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The creation of this 5th edition was guided by three overarch-
ing imperatives: wherever possible, to improve the pedagogy; to 
continue to modernize the treatment (e.g., with a bit more on pho-
tons, phasors, and Fourier); and to update the content to keep pace 
with technological advances (e.g., the book now discusses atomic 
interferometers, and metamaterials). Optics is a fast-evolving 
field and this edition strives to provide an up-to-date approach to 
the discipline, all the while focusing mainly on pedagogy.

To that end there are several goals: (1) to sustain an apprecia-
tion of the central role played by atomic scattering in almost every 
aspect of Optics; (2) to establish from the outset, the underlying 
quantum-mechanical nature of light (indeed, of all quantum par-
ticles), even as the book is grounded in traditional methodology. 
Thus the reader will find electron and neutron diffraction patterns 
pictured alongside the customary photon images; (3) to provide an 
early introduction to the powerful perspective of Fourier theory, 
which has come to be so prevalent in modern-day analysis. Ac-
cordingly, the concepts of spatial frequency and spatial period are 
introduced and graphically illustrated as early as Chapter 2, right 
along with temporal frequency and period.

At the request of student users, I have dispersed throughout 
the text over one-hundred completely worked-out EXAMPLES 
that make use of the principles explored in each Section.  More 
than two hundred problems, sans solutions, have been added to 
the ends of the chapters to increase the available selection of 
fresh homework questions. A complete teacher’s solutions 
manual is available upon request. Inasmuch as “a picture is 
worth a thousand words,” many new diagrams and photographs 
further enhance the text. The book’s pedagogical strength lies 
in its emphasis on actually explaining what is being discussed. 
This edition furthers that approach. 

Having taught Optics every year since the 4th edition was 
published, I became aware of places in the book where things 
could be further clarified for the benefit of today’s students.  
Accordingly, this revision addresses dozens of little sticking 
points, and fills in lots of missing steps in derivations. Every piece 
of art has been scrutinized for accuracy, and altered where appro-
priate to improve readability and pedagogical effectiveness. 

Substantial additions of new materials can be found: in Chap-
ter 2 (Wave Motion), namely, a subsection on Twisted Light; in 
Chapter 3 (Electromagnetic Theory, Photons, and Light), an 
elementary treatment of divergence and curl, additional discus-
sion of photons, as well as subsections on Squeezed Light, and 
Negative Refraction; in Chapter 4 (The Propagation of Light), a 
short commentary on optical density, a piece on EM boundary 

conditions, more on evanescent waves, subsections on Refraction  
of Light From a Point Source, Negative Refraction, Huygens’s 
Ray Construction, and The Goos-Hänchen Shift; in Chapter 5 
(Geometrical Optics), lots of new art illustrating the behavior of 
lenses and mirrors, along with additional remarks on fiberoptics, 
as well as subsections on Virtual Objects, Focal-Plane Ray Trac-
ing, and Holey/Microstructured Fibers; in Chapter 6 (More on 
Geometrical Optics), there is a fresh look at simple ray tracing 
through a thick lens; in Chapter 7 (The Superposition of Waves), 
one can find a new subsection on Negative Phase Velocity, a 
much extended treatment of Fourier analysis with lots of dia-
grams showing—without calculus—how the process actually 
works, and a discussion of the optical frequency comb (which 
was recognized by a 2005 Nobel Prize); in Chapter 8 (Polariza-
tion), a powerful technique is developed using phasors to analyze 
polarized light; there is also a new discussion of the transmittance 
of polarizers, and a subsection on Wavefronts and Rays in Uni-
axial Crystals; Chapter 9 (Interference), begins with a brief  
conceptual discussion of diffraction and coherence as it relates to 
Young’s Experiment. There are several new subsections, among 
which are Near Field/Far Field, Electric Field Amplitude via 
Phasors, Manifestations of Diffraction, Particle Interference,  
Establishing The Wave Theory of Light, and Measuring Coher-
ence Length. Chapter 10 (Diffraction), contains a new subsec-
tion called Phasors and the Electric-Field Amplitude. Dozens of 
newly created diagrams and photographs extensively illustrate a 
variety of diffraction phenomena. Chapter 11 (Fourier Optics), 
now has a subsection, Two-Dimensional Images, which contains 
a remarkable series of illustrations depicting how spatial frequency 
components combine to create images. Chapter 12 (Basics of 
Coherence Theory), contains several new introductory subsec-
tions among which are Fringes and Coherence, and Diffraction 
and the Vanishing Fringes. There are also a number of additional 
highly supportive illustrations.  Chapter 13 (Modern Optics: Lasers 
and Other Topics), contains an enriched and updated treatment of 
lasers accompanied by tables and illustrations as well as several 
new subsections, including Optoelectronic Image Reconstruction.

This 5th edition offers a substantial amount of new material 
that will be of special interest to teachers of Optics. For example:  
in addition to plane, spherical, and cylindrical waves, we can 
now generate helical waves for which the surface of constant 
phase spirals as it advances through space (Section 2.11, p. 39). 

