The
simplest frame of reference is a cartesian coordinate system, In this

system, the position of a particle at any point of its path is given

by the position vector'r; expressed in terms of three coordinates (x,
¥, Z) as

A

F'91 A.Frame df.gqference

AR

)

r=xi+yjt+zk

. _aa.lllr:l ) ',_.- .

In order to know the position of the particle at different instants of time, an observer may lle/stationed
at the origin with a clock to measure the time ¢. Thus we obtain the position vector r of the particle as
function. of time ¢ i.e.,

r=r() e - - o (2
Thus we obtain the velocity and acceleration as - - ' L
A dr . (b. dya z » e Co
= = Lk S S 2
ur a d R A3
: Cdv di dPxy dPyn di: Al : ' -
alld a=—"%= ) = 9 ! 9 2 k ‘. ’ ‘ (4)

dt  dto  dr? di* dt

The position and time recorded together constitute an event, repre_sented__by four coordinates (v, y, z, )
and the reference system, used for this purpose, may be called as space-time reference system.

1.3. NEWTON'S LAWS OF MOTION

Sir Isaac Newton expressed his ideas regarding the motion of bodies in the form of three laws which
are considered as the basic laws of mechanics. In fact mechanics is a study of certain general relations that
describe the interactions of material bodies. One general property of 2 material body is its inertial mass.
Another new concept useful in describing interactions is force. These two concepts, inertial mass and force, |
were first defined in a quantitative mzumer by Isaac Newton. The definition of fnass and force are contained
in his three laws.of motion. ' ¥

(1) Law of Inertia (First Law) : A body continues in its state of rest or comtant leloafy unless not

disturbed by some external influence. The property of a body that it can not change its Stale of rest or constant
velocity is called inertia and the influence under which the velocity of a particle changes is called force The
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quantrta ;7/ definitions of force and measure of inertia of a body, Whlch we call mass, are contamed in
second arfd third laws of motion. ' :

(2/) w of Force (Second Law) : The time-rate of change of momentum is proportional to the
zmpresse force Le., : ' ' : : '

I - F = o ’
1 . d ._',"(5)
Every. body possesses the property ‘'of "inertia or resistance to motion.. This inertia is different for
dlfferent bodies. The measure to this mert1a for translation is called the mass of a body and is denoted by;

. If v be the velocity of a body of mass m, then its momentum is defined by

p=mv and thus F = ;l—(mv )* S wL(5a)

Newton cons1dered that mass of a body remains constant in motion, Therefore |
F=m— =ma ' ' . ..(5b
me s m | . (5b)

_ _iLe. Force = mass x acceleratron o o .
ThlS is the fundamental law of classical mechamcs Quantltatlvely, first. law is the special case of

o s . . -dv )
second,law, because 1f -fqrce_ is not acting on a body, i.e., F = 0, then = =0 ‘and therefore v = ‘constant .
N ey t .
including zero.

(3) Law of Action and Reaction (Third Law) : To every action there is always equal and opposite
reaction.This means that'if 1 and 2 bodies are interacting mutually, then

“Fy = -Fy A I _ ' , "_'(6).

i.e., force on st body due o 2nd = - force on.2nd _body-dt_re to:1st, o

But F, = Rate of change of rrromentun of the Ist body -
| L ‘. i d_\’l' .
T — v m ——
0 (myv,) = m, dr
d - | dv
and similarly, Ky = d—t(mzvz) =m, _d_tz .

Substituting in (6) , we obtain

dv, dv;
my——=—my ——=
| ' dr 2 dr
v :
\ Ifa, = ,——1’ and-ay = ——{denote for accelerations,then in magnitude
v t t -
a or— my =21 a 7
m a : :
! 1 m)z 2 27 a0 A7)

* Common experrence tells us that a greater pull or-force is requrred to change a definite amount of velocity
in.a certain time for a maSSWe body than a; llghter body So Newton considered that mass also be included in
the definition of force by deﬁn’mg the momentum as ‘mass trmes velocity.
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|
This means that if an isolated system of two bodies is interacting among themselves, then by measuring
their accelerations the ratio of their masses can be determined. If one is the standard body of mass 1 kg
(say m,) then the other (m,) can be determined. Thus Newton's third law defines mass uniquely and hence
equation (5) can be used to define the force in a unique way.

1.4.INERTIAL FRAMES

Newton’s laws of mofion are valid in reference systems, known as inertial frames..An iner tza[ frame is
the one in which thé law of inertia holds true* i.e.,-if a particle, subject to no external force, is found to
" move in a straight line with constant velocity (or to remain at rest), then the coordinate system used for this
purpose is called inertial frame. Thus in an inertial frame, a body not experiencing any force (F = 0) appears
- unaccelerated (a = 0) because from NeWton‘§ second law

_d T : ‘ ' (8)
dt”

F=ma=0 or

All those frames, which are moving with constant
velocity relative to an inertitl frame, are also inertial.
“In order to prove this statement, let us consider an’
inertial fiame § and ancther frame S’, which is moving
with constant velocity v relative to S. Initially at ¢ =0,
if-the positions of the origins of the two frames
coincide, then in the two frames, the position vectors
- of any particle P at any instant ¢ can be related as

[Fig. 1.2]

r=r +v1( 00' =V
or r'=r—vt (9 - 7

In Newtonian mechanics, it is assumed that the time is

-universal. This implies that the time of an event is the Fig. 1.2 : Frame moving with constant

velocity.
same nelatlve to vauous obsu\els in dlffelent states of y
motion.
Differentiating eq. (9) with respect to time and writing — =y, we obtain
dt
uw=u-v _ | (10)

where u is the velocnty of the particle in frame S and u' in §'. Egs. (9) and (10) relate the position vectors
and velocity vectors of the particle £ in S and S' frames.

Differentiating eq. (10) again with respect to time and remembering that v is constant, we get .

du'  du A d*r . ‘ |
or 5 - ora'=a , : _ «(11)

ar dt dt=  di”
Thus a particle experiences the same acceleration in two frames oilt of which one is inertial and the
other is movins with constant velocity relative to the inertial. Now, if-the acceleration of the particle in

frame S is zerq, 1ts acceleration in S’ is also zero. But § is an inertial frame, hence S’ must also be an inertial

-
# The law of inertia was first stated by Galileo, theletme the inertial frames are also named as Galilean frames
of reference.
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frame . Thus we.cenclude that if a frame is inertial, then any frame, moving with constant velocity relative
to it, is also an inertial frame. ‘

Eq. (9) represents Galilean transfor. mation, connectmg the coordinates in two mertral frames (S and S')
"in constant relative motion.

If the observed acceleration of a body of mass m in an mertlal frame is a, then the force observed on
the body in this frame is - _
- F=ma ' ' : ' (12)
Let us think a llttle in depth about an inertial frame. Obvrously an-inertial frame is unaccelerated,
because if the frame is accelerated, an-observer stationed in this frame will see an accelelatlon of a force-
freg partrcle which violates the first law. The value of the acceleration a, used in the second law F = ma,is -
measured with respect to this unaccelerated frame. But the question arises, how is this unaccelerated frame
realized in practice. Since fixed stars are at large distances and can be thought as being free from interactions
with other bodies.We can think the fixed stars as a standard unaccelerated referénce system or_inertial
frame. The sun with respect to these fixed stars moves with uniform velocity and hence a frame fixed on
sun is also an inertial frame. A frame fixed on earth is not inertial because the earth is rotating about its axis
and simultaneously it is moving in its orbit around the sun. Thé centripetal accelerations due to spin and
_orbital motions of the earth are of the order of 3.4 cm/sec’ (at the equator) and 0.6 cnv/sec’. Now, if a
frame, fixed on the earth and accounted forthése accelerdtions will work well as an inertivl frame.
However, if we are dealing motions negligibly small-compared to the earth's motion, a frame fixed on the
earth can be approximated as an inertial frame.

Validity of Newton’s Laws : Newton’s first and second laws do not hold correct in the accelerated
and rotating frames. If a particle is experiencing no force in an inertial frame, then the observer of the
accelerated frame will see an acceleration and consequently a fictitious force on the particle. The accelerated
frames are called non-inertial frames and we shall deal them later. Newton’s third law of motion is not
correct when a force is acting at a distance because thie forces and actions cannot travel faster- than light. In
. other -words, -if the first particle ‘produces any change in_the second particle at a distance, the reaction

reachés on the first particle after a finite' iriterval of time. This means_that simultaneously action and .
- reaction are not equal However, Newton’s th1rd law is still correct for the bodies at rest and for contact _

forces. -

1 5. GHAVITATIONAL MASS

The gravrtatlonal force exerted on one body by another body, such as ealth is given by

FR?
M, ik (13)

F=0—~= me =
OrGGME

- The-mass of body, determined from the formula (13), is called the gravitational mass and is denoted by
¢ Ineq. (13) My is the mass of the earth and R is its radius. '

Let the two bodles of mertlal masses and m, be allowed to fall under gravity. Experimentally we know

that all bodies on earth fall with the same acceleratron g So that

mg = ———GME ] andm, g = ———GM "o,
I R2 2 R2
. m__ My _ )
Therefore, =~ —=— - .(14)
: M May -
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Thrs means that the ratio of chmertral mass to the gravrtatlonal mass is constant say K ie., g =K

. orm=Km,_ie., the inertial and grav1tat10na1 masses are proportronal to each other By a proper clrorce of
units, we can make this raitio (K) equal to unity i.e., m = m_. Thus it is assumed that the- grav1tat10t’1al mass
and the inertial mass are one and the same. Einstein’s general theory of relativity uses this basic. postulate as
\a startmg point. This equrvalence of inertial mass and gravitational mass is called the prmczple of equivalence.

In view of this principle, we shall not distinguish between the inertial mass and gravitational mass.

. 1.6. MECHANICS OF A PARTICLE : CONSERVATION LAWS ~

- We apply Newtonian mechamcs to deduce conservatlon laws for a partlcle in motron These laws tell
us under what conditions the mechanical quant1t1es like linear momentum, angular momentum, energy etc.
are constant in tlme : S

1.'6,1.- Conservation of Linear-Momentum

Ifa. force F is acting on a partrcle of mass m, then according to Newton's second law of motion, ‘we
“have- : : B

_dp _d U T o -
| F= o — Z(mv) 8 L o ~..(15)
where p = mv is the linear momentum of the particle-; s / |
If the external force, acting on the particle, i zero, then
d :
or T P =mv=constant . - o e e (16)
Thus in absence of extemal force/the hnear momentum of a partlcle is conserved This is the conservatlon
theorem for a free pamcle _ L o -

1 .6.2.-ConserVation of Angular Momentum

The angular momentum of a particle P of a tass m about 2 point O -(Fig. 1.3) is defined as ‘
where r is the position vector of the particle P and p = mv is its
linear momentum, \ '

If the force on the particle is F, then the moment of force or
torque about O is defined as

T=rxF -(18)
If we differentiate (17) with respect to ¢, then ' - ki . ‘

dt  dt d dt Fig. 1.3. Angular _momentur\nof
‘ a particle Palong a point O.

or : —=rxF '.'-—_——Xp=vxrnv=0andF=d—t
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Thus the time rate of change of angular momentum of a particle is equal to the tor que acting on it.
This equatlon (19) is analogous to eq. (15) for linear motion. :
- Now, if the torque acting on the. par_tlcle is zero, f.e., T = 0, then
o %tJ- =0 Or_ - J'="cons.tant' B (205

Therefc)re the angula; momentum of a pai tzcle is "constant of motion in absence of extérnal torque.
This 1 lS the consel vatton theorem of angular momentum of a particle.

1.6.3. Conservatlon of Energy

1.6. 3(a). Work Work done by an external fowe F upon a particle in dlsplacmg from point 1 to point
2 is defined as : :

W,, J.F-dr _ o e

~1.6.3(b).- Kmetlc Energy and ‘Work-Energv Theorem : Accmdmg to Newton’s second law,
F =m dvldt and hence

°dr—m

v svdl [ dr ='£E,dt =v dt]
a dt

.—d[ mv] -'. . _ o i.

Therefore equatlon (21) is dbtamed to be o - B '

. P2 b9 'Fig.1.4: Work done by a
‘[ F dr I d [ ny ]‘5”"’2 =5 mvj T horce ona particle.

The scalar quantity % mvEis defined as the kinetic ener gy and denoted by T. Thus the work done by
the force acting on the partlcle appears equal to the change in the kinetic energy i.e.,

JF°dr T,-T - @

This is known as work-energy theorem.

1.6.3(c). Conservative Force and Potential Energy : If the work done (#,,) by the force in moving
a particle from point 1 to point 2 is-the same for any possible path between the points, then the force (and
the system) is said to be conservative, The region in which the partlcle is experiencing a conservative force
is called as conservative force field. S

Thus for conservative force [ Fig. 1.4 ]

2 C o 2 ol : '
PJ.Fo_dr='QJ.F-dr or P[Fedr+Q[Fedr=0 e, §Frdr=0 (3
I T ’ : | . 2
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Thus, if the force is conservative, the work done on the particle around a closed path in the force field
is zero. In case of a nonconservative force like friction, the amount of work done around different closed
paths are different and not zero.

According to Stoke’s theorem in vector analysis, we can transform the equation (23) as
§F~dr = J-J-curlFm’s

Since the work done is zero around any closed path in the conservative force field and does not depend
on.the length of the path, we may carry out the integration over the perimeter of the area _ds._This gives

§F°dr=curlF°ds=0

‘But, ds # 0 and hence in general

culF=0orVxF=0 - R ..(24)
Therefore the force can be expressed as ® ’
OV A0V
F-——VV—— léK ja—+k— (25)
x - 62

2 2 2 N )
because vx vy <[ 07 _ O I S Y i A
0Oy 0z > oy) "\ ozox ox oz oxdy Oyox)

This scalar function ¥ is called the potential or potential energy and depends on position: In case, if we
add any constant quantity to ¥, equation (25) does not change and hence the zero or reference level of the
potential function ¥ is arbitrary and can be chosen at convenience.

If we take scalar product of dr w1th (25) and integrate from posrtlon 1 to position 2, we obtam

jF-dr——J vy dr——J-dV v, ¥, - | | .(26)

_ ~ Now, if we assume the posmon 1 as o and the potential eriergy to be zero there then the potent1a1
energy at a pomt r (posztzon 2) is given by

V(r) - _—LF odr | o)

From eq. (26) we see that the work done by the conservative force is

2. - B
Wy = [Fedr =¥, -1, .(28)
1

which is the change in potential energy when the particle moves from' position 1 to 2.

.1.6.3 (d). Conservation Theorem : According.to equation-(22), the amount of work done by a force
in moving a particle from position 'l' to '2' is given by the change in kinetic energy i.e.,

2
W, =JF-dr=7}—T, .(29)
l .

Therefore, from (28) and (29), we obtain _ _
; Vi~V,=T,~T .or T +V, =T +V, = Constint \ -.(30)
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‘Thus the sum of kinetic and potential energies (i.e., total mechanical energy) of a particle remains
constant in a conservative force field. This is known as the law of conservation of energy.

Remember that the law of conservation of energy gives us no new mformat;on not contained in
Newtons ‘second law of fmotion. If we multiply by v = dr/dt to both sides-of F = m - dv/dt and integrate
with respect to ¢, we obtain

J-m(fiv o vdt = J-F . dt + Constant (say £)
1
or J’?t[gmv -v]dt=J-F-dr+E
r
or fd[%mvz]—JF-dr=E or;mvz'—jF_-dFE |
ie., T+V=E -(31)

where the constant E is the total energy of the particle. Equation (31) represents the conservation energy
theorem.

Conservation laws, obtained above, are the constants of motion and referred as the first integrals of the

- motion. They are very useful because we get some important information physically about the system just

ata glance'from these integrals. In fact once integration of the equation of motion under certain condition
on the system yields the first integral. Since Newton’s equation is a second order differential equation,
these first integrals of motion are in fact first order differential equations. We shall discuss further regarding
these integrals later on.

1.7. MECHANICS OF A SYSTEM OF PARTICLES

' 171 ‘External and-Internal Forces '

. In the last section, we arrived at some results specially conservatlon theorems for the mechamcs ofa
partrcle These results can be easily generalized to the case of a system.of particles by taking care of mutual
interactions. Now, if a mechanical system consists of two or more particles, then the force on the /' partlcle

is grven by

N
F,=F/ +XF,

where F/ is the external force, actmg on the " particle due to sources outsrde the system. Fj is the internal
force on the " particle due fo the 7" particle and the total internal force due to all other particles (j =1 to N) -
on the i particle is represented by the sum in equation (32), .where N is the number of particles in the
system and F” the force of i* particle on itself, is naturally zero.

According to Newton's second law

, dv; d2

Now, when the sum is taken over all the particles of the system, equation (32) takes the form

d? e
TR . oy

i tl .I-
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On the right hand side of equation (33) first sum represents the total external force F¢. According to
Newton'’s third law, any two partlcles of the system exert equal and opp081te forces on each other, i.e,

, F,+F,=0 - | | - (34)

Since the second sum in equatlon (33) represents the 1ntemal forces in pau's and for each palr the
resultant force is zero, consequently this sum vanishes. ‘ '

Thus, equation (33) is

'Fe=d—zmr A € 1) B

df?

1.7. 2 Centre of Mass

/'.

We deﬁne the centre of mass/R of the system by
Zm r, Z m; r,

R“ '_‘ _: S R )

Zm
o mrt mr,
.where m; = M s the total mass of the system. In view of eq. e

(36) eq. (35) assumes the form

dZR_

F¢=
P

= Ma -(37)

Thus the acceleratlon of the centre of mass is due to only
the. external forces and- is given by Newton’s “second law of -
_ motion. Thus the centre of mass of a system of particles moves

as if it were a particle of mass® equal to the total mass of

Fig 1.5 : Centre of mass of a
system of two particles.

system _ _ S _ i
1.7.3. Conservation of Linear Momentum

If we differentiate eq. (3.6) with respect to 7, we obtain

—=m—tmy—=+...tmy ——
dt da .".dt dt
S N S
or MV=mv+m2v F s + vaN—):mv ‘ .{38)

which- glves the veloclty ( V-) of centre of mass. The sum Ymyv, =P is the total lmear momentum of all the.

particles of the system. |
~ Thus P =MV -(39)

Thus the total linear momensum of the system is equal to the praduct of total mass of the system and
the velocity of centre of mass.

Differentiating eq. (39) with respect to ¢, we get
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2 .
mvy= u . - Mil‘_ | ..(40)
: dt di?
Hence by using eq (379"' the total external force on the system is”
N

-'\"'.'-:i P d : : S

A Fe__.,_ MV PR _ r .(41)

- dt( ) T |
When F° =, | _

P MV va =comstant” - . - - L. oo (42) -+

/ i
Thus 1f the total external force F on the system is zero, ils total lmeal momentum is the constant of
motion. This is the law of ¢ conservatlon of lmear momentum for a system.. g

'1 TA4. Centre of Mass-Frame of Reference

- An lnemal frame attached w1th the centre of mass of an 1solated system (e, a system free from
~ external forces) of particles is called the centre of mass-frame of reference or C-frame of reference. In this,
C-frame of reference, the centre of mass remains at rest ze “V-=0."So that in view of eq. (39), the total

P= MV Zm,v, 0 (in C-frame of reference) ‘_
This is why the C- frame is called the zero-momentum frame. This C~frame Jis important because
several experiments which we perform in the laboratory (or L-frame) can be more simply analyzed in the
centre of mass frame of referene.

1.7.5. COnservation 'of'Angular Momentum | _ '
It Jid,, .. are the angular momenta of various ous Particles.of a system about a gi\{en,poi'nt 0, the total
angular momentum about the point O is glven by ' g '
| J=J +J,+.+J *(r.Xp.)+(r><p2)+ {ry Py}

or L I=3Exp). ey
. = N ,
Also
‘:;J . . (r; xp,) Z'(.r,. x F;) | (v xp; =v; xmv; =0) - .;.(44)
t i i .

If we take product wrth r, in eq. (32) and sumover all the particles of the system, then

S(n x E) = 5 (n x F)+ 2 F,) @)

i

The last ferm contains the double sum for i, j = 1 to N and hence it is a sum of the palrs of the form,
given by -

i rxF, +r><F .= (- r)XF =t XF

because F,=-F; according to Newton’s third law of motion.
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Now, if the internal forces between any two particles
of the system in addition to being equal and opposite be
central i.e., lie along the line joining them, then from the
property of cross product r,xF, i 0.

Thus the last term of eq (45) vanishes and hence

Z(iXE)”Z(iXFie)‘

i i

But from equation (44), we have

dJ." R . . Fig 1.6 : Assumption of the force -
’Z(ri xF;) = a F,paralleltor;
Th e 46
us, = ..(46)

This means that the time rate of change of total angular momentum ofa system of particles is equal to
the applied external torque on the system about the same point.

If . _ =0, _ o
J= J+J+ AJy, = = constant T C “..(47)

~ In absence of the external torque, the total angular momentum of a system of particles is conserved.
Thls is the conservation theorem for total angular momentum.

1.7.6. Note on Conservation Theorems of Linear and Angular Momentum for a
System of Particles

We have stated the conservation theorems of linear and angular momentum of a system of particles by
. assuming the validity of Newton's third law for intérnal forces.in the former case and in the later case .
additionally the central character of internal forces. Both of these conditions are satisfied for some physical .
forces, for example gravitational forces in a system, action reaction forces in a rotating mass attached to a
string etc. However, thete are action and reaction forces which do not obey.the third law and also do not lie
~along the line joining the two particles. For example, if we consider two charges, moving with uniform
velocities parallel to each other (which are not perpendicular to the line joining the two charges), then
according to Bio-Savart law, the forces on the two charges due to each other are of course equal and -
opposite, but they do not lie along the line joining them. Further let us consider two charges so that
instantaneously one charge is moving directly towards the other but the other is moving at right angles to
the direction of the motion of the first. Consequently the other charge exerts a definite force on the first
charge, but it does not experience any reaction force at all. In such cases, the conservation theorems of linear .
and angular momentum appear not to be correct. However, the laws of linear and angular momentum are
known as the fundamental laws of nature and therefore, one has to investigate for finding the way for the
validity of the conservation theorems. For examples, the sum of mechanical angular momentum and
electromagnetic angular momentum of a system of moving charges remains constant in time.

