
MM PG COLLEGE FATEHABAD

1

Operating Systems

“Deadlocks”
Class B.Sc. Comp. Sci.

Year 2nd

Semester 4th

2

Overview

 Resources

 Why do deadlocks occur?

 Dealing with deadlocks

 Ignoring them: ostrich algorithm

 Detecting & recovering from deadlock

 Avoiding deadlock

 Preventing deadlock

3

Resources

 Resource: something a process uses

 Usually limited (at least somewhat)

 Examples of computer resources

 Printers

 Semaphores / locks

 Tables (in a database)

 Processes need access to resources in reasonable order

 Two types of resources:

 Preemptable resources: can be taken away from a process with no ill

effects

 Nonpreemptable resources: will cause the process to fail if taken away

4

When do deadlocks happen?

 Suppose
 Process 1 holds resource A

and requests resource B

 Process 2 holds B and
requests A

 Both can be blocked, with
neither able to proceed

 Deadlocks occur when …
 Processes are granted

exclusive access to devices or
software constructs
(resources)

 Each deadlocked process
needs a resource held by
another deadlocked process

A

B

B

A

Process 1 Process 2

DEADLOCK!

5

Using resources

 Sequence of events required to use a resource

 Request the resource

 Use the resource

 Release the resource

 Can’t use the resource if request is denied

 Requesting process has options
 Block and wait for resource

 Continue (if possible) without it: may be able to use an alternate

resource

 Process fails with error code

 Some of these may be able to prevent deadlock…

6

What is a deadlock?

 Formal definition:

“A set of processes is deadlocked if each process in

the set is waiting for an event that only another

process in the set can cause.”

 Usually, the event is release of a currently held

resource

 In deadlock, none of the processes can

 Run

 Release resources

 Be awakened

7

Four conditions for deadlock

 Mutual exclusion

 Each resource is assigned to at most one process

 Hold and wait

 A process holding resources can request more resources

 No preemption

 Previously granted resources cannot be forcibly taken

away

 Circular wait

 There must be a circular chain of 2 or more processes

where each is waiting for a resource held by the next

member of the chain

Basic Facts

 If graph contains no cycles  no deadlock

 If graph contains a cycle 

 if only one instance per resource type, then deadlock
 necessary and sufficient condition

 if several instances per resource type, possibility of

deadlock
 necessary condition

8

9

Dealing with deadlock

 How can the OS deal with deadlock?

 Ignore the problem altogether!
 Hopefully, it’ll never happen…

 Detect deadlock & recover from it

 Dynamically avoid deadlock
 Careful resource allocation

 Prevent deadlock
 Remove at least one of the four necessary conditions

 We’ll explore these tradeoffs

10

Getting into deadlock

A B C
Acquire R

Acquire S

Release R

Release S

Acquire S

Acquire T

Release S

Release T

Acquire T

Acquire R

Release T

Release R

R

A

S

B

T

C

Acquire R

R

A

S

B

T

C

Acquire S

R

A

S

B

T

C

Acquire T

R

A

S

B

T

C

Acquire S

R

A

S

B

T

C

Acquire T

R

A

S

B

T

C

Acquire R

Deadlock!

11

Not getting into deadlock…

 Many situations may result in deadlock (but don’t

have to)

 In previous example, A could release R before C requests

R, resulting in no deadlock

 Can we always get out of it this way?

 Find ways to:

 Detect deadlock and reverse it

 Stop it from happening in the first place

12

The Ostrich Algorithm

 Pretend there’s no problem

 Reasonable if

 Deadlocks occur very rarely

 Cost of prevention is high

 UNIX and Windows take this approach

 Resources (memory, CPU, disk space) are plentiful

 Deadlocks over such resources rarely occur

 Deadlocks typically handled by rebooting

 Trade off between convenience and correctness

13

Detecting deadlocks using graphs

 Process holdings and requests in the table and in the graph

(they’re equivalent)

 Graph contains a cycle => deadlock!

 Easy to pick out by looking at it (in this case)

 Need to mechanically detect deadlock

 Not all processes are deadlocked (A, C, F not in deadlock)

R A

S

F

W

C

Process Holds Wants

A R S

B T

C S

D U S,T

E T V

F W S

G V U

E D

G

B

T

V U

14

Deadlock detection algorithm

 General idea: try to find

cycles in the resource

allocation graph

 Algorithm: depth-first

search at each node

 Mark arcs as they’re

traversed

 Build list of visited nodes

 If node to be added is already

on the list, a cycle exists!

 Cycle == deadlock

For each node N in the graph {

 Set L = empty list

 unmark all arcs

 Traverse (N,L)

}

If no deadlock reported by now, there isn’t

any

define Traverse (C,L) {

 If C in L, report deadlock!