Beyond the mathematics, students often have trouble under-
standing what the operations of divergence and curl correspond 
to physically. Accordingly, the present revision contains a sec-
tion exploring what those operators actually do, in fairly simple 
terms (Section 3.1.5, p. 51). 
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4  Preface

probability-amplitude approach to quantum mechanics. In any 
event, it provides students with a complementary means of  
apprehending diffraction that is essentially free of calculus. 

The reader interested in Fourier optics can now find a wonder-
ful series of illustrations showing how sinusoidal spatial frequency 
contributions can come together to generate a recognizable two-
dimensional image; in this case of a young Einstein (p. 555). This 
extraordinary sequence of figures should be discussed, even in an 
introductory class where the material in Chapter 11 might other-
wise be beyond the level of the course—it’s fundamental to mod-
ern image theory, and conceptually beautiful.

To make the advanced treatment of coherence in Chapter 12 
more accessible to a wider readership, this edition now contains 
an essentially non-mathematical introduction (p. 590); it sets 
the stage for the traditional presentation.

Finally, the material on lasers, though only introductory, has 
been extended (p. 619) and brought more into line with the con-
temporary state of affairs.

Over the years since the 4th edition dozens of colleagues 
around the world have provided comments, advice, sugges-
tions, articles, and photographs for this new edition; I sincerely 
thank them all. I am especially grateful to Professor Chris Mack 
of the University of Texas at Austin, and Dr. Andreas Karpf of 
Adelphi University. I’m also indebted to my many students 
who have blind tested all the new expositive material, worked 
the new problems (often on exams), and helped take some of 
the new photos. Regarding the latter I particularly thank Tanya 
Spellman, George Harrison, and Irina Ostrozhnyuk for the 
hours spent, cameras in hand.

I am most appreciative of the support provided by the team  
at Addison Wesley, especially by Program Manager Katie 
Conley who has ably and thoughtfully guided the creation of this 
5th edition from start to finish. The manuscript was scrupulously 
and gracefully copy edited by Joanne Boehme who did a remark-
able job. Hundreds of complex diagrams were artfully drawn by 
Jim Atherton of Atherton Customs; his work is extraordinary and 
speaks for itself. This edition of Optics was developed under the 
ever-present guidance of John Orr of Orr Book Services. His 
abiding commitment to producing an accurate, beautiful book 
deserves special praise. In an era when traditional publishing is 
undergoing radical change, he uncompromisingly maintained the 
very highest standards, for which I am most grateful. It was truly 
a pleasure and a privilege working with such a consummate  
professional.

Lastly I thank my dear friend, proofreader extraordinaire, 
my wife, Carolyn Eisen Hecht who patiently coped with the 
travails of one more edition of one more book. Her good hu-
mor, forbearance, emotional generosity, and wise counsel were  
essential.

Anyone wishing to offer comments or suggestions concern-
ing this edition, or to provide contributions to a future edition, 
can reach me at Adelphi University, Physics Department,  
Garden City, NY, 11530 or better yet, at genehecht@aol.com.

The phenomenon of negative refraction is an active area of 
contemporary research and a brief introduction to the basic 
physics involved can now be found in Chapter 4 (p. 114). 

Huygens devised a method for constructing refracted rays 
(p. 116), which is lovely in and of itself, but it also allows for a 
convenient way to appreciate refraction in anisotropic crystals 
(p. 358).

When studying the interaction of electromagnetic waves 
with material media (e.g., in the derivation of the Fresnel Equa-
tions), one utilizes the boundary conditions. Since some student 
readers may have little familiarity with E&M, the 5th edition 
contains a brief discussion of the physical origins of those  
conditions (Section 4.6.1, p. 122).

The book now contains a brief discussion of the Goos-Hänchen 
shift which occurs in total internal reflection, It’s a piece of inter-
esting physics that is often overlooked in introductory treatments 
(Section 4.7.1, p. 137).

Focal-plane ray tracing is a straightforward way to track rays 
through complicated lens systems. This simple yet powerful 
technique, which is new to this edition, works nicely in the class-
room and is well worth a few minutes of lecture time (p. 177).

Several fresh diagrams now make clear the nature of virtual 
images and, more subtly, virtual objects arising via lens systems 
(p. 176–177).

The widespread use of fiberoptics has necessitated an up-to-
date exposition of certain aspects of the subject (p. 208–212). 
Among the new material the reader can now find a discussion 
of microstructured fibers and, more generally, photonic crys-
tals, both entailing significant physics (p. 212–214).

In addition to the usual somewhat formulaic, and alas, “dry” 
mathematical treatment of Fourier series, the book now con-
tains a fascinating graphical analysis that conceptually shows 
what those several integrals are actually doing. This is great 
stuff for undergraduates (Section 7.3.1, p. 309–313).

Phasors are utilized extensively to help students visualize 
the addition of harmonic waves. The technique is very useful in 
treating the orthogonal field components that constitute the 
various polarization states (p. 344). Moreover, the method 
 provides a nice graphical means to analyze the behavior of 
wave plates (p. 371).

