
MM PG COLLEGE FATEHABAD

1

Operating Systems

“Deadlocks”
Class B.Sc. Comp. Sci.

Year 2nd

Semester 4th

2

Overview

 Resources

 Why do deadlocks occur?

 Dealing with deadlocks

 Ignoring them: ostrich algorithm

 Detecting & recovering from deadlock

 Avoiding deadlock

 Preventing deadlock

3

Resources

 Resource: something a process uses

 Usually limited (at least somewhat)

 Examples of computer resources

 Printers

 Semaphores / locks

 Tables (in a database)

 Processes need access to resources in reasonable order

 Two types of resources:

 Preemptable resources: can be taken away from a process with no ill

effects

 Nonpreemptable resources: will cause the process to fail if taken away

4

When do deadlocks happen?

 Suppose
 Process 1 holds resource A

and requests resource B

 Process 2 holds B and
requests A

 Both can be blocked, with
neither able to proceed

 Deadlocks occur when …
 Processes are granted

exclusive access to devices or
software constructs
(resources)

 Each deadlocked process
needs a resource held by
another deadlocked process

A

B

B

A

Process 1 Process 2

DEADLOCK!

5

Using resources

 Sequence of events required to use a resource

 Request the resource

 Use the resource

 Release the resource

 Can’t use the resource if request is denied

 Requesting process has options
 Block and wait for resource

 Continue (if possible) without it: may be able to use an alternate

resource

 Process fails with error code

 Some of these may be able to prevent deadlock…

6

What is a deadlock?

 Formal definition:

“A set of processes is deadlocked if each process in

the set is waiting for an event that only another

process in the set can cause.”

 Usually, the event is release of a currently held

resource

 In deadlock, none of the processes can

 Run

 Release resources

 Be awakened

7

Four conditions for deadlock

 Mutual exclusion

 Each resource is assigned to at most one process

 Hold and wait

 A process holding resources can request more resources

 No preemption

 Previously granted resources cannot be forcibly taken

away

 Circular wait

 There must be a circular chain of 2 or more processes

where each is waiting for a resource held by the next

member of the chain

Basic Facts

 If graph contains no cycles no deadlock

 If graph contains a cycle

 if only one instance per resource type, then deadlock
 necessary and sufficient condition

 if several instances per resource type, possibility of

deadlock
 necessary condition

8

9

Dealing with deadlock

 How can the OS deal with deadlock?

 Ignore the problem altogether!
 Hopefully, it’ll never happen…

 Detect deadlock & recover from it

 Dynamically avoid deadlock
 Careful resource allocation

 Prevent deadlock
 Remove at least one of the four necessary conditions

 We’ll explore these tradeoffs

10

Getting into deadlock

A B C
Acquire R

Acquire S

Release R

Release S

Acquire S

Acquire T

Release S

Release T

Acquire T

Acquire R

Release T

Release R

R

A

S

B

T

C

Acquire R

R

A

S

B

T

C

Acquire S

R

A

S

B

T

C

Acquire T

R

A

S

B

T

C

Acquire S

R

A

S

B

T

C

Acquire T

R

A

S

B

T

C

Acquire R

Deadlock!

11

Not getting into deadlock…

 Many situations may result in deadlock (but don’t

have to)

 In previous example, A could release R before C requests

R, resulting in no deadlock

 Can we always get out of it this way?

 Find ways to:

 Detect deadlock and reverse it

 Stop it from happening in the first place

12

The Ostrich Algorithm

 Pretend there’s no problem

 Reasonable if

 Deadlocks occur very rarely

 Cost of prevention is high

 UNIX and Windows take this approach

 Resources (memory, CPU, disk space) are plentiful

 Deadlocks over such resources rarely occur

 Deadlocks typically handled by rebooting

 Trade off between convenience and correctness

13

Detecting deadlocks using graphs

 Process holdings and requests in the table and in the graph

(they’re equivalent)

 Graph contains a cycle => deadlock!

 Easy to pick out by looking at it (in this case)

 Need to mechanically detect deadlock

 Not all processes are deadlocked (A, C, F not in deadlock)

R A

S

F

W

C

Process Holds Wants

A R S

B T

C S

D U S,T

E T V

F W S

G V U

E D

G

B

T

V U

14

Deadlock detection algorithm

 General idea: try to find

cycles in the resource

allocation graph

 Algorithm: depth-first

search at each node

 Mark arcs as they’re

traversed

 Build list of visited nodes

 If node to be added is already

on the list, a cycle exists!

 Cycle == deadlock

For each node N in the graph {

 Set L = empty list

 unmark all arcs

 Traverse (N,L)

}

If no deadlock reported by now, there isn’t

any

define Traverse (C,L) {

 If C in L, report deadlock!