1.7.7. Relation between Angular Momentum (J) and Angular Momentum about
Centre of Mass (J__)

The total angular momentum J of a system of particles can be expressed in a convenient and important
form by using the velocity of the centre of mass and velocities of the particles relative to the centre of mass.
If R and V are the position vector and velocity of the centre of mass and r, and v, those of a particle of mass



Introductory Ideas 13

m._ relative to the centre of mass, then the position vector and velocity of the particle with respect to the
reference point (O) arer; = R +r,_andv,=V +v, . Hence the total angular momentum is

J=Xm(R+r)*x(V+v,) | R
=Zm,.(RXV).+Zm,-(RXV-_)+Zm.(r.XV)+Zm.(r.xvl.c)

=R x(Zm)V+Rx(Xmv; ) +H(Zmr, )xV +X (r,x ,-,) .(48)
But r, =r.—Rormr, =mr-mR
Hence, X mr =Zmifi—2r'r¢iR=2miri—MR B
where . X m; =M, mass of all the particles of the system.. . | . __C.M r=r-R .
But according to the property of centre of mass, we know that P
MR =mr+ mr+.=Xmr, | R _
. X mpr, =0;similatly ¥ myv, =0 - ..(49) -
Hence, from €éq. (48), we have ' S .‘
J =Rx MV +X (r, x my,) ..(50a) _
- In this equation X(r, X mv, ).fepresents the angular mormentum - — X

of the system about the centre of mass, say J , and MV = P is the 0 R
total linear momentum. Thé quantity R x P or R x MV -is the * Fig.1:7 : Coordinates of a particle -
angular momentum of the centre of mass about the origin O. Thus relative to the centre of mass of

J=J +RxP (50b) -  the system.

In other words, the total angular momentum of a system of particles about a point is the angular

momentum of the system about the centre of mass, plus the angular momentum about the reference point of
the system mass, concentrated at the centre of the mass.

1.7.8. Conservation of Energy .

o Similar-to a sin-gl"e particle, the total amount of work done by the forces acting on various pa_rtiéles of

the system from an initial'conﬁguration I to final conﬁgura‘tion 2 is given by -

z F-dr —zj Ff o, sz sdr. SR
. L : ; : - ' av;
1.7.8(a). Kinetic Energy : But according to second law, F =m, 40
N 2 2
= 5 [F.ar, :zjm,.v,. oy, dt
=171 i vl
. 9
N p2 -
:El | (l(%ml-viz) :[‘:;%miv;l
=T,-T, (52)

Thus the work done is again equal to the change in kinetic energy (wark-energy theorem ), where
T=3my (53)

denotes the kinetic energy of the system.
) ) A
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Ifv,=v,—Vis the velocxty of the partrcle relative to the velocrty of the centre of mass then :

T= Z myv;*v; *Z m(v,c+V) (v +V)

_ %
_Z mv Z mV2+Z Vie VZZ%mivii-i__z—zmi_‘-Vozmivit
N i i
But ¥ m, = M, total mass of-the system and Zm;v i =0 [from eq.(49)]

Thus 7= Z mlv“ M,,z'- i '_ Y 1)

Thus the total kinetic energy of a system of partlcle is the sum of kinetic energy of motion abbut the
centre of mass plus the kinetic energy of motion of the total mass of the system, as if it were concentrated
at the centre of mass. :

1.7.8\(b). Potential Energy : In eq. (51), if the external and internal forces both are conservative and
derivable from scalar potential, then

F VV-—— l.al+jaV +kaV ..(55)"
ax; ; a?i
Loy ov oW ‘
and - F= V‘Vij =-li—2L+j—L+k ”J ..(56)
) ax,' : ayi _ 62i

If the internal forces are central in nature the potential energy V will be a function of scalar distance

ry=lr,—rlonly Then - g

” ' ov, oV, ar, - (x;—-x;) o¥; - - ‘
So that - L= i % (- g ' , o v ...(58)
| o oy O om0y
because = In=r =[x+ (y=y P+ (z-2) 17
o ari, ( x) - |
and hence . | r
Similarly, il ='(yi ~¥)) %% or il = @ =z)) aVij.

;i T arij o . O

i ij

Therefore, from equation (56), we have

F; —~r——~[(x -x))i+Q; - y,)1+(z -z; )k]
ij
= _(ri rj i_‘j
o 7‘, ary
v

o OV OV o OV
Also similarty, ~ Fji ==V ;¥ =-li—+] Py tk P '



a net force F. Find the Jorce on each box.
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or; K

Ty Ol i T

- oV - Or; x_i_';, B
_:ﬁ(r,-'~rj)—1‘_-'——j- {Here, 'a;':—( : Y")_ etc.}' S .(60) ,

~ Thus the mtemal forces F and F, between the z and ] paiticles are equal and opposne and
automatlcally satisfy third law and lie along the line (r-r ) Jommg the two particles.

Now if we con51der the last term of equation (5 1), then it can b.e written as

ZZIF odr; ——ZZJ F; -dr,.+F 'dr __.22_[ VV odr; +V Vy dr.)

i#J i;tj - o z;tj
'-’_ZZJ Vil *dry ‘ (61)
L izj : ’
' ' O oY
because ViV =Vl =-VV; |~ From (57) —=—
nY Ox;  Ox;
ad  dredr = a’r

Thus eq. (51) in view of egs. (55) and (61) 1s

—-):J' V¥, edr, ——zzj'v,,v dr, ——zj' dv, —-zzJ'dV
| l*] : ._ . ‘-l-‘#j-

***** -] s e
i i - . : .

i£]

. where ¥ the total potential energy of the system is deﬁned as

VeEhHELY, e
1.7.8(c). Conservation Theorem : Now, we obtain from egs. (52) and (62) _
T,~T,=V,~Vyor T, + V, =T, + V, . .(64)

which is the law of conservatlon of energy for a system of particles.
It is to be noted that in eq. (63) the total potential energy V has been defined, provided the extemal and

- internal forces are both derivable from scalar potentials. We may call the second.term in eq. (63) as the

internal potential energy which may not be zero and vary with time. However, for a rigid body, the internal
potential energy will remain constant. In fact a rigid body is a system of partlcles with fixed interparticle
distances and therefore, the internal forces in a rigid body do not do any work, when the body moves from
one configuration to another. Thus the internal potential energy of a rigid body is constant and can be

. taken as zero to discuss its- mOthl’l

Ex. 1. Box Train : A box train is shown in Fig. 1.8 . Each box has a mass M and the engine applies

—
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BOX | BOX 2 BOX 3 ’ ENGINE V
T T T T P
M > M Le M L8 |
O O O O ~0 0 O 0,
: Fig. 1.8 : Box train 2 :

/’

is acting on it. Hence

Solution : The mass of the box train excluding the engine is 3M and a net forcc

_ _the net acceleration of the box trainis. .~ it L
F L U B .
a=— _ _
3IM
. For each box, the weight is balanced by the normal reaction. For the box 1, the force T, is glven by
F F
I= Ma=Mx—=—
M 3

Since T,= T due to equality of action and reaction in the rod or rope between the box 1 and box 2, the

_ net force on box 2 i 15

T T Ma or 7}—3'*’?'2: PULLEY

_ Slmllarly, the force on box 3 is

T T2+ Ma—%—+—§——l’

Therefore, if there are N boxes, the acceleration will be

F

NM :
On each box the net force will be F/N and the forward force on n
box will be nfF/N -

- EXX2): Atwood Machine : Consider a massless string going over a _ e ,-,\i/ g
frictionless pulley. Blocks of masses m, and m,, are qt_tachéd at'the ends . 2
of the string .-Such a system is called Atwood machine. Find the
acceleration of the blocks and tension in the string.

Solution : The pulley is frictionless and hence it will not rotate. If m, is greater than m, and T is the
tension in the string, then according to Newton’s second law, equations of motion of the two masses are

th

" Fig. 1.9 : Atwood machine

T-mg=ma : ’ (0
and myg~T=ma ' . ...(ii)
where a is the acceleration which will be the same for the two masses because the string is continuous.
Adding eqs. (i) and (ii), we obtain

(my—m)g=(m tmy)a or aiug ..(iit)
- mytmy

Therefore, T=m, g+ — g .—__zml_m? g . | )
ml +m, my +m, R ’
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@UF = (Lxy+2%)i+x2j + 2xzk newton, then show that it is conservative. Calculate the amount of

work done by this force in moving a particle from (0, 1, 2) to (5 2, 7) m.
Solution : For a conservative force curtl F =0

A

L 1Y

i k
Here, curl F= o E
. X 0

o
oy
2

: .2xy+,-zz : .-2xzt

.\.
3
\

,.- D o 0 N 0 | ~ i, 0 . |
- i‘[5(2_u)—5;(x2)]+ j [—6;(2xy+zz )——a;(zxz)] +k [a—i(x“)—g(hyﬂz.)} .
;0+j(2zf2z)+l%_(2x—2_x)'50 .

Thus, F= (2my+z2 )E +«x2j +2xzk is a conservaitive force.

" Work done - JF-dr J Fdx+de+Fdz J[21y+z )dx+x2dy+2xzdz]
=’f (22 e+ xzdy) + zzd‘zﬁ: 212 )| = JI [ () +4 (ZZX)]; j;’d (2y+2%)

2(5.2,7) .
] T = [5x5x 247 x T x5-0-0]

.
= + 54
[x}lle(o »

=50+ 245 - 295 joule.
Ex. 4 Two objects of masses ‘m;= 200 gm and m,= 500 gm possess velocities v, =10im /sec and

v,= =3 +5] m/sec just prior: to a collision durmg which they become permanently attached to each other.

Calculate (a). the velocity of the centre of mass, (b) the final momentum of the combination in the
laboratory frame, and (c) the initial and final momenta in the centre of mass frame. (d) What ﬁactton of -
the zmttal total kinetic energy is assoczated with the motion after collision ? . ’

myy + v, '_0.2(10|)+0.5_(3|+5J)=Si+(§T '
m, +m, 0.2+0.5 7 )

Solution : (a) | V=

(b) Fmal momentum (m, + m))V = 0 71V = 3 51+ 2. 5]

(c) In the centre of mass-frame of reference, the centre of mass of the system remains at rest. It means
that in the centre of mass-frame, the initial momentum of the sysfem is zero and hence final momentum of
- the system will also be zero.'

() L= my} +-l--rrt2v2 =3 (0 2)(10) +(0. 5) (32 +5° ) 10 +85=185 joule
Now applying the law of conservatlon of momentum o

my tmy,  =mtm)y
where v is the final velocity of the combined particle i in the laboratory system Note that v is identical to V,

ie, v=51+QyNj
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Therefore ’Tf=-2]-(ml+m2)v2 = x07 [52+(7)2]=13.2 joule

Thus = 0.72.

Note : Definition of Central Force : If a force acts on a particle in such a-way th_at it is always
directed towards or away from a fixed point and its magnitude depends only upon the distance (r) from the
point, then this force is called a central force. Thus, a central force is represented by . ‘

F=F(r)r=F(r)r/r
where F(r) is any function of distance r and f =r/ris a unit vecter along r from the fixed centre.

The force F is attractive or repulsive, if F(r) < 0 or F(r)_ > 0 respectively.

| Gmym, | P G
Examples of central force are gravitational [F (r)y=- mlzmz :' and coulomb [F (r)= 4n80 2 } forces.
r ' -

Ex..5.-When-a particle moves under a central force, show that () its angular momentum is consewed
(b) the motion takes place in a plane and (c) the areal velocity remams constant. i

Solution : If a particle is moving under the influence of a cential force F= F(r)r/r, so that the torque
acting on it is- given by

aJ r '
=—=rxF=rxF@Fr)—=0 [+ rxr=0]
dt : r _

where J is the angular momentum about the origin.

Therefore J = constant {vector). ' ' - (1)

Thus when a partrcle moves under the action of a central force its angular momentum (J) is conserved
i.e., J remains the same in the magnitude and direction. :

But J=rxp,
where p is the linear momentum

Takmg dot product with r of the both sides of this equatron we have _

reJ= re(rxp)=(rxr)sp=0 L -y

(since in a scalar triple product the positious of dot and cross
may be interchanged and r x r = 0).
Therefore r is perpenducular to the constant vector J i.e., the
motion takes place in a plane for a central force.

Now, let O be the centre of force. When the vector r
changes to r + Ar, the vector area AA swept by the radius
vector in this time is

AA=1rx Ar (i)

This area is swept in Af time, therefore dividing both the
sides of this equation by A and taking the limit as Az — 0,

i Fig. 1.10 : Vector area swept By
en o . ' : the radial vector

! oL — =XV = —— s - : ...(ZV)
i dt 2 2m ) ‘
~ which gives the areal velocity of the particle. But J is constant for the motion under a central force [eq. (i)],
we mean that the areal velocity remains constant, '

Il
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Ex‘ Harmonic Oscdlator ‘The differential equations of a simple harmonic oscillator of mass m is

gzven by P
< P
m dzx _ : } b Py
2 - 0
dt” «—x—>
where x is the displacement at the time t and Cis the Ceorsrennnoas @ veeeereneees Jeerionnnaanans ( +rerereeness 3>
force constant. Solve the equation to find the expressions '
for the displacement, velocity and acceleration. Fig. 1.11: Simple harmonic motion
Solution : The d1fferent1al equatlon of the harmomc (F = m¥=—Cx or mk+Cx=0)
* oscillator can be written as ST T e
itolx=0 i)
here® = JE anel X d’x |
where® = [— =— _
: m Sodr T
Acceleration F=—02x _ , ()
Multlply eq. (l) by 21, we get
2ii+0t2xx=0
Integrating it, we obtain
ittolxl=4 ' (i)

where 4 -is a constant of integration.

When the displacement is maximum ie., (equal to the amplitude of motion) x = q, velomty x=
Therefore

|
R
(=]
—~
R

1

e
|

2
0+’ =
Therefore - 2+0lixt =92 -

Hence velocity x = _‘:;_)_c;m Vat-x? 7 | _ L )

t
. Equatlon (zv) can be written as -
| - _d~x

(12 —x2

=0 dt
Integrating it, we get

g X .
sin'==wf+¢ or x=asin(or+¢)
a

where ¢ is consfant of i 1ntegrat10n called the initial phase. The term (ot +¢ ) is called phase angle or phase
of vibration.

Thus displacement x = a sin (@t +¢) | .‘..(v)

Questions - -

1. What are inertial and nan-inertial frames ?'Show.that if a frame is an inertial frame, then a frame,
moving with constant veloc1ty relatlve to it, is.also inertial. How will you realize an inertial frame
in practice ?
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Using Newton’s laws of motion, deduce the conservation theorems of linear momentum, angular
momentum and energy for the motion of a particle.What are first integrals of motion ?

State and prove work-energy theorem. What are conservative forces ? Show that for a conservatlve
force T '

; (a) &F-dr" (b)curlF=0 R (C)F:__VV

Problems

Further show that in a conservative force field, the sum of kinetic and potential energies of a

particle remains constant.

(a) What i is centre of mass "7 Show that in absence of external forces, the velocity of centre pass -
. remains constant.
(b) If v_is the velocity of any particle of mass m relative to the centre of mass of a number of particles,
then show that Zmyv_is zero whether any force acts on the particles or not.
(¢) " Show that the total lmear momentum of a system of particles about the centre of mass is zero.
(Agra 1977)

(d) Show that the acceleration of the centre of mass of a system of particles is only due to external
forces. (Rajasthan 1984)

- Using Newton’s -laws-of motion, -deduce the conservation laws for a. system of particles. Discuss the .

assumptions involved and failure of Newton’s third law.

Show that the angular momentum J of a system of particles can be expressed-in the form

J=J, +RxP
where - Jcm = angular momentum about the centre of mass,
R = position vector of centre of mass,
and P = total linear momentum. : (Allahabad 1979 Kanpur 80)

Show that the kinetic energy of a system of particles can be expressed as

I L,
LT == n; v, +—MV
. - 2 iVic. 2 o
where v_is the velocity of the / " particle in centre of mass system.

(@) Show that if the internal forces in a system of particles are central in nature, then the forces F and
K. between i and j* partlcles satlsfy Newton’s third law.

“(b) -Def ine the total potential energy of a system, when the internal and external forces are conservative

- in nature. Deduce the law of conservation of energy for-the system of particles.
(!) When a horse pulls a cart, which force helps the horse to move forward the ground on the horse

or the horse on the ground ? [Ans. Ground on the horse]
(i) A body is kept moving with uniform speed on a circle of radius r by a centripetal force F acting
on it. How much is the work done is one rotation? [Ans. Zero]

[SET-1] R

Consider a system of two masses m, and m, and a pulley of mass M. Determine the acceleration of the
system and the tensions in the strings. Assume m, > m, and pulley to be a solid disc of radius R..

M, —m S
Auis. a=——2—'——g,-

my +niy +—
L 2
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g

hi=mg ’
ny +m2 + —
(2’"1 + MJ
L,=mg L
my +my . S Fig 1.12 : Atwood machine

(Pultey having mass M)
[Hint : (T, - 7,)R = /6, R6 = a (acc.)and [ = MR*2. |
(a) The position vectbr of a particle pf mass m, moving in .xy-plane, is given by
r= acos ot i+h sin.(‘ntj

where a, b and @ are positive constants and a > b. Show that the path of the pamcle is an ellipse,
given by

x 12_ _t
a’ b . ' A
Further show that the force acting on the particle is always directed towards. the origin with
magnitude ma'r. Is the force conservative ?

(b) Find out the expressions for the potential and kinetic energies of the particle in the above
problem and show that the total energy of the motion, given by

I 2 N
E= —n1a)2(a +b?); témains constant.

(@) A particle moves under a force F =~ ( KA*)E . Prove that the angular momentum of theparticle -
is conserved. '

(b) Find out the nature the force, conservative or non conservatlve glven by

() F= (2xy+yz )i+ (x? +xz )j+2xyzk
(i) F=yzi+zjopk (Allahabad 1978)
(i) F=(’z —6x22)§+2xyz3j+(3xyzzz—6x22)ﬁ

- (iv) F= )czyzi—xyz2 k
Ans. (b) Conservative : (i), (if) , (iif) ; non-conservative : (iv).
If the magnitude of the force of attraction between the particles of masses m, and m, ‘is given by
F=k0%
' r

where K is a constant and r-is the distance between the particles. Determine (a) the potential energy
function, and, (b) the work required to increase the separation of masses from r = 7, to r = ry* R.

. o Kmymy R
Ans. (a) y (r )—@ if ¥ (o) =0 () #’?R).
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10.

11.

@ " The Yukawa potential is given by

U(r) - __r_O U e r/n

This gives a falrly accurate description of the interaction between the nucleons (te neutrons,
protons). The constant 7, = 1.5 x 10° 5 m (nearly) and U,=350 MeV. (nearly) Now, (a) calculate the
corresponding express1on for the force of attraction, and (b) for showing the short range nature of this
force, find the ratio at r = 4r, fo the force at r = r,;

Ans : (a).P-'= _Me—r7r ( ) F(4r0) __"_1_ nearly
P F(r,) 126

A nucleus, initially at rest, decays radioactively by emitting an electron of momentum 1.73 MeV/c and
at right angles to the direction of electron a neutrino with momentum 1 MeV/c. In what direction, does

* the nucleus recoil ? What is its momentum in Me V/c and in S.1. units. If the mass of the residual nucleus

is 3.9 x 10 kg, calculate its kinetic energy in joules and electron volts ?
Ans. Momentum = 2 MeV/c or 10.66 x 10 kg.m /sec; Dlrectlon -210° with the d1rect10n of electron;

K.E.= 1456x10™"" joule = 9.1 &V. |
An o-particle is ernitted ‘from a uranium’ hucleus (U ) in a radloactlve decay. The speed and -
kinetic energy of o-particle are 1.404 x 10" m/sec and 4.212 MeV respectively. Calculate the recoil speed

and kinetic energy of the residual nucleus.

Ans. — 2.4 x 10° m/sec.; 0.072 MeV.

In a radioactive decay of a nucleus, an electron and a neutrino with momen tum 1.28 x 10 and 6.4 x
107%° kg-m /sec are emitted at right angles to each other. What is the momentum of the reecoiling
nucleus ? If the mass of the residual nucleus is 5.8 x 1072° kg, calculate its recoil kinetic energy.

_ Ans. 1.4 x 102 kg-nvsec, in a direction .tan_I (%) with the electron velocity; 1.1 eV.

A sta.tionar-y.body of mass 3 kg explbdes into three equal 'pieces' Two of the pieees fly off at right'
angles to each other, one with2j mvsec and the other with' 3 m/sec. If the explosnon takes in 10™ sec,

ﬁnd the average force acting on each piece during the explosmn

Ans.2x10°i newton; 3x10°] newton ; — (7| +3j) x lOSnewton

A bomb in flight explodes into two fragments when its velocity is 10| + 2 j mi/sec. If the smaller mass
M flies with velocity 20i +50j m/sec, deduce the velocity of the larger mass 3M. Deduce also the
velocities of the fragments in the centre of mass-reference frame, and show these in a diagram.
Ans :é‘( 20i +42§ ) m/sec; 10f + 48] ny'sec and %(10i - 48} ) misec.

If m,, m, and m, be the masses of three particles and v,,, v,, and v , be their relative velocities, prove
that the total kinetic energy (£ ) of the system about the centre of mass is given by

B 2 oy
£ = MV T myigvy; +myingvis

m tm, tm

~ Two swimmers leave point £ on one bank of the river to reach point Q lying right across the other

bank. One of them crosses the river along the straight line PQ while the other swims at right angle to .
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the stream and then walks the distance that he has been carried away by the stream to get the point Q.
Show that the velocity v of his walking if both swimmers reaches the destination simultaneously, is
given by

: u
[(1- uZ/VQ)-|/2 Y

where u is the stream velocity and V¥ is the velocity of each swimmer with respect to water.

. Three particles are located at the vertices of an equilateral triangle of side /. Each of the particles starts to

move with constant speed v, with the first particle heading continuously for the second, the second for the

. third, and the third for the first. When will the particles meet each other ? . ,
Ans : ¢t =2[/3v.