Young’s Experiment and double-beam interference in gen-
eral, are central to both classical and quantum Optics. Yet the 
usual introduction to this material is far too simplistic in that it 
overlooks the limitations imposed by the phenomena of diffrac-
tion and coherence. The analysis now briefly explores those 
concerns early on (Section 9.1.1, p. 402).

The traditional discussion of interference is extended using 
phasors to graphically represent electric-field amplitudes, giv-
ing students an alternative way to visualize what’s happening 
(Section 9.3.1, p. 409).

Diffraction can also be conveniently appreciated via electric-
field phasors (p. 470–471). That methodology leads naturally to 
the classical vibration curve, which brings to mind Feynman’s 
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pointed out that a glass globe filled with water could be used 
for magnifying purposes. And it is certainly possible that some 
Roman artisans may have used magnifying glasses to facilitate 
very fine detailed work.

After the fall of the Western Roman Empire (475 c.e.), which 
roughly marks the start of the Dark Ages, little or no scientific 
progress was made in Europe for a great while. The dominance 
of the Greco-Roman-Christian culture in the lands embracing the 
Mediterranean soon gave way by conquest to the rule of Allah. 
The center of scholarship shifted to the Arab world. 

Refraction was studied by Abu Sa`d al-`Ala’ Ibn Sahl (940–
1000 c.e.), who worked at the Abbasid court in Baghdad, where 
he wrote On the Burning Instruments in 984. His accurate dia-
grammatical illustration of refraction, the first ever, appears in 
that book. Ibn Sahl described both parabolic and ellipsoidal burn-
ing mirrors and analyzed the hyperbolic plano-convex lens, as 
well as the hyperbolic biconvex lens. The scholar Abu Ali al-
Hasan ibn al-Haytham (965–1039), known in the Western world 
as Alhazen, was a prolific writer on a variety of topics, including 
14 books on Optics alone. He elaborated on the Law of Reflec-
tion, putting the angles of incidence and reflection in the same 
plane normal to the interface (p. 107); he studied spherical and 
parabolic mirrors and gave a detailed description of the human 
eye (p. 215). Anticipating Fermat, Alhazen suggested that light 
travels the fastest path through a medium.

By the latter part of the thirteenth century, Europe was only 
beginning to rouse from its intellectual stupor. Alhazen’s work 
was translated into Latin, and it had a great effect on the writings 
of Robert Grosseteste (1175–1253), Bishop of Lincoln, and on the 
Polish mathematician Vitello (or Witelo), both of whom were in-
fluential in rekindling the study of Optics. Their works were 
known to the Franciscan Roger Bacon (1215–1294), who is con-
sidered by many to be the first scientist in the modern sense. He 
seems to have initiated the idea of using lenses for correcting  
vision and even hinted at the possibility of combining lenses to 
form a telescope. Bacon also had some understanding of the way 
in which rays traverse a lens. After his death, Optics again lan-
guished. Even so, by the mid-1300s, European paintings were de-
picting monks wearing eyeglasses. And alchemists had come up 
with a liquid amalgam of tin and mercury that was rubbed onto the 
back of glass plates to make mirrors. Leonardo da Vinci (1452–
1519) described the camera obscura (p. 228), later popularized by 

1.1 Prolegomenon

In chapters to come we will evolve a formal treatment of much 
of the science of Optics, with particular emphasis on aspects of 
contemporary interest. The subject embraces a vast body of 
knowledge accumulated over roughly three thousand years of the 
human scene. Before embarking on a study of the modern view 
of things optical, let’s briefly trace the road that led us there, if 
for no other reason than to put it all in perspective.

1.2 In the Beginning

The origins of optical technology date back to remote antiqui-
ty. Exodus 38:8 (ca. 1200 b.c.e.) recounts how Bezaleel, while 
preparing the ark and tabernacle, recast “the looking-glasses of 
the women” into a brass laver (a ceremonial basin). Early mir-
rors were made of polished copper, bronze, and later on of 
speculum, a copper alloy rich in tin. Specimens have survived 
from ancient Egypt—a mirror in perfect condition was un-
earthed along with some tools from the workers’ quarters near 
the pyramid of Sesostris II (ca. 1900 b.c.e.) in the Nile valley. 
The Greek philosophers Pythagoras, Democritus, Empedocles, 
Plato, Aristotle, and others developed several theories of the 
nature of light. The rectilinear propagation of light (p. 99) was 
known, as was the Law of Reflection (p. 105) enunciated by 
Euclid (300 b.c.e.) in his book Catoptrics. Hero of Alexandria 
attempted to explain both these phenomena by asserting that 
light traverses the shortest allowed path between two points. 
The burning glass (a positive lens used to start fires) was  
alluded to by Aristophanes in his comic play The Clouds  
(424 b.c.e.). The apparent bending of objects partly immersed 
in water (p. 113) is mentioned in Plato’s Republic. Refraction 
was studied by Cleomedes (50 c.e.) and later by Claudius Ptol-
emy (130 c.e.) of Alexandria, who tabulated fairly precise 
measurements of the angles of incidence and refraction for 
several media (p. 108). It is clear from the accounts of the his-
torian Pliny (23–79 c.e.) that the Romans also possessed burn-
ing glasses. Several glass and crystal spheres have been found 
among Roman ruins, and a planar convex lens was recovered in 
Pompeii. The Roman philosopher Seneca (3 b.c.e.–65 c.e.) 