 Add C to L

 For each unmarked arc from C {

 Mark the arc

 Set A = arc destination

 /* NOTE: L is a

 local variable */

 Traverse (A,L)

 }

}

15

Resources with multiple instances

 Previous algorithm only works if there’s one instance

of each resource

 If there are multiple instances of each resource, we

need a different method

 Track current usage and requests for each process

 To detect deadlock, try to find a scenario where all

processes can finish

 If no such scenario exists, we have deadlock

16

Deadlock detection algorithm

A B C D

Avail 2 3 0 1

Process A B C D

1 0 3 0 0

2 1 0 1 1

3 0 2 1 0

4 2 2 3 0

Process A B C D

1 3 2 1 0

2 2 2 0 0

3 3 5 3 1

4 0 4 1 1

H
o
ld

W

a
n
t

current=avail;

for (j = 0; j < N; j++) {

 for (k=0; k<N; k++) {

 if (finished[k])

 continue;

 if (want[k] < current) {

 finished[k] = 1;

 current += hold[k];

 break;

 }

 if (k==N) {

 printf “Deadlock!\n”;

 // finished[k]==0 means process is in

 // the deadlock

 break;

 }

}

Note: want[j],hold[j],current,avail are arrays!

Detection-Algorithm Usage

 When, and how often, to invoke depends on:

 How often a deadlock is likely to occur?

 How many processes will need to be rolled back?
 one for each disjoint cycle

 If detection algorithm is invoked arbitrarily, there

may be many cycles in the resource graph and so we

would not be able to tell which of the many

deadlocked processes “caused” the deadlock.

17

18

Recovering from deadlock: options

 Recovery through resource preemption

 Take a resource from some other process

 Depends on nature of the resource and the process

 Recovery through rollback

 Checkpoint a process periodically

 Use this saved state to restart the process if it is found deadlocked

 May present a problem if the process affects lots of “external” things

 Recovery through killing processes

 Crudest but simplest way to break a deadlock: kill one of the

processes in the deadlock cycle

 Other processes can get its resources

 Preferably, choose a process that can be rerun from the beginning

 Pick one that hasn’t run too far already

Deadlock Recovery: Process Termination

 Abort all deadlocked processes

 Abort one process at a time until the deadlock cycle is
eliminated

 In which order should we choose to abort?
1. Priority of the process

2. How long process has computed, and how much longer to
completion

3. Resources the process has used

4. Resources process needs to complete

5. How many processes will need to be terminated

6. Is process interactive or batch?

19

20

Two process resource trajectories

Resource trajectories

21

Safe and unsafe states

Has Max

A 3 9

B 2 4

C 2 7

Free: 3

Has Max

A 3 9

B 4 4

C 2 7

Free: 1

Has Max

A 3 9

B 0 -

C 2 7

Free: 5

Has Max

A 3 9

B 0 -

C 7 7

Free: 0

Has Max

A 3 9

B 0 -

C 0 -

Free: 7

Demonstration that the first state is safe

Has Max

A 3 9

B 2 4

C 2 7

Free: 3

Has Max

A 4 9

B 2 4

C 2 7

Free: 2

Has Max

A 4 9

B 4 4

C 2 7

Free: 0

Has Max

A 4 9

B 0 -

C 2 7

Free: 4

Demonstration that the second state is unsafe

22

Banker's Algorithm for a single resource

Has Max

A 0 6

B 0 5

C 0 4

D 0 7

Free: 10

Has Max

A 1 6

B 1 5

C 2 4

D 4 7

Free: 2

Has Max

A 1 6

B 2 5

C 2 4

D 4 7

Free: 1

 Bankers’ algorithm: before granting a request, ensure that a

sequence exists that will allow all processes to complete

 Use previous methods to find such a sequence

 If a sequence exists, allow the requests

 If there’s no such sequence, deny the request

 Can be slow: must be done on each request!

Any sequence finishes C,B,A,D finishes Deadlock (unsafe state)

23

Example of banker's algorithm with multiple resources

Banker's Algorithm for multiple resources

24

Preventing deadlock

 Deadlock can be completely prevented!

 Ensure that at least one of the conditions for

deadlock never occurs

 Mutual exclusion

 Circular wait

 Hold & wait

 No preemption

 Not always possible…

25

Eliminating mutual exclusion

 Some devices (such as printer) can be spooled

 Only the printer daemon uses printer resource

 This eliminates deadlock for printer

 Not all devices can be spooled

 Principle:

 Avoid assigning resource when not absolutely necessary

 As few processes as possible actually claim the resource

26

Attacking “hold and wait”

 Require processes to request resources before starting

 A process never has to wait for what it needs

 This can present problems

 A process may not know required resources at start of run

 This also ties up resources other processes could be using

 Processes will tend to be conservative and request resources they might

need

 Variation: a process must give up all resources before making

a new request

 Process is then granted all prior resources as well as the new ones

 Problem: what if someone grabs the resources in the meantime—how

can the process save its state?

27

Attacking “no preemption”

 This is not usually a viable option

 Consider a process given the printer
 Halfway through its job, take away the printer

 Confusion ensues!

 May work for some resources
 Forcibly take away memory pages, suspending the process

 Process may be able to resume with no ill effects

28

Attacking “circular wait”

 Assign an order to
resources

 Always acquire resources in
numerical order
 Need not acquire them all at

once!

 Circular wait is prevented
 A process holding resource n

can’t wait for resource m
if m < n

 No way to complete a cycle
 Place processes above the

highest resource they hold
and below any they’re
requesting

 All arrows point up!

A

1

B

C

D

2 3

29

Deadlock prevention: summary

 Mutual exclusion

 Spool everything

 Hold and wait

 Request all resources initially

 No preemption

 Take resources away

 Circular wait

 Order resources numerically