A man moves relative to water with a velocity one half than the river flow veloc1ty At what angle to

the stream direction must the man move to minimise drifting ?

s : 120°

A small block Q is placed on another block P of mass 5 kg B 0
and length 0.2 m. Initially the block Q is near the right FORCE
end of the block P [Fig 1.13]. All the surfaces are assumed P
frictionless: A constant horizontal force of 10 N is : - 7 -
applied to the block P. Determine the time elapsed before //////////-////,///
the -block 0 separates from P.. . _ Fig. 1.13

Ans : 045 sec.

Prism of mass M with-angle 6 rests on a horizontal surface.A
small block of mass m is placed on the prism. Find the
_accelerations of the prism and the block. Assume all the
surface to be frictionless. '

mg sin 0-cos 0 . _(M+m)gsin
M+msin’® > > - M+msin®9

Fig.1.14 -

Ans: aqa =

A 2 kg block is placed over a 4 kg block and both are placed on a smooth horizontal surface. The |

coefﬁc1ent of frlctlon between the blocks is 0.20. Determine the acceleratlons of the two blocks 1f a

horizontal force of 12 N.is applied to (7) the upper .block, (#) the lower block. Assume g=10 m/s 3

Ans : (i) Upper block 4 rri/secz, lower block 1 m/sec’ (i%) both blocks 2 misec’. . |

A small block starts sliding on an inclined plane forming an angle @ with the horizontal. The friction
coefficient depends on the distance x covered as y=a x, where « is constant. Find the distance
covered by the block till it stops, and its maximum speed over this distance.

Ans : (2 tan 6) /o ; (g sin 0 tan 6 /ot )l/2

Two blocks of masses m, and m, connected by a light spring rest on a horizontal plane. If the
coefficient of friction between the blocks and -the surface is equal to y, determine-the minimum
constant force which has to be applied in the horizontal direction to the block of mass m, in order to
shift the other block.

Ans ; (m+m, /2) ug

A bullet of mass m, moving honzontally with speed v, passes through a pendulum bob of mass M and
emerges with a velocity u/2. If the length of the pendulum is /, show that the minimum value of v,

‘which will make the pendulum bob to swing through a. complete circle is (2 M/m)-,./S gl.
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10.

11.

12

A ‘small body of mass m-has a horizontal speed v, at a point O. Find the maximum instantaneous power
developed by the friction force, if the coefficient of friction varies as 1 = ax, where o is a constant and
x 1s the distance from O.

Ans: P mv0 ,/
lH(L\'

A chain hangs from a thread and touches the surface of a table by its lower end. Show that after the
thread has been burned through, the force exerted on the table by the falling part of the chain at any
moment is twme as great as the force of pressure exerted by the part already resting on the table.

The potential energy function for the force between two atoms ina dratomrc molecule can approximately.-

be expressed as

a. b
Ux)= —-—.
)= LR

" where a and b are posrtrve constants, and x is. the distance between the atoms.

(?) For what values of x. U(x) is equal to zero ?
(i) For what values of x, U(x) is minimum ?.
(Y Calculate the force between the two atoms and plot Fx). Show that the two atoms repel each other
for x less than 3 X, and attract each other for x greater than xo- What is the value of x, ?
(iv) Assuming that one of the atoms rémains stationary and the other moves along X-ax1s describe
the possible motions.

(v) Calculate the dissociation energy (the energy required to break the molecule into atoms) of the
. molecule.
1

Ans. (1) x = (a/b)s and x = oo,

13.

14.

15.

@ (’za/b'ﬁ,

(i) F( )_ ME *'57)" .xo (2a/b)

(i) Osc1llato1y motion about the pomt x =(2a/b) V2 -(v)bz /4a or more:

A smooth sphere of radius R is made to translate in a straight line with aconstant acceleration a. A
particle kept on the top of the sphere is released from there at zero velocity with respect to the sphere.
Find the speed of the particle with respect to the sphere as a function of the angle 8 which it slides.

Ans.v=[2R (asin @+ g — g cos 6)"*
A spaceship of mass M ;moves in the absence of external forces with a constant velocity V;,. In order

to change the direction of motion, a jet engine is switched on. It starts ejecting a gas with veloc1ty u
which is constant relative to the spaceship motion. The engine is shut down when the mass of the
spaceship decreases to M. Through what angle did the motion direction of the spaceship deviate due

to the jet engine operation ?
M
F(x ————In—
Aus. 0 =-Tnp,

Two identical bodies of mass m lie on a smooth horizontal table. They areinterconnected by a light

_spring of length ], and force constant k. At a certain instant one of the body is set into motion in a

horizontal direction perpendicular to the spring with velocity u. Find the maximum extension per
unit length of the spring in the process of motion, if it is considerably less than unity.
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16.

Objeéﬁve—r‘[xpe Questions

1.

- Ans:v= [2gh n(i/n)]

Ans : m*[ki2 .

A chain of length / is located in asmooth horizontal tube
so that its portion of length A hangs freelyand touches the
surface of the table with its end Q [ Fig. 1.15 ]. At a
certain instant, the end P of the chain is set free.
Determine the speed of this end of the chain , when it
slips out of the tube.

A body is moved alohg a straight line by a machine delii/erihg constant powér. The d istance moved
by the body in time ¢ is proportional to

172 3/4 32,
(@ ) " 0 P @y f
Ans : (c) _
[Hint: P=Fey= mﬂ'v~———(v )} = constant -
dt 2 dt
2Pt d 2Pt
Hence, vi=""or v——s—— — le S t3/2
m dt m _

A 4 kg slab rests on frictionless floor as shown in Fig.1.16. :
A 1 kg. block rests on the top of the slab. The_ static 10N <—Breek

coefficient of friction between the block and the slab is ]

0.6 while the kinetic coefficient of friction is'0.4. A~~~ H{|SHAH
horizontal force 10 N acts upon 1Kg block. The -

acceleration of the slab is ’ : 4 /. /
(@) 0.98 m/s T ) 147 SMOOTH

(c) 1.52 st . ' (d) 6.10 m/s% - Fig 1.16

Ans : (a) a : ' -

Two blocks 4 and B each of mass m are connected by a massless sprmg of natural length L and
spring constant . The blocks are initially resting on a smooth horizontal floor with the spring at its
natural length, as shown in Fig. 1.17. A third identical block C, also of mass m, moves on the floor
with a speed v along the line joinihg A and B, and collides with 4. Then

(a) the kinetic energy of the 4-B system at the maximum compression of the spring is zero.

(b) the kinetic energy of the 4-B system at the maximum compression of the spring is mv*/4.

(c) the maximum compression of the spring isv (m/k) .

(d) the maximum compression of the spring is v (m/2k).

Ans. (b) and (@) '

A tube of length L is filled completely with an incompressible liquid of mass M -and closed at both
ends. The tube is then rotates in a horizontal plane about one of its ends with a uniform angular
velocity @. The force. exerted by the liquid at the other end is '

e e e — = —
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Short AnéWer Questions
1.

t~
.

(@) Mo’ L12 (b) M’ L (c) Ma?® L4 (d) Ma?L12

Ans. (a)

Mutual interaction forces between two particles can change

(a) the linear momentum but not the kinetic energy. .

(b) the kinetic energy but not the linear momentum.

(c) the linear momentum as well as kinetic energy.

(d) neither the linear momentum nor the kinetic energy.

Ans. (b)

A particle of mass m moving with speed v collides with a stationary. partrcle of equal mass. After
the collision, both the particles move. Let 0 be the angle between the two velocrty vectors.
(i) If the collision is elastic, then

(a) 8 is always less than 90° ()] 6 is always equal to 90°
- (c) 0 is always greater than 90° (d) 9 cannot be deduced from.the given data
Ans : (b) ) ' (Gate 2003)
(éf) If the collision is inelastic, then .
(a) 8 is always less than 90° (b) 0 is-always equal to 90°
(c) 8 is always greater than 90° _ (d) 6 could assume any value i in the range 0° to 180°
Ans:(a) . I : : ~ .. (Gate.2003)

According to Newton s third law every force is accompanied by an equal and opposrte force How

can a movement ever takes place ?

Ans. Action and reaction act always on dlfferent bodies. Hence motion can take place.

A uniform string, having mass, is suspended from ceiiling with a load at the lower end.”Will the
tensron be uniform in the sting ? Explam Where will the tension be maximum ? :
Ans. No The tension will be maximurt at the upper end of the string.

A light body and a heavy body have the same kinetic energy, which one will have the greater

momentum.

Ans. Heavy body

A coin in left free to fall on the ground from a moving tram with constant velocity. Explam the path
as seen by-an observer on the ground and on the train. .
Ans. Parabola; straight line

Fill in the blanks :
(7) The angular momentum of a panticle in defined as the moment ........... (Agra 2004)

(17) The work-energy theorem states that the work done is equal to the change in ..............
' (Agra 2004)

(#i7) Rate of change of angular_momentum is called ..........
Ans. (7) of linear momentum, (i7) kinetic energy, (i) Torque
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"CHAPTER

Lagrangian Dynamics

. INTRODUCTION

In the prev1ous chapter we have dlscussed Newtoman approach to deal with the motlon of particles.

_ Application of Newton’s laws of motion needs the specification of all forces acting on the body at all

instants of time. In practical situations, when the constraint forces are present, the application of the
Newtonian approach may be a difficult task. The greatest disadvantage with the Newtonian procedure is
that the mechanical problems are always tried to resolve geometrically rather than analytically. In case of
constrained motion, the determination of all the unimportant reaction forces is a great - nuisance in’the
Newtonian approach. In order to overcome the difficulties, posed by the Newtonian scheme in solving the
problems of constrained motion, methods have been developed by D’Alembert, Lagrange, Hamilton and
others. The techniques.of Lagrange and Hamilton use generalized coordinates which have been discussed
and used in the present and next chapters. In the Lagrangian formulation, the generalized coordinates used
are position and velocity, resulting in the second order linear differential equations, while in the Hamiltonian

formulation;—the generahzed coordmates being posmon—and momentum result in the first order linear
dlfferentlal equations. '

2.2, BASIC CONCEPTS

We discuss some basic concepts regarding the motion of particles.”

(1) Coordinate Systems : The fundamental concept involved Y p-(x,y) cartesian coordinates
in the motion .of a particle (or system) is the position coordinate - A (r8 ) polar coordinates
and how it is changing with time. The position of a particle is 8
represented by choosing a coordinate system. In the cartesian or
rectangular coordinate system, the position vector r of a particle
is defined in terms x, y and z coordinates. In a two dimensional
motion, rectangular coordinates (x, y) or polar coordinates (r,0 )
can represent the position of the particle [Fig. 2.1(a)]. They are  Fig. 2.1(a) : Rectangular and polar
related as ' " coordinates . -.

) -1y
=rcos@ and y =rsinG, r = ,l 24 2and@ = tan ' L
X y r X y .

In three dimensions, the cylindrical coordinates (p, 6, z) and the spherical coordinates (r, 6, ¢) of the
position of a particle are related to the cartesian coordinates (x, y, z) as follows :

For cylindrical and cartisian coordinates [Fig. 2.1(b)] :

Y~ sin! 2

x=pcosh y=psing, z=z; p=,/>+;>. A=t .
i X
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For spherical and cartesian coordinates [Fig. 2.1(c)]: z
P (x, y, z) cartesian

X = rsinf cosd, y =rsinb sing, z=rcosf; . coordinates
2, 2 : r . (p,8,2) cylindrical

AN/ VX /s * coordinates
r=(x2*y+2) ,9=tan’—y,¢ tan” 2 z
z X 0

We may represent, for example, t_hé relationships for spherical
and cartesian coordinates as follows :
Cx=x(r60),y ='y_-'(f'-.9.:¢ yoz=z(r0) .

o . r=r(rn6¢)  Fig. 2.1(b) : Cartesian and cylmdncal
coordinates

If we include the. time variable also, then

_ ' Zy ~p (% y, 2) cartesian
r=r (r, 6, ¢, 1), . - ) " coordinates-
]’ oy . . . r / i (r8,¢)spherical
.-In gen_e;gl , 'we m.z;y _represent the co'ordmates .by 9> 95 G5 /1 coordinates
having - the relationships with the cartesian coordinates as 0, z :
’ . ~ .
X=x(q), G5 03 1) Y=V Gp Gp @t ) . ._0¢<;..~_,8 ¥
Z=Z(‘]p 42,03,t) ) ' &. f'.x
“or r=r(q,,q5 g3 ) () Y
In fact, these are the transformation equations from a general Fig. 2.1(c) : Cartesian and spherical
system to the cartesian coordinate system. coordinates

(2) Degrees of Freedom — Configuration Space : The minimum number of independent variables or
coordinates required to specify the position of a dynamical system; consisting of one or more particles, is
called the number of degrees of freedom of the system. For example, the motion of a particle, moving
freely in space, can be described by a sét of three coordmates eg., (% y 2) and hence the-number of
degrees of freedom, possessed by-the particle, is three. A system of two particles, moving freely in space,
* requires two sets of three coordinates [e.g., (xl, Yy z,) and (xz, Y95 23)] i.e., SIX coordinates to specify its
position. Thus the system has six degrees of freedom. If a system consists of N particles, moving freely in
space; we need 3N independent ¢oordinates to describe its position. Hence the number of degrees of
freedom of the system is 3N. S : ) ‘

The configuration of the system of N particles, moving freely in space, may be represented by the
position of a single point in 3N dimensional space, which is called configuration space-of the system. The
configuration space for a system of one freely moving particle is 3-dimensional and for a system of two
freely moving particles, it is six dimensional. In the later case, the configuration of the system of the two
particles can be represented by the position of a single point with six coordinates in six dimensional
space. This system has six degrees of freedom and its configuration space is six dimensional.

The number of coordinates, needed to specify a dynamical system, becomes smaller, when the constraints
(which we describe below) are present in the system. Hence the degrees of freedom of a dynamical system
is defined as the minimum number of independent coordinates (or variables) required to specify the

system compatible witl tle constraints. If there are n independent variables, say ¢, ¢,,..., ¢, and n constants
C!,Cz,..., C” such that

G dg;=0 ) ,' )

i=1
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at any position of the system, then we must have
- C=C=.=C=0"
2.3. CONSTRAINTS

Often the motion of a particle or system of particles is restricted by one or more conditions. The
limitations on the motton of a system are called constraints and the motion is said to be constrained
motion . -

2.3.1. Holonomic constraints

Constraints limit the motion of a system and the number of independent coordinates, needed to
describe the motion, is reduced. For example, if a particle is allowed to move on the circumfererice of a

circle, then only. one coordinate g,= 8 is sufficient to describe the motion, because the radius (a) of the

circle remains the same. If r is the position vector of the particle at any _angular coordinate O relative to the
centre of the circle, then

|rj=a or r-a=0 -(3)

Eq. (3) expresses the constraint for a particle in circular motion. Similarly in the case of a particle, "~

moving on the surface of a sphere, the correct coordinates are spherical coordinates r, 8 and ¢, where 0
and ¢ only vary. Therefore ¢,=6 and q,= ¢ are the two independent coordinates for the problem, because
the constraint is that the radius of the sphere (a) is constant (i.e., | T |= a). Since in the circular motion of
the particle, one independent coordinate 6 is needed, the number of degrees of freedom of the system is 1.

For the particle, constrained to move on the surface of the sphere, two 1ndependent coordinates specify its
motion and hence the degrees of freedom is 2.

Suppose the constraints are prcsent in the system of N particles. If the constralnts are cxpresscd in the
form of equatlons of the form : ' o ;

F(E Fyyen )= R o (4)

then they are called holonomic constraints. Let there be m number of such equations to describe the
constraints in the N particle system. Now, we. may use these equations to eliminate 7 of the 3N co-

ordinates and we need only » independent coordinates to describe the motion, given by’
. on=3N-m L '

The system is said to have n or 3N -m degrces of freedom. The elimination of the dependent coordmates
can be expressed by introducing n = 3N — m independent variables q,, ¢,,...q, These are referred as
generalized coordinates. : '

Superfluous Coordinates : The idea of degrees of freedom makes it clear that when we are using, say
rectangular cartesian coordinates, we have several redundant or superfluous coordinates, if there are
holonomic constraints. This redundance and non-independence of the coordinates makes the problem
complicated and this difficulty is resolved by using the generalized coordinates. For example, let us
consider a body be thrown vertically upward with an initial velocity v,. The body will move in a siraight
line. In cartesian coordinates, the motion will be represented as

x=0, yﬁ_vot—;gtz,_lz=0

where X and Z axes aré’;._horizontal and Y-axis is in vertical direction. At different values of the time ¢, only y
coordinate varies and x and z coordinates remain the same. Therefore x and z coordinates are superfluous
coordinates. In conclusion, we need only one coordinate ¢ = y to describe the vertical motion.
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2.3.2. NOnhoIonomic constraints -

The constraints which are not expressible in the form of eq. (4) are called nonhelonomic. For example,
the motion of a particle, placed on the surface of a sphere of radius a, will be described by s ,
[r|>a or r—a>0
In a gravitational ﬁeld where r is the position vector of the particle relative to the centre-of the sphere. The

particle will first slide down the surface and then fall off. The gas molecules in'a container are constrained
t0 move inside it and the related constraint is another example of nonholonomic constraints. If the gas

container is in spherical shape with radius @ and r is the position vector of a molecule; then the- condition.

of constraint for the motion of molecules can be expressed as
. rf<a or r-a <0.

It is to be mentioned that in holonomic constraints, each coordinate can vary independently of the
other. In a nonholonomic system, all the coordinates cannot vary independently and hence the number of
degrees of freedom of the system is less than the minimum number of coordinates needed to specify the
configuration of the system. We shall in general consider the holonomic systems. .

‘Constraints are further described as (i) rheonomous and (ii) scleronomous. In the former, the equations
. of constraint contain the time as an exphc1t variable, while in the later they are riot-explicitly dependent on
~ time. Constraints may also be classified as’(i) conservative and (ii) dissipative. In case of conservative
constraints, fotal mechanical energy of the system is conserved during the constrained motion and the
constraint forces do not do any work. In dissipative constraints, the constraint forces do work and the total
mechanical energy is not conserved. Time-dependent or theonomic constraints are generally dissipative.

2.3.3. Some more Examples of Holonomic and Non-holonomic constraints

Be31des the above examples of holonomic and nonholonomic constramts we are giving below some
important examples : . ' : ' :

(1) Rigid body (Holonomic constramt) In case of the motlon of a rlgld body, the dlstance between
any two particles of the body remains fixed and do not change with time. If r . and r; are the positien
- vectors of the ith and jth partlcles then the dlstance between them can be eXpressed by the condmon

| r,— rl = C,; (constant)

If(x,, v, z)and (x y z) are the cartesian coordmates (components of posmon vector) of the two .

particles, then the constramts wﬂl be expressed as
SN2 VA
w-x) + () + (5-2)" =G

The constraint is holonomic and scleronomic.

(2) Simple pendulum with rigid support (Holenomic censtraint) : In case of a simple pendulum
with rigid support, the constraint is that during the motion, the distance (/) of the bob (particle) from the peint
of suspension remains constant with time. Thus if r is the position vector of the particle relative to the point

of suspension, then the condition of constraint can be expressed ds !
| ¥ | = I (constant) ,
This is also an example of holonomic and scleronomic constraint. If the motion is confined to move in
a vertical plane, only one coordinate 6, the angular dlsplacement is sufficient to describe the motion.

- (3) Rolling disc (Nen-kolonomic constraint) : The nomenclature ‘holonomic’ constraints comes from |
~ the woord ‘holos® which means ‘integer’ in Greek and whole or ‘integrable’ in Latin Janguages. A system

is said-to be non-holonomic if it corresponds to nop-integrable differential equations of constraints. Such
: ;constramts cannot be expressed in the form of eq.(4). Obviously holonormc system has integrable differential

!
i
1
!
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equations of constraints, expressible in the form (4). In order to explain this, let us consider a disc rolling on
a rough horizontal X-Y plane with the condition of constraint is that the plane of the disc is always vertical.”
We choose the coordinates x, y for the centre of the disc,¢ for the angle of rotation about the axis of the
disc and 6 for the angle between the axis of the disc and X-axis (Fig- 2.2].

'Z .

Fig. 2.2 : Vertical disc rolling on a horizontal XY-plane

If @ is the radius of the disc, ‘the constraint that the axis of the disc is perpendlculal to the vertical Z-
duectlon gives the velocny v of the disc with magnitude
d9
=qd =a—
; dt .
As the direction of the velocity is perpendicular to the axis of the disc, the components of the velocity
along X-axis and Y-axis are

. ly . 4.
v, =—=vsinf v, =—==-vcosd '
Toodt o dt
S ~dx dd - dd
] ; — =qaq— 9 —:— =—-q— e
Tllefgfore, | > =a dt sinb and a’t -a " cos. | | | .
or  dx-asin 9d¢ = 0 and dy + a cos 9d¢ o _ - (5)

None of the equations, given by (5), can be integrated without solvmg the entire problem. Thus the
constraint cannot be put in the form (4) and hence the constraint is nonholonomic.

2.3.4. Forces of Constraint

Constraints are always related to forces which restrict the motion of the system. These forces are called

Sforces of constraint, For example, the reaction force on a sliding particle on the surface.of a sphere is the

force of cunstraint. In case of a rigid body , the inertial forces of action and reaction between any two
particles are the forces. of constraint. Constraint force in a simple pendulum is the tension in the string.
When a bead slides on a wire, the.reaction force exerted by the wire on the bead is the force of constraint.
These forces of 'constraint are elastic in nature and usually appear at the surface of contact because the
motion due to external apphed forces' is hindered by the contact. However, Newton has not given any
prescription to calculate these forces of constraint.

Usually the constraint forces act in a direction perpendicular to the surface of constraints whlle the
motion of thé object is parallel to the surface: In such cases, the work done by the forces of constraint is
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These constraints are termed as workless and may be called as ideal constraints. For example, when a
particle slides on a frictionless horizontal surface, the force of constraint is normal to the surface. There are
examples, where the constraint force does, work. When a body slides on a frictional surface, the work is
done by the force of constraint (frictional force) for real displacements.

By definition, the external or applied~forces are all known forces. In the solution of dynamical
problems either we have to determine -all the forces of constraints or we should eliminate them from final
equations. If we want to use Newton’s form of equations, the forces of constraints are to be determined.