9

A Brief History1

M01_HECH6933_05_GE_C01.indd   9 26/08/16   11:00 AM



10 Chapter 1 A Brief History

the work of Giovanni Battista Della Porta (1535–1615), who dis-
cussed multiple mirrors and combinations of positive and negative 
lenses in his Magia naturalis (1589).

This, for the most part, modest array of events constitutes 
what might be called the first period of Optics. It was undoubt-
edly a beginning—but on the whole a humble one. The whirl-
wind of accomplishment and excitement was to come later, in 
the seventeenth century.

1.3 From the Seventeenth Century

It is not clear who actually invented the refracting telescope, 
but records in the archives at The Hague show that on October 
2, 1608, Hans Lippershey (1587–1619), a Dutch spectacle 
maker, applied for a patent on the device. Galileo Galilei 
(1564–1642), in Padua, heard about the invention and within 
several months had built his own instrument (p. 235), grinding 
the lenses by hand. The compound microscope was invented 
at just about the same time, possibly by the Dutchman Zacha-
rias Janssen (1588–1632). The microscope’s concave eye-
piece was replaced with a convex lens by Francisco Fontana 
(1580–1656) of Naples, and a similar change in the telescope 
was introduced by Johannes Kepler (1571–1630). In 1611, 
Kepler published his Dioptrice. He had discovered total inter-
nal reflection (p. 133) and arrived at the small angle approxi-
mation to the Law of Refraction, in which case the incident 
and transmission angles are proportional. He evolved a treat-
ment of first-order Optics for thin-lens systems and in his 
book describes the detailed operation of both the Keplerian 
(positive eyepiece) and Galilean (negative eyepiece) tele-
scopes. Willebrord Snel (1591–1626), whose name is usually  
inexplicably spelled Snell, professor at Leyden, empirically 
discovered the long-hidden Law of Refraction (p. 108) in 
1621—this was one of the great moments in Optics. By learn-
ing precisely how rays of light are redirected on traversing a 
boundary between two media, Snell in one swoop swung open 
the door to modern applied Optics. René Descartes (1596–1650) 
was the first to publish the now familiar formulation of the 
Law of Refraction in terms of sines. Descartes deduced the 

Giovanni Battista Della Porta (1535–1615). (US National Library of Medicine)

A very early picture of an outdoor European 
village scene. The man on the left is selling 
eyeglasses. (INTERFOTO/Alamy)
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 1.3 From the Seventeenth Century 11

René Descartes by Frans Hals (1596–1650). (Georgios Kollidas/Shutterstock)

law using a model in which light was viewed as a pressure 
transmitted by an elastic medium; as he put it in his La Diop-
trique (1637)

recall the nature that I have attributed to light, when I said that it 
is nothing other than a certain motion or an action conceived in a 
very subtle matter, which fills the pores of all other bodies. . . .

The universe was a plenum. Pierre de Fermat (1601–1665), tak-
ing exception to Descartes’s assumptions, rederived the Law  
of Reflection (p. 117) from his own Principle of Least Time 
(1657).

The phenomenon of diffraction, that is, the deviation from 
rectilinear propagation that occurs when light advances beyond 
an obstruction (p. 457), was first noted by Professor Francesco 
Maria Grimaldi (1618–1663) at the Jesuit College in Bologna. 
He had observed bands of light within the shadow of a rod  
illuminated by a small source. Robert Hooke (1635–1703),  
curator of experiments for the Royal Society, London, later 

also observed diffraction effects. He was the first to study the 
colored interference patterns (p. 416) generated by thin films 
(Micrographia, 1665). He proposed the idea that light was a 
rapid vibratory motion of the medium propagating at a very 
great speed. Moreover, “every pulse or vibration of the lumi-
nous body will generate a sphere”—this was the beginning of 
the wave theory. Within a year of Galileo’s death, Isaac New-
ton (1642–1727) was born. The thrust of Newton’s scientific 
effort was to build on direct observation and avoid speculative 
hypotheses. Thus he remained ambivalent for a long while 
about the actual nature of light. Was it corpuscular—a stream 
of particles, as some maintained? Or was light a wave in an 
all-pervading medium, the aether? At the age of 23, he began 
his now famous experiments on dispersion.

I procured me a triangular glass prism to try therewith the cele-
brated phenomena of colours.

Newton concluded that white light was composed of a mix-
ture of a whole range of independent colors (p. 201). He main-
tained that the corpuscles of light associated with the various 
colors excited the aether into characteristic vibrations. Even 
though his work simultaneously embraced both the wave and 
emission (corpuscular) theories, he did become more commit-
ted to the latter as he grew older. His main reason for rejecting 
the wave theory as it stood then was the daunting problem of 
explaining rectilinear propagation in terms of waves that spread 
out in all directions.