 Add C to L

 For each unmarked arc from C {

 Mark the arc

 Set A = arc destination

 /* NOTE: L is a

 local variable */

 Traverse (A,L)

 }

}

15

Resources with multiple instances

 Previous algorithm only works if there’s one instance

of each resource

 If there are multiple instances of each resource, we

need a different method

 Track current usage and requests for each process

 To detect deadlock, try to find a scenario where all

processes can finish

 If no such scenario exists, we have deadlock

16

Deadlock detection algorithm

A B C D

Avail 2 3 0 1

Process A B C D

1 0 3 0 0

2 1 0 1 1

3 0 2 1 0

4 2 2 3 0

Process A B C D

1 3 2 1 0

2 2 2 0 0

3 3 5 3 1

4 0 4 1 1

H
o
ld

W

a
n
t

current=avail;

for (j = 0; j < N; j++) {

 for (k=0; k<N; k++) {

 if (finished[k])

 continue;

 if (want[k] < current) {

 finished[k] = 1;

 current += hold[k];

 break;

 }

 if (k==N) {

 printf “Deadlock!\n”;

 // finished[k]==0 means process is in

 // the deadlock

 break;

 }

}

Note: want[j],hold[j],current,avail are arrays!

Detection-Algorithm Usage

 When, and how often, to invoke depends on:

 How often a deadlock is likely to occur?

 How many processes will need to be rolled back?
 one for each disjoint cycle

 If detection algorithm is invoked arbitrarily, there

may be many cycles in the resource graph and so we

would not be able to tell which of the many

deadlocked processes “caused” the deadlock.

17

18

Recovering from deadlock: options

 Recovery through resource preemption

 Take a resource from some other process

 Depends on nature of the resource and the process

 Recovery through rollback

 Checkpoint a process periodically

 Use this saved state to restart the process if it is found deadlocked

 May present a problem if the process affects lots of “external” things

 Recovery through killing processes

 Crudest but simplest way to break a deadlock: kill one of the

processes in the deadlock cycle

 Other processes can get its resources

 Preferably, choose a process that can be rerun from the beginning

 Pick one that hasn’t run too far already

Deadlock Recovery: Process Termination

 Abort all deadlocked processes

 Abort one process at a time until the deadlock cycle is
eliminated

 In which order should we choose to abort?
1. Priority of the process

2. How long process has computed, and how much longer to
completion

3. Resources the process has used

4. Resources process needs to complete

5. How many processes will need to be terminated

6. Is process interactive or batch?

19

20

Two process resource trajectories

Resource trajectories

21

Safe and unsafe states

Has Max

A 3 9

B 2 4

C 2 7

Free: 3

Has Max

A 3 9

B 4 4

C 2 7

Free: 1

Has Max

A 3 9

B 0 -

C 2 7

Free: 5

Has Max

A 3 9

B 0 -

C 7 7

Free: 0

Has Max

A 3 9

B 0 -

C 0 -

Free: 7

Demonstration that the first state is safe

Has Max

A 3 9

B 2 4

C 2 7

Free: 3

Has Max

A 4 9

B 2 4

C 2 7

Free: 2

Has Max

A 4 9

B 4 4

C 2 7

Free: 0

Has Max

A 4 9

B 0 -

C 2 7

Free: 4

Demonstration that the second state is unsafe

22

Banker's Algorithm for a single resource

Has Max

A 0 6

B 0 5

C 0 4

D 0 7

Free: 10

Has Max

A 1 6

B 1 5

C 2 4

D 4 7

Free: 2

Has Max

A 1 6

B 2 5

C 2 4

D 4 7

Free: 1

 Bankers’ algorithm: before granting a request, ensure that a

sequence exists that will allow all processes to complete

 Use previous methods to find such a sequence

 If a sequence exists, allow the requests

 If there’s no such sequence, deny the request

 Can be slow: must be done on each request!

Any sequence finishes C,B,A,D finishes Deadlock (unsafe state)

23

Example of banker's algorithm with multiple resources

Banker's Algorithm for multiple resources

24

Preventing deadlock

 Deadlock can be completely prevented!

 Ensure that at least one of the conditions for

deadlock never occurs

 Mutual exclusion

 Circular wait

 Hold & wait

 No preemption

 Not always possible…

25

Eliminating mutual exclusion

 Some devices (such as printer) can be spooled

 Only the printer daemon uses printer resource

 This eliminates deadlock for printer

 Not all devices can be spooled

 Principle:

 Avoid assigning resource when not absolutely necessary

 As few processes as possible actually claim the resource

26

Attacking “hold and wait”

 Require processes to request resources before starting

 A process never has to wait for what it needs

 This can present problems

 A process may not know required resources at start of run

 This also ties up resources other processes could be using

 Processes will tend to be conservative and request resources they might

need

 Variation: a process must give up all resources before making

a new request

 Process is then granted all prior resources as well as the new ones

 Problem: what if someone grabs the resources in the meantime—how

can the process save its state?

27

Attacking “no preemption”

 This is not usually a viable option

 Consider a process given the printer
 Halfway through its job, take away the printer

 Confusion ensues!

 May work for some resources
 Forcibly take away memory pages, suspending the process

 Process may be able to resume with no ill effects

28

Attacking “circular wait”

 Assign an order to
resources

 Always acquire resources in
numerical order
 Need not acquire them all at

once!

 Circular wait is prevented
 A process holding resource n

can’t wait for resource m
if m < n

 No way to complete a cycle
 Place processes above the

highest resource they hold
and below any they’re
requesting

 All arrows point up!

A

1

B

C

D

2 3

29

Deadlock prevention: summary

 Mutual exclusion

 Spool everything

 Hold and wait

 Request all resources initially

 No preemption

 Take resources away

 Circular wait

 Order resources numerically