We dlscuss below the dlfﬁcultles mtroduced by such an approach and how to remove them

2. 3 5. leflcultles mtroduced by the Constramts and their Removal

Two typeso_f difficulties are introduced by constraints in the solution of mechanical problems :

(1) Let us consider a system of N interacting particles. The force on the ith patticle is given by

. N
F,=F'+XF
j=l'

- .- where F stands for an external force and F is the internal (constraint) force on the -ith particle due to jth-

particle. The equation of motion of the zth partlcle in view of Newton’s second law, is

2r. N
LR LF; (6)

i i
dt 2 j=l /

where i = 1, 2,...., N. Thus eq. (6) represents a set of N equations. The coordinates r; are connected by
equations of constraints of the form :
f(rl, R , D=0
_ Hence the coordinates Iy, Ty, T, of various particles are no longef alt 1ndependent This means that N
equations represenited by (6) are not all mdependent and therefore, the equations -of motion are to be written
again taking into consideration the equations of the constraints. '
_ (2) The second difficulty introduced by the constraints is that several times the constraint forces are not
kniown initially and they are among the unknowns of the problem. In fact, these unknown constraint forces
are to be obtained from the solution of the problem which we are secking and thus introduce complications
in obtaining the solution. For example, if a bead is moving on a wire, thé force (of constraint) which the
wire exerts on the bead is not known in the beginning of the problem.

In case of holonomic constraints, as discussed already, the first difficulty is solved by introducing n =
3N -- m generalized coordinates, where m is the number of equations of constraints in N particle system. In
~order to remove the second difficulty, namely the forces of constraint are not known initially, we formulate
the mechanics in such a way that the forces of constraint disappear. We require then only the known
applied forces. Such an approach is due to D’Alembert which uses the ideas of virtual _displacement and
virtual work.

Ex. 1. Determine the number of degrees of freedom in the following cases : (1) A particle moving on the
circumference of a circle. (2) Five particles moving freely in a plane. (3) Two particles connected by a
rigid rod moving freely in a plane. (4) A rigid body moving freely in three dimensional space. (5) A rigid
body moving in space with one point fixed. (6) A rigid body rotating about a fixed axis in space. (7) The bob
of simple pendulum oscillating in a plane. (8) The bob of a conz(’al pendulum. (9) Dumbbell moving in
pace

i
.

tion : (-1,) The constraint is x_2+ y =dorr=a (cons,tant), Hence in cartesian coordinates one
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variable x or y and in polar coordinates one variable @ could suffice to describe the motion on the circle.
Hence the degree of freedom is 1.

(2) Each free particle needs two coordinates to specify its position in a plane. Hence § free particles
will need 10 coordinates and therefore the number of degrees of freedom of the system is 10.

(3) Degrees of freedom = 2 x 2 ~ 1= 3, because two particles in a plane will need [(\l, y)and (x,, y,)]
4 coordinates and there is one constramt equatlon for the distance l and between the two partlcles
( ) % (yz y l) _l
(4) A rigid body is a system of particles in which the distance between any two. partlcles remain fixed
throughout the motion. Let us consider three non-collinear partlcles P,, P,, Pyofarigd body [Fig. 10.1].
As each particle has 3 degrees of freedom and there are three constramts of the form
’ (x;— %, ) + (yl—yz) +(z- 22)2= r12 (constraint)
2 2 2 2
(ry=23) £ (=33 )+ (2= 23) = 1
2 2 2
(=23 ) (y= )P+ -2 )P =50
Hence the degrees of freedom for these particles are 3 x 3 — 3 = 6. The consideration of any other
particle in the body needs three coordinates, say £, (x;, y;, ), and obviously there are three equations of

constraints because the distances of P, from P, P2, P, are ﬁxed Hence any other particle will not add any

riew degree of freedom to the six degrees of freedom of the three-particle system of the body. Thus a rigid
body moving freely in a three dimensional space has 6 degrees of freedom.

(5) One point of the rigid body is fixed, say the particle at the origin. Hence for this particle, =0, y=
0, z;= 0. The constraint equatlons for other particles are - -

2 22 2, 2, 1_ .2
+y2 Z =h 3+y3 23 ”’3

and (x —x3) + (), = s ) t (2, —23) 2 23 (constant)
Hence the degrees of freédom for the system are. 3 X3-6=3.

(6) A rigid body, rotating about a fixed axis, has one degree of ﬁeedom because relative to the origin,

~ say on the fixed axis, taken as Z-ax1s z = constant and x°+ y°= 'y 2 for a particle, wherel is the radius of the

circle about the fixed axrs

(7) The bob of an oscrllatmg 51mple pendulum_ has one degree of freedom because the motion is -
described by one 0 coordmate with the constraint | r |=/ or in cartesian coordinates by x or y with the

constraint x°+ y =P
: L. 2.2 2. 2 .
(8) The bob of a conical pendulum has 2 degrees of freedom as the constraint is x”+ y“+ z"=[” relative
to the cenire of suspension.

(9) In a dumbbel two heavy particles are connected by a rigid massless rod. The system has 3 x 2 - 1=
v
5 degrees of freedom, because the distance [(x,~ x,)" + ( yl—yz)2 +(z- 22)2 = constant] between the two
particles is fixed.

Ex. 2. In the following cases, discuss whether the constraint is holonomzc or nonholonomic. Specify
the constraint force also :

(1) Motion of a body on an inclined plane under gravity .
(2) A bead on a circular wire .
(3) A4 particle moving on an ellipsoid unde; the influence of gravity .

(4) A pendulum with variable length .
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Solution : (1) When a body moves on an inclined plane it is constrained to move, on the: inclined plane
surface. Hence the constraint is holonomic. The force of constraint is the reaction of the plane, acting normal
to the inclined surface. . /,

(2) The constraint is that the bead remains at a constant distance a, ‘the radlus of the circular wire and _
can be expressed as 1 = ¢. Hence the constraint is holononuc The force of constramt is the reactlon of the
wire, acting on the bead.

(3) The constraint is nonholonomic, because the pamcle after reaching. a certain point will leave the
ellipsoid. Force of constraint is the reaction force of the elhpsozd surface on the particle.

(4) The constraint - is holonomic and rheononnc because the constraint equation is | F |= /(). The
constraint force is the tension in the strlng -

Ex. 3. Show that the constramts in a rigid body are conservative .

Solution : The distance between any two particles 7 and j of a rigid body can be expressed as

2 =r,- r| = constant:

Therefore, d _(.r!./. )_— 0=d (1)« (r,- 1))
=(r,= rj) «d(r,- rj:) +ai(r,.-.~rj) . (r;- rj)
=2(r,- 'rj).- d (ei— r)=0
e, (r, -r)ed(r-r)=0

According to Newton’s third law, the force F on the zth partlcle due to jth partlcle is equal and

opposxte to the force on the jth particle due to ith partlcle ie.,
F i F.
i i

. Now the work done

e ZJF dt—sz odi;, +F, drl)l

. l:#_j - . !>_j : . ) .
| =ZJ~FU'd(rf*rj)=§fca(rf—rj)-d(rf—r,-.')='0_
. ..l’J . . N V I’J- T N L .
izj i>f '

because the internal force F,. is considered parallel to the line joining ith and jth particles of the form :
F =C (r r) where C are constants.

Hence the work done by constramt forces in a rigid body is zero and consequently the constraint is
conservative in nature.

2.4, GENERALIZED COORDINATES

The name generalized coordinates is given 1o a set of independent coordinates sufficient in number to
' describe completely the state of configuration of a dynamical system. These coordinates are denoted as

q: a4y Gysees q.k’. oy (7)
where n is the fotal number of generalized coordmates In fact, these are the mininwm number of coordinates,
needed to describe the motion of the system.” For example, for a pamcle constrained to move on the
circumference of a circle only one generalized coordinate ¢,= 6 is sufﬁc1ent,__a_nd two generalized coordinates

i
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q,=8, and g,=¢ for a particle moving on the surface of a sphere. The generalized coordinates for a system
of N particles, constrained by m equations, are n = 3N — m. It is not necessary that these coordinates should
be rectangular, spherical or cylindrical. In fact, the quantities like length; (length)z, angle, energy or a
dimensionless quantity may be used as generalized coordinates but they should completely describe the
state of the system. Further these n generalized coordinates are not restricted by any constraint.

For a system of N particles, if Xy ;52 are the cartesian coordinates of the ith particle, then these
coordinates in terms of the generalized coordinates g, can be expressed as

X=X, Gy ool
yi = y[. (q[’ -qz.,“wa.(',---;qn, t)- o . . . o n . (83)
2= 2,(9 ;s GyseersGy s 1)

or in general the position vector r,(x;, y, ;) of the ith particle is

= r'(qla q29 aqka ,qn; t) - . ’ . (8 b)
Egs. (8a) or (8b) give the transformation equations. It may be mentioned that the generalized coordinates
may be the cartesian coordinates. N

One should note that the system is said to be rheonomic, when there is an explicit time dependence i in_

some of all of the funcfions defined by eq. (8). If there is not the explicit time dependerice, the system is

called scleronomic and ¢ is not written in the functional dependence, i.e.,

r,= ri(ql, q2,...,qk,...,qn) ' : .(9)

2.5. PRINCIPLE OF VIRTUAL WORK

In order to investigate the properties of a system, we can imagine arbitrary instantaneous change in the
position vectors of the particles of the system e.g., virtual displacements. An infinitesimal virtual displacement -

. of ith particle of a system of N partlcles is denoted by. 8r This is the dlsplacement of posmon coordlnates

only and does not involve variation of time i.e.;

dr r,= 5!". (qp 412,---,61,,) ’ (10)
Suppose the system is in equilibrium, then the total force on any particle is zero ie. , '
F[= O, - 7 i=1, 2"‘-'3 N - | -

The virtual work of the force F. in the virtual displacement 8r; will also be zero ie.,”
W =F .dr =0
Similarly, the sum of virtual work for all the particles must vanish ie.,
6W=-i§lt?i°6ri=0 ' | . ~(11)

This result represents the principle of virtual work which states that the work done is zero in the case
of an arbitrary virtual displacement of a system from a position of equilibrium .

The total force F, on the ith particle can be éxpressed as
F.=F +f
where Fia is the applied force and f; °s the force of constraint.

Hence eq. (11) assumes the form
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_ o
F o8, + 2f;20r; =0
=l -

M=

il
—

i
We restrict ourselves to the systems where the v1rtua1 work of the: forces of constramts is zero, e.g., In
case of a rigid body. Then :

F* +6r; = | | (1

Mz

I
—

i.e.. for equilibrium of a system, the virtual work of applied forces is zero. We see that the principle of virtual

- work deals with the statics of a system of particles. However; we want a principle to deal with the general -

motion of the system and such a principle was developed by D’Alembert.

2.6. D’ALEMBERT’S PRINCIPLE

According to Newton’s second law of motion, the force acting on the ith particle is given by

* This can be written as _
F-p;=0 - i=1,2,.,N
‘These equations mean that any particle in the system is in equilibrium under a force, which is equal to

the actual force F, plus a reversed effective force p; . Therefore, for virtual displacements dr,

M=

il
—

Y (F;-p;)edr;=0

‘But F, =F7 +1,, then

N m ,
Z(F-“ “I"i)’f’r' + Zf, 51, =0

Again, we restrict ourselves to the systems for which the v1rtual work of the constraints is zero, iLe., "

Zf *dr; = 0. Then

%(F —P.-)'Sr.- =0 : -(13)

This is known as D’ Alembert’s principle. Since the forces of constraints do not appear in the equation
and hence now we can drop the superscript. Therefore, the D’Alembert’s principle may be written as

N
X (F; ~p;)edr; =0 . (14)

i=1

Ex. 1. Two heavy particles of weights W, and W are connected bya light inextensible string and

hang over a fixed smooth circular cylinder of radzus R the axis of which is horizontal [Fig. 2.3). Find the
“condition of equilibrium of the system by applying the prmczple of virtual work.

“Selution : According to the principle of virtual work

N
2E ;=0

i=l

BTN SN i

e LR

AN SRR
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Here, i =1, 2 and therefore

W, sin@ 8r\+ W, sing dr,= 0
But dr\= R d6, &r,= R d¢

W, sin@ 86 + W, sing 8¢ =0
But 6 + ¢ = constant

Therefore - 80 +3¢=0 or 8¢ - 89 )
- S Fig.2.3 -
Thus (W sin@ - W s1n¢ ) 89 =0
The system is in equilibrium, hence the following condition is to be satisfied (66 # 0) :
W, sin 0~ W,sin g =0 or W _sing
T - W,  sinf

Ex. 2. An inextensible string of negligible mass hanging over a smooth peg B[ Fig. 2.4] connects one
mass mon a frtctzonless inclined plane of angle 8 to another mass m.,. Using D’Alembert’s prmczple

prove that the masses will be in equilibrium, if sin® = i Ay
: " m,

Solution :_' According to D’Alembert’s principle

2
“Z%Fi “l"i) «or; =0
i=1

Letr, and r, be the position vectors of m, and m, relative to B

. (mlg ~m, )-Sr + (m2g —m -i‘2 ):dr,=0

: - Fig.2:4
or (m gsin b —m iy )5r + (m2g m r2)8r ) ()

But the string is inextensible,
ntr=a consta_nt_or 8r1-+ 8r2= O,j' i.e.,‘ 5r-é= - Srl.
-~ Also’ it =0 or F=- i |
Hence eq. (i) takes the form
(m,g sin@ - m, g) &r\~ (m+ mZ) r, or;=0

The system is in equilibrium, hence # = 0. Further dividing by dr# 0, we obtain

mgsin —m,g=0 - or $m9 =

™
n,

Note : Work Ex. 2 for the mclme having 1 the coefficient of friction u and prove that the equilibrium
condition is '

sin® - pcos® ===
" .my
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2.7. LAGRANGE’S EQUATIONS FROM D’ALEMBERT’S PRINCIPLE

: '_ansider a system of N particles. The transformation equations for the position vectors of the particles
gre ‘ ,
=T, (ql, Qg sesGp sy 1) . .(15)
where ¢ is the time and 4, (k=1,2,..,n) are the generalized coordinates.

leferentlatmg eq (15) with respect to ¢, we obtam the veloc1ty of the ith partlcle Le.,

ﬁ_i&ﬁ_rdﬁ Lot dgy | ondg, O
dt o0g, dt " 0oq, dt e oq, dt “'a dt ot
: V=i _‘i or; ar; ‘ o
or T h l"‘—aqk q t 2 . | o .(16)

where ¢, are the generalized velocities.

The virtual displacement is given by = S o D
@. 5% @k Gn .
. n. or.
y or; = X —-8¢ .
or g, k | (17)

Accordmg to D’ Alembert s principle,

Zw pJ8n=0 | o o o ' L(18)

=]
' ' ' ; or; " o '
Here ZF '5r = ZF Z——&lk ) Z[F y _,:I&lk = %G, dq, (19)
: ' i=] =) k=104, k=1 5qk . k=l . .
where G, = % F = g{ O Sy F, —* ay, +F, J ..(20)
i1 ' Oqp im| " oq ag, 7 og, _

are called the components of generalized force associated with the gencralized coordinates g,. This may
be mentioned that as the dimensions of the generalized coordinates need not be those of length, similarly
the generalized force components G, may have dimensions different than those of force. However, the
dimensions of G, 8q, are those of work. For example, if 8¢, has the dimensions of length, G, will have the
dimensions of force; if 8¢, has the dimensions of angle (6 ), G, will have the dimensions of torque (7).

Further

] ar.
Zp, or; = Zm Z——qu {Zmr . Jﬁqk : 21)
i=l i=1 k=10q k=1 i=1 oqy : .

N N | . .
Now - m i o i - 2 i[m,-l",' o ]—m,-l",- '"d‘{ o J : -(22) -
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It is easy to prove that

dlo | 5 dr v L
dt|0q, | Oqy dt - 0qy i - (23 a)*
and fi - , | (23 by**
a 09 0gy . |
Therefore, eq. (22) is
Zm,l' 31— Z i m,V, . a",’ —'miv’i.ﬂ o ' ..(24)
oqy =1 dt 04y ~ Ogy ) ;
Substituti;ig ii1"(21)',we get o
N oy N | d ov;
2P 0 =% Xl —|mv;c——|-myv;* o
1=lp . /k=-l i=ll:dt[ aqu ! o k T
i et
l= 2 = Tam(v; o Vi) [t —=——1-Z5m(v;*v;); |8
o _ald(er) er - |
=y (2|l (_o |s
i Lt[aqk] oge | : )
S ,.d or; no o _+_6“r, .
% .+ - i : .
. * Here . _-.dt da, ). = laqjaqk q; ot dq, o (i)

which has been obtained by treatlng or, /an asa smgle quantity bemg the function of the generahzed coordi-
nates ¢, and time ¢. : '
. S _dr; _n oo ; or;
But PR Codr 2 104 i a

and its partlal derivative with respect to g, is

ov; 8 [dr) no P, . O
— Z +

C l/ ,. 5‘1/( og, \ dt ) 2109, 0q; 9 0q, Ot (i)
From eqs.(i) and (i) - |
o d [8r ] v, |
: dt\oq, ) dq, B ..(23a)
5‘,1_‘ a'.iar o ar 'arl.a ar _ b
ok ) = : . .
- aqk 8 1 Ia‘], '/ 81 aqj_ = aqk 7 (23 0)
oq;

as the constraints are holonomic and P> = 5,//.—- is kronecker delta which is 1 for j = & and zero forj # k.
k - H
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A SRR

where Z m(v;ev;)= Z myv? =T is the kmetlc energy of the system.

i Substltutmg for ZF . 6r from (19) and Zp o Or; from (25)ineq.(18), the D’ Alembert s principle

< or | _ aT _
EH‘”{%] aqk} G"Jﬁq" ’ S RO

As the constraints are holonomic, it means that any virtual displacement 8q, is independent of 8,
Therefore, the coefficient in the square bracket for each 8qk must be zero, i.e.,

. - .d - .
ANor | o G o L] 20| O _g %))
dt\ 04, ) Oq, dt\ 0q, ) Oqy : |
This represents the general form of Lagrange’s equations.
For a conservative system, the force is derivable from a scalar potential ¥ :

becomes

- o .
~ Hence from eq. (20), the g_eneralized force components are
N O oy, -z,
- oV ox; oV i | oV 9%
Gy =-X P : -(29)
i=i| Ox; an i a‘]k 0z; 0q;

Clearly the right hand side of the above equation is the partial derivativeof = V with respect to ¢, , Le.,

: aV - I
aqk , | - 00
Thus eq (27) assumes the form
dforY-or . .ov. - . o .
di\dd, ) og, O - | - 8D
d{oT ) T-V) :
= - =0 :
. i\ o, ) oq, S , -(32)

Since the scalar potential ¥ is the function of generalized coordinates g, only not depending on
generalized velocities, we can write eq. (32) as

d|o(T-V)| o(T-V)

— , - =0 {33)
dt| 0q, g

We define a new function given by . ' _ :
L=T-V : : -(34)
which is called the Lagrangtan of the system Thus eq1 (33) takes the form

dfoLY oo . - .' -

= |-==0 . .. : - .{35)
dt\ 04, ) Ogy .

for k=1,2,.. n
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These equations are xnown as Lagrange’s equations for conservative system. They are-n in number
and there is one equation for each generalized coordinate. In order to solve these equations, we must know
the Lagrangian function L = T — V in the appropriate generalized coordinates.

2.8. PROCEDURE FOR FORMATION OF LAGRANGE’S EQUATIONS

The Lagrangian function L of a system is given by
L=T7-v - " -(36)
. Inorder to form L kinetic energy T and potential energy V are to be written in generalized coordinates. -
This 1 is then substituted in the Lagrangian equatlons

dfoL) oL | '
4\ 24, ) aq, - - _ - .37
to obtain the equations of motion of the system. This involves first to find the partial derivatives of L, i.e:,
dL/dg, and dL/dg, and then to put their values in eq. (37)..

Kinetic Energy in Generalized Coordinates : The transformation equations (15) and (16) are used to
transform T from cartesian coordinates to generalized coordinates. Therefore

) T, 8r ) 8r
T:ZEIminz‘;%miriz:Z (Z_ k+'_J

{ i k= la(]k Ot
cor r= MO+%quk +';‘5Mquk q ' _ .(38)
1 6r 2 : ar 8r
where . M-=Y —m: M i,
. o MeTEs ’(at) 2, aqk
and or; a;
' i a(Jk g,

~ Thus we see from (38) th'a',t_in the expression for kinetic energy, first term is indepéndérit of generalized
~velocities, while second and third terms are-linear-and quadratic in generalized velocities respectively.

For scleronomic systems, the transformation equations do not contain time explicitly. So that

V.= = z____
{ i ; a(lk i
Therefore, T=%im}=sSMyqiq -(39)
i~ ki

In such a case, the expression for 7 is a homogeneous quadratic form in generalized velocities.

Ex. 1. Newton’s equation of motion from Lagrange’s equations : Consider the motion of a particle of
mass m. Using cartesian coordinates as generalized coordinates, dea’uce Newton’s equation of motion
from Lagrange’s equations.

Solution : The:general form of the Lagrange’s equationé is

dlor|. ar _¢ S
A\ %d ) da, k A7)



-

42 o | \Clqgsfz’.ﬁc_‘.g'zl Mechanics

| i
Here, g,= x, =) 4;=2 and generalized force components are Gl-'—"—-F_\,; G,= F}; ,’ Gﬁ_Fz :
The kinetic energy T is ' |
T=1m[i?+j?+7]

For x-coordinate, eq.(i) takes the form

i(é’i)*é’l_ F : »
~dt\ox) ox x___ L | o . o ..(ii)
But .QT_ ~_-l and ?I_ = mr
_ Ox ox . o
Substituting in eq. (if), we get Ty
d i dp -
o) =F or F=T

where p = mx- is the x-component of r_norpen_'tum. Similarly, we can obtain

dn. .
= Py and F,= ap,
Yoot dt
d : o
Thus ="7;tl | . i)

which is Newton’s equation of motion.

Ex. @S’tmple Pendulum : Obtain the equatzon of motion of a simple pendulum by using Lagrangzan
_ method and hence deduce the formula for its time perzoa' for small amplztude ‘oscillations.