After some all-too-limited experiments, Newton gave up try-
ing to remove chromatic aberration from refracting telescope 
lenses. Erroneously concluding that it could not be done, he 
turned to the design of reflectors. Sir Isaac’s first reflecting 
telescope, completed in 1668, was only 6 inches long and 1 inch 
in diameter, but it magnified some 30 times.

At about the same time that Newton was emphasizing the 
emission theory in England, Christiaan Huygens (1629–1695), 

Johannes Kepler (1571–1630). (Nickolae/Fotolia)

Sir Isaac Newton (1642–1727). (Georgios Kollidas/Fotolia)
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on the continent, was greatly extending the wave theory. Unlike 
Descartes, Hooke, and Newton, Huygens correctly concluded 
that light effectively slowed down on entering more dense me-
dia. He was able to derive the Laws of Reflection and Refrac-
tion and even explained the double refraction of calcite (p. 352), 
using his wave theory. And it was while working with calcite 
that he discovered the phenomenon of polarization (p. 338).

As there are two different refractions, I conceived also that there 
are two different emanations of the waves of light. . . .

Thus light was either a stream of particles or a rapid undula-
tion of aethereal matter. In any case, it was generally agreed 
that its speed was exceedingly large. Indeed, many believed 
that light propagated instantaneously, a notion that went back 
at least as far as Aristotle. The fact that it was finite was deter-
mined by the Dane Ole Christensen Römer (1644–1710). Jupi-
ter’s nearest moon, Io, has an orbit about that planet that is 
nearly in the plane of Jupiter’s own orbit around the Sun. 
Römer made a careful study of the eclipses of Io as it moved 
through the shadow behind Jupiter. In 1676 he predicted that 
on November 9 Io would emerge from the dark some 10 min-
utes later than would have been expected on the basis of its 
yearly averaged motion. Precisely on schedule, Io performed 
as predicted, a phenomenon Römer correctly ex plained as aris-
ing from the finite speed of light. He was able to determine that 
light took about 22 minutes to traverse the diameter of the Earth’s 
orbit around the Sun—a distance of about 186 million miles. 
Huygens and Newton, among others, were quite convinced of 
the validity of Römer’s work. Independently estimating the 
Earth’s orbital diameter, they assigned values to c equivalent to 
2.3 * 108 m>s and 2.4 * 108 m>s, respectively.*

The great weight of Newton’s opinion hung like a shroud 
over the wave theory during the eighteenth century, all but sti-
fling its advocates. Despite this, the prominent mathematician 
Leonhard Euler (1707–1783) was a devotee of the wave theory, 
even if an unheeded one. Euler proposed that the undesirable 
color effects seen in a lens were absent in the eye (which is an 
erroneous assumption) because the different media present ne-
gated dispersion. He suggested that achromatic lenses (p. 280) 
might be constructed in a similar way. Inspired by this work, 
Samuel Klingenstjerna (1698–1765), a professor at Uppsala, 
reperformed Newton’s experiments on achromatism and deter-
mined them to be in error. Klingenstjerna was in communica-
tion with a London optician, John Dollond (1706–1761), who 
was observing similar results. Dollond finally, in 1758, com-
bined two elements, one of crown and the other of flint glass, to 
form a single achromatic lens. Incidentally, Dollond’s invention 
was actually preceded by the unpublished work of the amateur 
scientist Chester Moor Hall (1703–1771) in Essex.

1.4 The Nineteenth Century

The wave theory of light was reborn at the hands of Dr. Thomas 
Young (1773–1829), one of the truly great minds of the century. 
In 1801, 1802, and 1803, he read papers before the Royal Society, 
extolling the wave theory and adding to it a new fundamental 
concept, the so-called Principle of Interference (p. 398):

When two undulations, from different origins, coincide either 
perfectly or very nearly in direction, their joint effect is a com-
bination of the motions belonging to each.

*A. Wróblewski, Am. J. Phys. 53, 620 (1985).

Christiaan Huygens (1629–1695). (Portrait of Christiaan Huygens (ca. 1680), Abraham 

Bloteling. Engraving. Rijksmuseum [Object number RP-P-1896-A-19320].)

Thomas Young (1773–1829). (Smithsonian Institution)
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He was able to explain the colored fringes of thin films and 
determined wavelengths of various colors using Newton’s 
data. Even though Young, time and again, maintained that his 
conceptions had their very origins in the research of Newton, 
he was severely attacked. In a series of articles, probably writ-
ten by Lord Brougham, in the Edinburgh Review, Young’s pa-
pers were said to be “destitute of every species of merit.”

Augustin Jean Fresnel (1788–1827), born in Broglie, Nor-
mandy, began his brilliant revival of the wave theory in France, 
unaware of the efforts of Young some 13 years earlier. Fresnel 
synthesized the concepts of Huygens’s wave description and 
the interference principle. The mode of propagation of a pri-
mary wave was viewed as a succession of spherical secondary 
wavelets, which overlapped and interfered to re-form the ad-
vancing primary wave as it would appear an instant later. In 
Fresnel’s words:

The vibrations of a luminous wave in any one of its points may 
be considered as the sum of the elementary movements con-
veyed to it at the same moment, from the separate action of all 
the portions of the unobstructed wave considered in any one of 
its anterior positions.

