Roll No.

(05/25)

61311

Discipline Specific Courses (MD-DSC) EXAMINATION

(For Batch 2024 & Onwards)

(Second Semester)

ALGEBRA AND NUMBER THEORY BA/BSC/MD/MAT/2/DSC/102

Time: Three Hours

Maximum Marks: 70

Note: Attempt Five questions in all, selecting one question from each Unit I to Unit IV. Q. No. 1 is compulsory. Marks are indicated along with questions.

Compulsory Question

1. (a) Define a skew Hermitian matrix. Give its example.

(b)	Prove	that	$ \Lambda $	der (in the	1,	for	a	unitary
	matrix	Λ.						2

- (c) Show that the equation $x^6 + x^4 + 2 = 0$ has all its roots imaginary.
- (d) Using the synthetic division, find the value of $3x^6 + 2x^4 14x^2 + x + 1$ when x = -2.
- (e) If a/b and a/c, then a/(bx+cy) for all integral values of x and y.
- (f) Find the L.C.M. of integers 119, 272.
- (g) Find x such that $x \equiv 7 \pmod{5}$.

Unit I

2. (a) Every Hermitian matrix A can be written as A = B + iC, where B is real and

B-61311

symmetric and C is real and skew-symmetric.

(b) Reduce the matrix
$$A = \begin{bmatrix} 1 & -1 & 2 & -1 \\ 4 & 2 & -1 & 2 \\ 2 & 2 & -2 & 0 \end{bmatrix}$$
 to $[I_3 \ 0]$. Hence find $\rho(A)$.

3. (a) Find the value of 'a' if the vectors $\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$,

$$\begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 9 \\ 0 \\ 1 \end{bmatrix}$$
 are linearly dependent. 7

(b) Verify the Cayley-Hamilton theorem for

the matrix
$$A = \begin{bmatrix} 2 & 1 & 2 \\ 5 & 3 & 3 \\ -1 & 0 & -2 \end{bmatrix}$$
 and hence

find A^{-1} .

7

Unit II

4. (a) Solve the equation:

$$x^3 - 9x^2 + 14x + 24 = 0$$
,

given that two of the roots are in the ratio 3:2.

- (b) Find the condition that the equations $x^3 + px + q = 0$ and $x^3 + rx + s = 0$ shall have a common root.
- 5. (a) Increase by 4 the roots of the equation $3x^5 5x^3 + 7 = 0$
 - (b) If α , β , γ are the roots of the equation $x^3 + \alpha x^2 + bx + c = 0$, form an equation whose roots are $\frac{\beta + \gamma}{\alpha}$, $\frac{\gamma + \alpha}{\beta}$, $\frac{\alpha + \beta}{\gamma}$.

Unit III

- 6. (a) Solve the equation $x^3 + x^2 16x + 20 = 0$ by Cardon's method.
 - (b) Solve the equation:

$$x^4 - 10x^3 + 26x^2 - 10x + 1 = 0$$

by Ferrari's method.

7

- 7. (a) Show that $2^{un}-1$ is divisible by 15. 7
 - (b) Show that there are infinitely many primes of the form 4n 1.

Unit IV

- 8. (a) Find the remainder when $53^{103} + 103^{53}$ is divided by 39.
 - (b) Find the general solution and least positive integral solution of 11x + 5y = 79.

- 9. (a) State and prove Euler's theorem. 7
 - (b) Show that $28! + 233 \equiv 0 \pmod{899}$ by using Wilson's theorem.
- 10. Solve the congruences $x \equiv 1 \pmod{4}$, $x \equiv 3 \pmod{5}$ and $x \equiv 2 \pmod{7}$ simultaneously.

0000000