(Agra 1999, 91; Garwal 98, 97; Kanpur 2003)°

Solution : Let @ be the angular dlsplacement of the simple C
- pendulum from the equlhbnum position. If / be the effective length of
the pendulum and m be the mass of the bob, then the displacement along
arc OA = s is given by ' '
Arc
Radius

s =10 [because 0=

Kinetic energy -T — ;mvz _ | mt,ZG?. [ V= ;t. = T = __d?. =

If the potential energy of the sys'tem? when the bob is at O, is zero,
then the potential energy, when the bob is at 4, is given by
V = mg (OB) = mg (OC— BC) = mg (I - [ cosf )= mgl (1-cos 8)

.Fig. 2.5 : Simple pendulum

Hence L=T-V, or L=5'mlzéz—mgl(l—cose)

Now, - oL . —mgl sin® and g—é- = ml*0
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‘\

T { .
Substituting these values in the Lagrange’s equation (here there is only one generalized coordinate

7,=9)
o) a,
dt\o6) 00 °
i we get
dp , - o
z[ml 9]+mgls1n9=0 or ml“0+mglsinB=0 -
or é%%sineéo

This represents the equation of motion of'a simples pendulum. .
' For small amplitude oscillations, -sin 8 -= 6, and therefore the equation of motion of a simple
pendulum is

e+§’e 0

Thls represents a szmple harmonzc motion of perlod given by

T=21t‘/-7—-
g

Ex @ Atwood’s Machine : Obtain the equation of motion of a system of two masses, connected by an
inextensible string passing over a small smooth pulley. (Mumbai 2002; Agra 1989, 96)

Solution : The Atwood’s machine is an example of a conservative -
3 . system with holonomic constraint. The pulley i is small, massless and _ T B
Ix

frictionless. Let the two masses be m, and m, ‘which are connected
by an inextensible string of length l Suppose x be the variable
. -vertical distance from the pulley to the mass m,. Then mass m, will.
be at a distance / — x frotn the pulley [Fig. 2.6 ] o =

Thus there is only one mdependent coordlnate x. The velocities _ - E"il
. L 20 .

' ' d(l-x _
. of the two masses are V| = " =x and v, = (Tl =-x Fig. 2.6 : Atwood’s machine

-2 | -2
Therefore, T= m|x +1 Smpk” == (my +my)

T2
Potential energy of the system with reference to the pulley is
V=-mgr-myg(l-x)

Thus the Lagrangran is

.
LfT— V= 5(my+my) ;2 +mgx+myg(l-x)

oL oL
Now, o —==(m+m)t and —=(m-m)g
0% Ox

Here the generalized_ coordinate is ¢ = x. Now Légrang_e’s equation is
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d (GL) oL L
o%

- —5—;—0 or (my +my) %~ (my~my) g=0

(my - m,)

or X = )
my +m,

which is the desired equation of motion. -

“TEm 3 m,, the mass m; descerids with constant accelération and if m < m,, the mass m, ascends.with
constant acceleration. It is to be noted that the tension in the rope, the force of constraint, is not seen
anywhere in the Lagrangian formulation. '

Ex.(4 4/n Ex. 3, calculate the acceleration of the system, if the pulley is a disc of radius R and moment
~of inertia I about an axis thiough its centre anid perpendicular to its plane. '

= | -

%
Solution : Angular velocity of the pulley ® = z

i Rotational kinetic energy of the pulley = ;10)2 = -;—1 I

where v=gx = v [=]v,]

.2

1 ] 1 .2 P, X

Also, V=—m gx-mg(-x)
Therefore, . L é’%(_ml +1y +'F))'C2'+ (my—my) gx+m, gl
The Lagrange’s equation is -

[_’"1 + 1, +F)x—_[m, —mz] g=0

whence X= —-—[m' _ mz] &

my tm, t—

Equation of motion of Ex. 3 will be obtained for /= 0.

Ex@Compotma’ Pendulum : Use Lagrange’s equations 1o find the equation of motion of a compound
pendulunt in a vertical plane about a fixed horizontal axis. Hence find the period of small amplitude
oscillations of the compound pendulum. (Agra 1999, 97, 93)

Solution : Let the compound pendulum be suspended from S with C as centre of mass. It is oscillating
in the vertical plane which is the plane of the paper.

Moment of inertia of the pendulum about the axis of rotation through § is given by
I=1+M° —M(K2+12 )
where M 1s the mass of the pendulum, I= MK? (K = radius of gyration) about a parallel axis through C and
I the distance between centre of suspensmn and centre of mass.
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If 6 is the instantaneous angle which SC makes with the
vertical axis through O; then the kinetic energy of the oscillating
system is Lo

T=;162 =;M(1<2 +12)62

Potential energy with respect, to horizontal plane through

Sis
V =— Mgl cos 6
_ Lagrangian L=T-V o _ 5
z or L=%M(K2+12)92+Mglcose
oL oL TN
—=-Mglsin0 and —= M(K°+1°)0
Now, P & . ( )6

Lagrange’s equation in 6 coordmate 1s

d (oL oL ' Fig. 2.7 :‘Compound pendulum
4 | __3?_(56)'__56"
Therefore, | M(K? +12)§ + Mgl sind =0 or 6.+ —&—sin0 =0
' K*+1?

This is the equation of motion of the compound pendulum. If 6 is small, sin6 = 6 and then

§+—8 9-0
KZ +12

This equation represents a simple harmonic motion whose period is given by

~ Ex. 6. Radial and Tangential Components of a Force : Consider the motion of a particle of mass m
moving in a plane. Using the plane polar coordinates (r, 0) as-generalized coordinates, deduce expressions
for the components of generalized force. What are radial and tangential components of the force ?

Solution : For the motion of a particle in a plane, the cartesian and polar coordinates are related as

x=rcos® and y=rsinf

Hence i=rcosO—rOsin® and y=rsin0 +r0 cosH

Therefore, T= Zlm (J'c2 + y2) = %m F* + rzéz)
Here, there are two generalized coordinates, i.e., =T and ¢,= 6.

Now , 6T mrd?, 8T = my, Q—O and gf——m )
o o a0 09

Corresponding to two generalized coordinates, there are two Lagrange’s equations
L) 5 322
dt a9

T — an —_—
or) or dt 00
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Y Cd
or mr—-mr0” =G, and E(l;zr76)=Ge

‘We can express the components of the generalized force in terms of the radial and tangential
components of the force. From the definition of the generalized force, we have

' or
G,=F°g and Ge=F'ar liaS'Gk=F'.\ }
or 00

y

But r=rcos@§+rs’inej

0 Y .
Hence —_r=cosei+ sm91=£=r

: o r
and a—g=—rsin9f+rcosej=ré
where = © = unit wector perpendicular to.F.
Therefore, = G, =F.r = F. or F =mi —mr6? ' (D)
N n d/ >0

and Go=F.-O=rF.0=rF or rf _=;i—t-(mr'6) (i)

Note that in eq. (ii), mr*Q = myr =J, the angular momentum and its time derivative is just the applied
e tFy). Thls is the-terque equation, i.e., rate of change of angular momentum is equal to the applied:
torque. o :

Thus the radial and tangentlal components of the force are

F.=m (i"—'réz) and Fe =m (16 + 21‘9) . (i)

Ex. 7. Langrange s equation for L-C arcmt Find Lagrange’s equation of motion for an electrical =
circuit comprising an inductance L and capacztance C. The capacitor is charged to g coulombs and
citrrent flowing in the circuit is i amperes. (Agra 2003, 1999, 1992)

Solution : Let us consider an electrical circuit, containing inductance L and capacitance C. We want to
find Lagrange’s equation of motion for the. L C c1rcu1t when the charge on the condenser is ¢ and the
current flowing in the circuit is /. - -

The magnetic energy - Lz in an electrical circuit is analogous to the kinetic energy - mv2 in a

dq

mechanical system, where we canthink inductance L as charge inertia similar to mass inertia and i = "

-

dx ' '
asv = ; charge ¢ is playing the role of d1splacement The- electrical potential energy of the circuit is ¥
C

= qz./2C. Hence the Lagrangian of the L-C circuit is

gl 1

|
) 2. . 2 i . ' ‘ |
L=T-v=iu?-1 o 1=11g?- L . | §
k

2 2C 5 2C - 9000000000, - -~ - —
Fig. 2.8 : L-C Circuit
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Taking ¢ as the generalized coordinate, the Lagrange’s equation is given by

dafor) a_
dt\oq ) Oq

oL . oL ¢

—=Lg and —=-—,
Here PP q 2q C

de 1 ¢ d’q q d’q ¢
Th . = Lgl+—==0 or L—+—==0 or -+ ==
. Therefore, S .,(]] R or, it ILC

' 1
This 1s the differential tion for L-C circuit, having frequency v = .
is the differential equation fo I g frequency rdle

Ex. 8. Motion under Central Force : Derive equations of motion for a particle moving under central

- force. What is the form of the equations, when the particle is-moving under an attractive inverse square

law force (F = — ki) . : (Rohilkhand 1998; Agra 1991)

Solution : When a particle is moving under central force, then the force is conservative and the motion

‘isinaplane. 7 o S ' ' _
Let (r, 6) be the plane toordinates of the particle of mass m.

Kinetic energy 7T = 7lm (1"2 + rzéz)

Lagrangian =~ [=T-V =;m (,-.2 +r292)—V(r)
where V (r) is the potentiai energy in the central force field. -

Now, " %F mr . :
o T -or o
_ Hence equations of motion are

'd(aLj oL d[aL) L
—|—| -—=0and —|—|-—=0
dar\ o L'26

. 4 d o N
or mr —mr 6 +5r_=0 and E{—(mr G)=0 (1)

For attractive inverse square law force F = — d//dr = - k/r", we have equations of motion as

ok :

m'r'—mr()2 +'r—2=0 | ' (i a)

and _- —(1—(1721‘2 6) =0 or H+2r8=0 | (i by
: ' ' dt ‘

2.9. LAGRANGE’S EQUATIONS IN PRESENCE OF NON-CONSERVATIVE FORCES

When the forces acting on_the system consist of non-conservative forces (f, ) in addition to the
conservative forces ( F,), then the components of generalized force can be written as [using eq. (20)];
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N : 1% | |
=Z[F,-+f,].—aL—ZF a—r+Zi o or Gk~——+GA ..(40)
i=1 qu i af[k i aqk aqk

: or; L . .
where G, = ¥ f; a—’ are the components of generalized non-potential force resulting from non-
qk -

conservative forces and ) f, . 21‘,_ = -—i‘{— for conservative part [eq: (30)].
: - L 0q,.  0Oq .

Here V' is the scalar potential for conservative forces. In such a case, eq. (35) assumes the form
dafe) (aL)_ "
df a(]k - 6qk - G/c ‘ i : ( )

where L=T-V. ' ' -

Egs. (41) represent the Lagrange’s equations in the presence of non-conservative forces.

An example of the non-conservative force is the presence of frictional force, acting on the system. If the
frictional force is proportional to the ‘velocity of a particle, then - :

=y, o . - .42
where £, is the constant of proportionality for the movement of the ith particle. '

 We may derive such frictional forces from a function of the form

R= 35 = TR ) - @
24 i |
This is known as Rayletgh s dissipation function. Obviously
- OR
= ——=—kv
f\' 5\’,\-; ixi -
Hence the component of the generallzed force due to the force of friction is glven by '
) S _ o
- 2f, ——~ZV R 5y R
04 i g, i 0(/,(
| OR O, OR O R v,
T N L .(45)

v aq k avyi 0q, v 0q, 0 g
Thus Lagrange’s equation (41) is
| d(eL) oL _ oR

dt\ oq, ) 0Oq,; oq,

dfo) oL, R _,
o di\og, | g, . (46)

It can be proved that the Rayleigh’s dissipation. tun tion R is equal to one half of the rate of d1551pat10n
energy against friction. The work done against frtcflon_ls L
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=_Zf a’r——Zf vdt-[Zk ]dt

aw

whence 7 Zk: v =2R . .47

This gives  the physical interpretation of the Rayleigh’s dissipation function.

~2.10. GENERALIZED POTENTIAL — Lagrangian for a Charged Pamcle Movmg inan
- Electromagnetic Field (Gyroscoplc Forces) =~

In general, the Lagrange’s equations can be written as

dfer) or . . : o
dt\og, | oq, " | - -9
: oV ' L e
For a conservative system, G,= — o and then the Lagrange’s equations in the usual form are
G -
a4 —a,L—< -3L—=0 with L=T-V . -(49)
- dt\0q, ) Oq, ‘ _

However, Lagrange’s equat1ons can be put in the form (49), provided the generalized forces are

obtained from a function U(q,»4), given by

U _dfau
Ge= i (50
Ly . - . k . aqk (i:(aqk) . ) . . . . ) R V ( ) )

.'Insucl-lacase" L=T-U I ~{(51)

r where U(g, , g, ) is called velocuy dependent potential ot generaltzed potential. This type of case occurs in
; case of a. charge moving in an electromagnetlc field..

In S. I system, two of the Maxwell’s field equatlons are :
oB
divB= 0 and curlE+E=O

oB '
or VeB=0 and V x E+—=0 S , .(52)
ot :

where E and B are electric field and magpetic field vectors respectively.

The force acting on a charge g, moving with velocity v in an electric field E and magnetic induction B
is given by .
F=¢g(E+vxB) _ -(53)

Since Vs B = 0 in eq. (52) and hence B can be expressed as curl of a vector i.e.,
B =V xA ~(54)

| where A is called the magunetic vector potenual Substituting for B from (54) into- the second equation of
(52), we get

.o
0 I ) '
V x E+“__,V.X-A' =0 or V x {E'%'-—J:O .(55)
ot R ot .
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H ” : 0A . : .
ence we can express the vector quantity | E +—a—t— as the gradient of a scalar function ¢, i.e.,
" oA oA
E+—=-V¢ or E=-V$-— (56
- - D
Substituting for E from (56) m (53), we obtain
‘- F =g (:'*leé%A—n‘vXVX Ay R Co. -~ - A5D
The terms in eq. (57) can be written in a more convenient form. '
Let us consider the x-componeflt. Since V¢ = ;_6_@ +i_@—+i—ai) , x-component of V¢ is — . Also,
_ ok oy Oz - Ox .
| (o -
(vaxA) =v, ____?_4_ _v,(aA-‘_v_%)
' | &x oy 0z Ox
We add and subtract the term v,04 /9. Then -
xvxayn Py P o4, - oA, 04, O, .
. v_)'- X ax y ax z ax X ax ¥ ay z az ...( )
- dA. OA.dv OA dy OA dz 04,  OA,  0d, 04, oA,
OwWCEVCer, — = = —+ — — : =v\' = 4y : +vz L4+ z
d X d dyd oz d T ox Yoy 0z O
whénce v, oAy +v, o4, +v, oA, _ 44, - oA, : ..(59)
C & & o0z dt o - ' : -
) 3 ? |
Further E;(V A)= éz(vax + vyA).,. fvz Az)
X o : j'-+ax z ax - 7 o )
Substituting from (59) and (60) in (58), we get '
o d da, oA
VxVxA) =—(v- L+ —L
| ( ), 6x( a o (61)
Hence from eq. (57), the x-component of the force F is
op 04, 0 dd, 04, ) ( dA, J
F =¢q|~—-——"2+—(V.A)-—+—2|=¢g|-—(¢-V:-A)-—=
1 [ o a w AT /| o (e~ ) a ) 62
. 0 0] C ;
Since —(v-A)= -——'L(vax +v A4, + v_A,) =A,
i ov, v, X T
and scalar potential ¢ fis indepéﬂdent of v, we have’

' aa, _~d 3

dt  dt ov,

(¢-v-a)

RN B o v vz e

T AR




56)

57)

Iso,

28)

(60)

61) 1

(62)

59)

S
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Therefore F, =g ——(¢ v. A]+% ai(cb \z A)} N | h ..(63)

We define a generalized potential U, given by

U=q(@-v-a) « .(64)
which is a velocity dependent potentral in the sense of eq. (50) Therefore, eq (63) takes the form
o4 o
Sox dt-ov, S S C e e o ..(65)

The I;agrange’s equations (48) in this case take the form

(g, = x q =x=v and G, = F)

dfar __a_T_F_ N ' o
il | o F _ _ - = ...(66)

X

Substrtutmg F, from (66) m (65), we get the Lagrange S equatron as

i(i(r-U)) g(r Uy=0

dr \ Ox-
1[%)_@ _
or dr\ % ) ox {67
where L=T-U=T-q¢+¢qv-A ...(68)

Eq. (68) gives the Lagrangian for a charged particle moving in an electromagnetic field.
. Note : In-Gaussian‘C G. S 'system B-is to be replaced by B/c‘ in eqé (52) and (53) where ¢ is the speed

of light. Therefore the expressron for generalized potentlal is obtained to be U q¢ (v A)

'Gyroscop|c Forces

All the velocrty dependent forces, which do not consume power are called gyroscoprc forces Ifa .

* charge ¢ is moving with velocity v in a ntagnetic field B, then the force acting on the particle

F=q(vxB)
is gyroscopic in nature.
For such a force the power consumed happens to be zero, i.e.,
P=Fev=qg(vxB)ev= qv0(vXB) qglvxv)*B=0
because for a scalar triple product (A X B) e C=C+(AxB)=(CxA)*B :
Thus the velocity dependent magnetrc force, given in eq. (53) is an example of gyroscopic force A
gyroscopic force can be incorporated in a generalised potential U simifar to the one-due to magnetic
force, given in eq. (64) with the Lagrangian L [eq. (68)] and Lagrange’s equation (67).

2.11. Hamilton’s Principle and Lagrange’s Equatio_né

In Sec. 2.7, we'have used the D’Alembert’s orinciple to deduce Lagrange’s equations. This principle
uses the idea of vrrtual work and stems frém Newton s second law of motion. These Langrange’s equatrons

" can be derived by an ‘entirely drftelent way; namegiy Hamrlton s variational principle.

. Hamilton’s principle : Thzs principle states that for a conservative holonomic system, its motion flom
time ¢, 10 time t, is such that rlqe line m|tegr al (known as action or action mtegral )
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\) :quL dt -(69)
1 .

with L="T=V has stationary (extremum) vakue for the correct path of the motion.

" The quantity S is called as Hamilton’s principal function. The principle may be expressed as

h :
5le(1; =0 (70)

" wher¢ 8-is the variation symbol. =
Lagrange’s equation from Hamilton’s prmclple The Lagrangian L is a function of generalized

coordinates ¢,'s and generalized velocities ¢, s and time 1, ie.,

L= L (g Gy, 4 ;(]2',...,(])‘ ..... s t) ) : : u
1f the Lagrangian does not depend on time ¢ explicitly, then the variation 8L can be written as ;
5L Z—&] + 2_5(]
Integrating both sides from¢t = tl' to = Ly, We get E
f g oL i
j 5L di =JZZ—5qk dt+J z—&/kdt
‘ i n & Ogy 0q, ‘ _ :
But in view of the Hamilton’s principle
)
5[ Ldi=0
Ji
LR T di = *
Ther —0&q, dt — 0 =
Therefore, = " g, q4 \ 530, Ik o o o (12)
. d
where 3¢, = —(8¢,).
- ar
Integrating by parts the second term on the left hand side of eq. (72), we get
" oL '
> —0q, di = Z 8q, dt (73)
ik Oy K dt 6(/k
At the end points of the path at the times ¢, and ¢,. the coordinates must have definite values q,(t,) and
q,{ty) respectively, i.c., 8q,(1,) = 8¢,(t,) = 0 (Fig. 2.9) and hence
l
By | =
[‘7‘/A f ﬁ.
_ Therefore, eq. (72) takes the form
J Z—SqA dt - J"'2 '( ( \bqk dt =0 ?
0y ag, 'k drl ag, J :
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74t B 3g,(1)=0
4 'VARIED /(
PATH 5 q/ / _§ EXTREMUM
- Yl PATH
P
qk(ll) ..................... 4 .:
8q,()=0 i
49
9

0] { { {

1 2

Fig. 2.9 : 5-variation - extremum path

sld{aL) oL | :
- ——|-—18 dt*O ' '
ZJ“ [ dt[ aqk] aqk] P | _ .(74)
F01 holonormc system, the generahzed coordmates qu are mdependent of each other. Therefore the
- coefficient of each dq, must vanish, i.e., ) ’

f—( oL ]-£=0 (79
di \ O, '

where k =1, 2,...., n are the generalized coordinates.

: —Eqs. (75) are_the Lagrange’s equations of-motion. |

. 2.12. SUPERIORITY OF LAGRANGIAN MECHANICS OVER NEWTONIAN APPROACH

In the Newtonian mechanics, the equations of motion involve vector quantities like.force, momentum
_etc. which increase complexity in solving the problems. This dpproach also cannot avoid constraints -
present in a problem. These forces of constraints, if not known, make the solutlon of the problem difficult

- and even if they are known, the use of rectangular or other commonly used coordinates may make the

solution of the problem to be impossible. These drawbacks' are-removed in the Lagrangian mechanics,
where the technique involves scalars, like potential and kinetic energies, instead of vectors. The use of
generalized coordinates in the Lagrangian formulation often allows automatically for the constraints. In
this formulation, the dlt’ﬁculty in solving the problems is many times much reduced, when any quantity
like momentum or (length) is taken as a generalized coordinate instead of rectangular or commonly used
coordinates. Further the form of the Lagrange’s equations of motion remains invariant under any gencrallzed
coordinate transfonnatlon

2.13. G‘AUGE INVARIANCE OF THE LAGRANGIAN

If L is a Lagrangian for a system of n degrees of freedom, satisfying Lagrange’s equations, it can be
shown that :

darF
L'=L+ o ...(76)

also satisfies Lagrange’s equations, where F is an arbuiaiy (uaction -
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F = F_(q,','qz', ...... qp t)
Such a function is called Gauge function for the Lagrangian.
Proof : Time derivative of the function F is

Zaqk 6t
" Lagrange’s equations are
d. (aL) o
dr\oq,) oq,

IfL =L+ %f— satisfies (79), then

) o) =o

Subtractmg (79) from (80) we get

PAR: (dF)] L (dF) '0
dt og \dt1| og, \dt

LW (77)

..(718)

.(79)-

...(86)

..(81) |

If we prove L.H.S. of eq. (81) to be equal- to zero, then L' will satisfy the Lagrange’s equations.

d[2 (dFﬂ 0 (dF)
Now, LHS.= — p aqk dt aqk dt

_d[ o (0F, 5, oF\| o [Fiy, oF
= aqk(af 27’ 54:)] %[@t -Zq’aqr

oF  éq - 8q .
Here — =0, — =0and —':8 .
0q, 0q, oq, e
d(OF) 9 (ap)' ) (GFJ.
H RAoy=—15 ||| beanad B
ence L.H.S dt[aqk) 2, \or zl: oq; \0q, 9

_ 0 (dF) 0 (ap) y2 d (aFj
g, \dt! Og \ot) “0g,\0q
_ 0 (9F, aF ( ) Z ( J
" oq, EN 6q, " Og, \or dg, \ 04, U
o

Thus L'=L+ éa’tE satisfies the Langrange’s equations.

iia_F) : [ J oF 04, (
dt {6! -(aqk -“LZ ’aq, 04 Za‘h 04, | - o,

oF
a:

< a(@&)-_ oF Oy
) Zafh oa; ) zll-a‘h-aqk -

NI A AT AT o S50 111 3.k e b (e s o e .
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2.14. SYMMETRY PROPERTIES OF SPACE AND TIME AND CONSERVATION LAWS

When we consider the motion of a free particle or a closed system in an inertial frame, the space is
assumed to be homogeneous and isotropic and the time to be homogeneous. By a closed system we
mean a-system, not acted by any external force.