These waves were presumed to be longitudinal, in analogy with 
sound waves in air. Fresnel was able to calculate the diffraction 
patterns arising from various obstacles and apertures and satis-
factorily accounted for rectilinear propagation in homogeneous 
isotropic media, thus dispelling Newton’s main objection to the 
undulatory theory. When finally apprised of Young’s priority to 
the interference principle, a somewhat disappointed Fresnel 
nonetheless wrote to Young, telling him that he was consoled by 
finding himself in such good company—the two great men be-
came allies.

Huygens was aware of the phenomenon of polarization aris-
ing in calcite crystals, as was Newton. Indeed, the latter in his 
Opticks stated,

Every Ray of Light has therefore two opposite Sides. . . .

It was not until 1808 that Étienne Louis Malus (1775–1812) 
discovered that this two-sidedness of light also arose upon 
reflection (p. 363); the phenomenon was not inherent to crys-
talline media. Fresnel and Dominique François Arago (1786–
1853) then conducted a series of experiments to determine 
the effect of polarization on interference, but the results were 
utterly inexplicable within the framework of their longitudi-
nal wave picture. This was a dark hour indeed. For several 
years Young, Arago, and Fresnel wrestled with the problem 
until finally Young suggested that the aethereal vibration 
might be transverse, as is a wave on a string. The two-sidedness 
of light was then simply a manifestation of the two orthogo-
nal vibrations of the aether, transverse to the ray direc tion. 
Fresnel went on to evolve a mechanistic description of aether 
oscillations, which led to his now famous formulas for the 
amplitudes of reflected and transmitted light (p. 123). By 
1825 the emission (or corpuscular) theory had only a few te-
nacious advocates.

The first terrestrial determination of the speed of light was per-
formed by Armand Hippolyte Louis Fizeau (1819–1896) in 1849. 
His apparatus, consisting of a rotating toothed wheel and a distant 
mirror (8633 m), was set up in the suburbs of Paris from Suresnes 
to Montmartre. A pulse of light leaving an opening in the wheel 
struck the mirror and returned. By adjusting the known rotational 
speed of the wheel, the returning pulse could be made either to 
pass through an opening and be seen or to be obstructed by a 
tooth. Fizeau arrived at a value of the speed of light equal to 
315 300 km>s. His colleague Jean Bernard Léon Foucault (1819–
1868) was also involved in research on the speed of light. In 1834 
Charles Wheatstone (1802–1875) had designed a rotating-mirror 
arrangement in order to measure the duration of an electric spark. 
Using this scheme, Arago had proposed to measure the speed of 
light in dense media but was never able to carry out the experi-
ment. Foucault took up the work, which was later to provide mate-
rial for his doctoral thesis. On May 6, 1850, he reported to the 
Academy of Sciences that the speed of light in water was less than 
that in air. This result was in direct conflict with Newton’s formu-
lation of the emission theory and a hard blow to its few remaining 
devotees.

While all of this was happening in Optics, quite indepen-
dently, the study of electricity and magnetism was also 
bearing fruit. In 1845 the master experimentalist Michael 
Faraday (1791–1867) established an interrelationship be-
tween electromagnetism and light when he found that the 
polarization direction of a beam could be altered by a strong 
magnetic field applied to the medium. James Clerk Maxwell 
(1831–1879) brilliantly summarized and extended all the 
empirical knowledge on the subject in a single set of math-
ematical equations. Beginning with this remarkably succinct 

Augustin Jean Fresnel (1788–1827). (US National Library of Medicine)
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14 Chapter 1 A Brief History

and beautifully symmetrical synthesis, he was able to show, 
purely theoretically, that the electromagnetic field could 
propagate as a transverse wave in the luminiferous aether  
(p. 54).

Solving for the speed of the wave, Maxwell arrived at an ex-
pression in terms of electric and magnetic properties of the me-
dium (c = 1>1P0m0). Upon substituting known empirically 
determined values for these quantities, he obtained a numerical 
result equal to the measured speed of light! The conclusion was 
inescapable—light was “an electromagnetic disturbance in the 
form of waves” propagated through the aether. Maxwell died at 
the age of 48, eight years too soon to see the experimental con-
firmation of his insights and far too soon for physics. Heinrich 
Rudolf Hertz (1857–1894) verified the existence of long electro-
magnetic waves by generating and detecting them in an exten-
sive series of experiments published in 1888.

The acceptance of the wave theory of light seemed to  
necessitate an equal acceptance of the existence of an all-
pervading substratum, the luminiferous aether. If there were 
waves, it seemed obvious that there must be a supporting me-
dium. Quite naturally, a great deal of scientific effort went 
into determining the physical nature of the aether, yet it 
would have to possess some rather strange properties. It had 
to be so tenuous as to allow an apparently unimpeded motion 
of celestial bodies. At the same time, it could support the ex-
ceedingly high-frequency (∼1015 Hz) oscillations of light 
traveling at 186 000 miles per second. That implied remark-
ably strong restoring forces within the aethereal substance. 
The speed at which a wave advances through a medium is 
dependent on the characteristics of the disturbed substratum 
and not on any motion of the source. This is in contrast to the 
behavior of a stream of particles whose speed with respect to 
the source is the essential parameter.

Certain aspects of the nature of aether intrude when study-
ing the optics of moving objects, and it was this area of  

research, evolving quietly on its own, that ultimately led to the 
next great turning point. In 1725 James Bradley (1693–1762), 
then Savilian Professor of Astronomy at Oxford, attempted to 
measure the distance to a star by observing its orientation at 
two different times of the year. The position of the Earth 
changed as it orbited around the Sun and thereby provided a 
large baseline for triangulation on the star. To his surprise, 
Bradley found that the “fixed” stars displayed an apparent sys-
tematic movement related to the direction of motion of the 
Earth in orbit and not dependent, as had been anticipated, on 
the Earth’s position in space. This so-called stellar aberration 
is analogous to the well-known falling-raindrop situation. A 
raindrop, although traveling vertically with respect to an ob-
server at rest on the Earth, will appear to change its incident 
angle when the observer is in motion. Thus a corpuscular 

James Clerk Maxwell (1831–1879). (E.H.)

Table of Opticks from Volume 2 of the Cyclopedia: or, An Universal Dictionary 
of Arts and Sciences, edited by Ephraim Chambers, published in London by 
James and John Knapton in 1728. (University of Wisconsin Digital Collections)
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model of light could explain stellar aberration rather handily. 
Alternatively, the wave theory also offers a satisfactory expla-
nation provided that the aether remains totally undisturbed as 
the Earth plows through it.

In response to speculation as to whether the Earth’s motion 
through the aether might result in an observable difference be-
tween light from terrestrial and extraterrestrial sources, Arago 
set out to examine the problem experimentally. He found that 
there were no such observable differences. Light behaved just 
as if the Earth were at rest with respect to the aether. To ex-
plain these results, Fresnel suggested in effect that light was 
partially dragged along as it traversed a transparent medium in 
motion. Experiments by Fizeau, in which light beams passed 
down moving columns of water, and by Sir George Biddell 
Airy (1801–1892), who used a water-filled telescope in 1871 
to examine stellar aberration, both seemed to confirm Fres-
nel’s drag hypothesis. Assuming an aether at absolute rest, 
Hendrik Antoon Lorentz (1853–1928) derived a theory that 
encompassed Fresnel’s ideas.

In 1879 in a letter to D. P. Todd of the U.S. Nautical Almanac 
Office, Maxwell suggested a scheme for measuring the speed 
at which the solar system moved with respect to the lumi-
niferous aether. The American physicist Albert Abraham 
Michelson (1852–1931), then a naval instructor, took up the 
idea. Michelson, at the tender age of 26, had already estab-
lished a favorable reputation by performing an extremely pre-
cise determination of the speed of light. A few years later, he 
began an experiment to measure the effect of the Earth’s mo-
tion through the aether. Since the speed of light in aether is 
constant and the Earth, in turn, presumably moves in relation 
to the aether (orbital speed of 67 000 mi>h), the speed of light 
measured with respect to the Earth should be affected by the 
planet’s motion. In 1881 he published his findings. There was 
no detectable motion of the Earth with respect to the aether—
the aether was stationary. But the decisiveness of this surprising 
result was blunted somewhat when Lorentz pointed out an 
oversight in the calculation. Several years later Michelson, 
then professor of physics at Case School of Applied Science in 
Cleveland, Ohio, joined with Edward Williams Morley (1838–
1923), a well-known professor of chemistry at Western  
Reserve, to redo the experiment with considerably greater 
precision. Amazingly enough, their results, published in 
1887, once again were negative:

It appears from all that precedes reasonably certain that if there 
be any relative motion between the earth and the luminiferous 
aether, it must be small; quite small enough entirely to refute 
Fresnel’s explanation of aberration.

Thus, whereas an explanation of stellar aberration within the 
context of the wave theory required the existence of a relative 
motion between Earth and aether, the Michelson–Morley Ex-
periment refuted that possibility. Moreover, the findings of 
Fizeau and Airy necessitated the inclusion of a partial drag of 
light due to motion of the medium.

1.5 Twentieth-Century Optics

Jules Henri Poincaré (1854–1912) was perhaps the first to grasp 
the significance of the experimental inability to observe any ef-
fects of motion relative to the aether. In 1899 he began to make 
his views known, and in 1900 he said:

Our aether, does it really exist? I do not believe that more pre-
cise observations could ever reveal anything more than relative 
displacements.

In 1905 Albert Einstein (1879–1955) introduced his Special 
Theory of Relativity, in which he too, quite independently, re-
jected the aether hypothesis.

The introduction of a “luminiferous aether” will prove to be su-
perfluous inasmuch as the view here to be developed will not 
require an “absolutely stationary space.”