The space is said to be homogeneous, if the physical properties of a closed system are not affected

by an arbitrary displacement of the origin of the frame of reference. This means that in order to describe

the state of motion of a closed system, any point in space is equivalent to any other point of the space.

The space is said to be isotropic, if the physical properties of closed system are not changed for

. arbitrary rotation about the origin of the frame of reference. Thérefore,. for-the description of a.closed-
system, every direction in space is equivalent and any direction for the Cartesian axes can be used.

The time is said to be homogeneous, if the physical properties of a closed system are not affected by

an arbitrary displacement of the origin of time. Hence any moment of time can be taken to describe a

closed system.

The homogeneity and lsotropy of space and homogeneity of time imply the |nvar|ance of the phy51cal
properties of a closed system under certain operations, known as symmetry operations. These operations
leave the configuration and states of motion unchanged. The homogeneity of space correspond to an
_arbitrary translation (symmery operation), isotropy of space to an arbitrary rotation and homogenelty _
~of time to an arbitrary shifting of the time or time-translation. '

We can describe a closed system by its Lagranglan. This Lagrangian must be invariant under the
operations of translation and rotation in space and time-shifting. These symmetry operations on the
Lagrangian have very important consequences. Each symmetry operation results in a conservation law,
representing a physical quantity or an integral of motion to be conserved. This physrcal quantity is
additive, i.e., the value of the physical quantity for the entire system is the sum of its values for different
parts of the system. _

Thus every symmetry in the Lagrangian corresponds to a conservation law. Homooenelty of space
results in the conservation law of linear momentum, 1sotropy of space in the conservation law of angular
momentum and homogeneity of time in the conservation law of energy These conservation laws have
been obtained in the following discussion. .

(1) Homogenelty of Space and Conservation of Linear Momentum : The homogeneity of space
implies that the Lagrangian of a closed system is not changed by an arbitrary translation of all the
particles of the system. In Carterian coordinates, a small arbltrary translation of the coordlnate of the i
particle can be written as ' "

r; > r+orjorr; o r+¢
where 8r; = € is constant small translation for each particle.
Now corresponding to this change in coordinate, the change 6L in L is

oL oyl &)

oL = €
— or;. ¢ 6r

However for any arbitrary trans]at'l_on 8, 8L = 0. This means
oL _ 83)
L =0 (
Y A .
Langrange equation is

d Qéj_a_L
dr\or; ) o =0
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Hence for all particles of the system

za’t[aL) or. -' 0

d(oL d
Using (83), Zz(a—fi) =0 or ;,—Z( )— B4
But ) '  L=T-V= Z~2—m‘-r‘-2 —-V(rl, ...... ,r.N.)
Fral mrx; = p,, linear momentum of i particle, ( )

Hencé, from (34),

4o

0 or ZP( = Constant . ...(86)

wh'e're 'Zp,-' = P is the total linear mom'en‘tum' of the system.

i . . . 4

Thus, the total linear momentum of a closed system is conserved due to the homagenezty of the

space. : 7 4

- (2) Isotropy of Space and Conservation of Angular A

Momentum : Due to the isotropy of space, the Lagrangian of

a closed system remains unchanged under arbitrary rotation.

Let us consider an-arbitrary infinitesimal rotation of the system

about some direction; say Z-direction. Therefore the position
vector r; due to rotation: 88 will change by (Fig. 2.10)

or; = 89zxr
- Brl=r, sin¢89—|i><r|66) R (87}
- ‘The change in velocnty vectorv due to arbitrary rotation _ 'Fig. 2_16 o N
_ . 80 is - : ' ' ' i
i Ov;= 80zxv, ...(88)
Now, L=L (r;,Ty, ey B, Ty e, )
Hence dL= ?—l'—-ﬁrﬁﬂ“--ﬁr,
LY, or; '
W . a_L=i(Q£)_ |
e use r, =v; and or, di\or,) ¥
Therefore, L= Y (b;8r+p;8v;) = 862[p, (zxr)+p;(zx vV, )]
= 59" I(r xp;)-2 (using the property of scalar triple product) ;
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- 592.%[21_:@,«;,,.)} - ..(89)

As 88 is arbitrary and 8L = 0 for arbitrary rotation, we obtain
4 (rx p-)] _ - - Canc
dt[z,': i/l =0 or zi:(l.?,-xp,-) = Constant | ...(90)

where Z(r,- xp;) = J is the total angular momentum of the system. -
“ _
Thus the total an-git_lar momentum ofa 'éloked systé/ﬁ is conserved due to the isotiop_v of space.
(3) Homogeneity of Time and Conservation of Energy : The homogeneity of time implies that
the Lagrangian is invariant under time- translatlon sxmllar to space- translatlon

For arbitrary small time-translation 8t the change in Langraglan is

oL .
dL = 7& ‘ .91)

But for t — ¢ + 8¢, 8 L = 0. Hence for arbitrary ¢,

GL

i.e., L does not depend on time ¢ explicitly.
Thus, L =L (L, By oo ) .(93)
oL . wol . wdfél dfoL d oL
ili_ — . + —F _ _ deg. 4+ f _— —F.
Hence, d ~S4orn 1 “or, '—Z,.:dt[ar,-)_r' Z(1t o, "TdaT\on !
o dfefa a oL J o |
; —| ) |—-k|-L|= — T |-L ——t|-L= stant ..(94
Thus dt[zi:(ar,- r,] J 0or l;{an r,) } ;[ari ) Const_an | (94) -
But - CLET-V= Yimi-V(nn,.)
oL : oL . 2
Hence, = =mr. and Z— . ri=zm,-l',- . r,-—Zmir,. =2T ...(95)
o, ' T Or; i i

Therefore, from (94)
2T - L = Constant or T+ V = Constant ...(96)

Thus the total energy is conserved for a closed system due to homogeneity of time.

2.15. INVAHIANCE UNDER GALILEAN TRANSFORMATION

Consider two inertial frames S and §". The frame S’ is moving with constant velocity v, relative to

~ frame S. If r; and r," are the position vectors of " particle in frames S and §' respectively, then the two
- frames are connected by Galilean transformation with the transformation equations given by

r'=r-vot° . leq. (9),Chapter I] .. (97

with the implicit assumption ' = .
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If v and V,--’- be the velocities of the particle in two frames, then » :
i TVi=¥Yo - [eq. (10), Chapter 2] ...(98)

- Suppose the particle is moving under the action of external field force due to ordinary potentlal V.
The Lagrangian of the particle in frame § is given by

\

L—%mv.z—v S _ ’ : ..(99)

where V is the potentlal function in S. This V is normally a functlon of difference ofposmon vectors of

two particles r, - r, and this V will remain-the same in §' frame; because r)’ —r|'=ry - ry from.eq. (97).

The Lagranglan L'in frame S'is given by

- 1
L' = %mv'?' -V= -;-mlv,- - v.ol2 -V= 5 mv -V-mv;evy+ -2-mv02
" - dfl_ ARG
Thus L'=L+ E(-z-mvozt—mvo'.l}) =L+ ¢(it ) | ) .(99)
Whefe o F (r,, ) = -mv0 % mvo I ' . ‘ S ~..(100) . -

Hence through the gauge function F (r 1) both L and L must satisfy the same Lagrange equatidns
of motiori [see Sec. 2.13]. Thus the from of Lagrange equation retain the same form in ' frame i.e., the
Lagrange equations are invariant under Galilean transformation.

. Further from (97) and (98)
- —(v ~vYtorri-vit=r/-v;'t

Hence for the entxre system
' Zm,.(r,.—-v,.t) Y-y S (101
i ;

But Zm I, =MR-and Z”ll V: = : o - (102)

where M = Zm total mass of the system R the position vector of the centre of mass and P the total-

linear momentum of the system

~ Thus MR-Pt=MR -P’t -(103)
In other words, MR — P ¢ is a constant of motion which is in fact obtamed because of the Galilean

invariance of Newton’s equations of motion.

Some More. Solved éxampvles

Ex. 1. Motion under gravity. Write down the Lagrange's equation of motion for a particle of mass m
Jalling freely under gravity near the surface of earth. ' (Rohilkhand, 1997)

Solution : If X and Y axes are taken on the surface of the earth and Z-axis vertically upward, then the
kinetic energy of the freely falling particle of mass m is

T= ;—m (;&'2+_;'1-27+22)

TR

A TR ORS00 e g, O P B T A T

e TN T
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Its, potential energy V  =mgz
TI}erefore, Lagrangian L =T -V

‘I = gm (fr2+y2+z'_2fmgz_

The Lagrange’s equations are
dfaL) o
di\dg, ) 0Oq,

i . oL . a . dL . oL i _

dx "oy oz dx & T d
Hence Lagrange’s equations are -

E_or_qk =X.).z

d . d, .. d, . o
—(mx) =0, —(my)=0, —(mz)+ =0
dt( ) =0, dt( }_)) ) dt( )+ mg=0

or ;7=Oa j)=0’ 2+g=0

" Note : The above equations hold good for the case of projectile as well as for a pamcle falling freely
vertically under gravity. : :

- In the later case,

1
T=%mz V=mgz and L—Emv - mgz

In such a case, the Lagrange’s equatjon is

dfoL\ o . o
—|-—=0 or +mg 0 or ; tg= O
w(&) PR cTERT

. Ex. 2. A point mass moves in a vertical plane_ along a given curve in a gravitational field. The
equation of motion in parametric form is '
' x=x(s) z=2z(s)

Wrzte down the Lagrange 's equations.
Solution : Here @(r— § J d; HEn
= = —— . —= =—,5=— =—=——=7'§5|z
olution : Here a 75 di x. | ds 4 ) and z T dsdi d.s

Kinetis energy T:—;-m(j:z + 2'2) ; (x +212) .2

Potential energy V = mgz
where Z-axis is assumed to be vertical upward from the earth.

.~1_ ’
Therefore, L = T— ¥V = 7 m (' + 2% §° - mgz

Lagrange’s equation is

af) o,
dt| os| Os

(Rohllkhand 1996)_ :
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oL 1 .
Here — = — (x'2+ z’z)'zs = (x’2+ z'2) s
os 2 o :
ron o | aZ o2
and . —ms 2(2x x"+ 22" 2" |- mg == m (x'x"+z'2") — mgz'
d 2 - 2\ &2 " [} o
Hence E—m(x"+z')s — ms (x'x +z z')+ng'-0'
t

This is the de51red Lagrange s equatxon

Ex@ Fig. 2.11 (a) shows an inclined plane of mass m,. It is sltdmg on a horizontal smooth surface |
is sha’mg on its smooth inclined surface Derive the equatlons of motion of the body

and a body of mass m 5
and the inclined plane.

O'A A .
\*)
\ Smooth .
»j"l surface - X
h ) \( _
| v
m,
X H 6
O‘WIHHﬂTﬂl 7T 1117 T
Horizontal smooth surface
.Flg. 2.11 (a) Fig. 2.11 (b)

Solutlon Here m; slides-on the horlzontal smooth surface and m, slides on the smooth inclined plane

" of mass m Thus the system has two degrees of freedom and hence we need two generallzed coordinates. Let
x,and x, represent the displacements of m, and m, from O and O’ respectively.

Velocity of m with respect to O = 'f(. - -

Velocity 0f_ m, with respect to O'= X,

Velocity of m, with respect to O = v = x, +x, [Fig. 2.10 )]

. ) . <
or v2 =% +x} +2% %, cos

Kinetic energy of the whole system as observed from O is
T =

2,1 2
5 nyx, +5mzv

L2, 1 2 ..
= —m,x,2 +—m2(x|2 + %3 + 21, %, coOs 9)

Potential energy of the system is due to the position of the mass m, (with respect to horizontal smooth
surface) only.
Hence,
V=myg h—xzsin 9)

L= %mlxl2 +%m2(5c,2 + %3 + 21, %, cos 9)—m2g (h —.xé sin 0) i)

R
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Lagrange’s equations for x; and x, coordinates are

d{oL)| oL d{oL| oL
—|—- =0 and —|—|-—=
dr\ ox, )] ox dt\ ox, | Ox,

my¥, +my(¥, + ¥, cos6) =0 o ..(i)

and my(%, + %, cos®) —m,g sin 6 =0 . ...(iti)
1
} LN

_ __Solving eqs. (i) and (iii), we get

- gsinBcosO
x =
| R .
m +m : ;
AT 05’0 (V)
m, : - :
. _ 'gsin8
and . ! m, COs 0 . ...(V)
m, +m,

Egs. (iv) and (v) are the equations of motion of the inclined plane and sliding body respectively.
"Ex. 4. 4 particle of mass m moves on a plane’in the field of force given by (in polar coordinates)
- F =—krcosO ¢ -

where k is constant and ¢ is the radial unit vector.

(@) Will the angular momentum-of the particle about the-origin be conserved ? Justify your statement.

(b) Obtain the differential equation of the orbit of the particle. ' (Agra 1995)
Solution : T= —;—m (f 2 +r% 237 —
o r—a-g=0,' £=mr2‘é,.§Z=-m-r'é2 and- ﬂémﬁ
o0 00 or or. .
@  w%) e

Since there is no transverse force, G,=0. Thcrgfore,z(mr 9) = (. Hence the angular momentum

about the origin is conserved.

(b) (—‘;—(?)— %T—=G, or mi-mr®® =—krcos 0
t\ or r
which is the differential equation of motion of the orbit of the particle.

Ex.@ A cylinder of radius a and mass m rolls down an inclined plane making an angle 8 with the
horizontal. Set up the Lagrangian and find the equation of motion.

Solution : Let the cylinder start to roll from O so that x = a¢ (Fig. 2.12) and hence x = ab .

2 .
o 1,2 _t_ .2 1mad X
miltslo? =omit o — =
2 2 2 2 aZ

3 .2
4

of —

Now, - T=
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2 . .

ma . X
(because / = for cylinder and w= ¢ = ;.)
and V=mg(s- x)'.sin 0+ mg acos @

L=—} mi? — mg (s - x) sin @ — mg a cos 8

where s is the lenght of the inclined plane.-

~... Equation of motion is

. Fig. 2.12

3m)c mgsin® =0,

Ex@ A bead slides on a smooth rod which is rotating about one end in a vertical plane with uniform

- angular velocity o [Fig. 2.1.‘\] . Show that the equatzon of motion is mi = mro? — mg sin ot.

Solution: =~ T =21m'(-r"2 + 1‘262), and’ ¥V = mgy = mgr sin 0
L=—2|—m(f2 +r292)—mgrsin6 Y
. S/ R o *.7)
e. —=mr0 —mgsin0 and — = mr : . , IS
Hete, or £ -OF : , |
From Lagrange’s equation " :
dfay a_, | o
dt\or,) or ' o Fig. 2.13
we have mF — mréz +mgsin® =0 or mi'—mra” +mgsin ot =0
where ' e =@ and 6 =or. .
Ex.A\7.)] A pendulum of mass m is attached to a block of mass M. The block slides on a horizontal

frictionless surface (Fig. 2.14). Find the Lagrangian and equanon of motion of the pendulum. For small
amplitude oscillations, derive an expression for periodic time. :

Solutlo_n : Let at any time ¢ the coordinates of M and m be (x,,0) ' N __51 ..
and (x,, y,) respectively. ' '
. ’ M
Here, x,=x+Isin 8 and y,=—/cos § 0 X
D, |
T——M)c| —m(x,+y,) : ! y,
=1Mx,2+7'm()é,2 ¥1262+21i,90059) ’J.
2 - XZ —> :
(because %, =z, +Icos06 andy, =/sin00) _,
V =—mglcos Fig. 2.14
Hence, L=T-V= %(M +m) ,\]2 +-;-m[292 +ml %8 cos 8 +mgl cos 0
Hefe, L 0, ﬂ'— =(M+ m) +mif cos 8, '
6\1 6\| : ) i
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oL

Equation of motion in 8 is’

. o .
g =ml (%6 +g) (-5inB) and = mi*0 +ml %, cos 6

ml*6 + mXcos 6 +ml'(— sin 6)8 %, —ml (—sin 6 )x]é +mglsin@ =0

or mI*§ + ml cos 0 &, + mgl sinf =0
If 0 is small, sin @ =6 and alsocos @ =1, then .
ml* 6 + mlx, + mgle =0

or 0+ —ll' +'§‘ 6 =0
Equation of motion in x, Is
(M + m)x,+ ml (§ cos 0-g2sin@)=0
For.small 6, (cos # =1,sin 8 = 0 and éZG is negligible)
oM A mx mlé_=0
From equations (i) and (ii), we have

__mb +&9-0"
M+m |

. M+m|g
6=-1"wm |19

§

Hence

i)

This is the equation of simple harmonic motion whose period is given by

T
T—'21t‘ gYM+m

Ex.8. Ina sphéricdl‘ pendulum*, a’ small bob (particle) of
mass m’'is constrained to move on a smooth spherical surface,
say of radius R, R being the length of the pendulum (Fig. 2.15).

A

Set up the Lagrangian for the spherical pendulum and obtain the .
equation of motion. (Rohilkhand 1994) X
Solution : The constraint of motion is holonomic and the

constraint equation is
x2+y2+22~R2=0
We take 6 and ¢ as the generalized coordinates. The cartesian
coordinates of the bob P are '
x=RsinB'cos ¢, y=Rsin0 'sing¢,and z=R cos '

0
5L 5ipg
\/9 x = R sin® cosd,

{ y=RsinBsin,
{ z=-Rcosd

H -
B ”

R P(x y 2)

Fig. 2.15

or x = Rsin @ cos ¢, y = Rsin @ sin ¢, and z=- R cosf (as0'=mn-0)

Now L =;m (562 +)'12‘+i’2)—. v =; mR2(92 +(f)zsin29)+ng cosH

* If spherical pendulum moves in‘.é_vetﬁcal plane, it constitutes a simple pendutum. A
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Equations of motion are

i[a_LJ_Qézo and i[%]—ai=o

dr\og) 9 ~  drlop) o
. ) . 2.2 ¢ PP d 5. 2
ie, mR”™ §—mR" ¢ “sin@cos @ +mg Rsin @ =0 and dt(MR ¢sin"0)=0
P DV S 2 .2, 0 _
or ... § —5sin 29¢+}-sm9.=-0-and ‘mR”sin"0 ¢ = constant.

These are the equations of motion for spherical pendulum.
Ex.9. 4 pai ttcle moves in a plane under the influence of a Jorce, actmg towards a centre of force,

whose magnitude is ‘
1(, -2
F=—l-—3"
r c :

where r is the distance of the particle from the centre of force Find.the generalized potential that will result’

in such a force and from that the Lagrangian for the motzon in a plane. (Rohilkhand 1986)
Solution : For velocity dependent potential
dfor) or_o
dt\ 0q, | 0Oq
...... U dfau) . . -
where G= ﬁ mEen is the generalized force and U(q, , 4, ) is the generalized potential-The
k dx _ o ) .

- generalized force for q,= ris

2.2 2 -7 2.2

- S R
.He_re G:F:I_l_[l__'l 2I,J = —_—— ! +_L.=_2+__r_+_r__
; : ’ ’ r ‘cr cr r cr cr cr

.2 .2
=_£[1+LJ+iﬁ(l+r_J W do
or dt ar

1, 7 - » |
where U = —[1 +’—2J This is the expression for the generalized potential.
r c

Questions

1. (a) What are constraints ? Classify the constraints ‘with some examples.
(Agra 2004, 1998, 95; Kanpur 98; Garwal 98, 93)

(b) What type of difficulties arise due to the constraints m the solution of mechanical problems and
how these are removed ? . (Agra 1998, 93)
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-7 10,
11.
12

13,

14,

1S,

1

(c) Write a note on ‘holonomic and non-holonomic constraints’with two examples of each type.
(Kanpur 1997; Garwal 99; Gorakhpur 95; Agra 2002)

What do you understand by holonomic and nonholonomic constraints ? Obtain differential equations
of constraints in case of a disc of radius R, rolling on the horizontal xy plane and constrained to move
so that plane of the disc is always vertical. - (Kanpur 1996)

Write down the generalized coordinates for a simple pendulum and exptain why cartesian coordinates

are not suitable here. ' _ (Gorakhpur™1995) -

" What are generallzed coordinates and generalized veloc1ties ? Set up the Lagrangian for a spherlcal
. pendulum.. . .. e S -~ (Ruhelkhand 1994)
(a) State and prove D ‘Alembert’s principle. : (Garwal 1996)
(b) What is D’Alembert's principle ? Give its one applieation . (Kanpur 1997)
(©) Derive Lagrange’s equations from D 'Alemberts prmcrple _ (Kanpur' 2001)

What is D’Alembert’s principle ? Derive Lagrange’s equations of motion from it for conservation
system. How will the result be modified for non-consetvative system ?
(Agra 2001, 2000; Meerut 2001; Garwal 1999; Bundelkehand 97)

(a) Discuss the superiority of Lagrangian approach over Newtoni'an' approac'h (Rohilkhand 1994_)

(b) Define Lagranglan function for conservative ‘and non-conservative systems.

Explain what is meant by generalized coordinates, holonomic constraints and the principle of virtual
work. Obtain-the D 'Alembert’s principle iri generalized-coordinates and use it to obtain the Lagrange’s
equations of motion for a holonomic ¢onservative system. (Agra 1991, 89, 87, 86)

dt\0q; ) oq;
‘(Kanpur 1997)

_ . _ ' oT or
Obtain Lagrange’s equations and show that these can be written as — (——) =0,

Derwe Lagrangian expression for a charged particle in an electromagnetic ﬁe‘d
(Agra 2001, 1999 95)

Define Raylish’s dissipation function for frictional forces, which-are proportional to velocities and
obtian Lagrange s equations Also give a physical interpretation of this function.” (Garwal 1995) .

‘What is . Hamilton’s prmcrple ? Derive Lagrange’s equation of motlon from it. Find the Lagrangian

equation of moton-for a L-C cirouit and also deduce the time period. - ~ (Agra 1995)

What is Hamilton’s prmC}ple ? Derive Lagrange’s equation with its helps for a conservative system.

Derive equation of motion for a particle moving under central force.
(Agra 2002, 1999; Rohilkhand, 96; Merrut, 95)

Set up the Lagrangian and obtain the Lagrange’s equation for a simple pendulum. Deduce the formula
for its time period. . (Agra 1994, 91)

Prove that if the transformation equations are given by

. l' (qp (]7’ q )
which do not involve time exphcitly, then the kinetic energy can be written as.

_ T= Z Z of ‘]a(/ﬁ
a=1 B-1 .

svhere COLB are functions of q,.
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16. Write the Lagrangian and equation/dfﬁotion for the following systems :
(a) A mass m is suspended toa smeg of force constant k and allowed to swing vertically.

(5) -A uniform rod of mass. 41 ‘and length 4, pivoted ata distance / from the centre of mass, swings in
a vertlcal plane. . T

Ans. (o)L= mez —Ekx2 smktke=( .

3 16® — mgl (1= cos8);.10.+ mgl sin®=0

) 2 2
ma* ) m|la
I =] = - -—'+l ..
where / T + m(z] " [ 3 ]

17. The force on a-pert'icle of mass m and charge e, meving with a \)elocit_y-v'in an ele_ctric field E and
magnetic field B, is given by ~ '

C/ yxBY | |
F= G(E'F . ],'where ¢ is the speed of light.

()- L =

1AL .
If the fields are expressed by the relations : E = - V¢ - PP B =V x A, ¢and A being the scalar

and vector potentials respectively, prove that the Lagrangian for the charged particle is

1 S : o
L=—mv’ + A.V)-eb | (Garwal 1996)
Z C

Problems

| [SET-1] [

1. Determine the number of degrees of freedom in the followmg cases : ) '
(1) A particle moving on a space’ curve, (2) 4 partlcles movmg freely in space, (3) 4 partlcles moving
freely in a plane, (4) three partlcles connected-by three rigid massless rods, (5) two particles movirig on a
space.curve and having constant distance between them, (6 ) a rigid body movmg patallel to a fixed
plane surface, (7) a rigid body having two points fixed.

Ans : (1) 1, (2) 12, (3) 8, (4)6 85 1,(6) 3, (N1
2. Determine the number of degrees of freedom for a massless rod, moving freely n space with a
particle which is constrained to move on the rod.
Ans : 4.
3. Two particles are connected by a rod of variable length / = f (). What is the nature of the constraint ?
: Ans : The constraint s | r-r, |2= f 2(t) which is holonomic and rheonomic.
4. A lever ABC has weights w, and W, at distances /l and l, fro»m the fixed support B (Fig. 2.16).
m o

Apply the principle of virtual work to prove that the condmon of the equlllbrlum 1S W? Z

7 ) ’ | B /
o % e, ! s W,

At—,"._"!' , R a e : /2 'C

Fig.2.16 : v |
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10.

11.

where K is the radius of gyration.

- double incline and connected by an mextensnble massless string .

“Ans : £ = (L Mg + mg sin 0= yr mg cos 6 )/(m + M /4)

Use D’Alembert’s principle to determine the equation of motion of a simple pendulum.-
1 h+ (g/l )8 =0.

'An incline that makes an angle o with the horizontal is given a hor1zonta1 acceleration ¢ in the

vertical plane of the incline so that the sliding of a frictionless block on the incline is prevented. Apply
D’Alembert’s principle to obtain the value of a.
Ans:ag=gtana.

A ladder slides down a smooth wall and smooth floor [Fig. 2.17].
Set up the Lagranglan for the system and deduce the equatlon of
motion, - :

Ans : L=§m(12+1<2)92-mglsine; § =lgcosG/'(12+K2),

SMOOTH WALL
A ..

SMOOTH FLOOR
Fig.2.17

Mint: T=3m (32 +5%) +5 0"

Here, x = a cos 6 y=asinb, I= mK® and w=6 ]

(a) JTwo point masses m are connected by a rod of length 2a, the centre of which moves on a c1rcle o

of radlus r. Write down kinetic energy in generahzed coordmates

m(6 + 4% K

(b) Obtain the Lagrangian of a particle moving in a force free field in sphencal coordmate and cylindrical
coordinate systems.

Ans lm(r' +r() 2+ P sin’0 ¢ ); 1m(f2+"292+22)-

Two particies of masses m, and m, are located on a frictionless

passing over a smooth peg (Fig. 2.18). Use the principle of
virtual work to show that for equilibrium, we must have

sina, m A
‘. ‘ TR ig. 2.1
where o, and @, are the angles of the incline. , Fig.2 8.
Apply D’Alembert’s principle to describe the motion. (Garwal 1992)

N0, —7,g Sin o . . . :
Ans ; o =180 T8 2 | where for mgsino, >mgsina,, the particle 1 goes down

m; +my
and particle 2 goes up.

A bead is sliding on 2 uniform rotating rod in a force-free space, find its
equation of motion.

Ans i mi-mrot=0.

Asblock of mass m is pulled up as the mass M moves
down as shown in Fig. 2. 19 The coefficient of friction
beiween the incline and m is.u. Find the acceleratlon of m
and M. Assume the pulley P as-frictionless.

=¥/,
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To12)

13.

" 14,

15.

16,

system

~ Ans: L=—mz (a +adt b z+l) mgz

* the surface of a cone of half angle ¢ and subject to

, [Hmt L——m(r cosec’ ¢+1 e) mgl cot¢]

- [Hint: T 21111129'2 V= mg’l cos 6, whereg’'=g-z7=g- e)z a sin QL. ]

[Hint: 7 = smp’+imp’’+3 S

A bead is constrained to move along a smooth ledmeal |-
spiral [Fig. 2.20] defined by coordinates p, ¢ and z, .
related as  ~

p =az and ¢ ——bz

where @ and b are constants. Gravity force is acting in
the negative z-direction. Set up the Lagrangian for the

Discuss the motion of a particle of mass m moving on

gravitational force only, as shown in Fig. 2.21.

Ans : Equations of motion are

r—re sm ¢+gcos¢sm¢ 0; J——mr 6 = constant.

In an inverted pendulum, particle of mass m is attached to-a
rigid massless rod of length / [Fig. 2.22]. If the vertical
motion of the point O is represented by the equation z

- = a sin. g, set up the Lagranglan and obtain the equation . _ ' 7
of motlon
H ' /' m
22 2 . ' o
Ans:_L-__—Emlg —m(g_~a_w smwt)!eosﬁ; : /
g- (g_;, ,_ sin o ) sin 6 O . 4
£ - o7

Fig.2.22

A particle of mass m 1s free to sllde on a smooth helical wire whose posmon in cylmdrlcal
coordinates is represented as p = a and z = b¢. The partlcle is released from rest at p~ = q,
¢ =0andz = 0 Discuss the motion of the particle.

'Ans:z=gb I /[2(a +b )].

2

Equations of constraints are p — a = 0 and z-b9p=0

Hence there is only one generalized coordinate. Now, 7 = m (a + b )z /2b
eneralized force G_= mg ; i\a:) 8. G, or m(a + b Yz/ b = mg,
22 2 2

z=gb 7/ [2(a” +b7)]

A small bead of mass M is initially at rest on a horizontal wire and is attached to a point on the
wire by a massless spring of spring constant & and unstretched length . A mass 71 is freely suspended
from the bead at the end of a wire of length 2b. For the dlsplacement shown in Fig. 2.23, obtain

the Lagrangiari.
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[Hint:T=ym(;> +r'¢°) and V=3kr
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- 'Fig.2.23°

CAns:iL=2(m+M)i’ +2mb@ (b8 +%cos ) —3 ki + 2b mg cos,

" [Hint : In the displaced position, coordinate of M, X=a+ x and coordinate of m,

x"=a+x+2bsin@, y=-2bcos 6]

A particle of mass m is projected with initial velocity u at an angle o with the horizontal. Use
Lagrange’s equations to show that the path of the projectile is parabola. (Rohilkhand 1999)

A-particle of mass m can move in a frictionless thin circular tube of radius.r [Fig. 2.24]. If the tube rotates . . . .

with an angular velocity @ about a vertical diameter, deduce the differential equation of motion of
the particle. |

Ans: é—_ o’ sin 6 cos 6 - (g/_r) sin 6=0,

. [Hint : L=%mr2 62+ w’sin® 8) — mgr cos 6],

1

Fig. 2.24 - Fig. 2.25

Using Lagrangian formulation, find the equation of motion of a particle of mass m, constrained to move
on a smooth horizontal table under the action of a spring of force constant k [Fig. 2.25]. In the
system, a string attached to the particle passes through a hole in the table and is connected to the
spring. Assume theé spring is unstretched, when 7 is at the hole.

ans : mi—mrg >+ kr=0 and %(m"zé )=0.

2

]
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20. A particle of mass m, moves on a vertical axis in the system 0 (fixed)
shown in Fig."2.26 and the whole system rotates about this axis . 69 .
with a constant angular velocity @ under the action of gravity. ! o
Set up the Lagrangian for the system. m \\.m
8 | ; |
' : . 2 .20 A ° . |
Ans: L = mllz (0 2y smz@ a)j)r+ 2 /112/2511126 6 2 S ;
+2 (m+ m,) gl cosé. c / ) Py
Fig. 2.27 shows a mass m resting on a smooth table between two =~~~ /
.. firmsupports 4 and B and controlled by two ma_s;]ess springs of . . _ ' /m, (moveable)
~ force constants C and -C,. Set up the Lagrangian of the system I -
and deduce the equation of motion. Lo W
| . , ' _ ; Fig.2.26
Ans:__L=5 5(( F(‘)\ m_'\:+(C|+Cz)x=0
o i c '
/ ™~ 2 C %
AZT00000 7\ 1 00000 T B -
i 5%‘. ' e O e ) o e
SMOOTH SURFACE o FRICTIONLESS SURFACE |
Fig. 2.27 ' ‘ Fig. 2.28
"22. Two equal masses are connected by springs having each forcé constant C [Fig. 2.28]. The masses
are free to slide on a frictionless table AB. The walls are at 4 and B to which the ends of the springs
are fixed. Set up the Lagrangian and deduce the equations of motion of the vibrating system.
A LA S R S o L 2 c
Ans: L=5myx; +5mx2—5CA,—5Cx2—5 (= x))" mx = C (xy- 2x) mi; = C(x = 2xy).
d 6L oL dlaL] aL
Hint : - Lagrange’s e uatlons are —| —— ————0 nd- —|— =0]. .
23. A particle is constrained to move in a plane under the influence of an attraction towards the origin
. proportional to the distance from it and also of a force perpendicular to the radius vector inversely
proportional to the distance of the particle from the orlgm in ant1c]0ckw1se direction. Find (i) the
Laglanglan and (i) the equatlons of motion. o _ . (Agra1999) -
.- _ _
ns: (i) L= ;m(i' +r'9“)—7kr‘ (it) mr - mrf? + = = 0: d = (mr? 6) — 4
- - r dt
kl
where F, =—kr and Fy =—
-
[SET-11)
1. A pendulum bob of radius r is rolling on a circular track of radius R , O
(Fig. 2.29]. Set up the Lagrangian, derive the equation of motion and ' /94‘
compare its period of small oscillations with that of a simple R
pendulum of string length (R- r). . /
IR /{;"..'I) ........... ;
Ans: L =—m (R-/) g 2 2( - mg (R - r) (1- cos@ ); l. \-’:‘ ; e
l ' ™ .
5 ¢ . ' Fig.2.29

6+ 7 (k0 ~ 040
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[YIiht:v".=’ra)=(R—r)(§';T=;l l_w2+;|mv2=5|m = 92
2 2 PR

A solid homogeneous cylinder of radius r rolls without slipping oﬁ

the inside of a stationary large cylinder of radius R. Find the equation
~of motion. What is the period of small oscillations about the stable

qu’lllbrlum position ?
ns : 3( R-nr§+g6.=0,T=2n
(a) A bead of mass m slides-on a smooth linifofm circular wire

of radius r whicl is rotating with a constant angular velocity @
about a fixed vertical diameter [Fig. 2.30]. Set up the Lagrangian

“and find the equation of rotion of the bead.

Ans: L= 2

|
2

. 1 2.2.2 , w1 . .
mr 9 +5mr” W sin"0 — mgr cos 0 ; f—5 @ sin 20-£5in0 =0

(b) In the above.problem, if the bead is released with no_ vertical velocity from a po_int_ on the level of

" the centre of ‘the circular wire, show that it will not reach the lowest point if @ >‘/2% .

.. A bead of mass i can slide freely on a smooth circular wire of

radius a. The wire is rotating anticlockwise in a horizontal
plane with an angular velocity @ about an axis through O [Fig.
2.31]. Show that the motion of the bead is simple harmonic
about the ratating line OA with a peried-T = 21 /w.

~  [Hint : /\—acoswt+acos(u)t+6) y=asin @ +asin (0t + 6 ) ;

T=sm(i +57)=3madfe’ +(e-+m)-+2w(9+u»cose'

y

y

Fig. 2.31

Lag-ranée’s equation is maz_ (6— m‘-eﬁsine-)-ér ma’ o (0+ a)) sinf = 0, whence for small 6,

6+w’0=0].

The point of suppon of a simple’ pendulumef—length I and mass m is moved along a vertical line-

according to _{he/ equation.

y =y

The motion of the pendulum is restricted to a vertical plane. Show that the kinetic energy of the

pendulum is giyen by

T =ym (1) +5mp +mly §sin 0

variable 6. l

- If the potential energy is given by ¥V = mg y — mgl cos 6, derive the equation of motion for the

-p simple penduluin of mass m whose point of support (a) moves uniformly on a vertical circle with
constant angular frequency o [Fig. 2.32], (b) oscillates horizontally in the plane of motion of the
pendulum according to the law x = a cos ¥, (c) oscillates vertically according to the law y = a cos

wt. Set up the Lagrangian in the three cases.
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ns:(a) L =51.ml2 92 + mla o sin (6 - wt) + mgl cos 8, s >\ '
’ . a

where the terms .depending only on time have been omitted
together with the total time derivatives of mla @ cos (6 wr). -

THint : x = a cos wt + [ sin 6, y =- a sin wt + 1 cos O]

() L=% mlzg 2+ mlaw® cos wrsin @ + mgl cos 0

[H-'int‘:' X = cos w+sin B-3=1cos 7. -
(¢) L= l mi’ re) 24 mla 0’ cos (I €Os 9 + gl cos 6.] B Fig. 2.32

7. A mass m; hangs at one end of a string which passes over a fixed frictionless no’n—rotatmg pulley. At
the ‘ofher end of the stnng there is a non-rotating pulley of mass m, over which ﬂlere is' a. string
carrying masses m; and m, [Fig. 2.33]. Set up the Lagrangian of the system and find the acceleration

of the mass m,. ' | - T
4.‘ ’ ’ . I .2 1 [ SN 1 ¥ 2 . - .. . )
i  Ans: —m,\, +—m,.\_7 (% y)T sy (% - 9))T +mygx; : S x

gl —x)) ) g(x ) Hmyg(x th = 5) | where land O 3 |

12 are the lengths of upper and lower (in-extensible) string's;'

(my —my) (my'+m ") = dm "m,’ _ ' Y Q

(m]+mz)(m"+mz')+4ml’m2’ ; .+
T

—

8. A sphere of radius 1 and mass m rests on the top of a fixed rough - (
sphere of radius R. The first-sphiere is'slightly displaced so that it -V i—j
rolls without shppmg down -the second sphere. Find out the - '
equation of motion of the rolling sphere. . _ IFlg 233

Ans: §-- ﬁsme =, whére @ is the angle between vertical and the line joining the centres of
r+. : : :
two spheres at an instant. - = - O X
9. A system consists of two equal masses m fixed at the ‘ends of a N ' '
light rod PQ of length 2/. The middle point C of this rod is ™4 Q@m
attached to the end of a light rod OC of length a. The rod OC is \ /
mounted in such a way that it can move freely in a horizontal - :
plane, while PQ is mounted so that it can rotate freely in a ' . ) C
vertical plane through OC [Fig. 2.34]. Set up the Lagrangian l
and the equation of motion of this syatem, placed in a uniform o P
gravitational field. (This system is called Thompson-Tait pendulum). . "

pé sind cosd —0
2 I
4/112((13 + 12 coszd))

Ans: L= m/z({) 26 m (az+ lzcosztp )9"2; d) + i
where p, =2 mo (a ./ cos@).

10 A bead slides on a wire in the shape of-a cycloid described by the equatlons
. © x=au(@-sin@), y=a(l+cos ), where0<0<2m.
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Objechve Type Queshons

1.

_ Find (a) the Lagrangran function, and (b) the equatrons of motion. Neglect the friction between the

bead and wire.. - _ , . o (Agra 1998)

. . ’ . . R ] : . . ] -
Ans: L= 111(129' 2(-l— cos0') — mga (1+ cosf ); § (1-cos 6) +Es_in_ 06 - iia sin 6 = 0.

A particle is constrained to move along the inner surface of a fixed hemrspherlcal bowl The number
of degrees of freedom of the particle is - : :

(a)one (b) two ‘
(c) three ' (d) four (GATE 1996)
: (b). | :
A rrgrd body moving freely in space has degrees of freedom
(@3 ' (b) 6
()9 ‘ (d) 4
ns : (b)
" Constraint in a rigid body is
(a) holonomic : : (b) nonholonomic
(¢) scleronomic . (d) rheonomic.

ns : (a), (c).
Generalized coordinates :
(a) depend on each other. : (b) are independent of each other.

(c) are necessarily spherical coordinates. . (d) may be cartesian coordinates_.
:-(b), (d)..
The constramts ona bead ona. umformly rotatmg wire in a force free space 1s
(a) Rheonomous - (b) Scleronomous
: (c) (a) and (b) both - , ce (d) None of these (Kanpur 2003)
+ (a) | -
If the generalrzed coordmate is angle 6, the correspending generalrzed force has the dimensions of
(a) force (b) momentum
(c) torque ~ (d) energy
ns : (c).
If a generalized coordinate has the dimentions of velocity, generalized velocity has the dimensions of
(@) displacement (b) velocity
- (c) acceleration ' (d) force
ns : (c).

The Lagrangian for a charged particle in an electromagnetic field is
@L=T+qo+q(v.A) (B) L=T-qd-q(v.A)
@©L=T-qo+tq(v.A) d) L=T+q¢-q (v.A)
where T is the kinetic energy and ¢ and A are magnetic scalar and vector potentials.
Aus. (c).
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Short Answer Questions

®° NS AW~

-10.

10.
1.

A mass m is connected on either side with a spring each of spring constants ki and k,. The free ends
of springs are tied to rigid supports. The displacement of the mass is x from equilibrium position.

Which one of the following is TRUE ? . : : oy
(a) The force acting on the mass is —(k, kz)”2 X. | . W '
(b) The angular momentum of the mass is zero about the 1

Fig. 2.35

L . - U R
equilibrium point and its Langrangian is M -5 (k| +

. N
(¢) The total energy of the system 1s -Z-mx .

(d) The angluar momentum of the mass is nxx and the Lagranglan of the system is

mg,l Lk ) o -  (Gate2004)

Ans. (b)

- The homogeneity-of time leads to the law ol conservation of .-

(¢) linear momentum : (b) angular momentum | . .
(¢) energy © (d) parity. . (Gate 200_2)
Ans._(c) '

Discuss the D'Alemberts principle. | (Agra 2004, 03)
What do you mean by degrees of freedom ? - -

- What are holonomic and non-holonomic constraints 7 - (Agra 2002; Kanpur 2002)
Show that the work done by constraint forces in a rigid —body is zero. . (Kanpur 2001)
What are generalized coordinates 7 What is the advantage of using them ? (Agra. 2004, 02)
Write the Lagrange's equations in presence of non-consecutive forces.” =
For a non-conservative system obtain Lag1ange s equations. . . (Kanpur 2002)
“Write the Lagrangian and equation of motion f01 a mass M suspended by a spring of force constantk -
and allowed to swing vemcally T * (Kanpur 2003, Rohilkhand 1994)
[Ans. L = , mil =~ kS mE + ke =0]

Deduce the Lagrange equation of motion for L - C circuit (Agra 2003)
d*q ¢
T =0
d=  C ] _
What is Hamilton's's principle ? (Agra 2004; Kanpur 2001)

Fill in the blanks :
(1) The number of independent coordinates required to descrlbe a system is called............c.............

(1) Generalized cogrdinates are defined to be any quantities.by_means of WhiCh. ..o
(Agra 2004)

[Ans. (/) Ge nelallzed coordinates (ii) we describe the state of conﬁguratlon of a system]




CHAPTER"

3.1.INTRODUCTION
In the earlier chapter, we have seen the use of Lagrangian method, Wthh allows us to find the equations
of motion for any system in generalized coordinates qs qy -, In the Lagrangian formulation, the equations
of motion are in the form of a set of second order differential equations. An alternative formulation, given by
Hamilton and known as the Hamiltonian dynamics, makes use of the generalized momenta p|, p,,...p, in place
of the generahzed velocities ¢;,4, ,. ,q,, , used in the Laz,ranglan formulation. In the Hamiltonian formulation,

‘two sets of first order differential equations are used instead of a set of second order differential equations. Both .

the formulations are equivalent, but the Hamiltonian formulation is more fundamental to the foundations of
statistical and-quantum mechianics. This formulation is particularly valuable when some of the generahzed
momenta are the constants of motion.

3.2. GENERALIZED MOMENTUM AND CYCLIC COORDINATES

- In order to define the generalized momentum, we take a simple example of a smglé particle, moving with

velocity x along X-axis. The kinetic energy of the particle is
e I Ly

The derivative of T with respect to X i.e.,

' or . - mi=p
Fn '
defines the momentum. If V is not a function of the velocity x, i.e., V= V(x) and i 0, then the momentum
p can be written also as
0 oL
=—(T-V =— ' . ' .2
p=gi TV orp=22 @

Similarly for a system described by' a set of generalized coordinates g, ’s and generalized velocities g,s,

we define the generalized momentum corresponding to the generalized coordinate g, as

p oL
ET oA

o
This is also called conjugate momentum (conjugate to the coordinate q, ) or canonical momentum.
For a conservative system, the Lagrange’s equations are given by

d|oL) oL |
“di | 3g, | og, 0 ' (4)

-(3)
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oL
Substrtutmg for 3>~ 3g, ~ Pio e get
' o, oL . oL
P2 =0 o p=o— (5)
dt _ oq, Oq

Now, suppose in the expressron for Lagtangian L of a system, a certain coordinate % does not appear
explicitly. Then o _

COL
24 =0 : T - .(6)-
This means from eqg. (5) that
| , —dfo | B
i Pl S - ()
and hen_ee on integration, we get
: oL '
. pkf;'}zz a constant . L . L (g) _

Thus whenever the Lagrangian function does not contain a coordinate q, explzcztly, the generalized
momentum p, is a constant of motion. The coordinate q, is called cyclic or ignorable. In other words, the
gener alized momentum associated with an ignorable coordinate is a constant of motion for the system.

For example, let us consider the motion of a particle in a central force field. In polar- coordmates the
Lagrangian L can be expressed as "

O L=T-v= gm0 [ =i 2+ 767 NOR

- We seein eq. (9) that , does not contain the-coordinate 6. Therefore, 6 is the cyclzc or ignorable coor - ate

and hence the generalized momentum p, correspond ing to s - '

Pe‘.EL/f?@ = mr 9 = constant - ' ..(10)

where the generahzed momentum Pg is the angular momentum and is a constant of motion in time. Thus the
angular momentum of the system is conserved in the central force problem Further the constant of motionis

called a first mtegml because aL/ &0 = constant is a first order drfferentral equation and has been obtained by

integrating f’— [Q—ZL] =0
dt | o0

Itis to be noted that if the generalized coordinate ¢, does nothave the dimensions of length, the generalized -
momentum p, may not have the dimensions of linear momentum. Also, if there is-a velocity dependent
potential, for example a charge moving in an electromagnetic field, then even with a cartesian coordinate
(9,= x. y or z) the associated generalized momentum will not be identical with the usual mechanical momentum.
The Lagrangian L of a particle with charge g in an electromagnetic field is given by {eq. (68), Chapter 2]

=T—gp+qv.A ~(11)
where T'is the kinetic energy, ¢ is a scalar function of position and
VeA =v A +v A +v A

for _ 2,2, 2 ' . ( ._
Therefore, L=smlv + vy, 1-9¢+qlvA.+ vyAy+. vA ] (12)

" The generalized momentum p, conjugate to x is. given by
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Note that here the generalized momentumis the sum of mechanical momentum (v ) and the x component
of the electromagnetic linear momentum (¢4 ) of the field associated with the charge g.

“Suppose the field is such that ¢ and A both are independent of x. Thus x does not appear in L and is,

therefore cyclic coordinate. Consequently the correspondmg generalized momentum p, is conserved i.e.,
p =mv_+ gA = constant - ) - .(14)
. One sees that here instead of the mechanical linear momentum (mv ), its sum with g4, is conserved. Thus
the condition for the conservation of generalized momentum is more genelal than the principle of conservation
of linear mechanical momentum, because the former is a conservation theorem for a case where the third law
of action and reaction is violated, e.g., when we deal with the motion of a charge in an electromagnetic field.

First Integrals

In-eq. (8), the generalized momentum p, conjugate to a cyclic coordinate g, is a constant of motion. This
- 1s equivalent to integrate the equation of motion once under certain condition and hence this constant of
.motion is referred as a first integral.

By a first mteg1a1 of the motion, we mean a 1e1at10n of the form
F@, 4y s 415G, en 1) = Constant .

which is a first grder differential equation. There may be several first mtegrals for a particular type of motlon
of the system. These are very useful because we get some important informations physically about the system
just at a glance from these integrals. In fact, conservation laws, eq., (16), (20) and (30) in Chapter 1, are the

first integrals of motion.

3.3. CONSE_RV_ATIQN THEOREMS

| -The theorems of-conservation of linear and angufar momentum are the special cases of the general pﬁncib]e
for cyclic coordinates in the Lagrangian formulation.
3.3.1. Conservation of Linear Momentum

“The Lagrahge’s equation of motion for a generalized coordinate q,1s given by.
alar] oL | -
—|=——|-=—=0 .{15)
dr| 04 | gy

where L=T-V."
Suppose dq, represents a translation of the entire system along a given direction. We consider a
conservative system so that ¥ is not a function of velocities and T is not a function of position. Therefore,

aqy, P =0

Now we can write eq. (15) as
dlor]_. _ o _ . | | -
- an “he= 5 G (16a)

or G2y - ' ..(16b)
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These G, and p, are the components of the total force F and total linear Y
momentum P of the system along the direction of the translation dg,. For : dr=dg,X=dy & k.

P 7 P!
example, if the system is given a translation aloqg X-axis, then dg, = dx and /o
G=F, and p,= P, Thiscanbe shown as follows As we see from Fig,. 3. 1 r <
k S Ax at:
dr; =dq,X = dx X X ‘
0 X

where® is a unit vector along X-axis. ) -
. Fig. 3.1 : Change of position

vector under translation
~ ofthe sysfem

C"IA
Also T=% % ,ﬁifl? :
e
. '-_aT'f'_:".' L -,-f?:f..f.andﬁ=ﬁ
Therefore, == Yomiveg e [ H TR 5 g,
or . P = Emi ek =Reymi, =%eP'=P,

Thus eq. (16) repfe'slents the equation of motion for the direction of translation.

Suppose that the translation coordinate g, is cyclic. This means that qk is not appearmg mL=T-V.
Then -

| 0q, 0q
and therefore from (16), we get
G, = '. x =0 or p,=constant '
For X- direction, F = Pc=0or P = constant. -(17)

This is the well known conservatlon theorem for linear momentum Thus in absence of a given
component of applied force, the corresponding component of linear momentum is conserved. ‘

3.3.2. Conservation of Angular Momentum

Let us consider a conservative system as discussed above. Now, if for the generalized coordinate «J o 99,
represents a rotation d6, then the Lagrange equation can be written as, '

dfoL) o _o o dfor)|__ov
dt\ 04, ) Oqy dt 04, 4y

because V is independent of ¢, .

Thus =G, a , - S (18)
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Here we want to show that for a rotational coordinate-q ,» the generalized force G, is the component of the

total applied torque t about the axis of rotation and the generalized momentum p, is the component of the
total angular momentum J about the same axis.

Now, Z F e

- a‘]k

Here, dg,= d6 is an infinitesimal rotation of the position vector r; of the particle of the system about
Z-axis such that the magmtude of r; remams constant,

From Flg 3. 2 the 1nﬁn1te51ma1 small dlstance Idr | is 7
- dq,=do
|drl.|—;l.sm(pqu'—l’.sm(p@  and dgi=db3
or } _ dri%qu(ix_ri,) —~ :
where z is a unit vector along the axis of rotation.
- oo . ' -
Therefore , —L=Zxr;
oqy
Thus _' G, =Y F *ixr,

i
Using the property of scalar triple product,
G =22°r;xF, =23 r; xF,
' i

. . “Fig. 3.2 : Change of position vector
=L0)T; LT, ~under rotation of the system.

where 3.1, = 1 is the total applied torque and t; = Z * T is the component of the total torque T along Z-axis.
‘. . R R H . . .

aT R T
= = E mv.e = E'mv *IXT
Pk a(]k - -: 1-aqk - (AN i
=2 y=J, . - ..(19)

I
-
N>

.

-

X

=

<

i

N

.
-

-t

X
N>

.
-
Gom

i

where ). J; = J is the total angular momentum and J, = Z+J is the component of the total angular momentum
i )

J along Z-axis.
Thus eq. (18) represents the equation of motion about the axis of rotation ( JZ =1).

- Now, if the rotation coordinate g, is cyclic, it will not appear in the Lagrangian L or ¥ and hence
Gy =—V[dg, =0 '
Therefore, from eq. (18), we have .
Gy=p=0or 1,=J,=0
or J = constant - ' ...(20)
This is the theorem of conservation of angular momentum which states that in absence of a given
component of applied torque alonig an axis, the corresponding component of angular momentum along the

same axis is conserved. Thus we have obtained the two theorems of conservation of momentum from the general
conservation theorem of” generahzed momentum correspondmg to cyclic coordinates. ’
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3.3.3. Significance of Translatlon and Rotatlon Cyclic Coordlnates Symmetn{y
Properties |

If a coordinate correspond'i\ng'”-'-to'._h translation along a direction-is not appearing in the expression ef_the' '
Lagrangian of a system, this coordinate is cyclic and obviously the translation aleng the same direction has no
effect on the Lagrangian. Thus if the Lagrangian of a system is invariant under translation along a direction,
the corresponding linear momentum is conserved. Similarly, if a rotation coordmate aboiit an axis is cyclic,
the conjugate angular momentum is conserved and the Lagrangian is 1nvar1ant1mder the rotation about the
~axis.
" Itis to bé mentioned that thé coriservation principles are the expressions of symmetry proper‘ties"o'f the
system. For example, we find that in the central force problem, the law of conservation of angular momentum
emergés from the fact that the Lagrangian L is independent of the coordinate 6. In fact, this is an expression of the
rotational symmetry of the system. In general, for a system, dL/d6 = 0 means that the Lagrangian of the system
does not change on rotation through an angle 6. Consequently the angular momentum is conserved for systems -

possessing rotational symmetry.

3.4. HAMILTONIAN FUNCTION H AND CONSERVATION OF ENERGY : JACOBI' S
INTEGRAL S L :

" In the Lagrangian formulation one may expect the deduction of the theorem of conservation -of the total
energy for a system where the potential energy is a function of position only. In fact we shall see, as discussed
below, the theorem of conservation of total energy is a special case of a more general conservation theorem.

Consider a general Lagrangian L of a system given by : :

L L(qlv (]2, 5qk5 5(] q1,(]2, ,(h, 5(],15 )
We denote it for our convenience by

L=L{g,d,t)

The total tiime derlvatlve of L is L _ o ) _
dL oL dg, . 8.L dq, +i . 21
(l't A 5(],L dt .« Oqy dt ot .

- F 1om Laglanglan equations, we have
oL dfal
oqy  dt 5‘1A
Substituting for dL/dg, in eq. (21), we get

db _gdf(al ). oL dg oL
dt ¥ dt\ dg, k 04, & o

| dL d[. aL] oL
. o1 = +

ar cval\"e, )
) d éL oL - | E :
_ Yls, R . . _ .
or, 0 [Z Tk 24, ] a _ | -(22)

~ The quantity in the bracket is sometimes called the energy function and is denoted by h :

. : ! o . OL ) ;
W12 s @e G1aGaneesee G z)_,zz.qk — -1 (23)
A _ T 0q, : )
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Thus from eq. (22) the total time derivative of h is

i . ..(24)
If the Lagrangian L does;not depend on time t explicitly, then 8L/8¢ =0. So that
=0 i.e., h = Constant : ..(25)

dt
* Thus when the lagrangian is not explicit function of time, the energy function is the constant of motion.
- Itis one of the first integr als of the motion and is called Jacobl s mtegral

But from eq. (8) dLAg¢, =p,, hence eq. (22) can be written as

oL
—(szc qk—L)"E o | ..(26)
The quantity in the bracket is called the Hamiltonian Sunction H, ie.,
k

In general, the Hamiltonian function A is the function of generalized momenta p,, generalized
coordinates g, and time ¢ i.e., ' '

: H=H(p}, Py Py » ,p,,, ql, Gy s> t) S .(28q)
or _ H=H(p,,q,.8) - ...(28b)
- It is to be seen that the energy function h is identical in value with the-Hamiltonian H. It is given a
different name and symbol because h is a function of q,, g, and ¢, while H that of g, p, and ¢.
If ¢ does not appear in the Lagrangian L explicitly, then dL/d¢ = 0 and egs. (26) and (27) give

dH
d——O or H= Zpk qk L = constant o ) ) ..(29)
Thus, if the time ¢ does not appear in‘the Lagrangian L explicitly, we see that the Hamiltonian H is_
constant in time i.e., conserved. This is a conservation theorem for the Hamiltonian of the system. Under
special circumstances, the Hamiltonian H is equal to the total energy E-of the system. In\fact this is the case

~ in most of the physical problems

Conservation-of Energy—PhysicaI Sanificance :
The Hamiltonian takes a special form, if the system is conservative i.e., the potential energy Vis independent

of velocity coordinates ¢, and the transformation equations for coordinates do not contain time explicitly i.e.,

1=1(qp Gy o,y )-

For a conservative system d¥/9 g, = 0. From eq. (8), we have

oL 0 or
pp == (T V) =
oq 04 - aqk
So that eq. (29) is
H= Zpk‘lk—L z—qk L -(30)

If r, does not depend on time ¢ explicitly, then the kineti_c"energy T is a homogeneous quadratic function.
It is easy to show that
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—q, = 2T : D '

In fact, for a natural conservatlve system nelther Tnor v contams any exphc1t time dependence (ice., the
Lagranglan does not depend on time explicitly)- and T is a homogeneous quadratlc flll'lCthl‘l of the tlme_

derwatlvesflk Hence from eq. (30) and €q (31),
H=2T-L=2T-(T-V)
o . H=T+¥= E ‘constant:- o L (31)

Thus the Hamiltonian H represents the. total energy of the system E and is conserved, provzded the
system is conservative and T is a homogeneous quadratic functzon o :

3. 5 HAMILTON S EQUATIONS

The Hamiltonian, in general isa ﬁxnctnon of generahzed coordmates qk, generahzed momenta pk and
- time ¢, Le., : _ S .
H=H(q,, gy 9pp- ,q,,,p],pz, 0y ,p t)
- We may write the differential dH as :

dH = Z—qu Z——dpk+—dt T ....(33)

*Fora sys"t_e'm of N parti‘e]es, when r, does not.d_epend._on time exp_liei_tly,

then : v, =y —q,

N : . 5 or; . N .or; or; .
T= --l—m,'Vg= -l—m >—q,.[ = _’_ Ny =L |ef Y_—Lg
) Therefore, . Zz o Zz. ‘[k-aqk, q" ‘ sz' Z Tk Za‘h a

: where'each_k:'ar_llfd_l tun f:r:om 1 _to n
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But as defined in eq. (27), H =Y p, ¢, - L and hence
dH =Y G, dp +) pydjy ~dL | (34)
ok k : .
Also, L=L (ql,qz,...,qk,..J,qn_,é l,q'z,...,qk ,...?q-n.,- H -

- Therefore, o dL=" a—L_qu Z oL dq, +gL—dt

e 7 & aqk a k '. at
" But . _ OL oL
,- b= eq O andpy = feq. ()}
. o 6 k ] 5‘I_k ‘
Therefore, -  dL= Z py dq, +Z Pr dq}-‘ +?£dt - : . +(35)
o k k oo ' o
Substituting for dL from'eq. (35) in eq. (34‘),.We get
dH Z‘h dp; - Zl’k qu ‘g‘dt . ~(36)
-‘Comparing the coefﬁc1ents of dpk ,dg, and dt in egs. (33) and (36), we obtain
. _oH | .
G = 372)
apk
Foad o _oH | | - . (37c)
W ' dt_ Ot _

- - Egs.(37a)and (3 7b) are-known as Hamtlton s equattons or Hamilton’s canonical equations of motion.

i 8 _ThlS procedure of describing the motion of a system by these equations is called Hamiltonian dynamics. For
b k=1,2,..,n, in all these are 2n first order differential équations which are much easier to solve in companson

{ tothen second order differential equations in Lagrangian dynamics.

Itis clear from eq. (37b) that if any coordinate g, is cyclic, ie., not contained in H, then

aif{—o or p, =0 or p, = constant in time | -(38)
qr

Thus for any cyclic coordinate, correspondmg conjugate momentum 1s a constant of motion. Further from
_(33) we have

dH <o 0H | oH . OH '
=4, 7 —pk t— -(39)
dt ~ 0 apy Ot

Substituting for ¢, and p; from ,e;q.' (37) in eq. (39), we get

dif _oH oL S ' L 0)
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) hence

If the Lagrangian L and hence H does not depend on time ¢ exp11c1tly, then dL/0t = - dH /ot = 0 and

i

— =0 or H = constant. -(41)

dt
We are mainly interested in the conservatlve systems for Wthh H =T+ V=Eis a constant of

motion, as discussed earlier.

3.6. HAMILTON'S EQUATIONS IN DIFFERENT COORDINATE SYSTEMS

(1) In cartesnan coordinates :

Kinetic energy Qf the partlcle T= % m (iz * Pt 2'_2); Potential energy of the particle ¥ =V (x,y,2)

- Lagrangian L= T - V=_;m (552 +.5? +22)- V(x,y,2)

: L
Generalized momentum Px =—a— :
. aqk
oL ’
Hence, p; == =mi or =20 Similarity j=22 and z=2=
S m _ m m

Hamiltonian H=Yp,q,-L
k

Fork=x, y,z— | S

H=px+pj+pi=gm(¥+5 +7)+V(xy.2)

2 2 2
RSO R N T T +V.
m m 'm', 2m'(px Py PZ) (x,y.z)

: | S Lo . ' '
=2—(p‘ +p) +p2)+¥(x:2) - B ()
Hamilton’s equations are
oH cH
QG =—>— and py =-—
. Opy Tk
The Hamilton’s equations in Cartesian coordinates are
. OH P, oH oV
¥=—or ¥x="% or p,=—-— or p, =-—— : (432
p, m & Ox Px ox :
. ), ‘
Similarly, p o= Py and p, = _a_V _ : ...(43b)
_, m v ,
... , (o1 4 |
Z=—"and p, = - . ...(43c)
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Thus one may express equations of motion as

. mx:__a.K m"=_a_V. mz-_—aV 44
| - P y > % ..(44)
(2)In polar coordmates If r,0 are the polar coordinates of a partlcle of mass m, then

=r cosfand y = r sinf

Hence, x=Fcos®-rOsin® and y=Fsind +r6 cosd
| __NOW," | f%m (562 +}".)‘2m(r +r29? )andL‘—_ (rz +r29'2)—_V(r,0).
A oL o,
Generalized momenta p, =—=mr and pg = —= mr26 or j= Proond 6= p_92
or 00 m mr
Thus, H=Epydi-L=p, i +p®—1m(? +r%62)+7(r,0)
. P : ‘ _
| p2
or H=—| p} +=-|+V(r,) ' .(45)
2m r
Hamilton’s éqﬁatiorié are'
. | oH ov :
r'——a—H orr—-p—andp,=~-— orPr—ﬂ?—_ ' ..(462)
apr m a mr ar
- oH ov .
and §= fﬂ ord = 2 andpe = ) orPg = Ty ...(46b)
0ps mr -

(3) In cylindrical coordinates : Heré, xX=r cosG_z y=r sinf, z = z
Hence L=T- V=%nj ()'cz,+j_;2'+z'2)—1 Vi, y.2)

] .
2

m (r'2 + r'2_6.2-+rz'2) - W(r,8,2)

Gencral_ized momentum P, ;_ —=mr or = Slmllarly, 9 = —, Z =P
- ar . m mr .oom
No§v H=Yp,q,—-L, where k=r0,z
’ k
‘Th'us, H=p, F+p, 0 +pzz'—%m (r2 +r29? +z'2) +V(r;6_,z)
1 Py, 2
=—| p? +—g+ p; | +V(r,0,2) .(47)
2m ro
Hamilton’s equations are _ -
. OH and oH
9 = 7 kT T A
%Ak op« g,
) h oH 14
L . OH . P oap = 9 o Py 07 .(48a
A Therefore, ;= ori'="C and Py === or b, - (48a)

op, m
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oH . aV'”

é—a—H orG- andPe"g OrPe"‘Ea- : | . ..(48b)
P m _ SR .
oH oV S
52 P oap= - och == . ..(48¢)
op, m oz - .. . Oz .

(4) In spherical coordinates : Here .
x =rsinfcosg,y =rsinfsing, z = rlrcqs(-)- |

Hence, X =7 sind co.s¢ +rg cosfcos¢p—r sined)'sind)-
-y =F sin6 sing +r@ cos@ sing + r sind ({)-cbsd).- o

7 =T cos0 - rgsind -

Thus, L =T-V =Lm (2 +52 +2%)~V(xy.z) OF L =3m (r 112y sm29¢ )-7(r8.9)
Therefore, P,-- =—=m or F= Slmllarly 9 =0 and o=
o m mr? e mr smG

Now H = kz Pidi ~ L—pr+p96+p¢¢——m( +r262+r¢sm6) (r,ﬂ,‘d))

o bz B ) |
or H=—/|p>+2+ +V(r,0, ‘ ..(49)
2m [P, r? rzsinZGJ ( ¢) L

L (e eH Y
Hamiltonian equations | ¢, :6_ and- py '=_8'_ are

P . 4k
. - " - N -‘) -
eH p aH_ o Py
= i = Prandp, =~ orpy = Lot - (502
’ _5/’,; o m,-an g or orP Cmr mrsin®  or (502)
| | éH' " pleosh
_OH =P =T g g = (50b)
apa mr’ 9 mrisin®@ - 00
_oH . =_%_ by - _oH o p, L (50¢)
apy mrsin® o od

3.7. EXAMPLES IN HAMILTONIAN DYNAMICS

(1) Harmonic oscillator : For a harmomc oscillator, the kinetic energy ? T and potent1al energy V are
given by :
T=1mi® and ¥ =%k)c2 . . ' (i)

2

I

Now, . L=T-V= 7_171)&2 —;kx2 ' _ - ..(i0)




ics

8b)

o) |

‘are

i)

o | .
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- In order to write the Hantiltqnia'n,‘We must replace x by tlife generalized rnomentlnn p, ie

S Py
=—=mi or x=~%L
P = 