He further postulated:

light is always propagated in empty space with a definite velocity 
c which is independent of the state of motion of the emitting body.

The experiments of Fizeau, Airy, and Michelson–Morley 
were then explained quite naturally within the framework of 
Einstein’s relativistic kinematics.* Deprived of the aether, 
physicists simply had to get used to the idea that electromag-
netic waves could propagate through free space—there was no 
alternative. Light was now envisaged as a self-sustaining wave 
with the conceptual emphasis passing from aether to field. The 
electromagnetic wave became an entity in itself.

On October 19, 1900, Max Karl Ernst Ludwig Planck (1858–
1947) read a paper before the German Physical Society in which 
he introduced the hesitant beginnings of what was to become yet 

Albert Einstein (1879–1955). (Orren Jack Turner/Library of Congress Prints and 

Photographs Division [LC-USZ62-60242])

*See, for example, Special Relativity by French, Chapter 5.
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16 Chapter 1 A Brief History

another great revolution in scientific thought—Quantum  
Mechanics, a theory embracing submicroscopic phenomena  
(p. 61). In 1905, boldly building on these ideas, Einstein pro-
posed a new form of corpuscular theory in which he asserted that 
light consisted of globs or “particles” of energy. Each such quan-
tum of radiant energy or photon,† as it came to be called, had an 
energy proportional to its frequency n, that is, ℰ = hn, where h 
is known as Planck’s constant (Fig. 1.1). By the end of the 1920s, 
through the efforts of Bohr, Born, Heisenberg, Schrödinger,  
De Broglie, Pauli, Dirac, and others, Quantum Mechanics had 
become a well-verified theory. It gradually became evident that 
the concepts of particle and wave, which in the macroscopic 
world seem so obviously mutually exclusive, must be merged in 
the submicroscopic domain. The mental image of an atomic par-
ticle (e.g., electrons and neutrons) as a minute localized lump of 
matter would no longer suffice. Indeed, it was found that these 
“particles” could generate interference and diffraction patterns 
in precisely the same way as would light (p. 412). Thus photons, 
protons, electrons, neutrons, and so forth—the whole lot—have 
both particle and wave manifestations. Still, the matter was by 
no means settled. “Every physicist thinks that he knows what a 
photon is,” wrote Einstein. “I spent my life to find out what a 
photon is and I still don’t know it.”

Relativity liberated light from the aether and showed the kin-
ship between mass and energy (via ℰ0 = mc2). What seemed to 
be two almost antithetical quantities now became interchange-
able. Quantum Mechanics went on to establish that a particle‡ 

of momentum p had an associated wavelength l, such that 
p = h>l. The easy images of submicroscopic specks of matter 
became untenable, and the wave-particle dichotomy dissolved 
into a duality.

Quantum Mechanics also treats the manner in which light is 
absorbed and emitted by atoms (p. 74). Suppose we cause a gas 
to glow by heating it or passing an electrical discharge through 
it. The light emitted is characteristic of the very structure of the 
atoms constituting the gas. Spectroscopy, which is the branch of 
Optics dealing with spectrum analysis (p. 83), developed from 
the research of Newton. William Hyde Wollaston (1766–1828) 
made the earliest observations of the dark lines in the solar spec-
trum (1802). Because of the slit-shaped aperture generally used 
in spectroscopes, the output consisted of narrow colored bands 
of light, the so-called spectral lines. Working independently,  
Joseph Fraunhofer (1787–1826) greatly extended the subject. 
After accidentally discovering the double line of sodium (p. 144), 
he went on to study sunlight and made the first wavelength de-
terminations using diffraction gratings (p. 496). Gustav Robert 
Kirchhoff (1824–1887) and Robert Wilhelm Bunsen (1811–1899), 
working together at Heidelberg, established that each kind of 
atom had its own signature in a characteristic array of spectral 
lines. And in 1913 Niels Henrik David Bohr (1885–1962) set 
forth a precursory quantum theory of the hydrogen atom, which 
was able to predict the wavelengths of its emission spectrum. 
The light emitted by an atom is now understood to arise from its 
outermost electrons (p. 74). The process is the domain of mod-
ern quantum theory, which describes the most minute details 
with incredible precision and beauty.

The flourishing of applied Optics in the second half of the 
twentieth century represents a renaissance in itself. In the 1950s 

Figure 1.1  A rather convincing illustration 
of the particle nature of light. This sequence 
of photos was made using a position-sensing 
photomultiplier tube illuminated by an  
(8.5 * 103 count-per-second) image of a  
bar chart. The exposure times were  
(a) 8 ms, (b) 125 ms, (c) 1 s, (d) 10 s, and 
(e) 100 s. Each dot can be interpreted as 
the arrival of a single photon. (ITT Electro-Optical 

Products Division)

(a) (c)

(e)

(b)

(d)

†The word photon was coined by G. N. Lewis, Nature, December 18, 1926.
‡Perhaps it might help if we just called them all wavicles.
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new devices. The technology needed to produce a practicable 
optical communications system developed rapidly. The sophis-
ticated use of crystals in devices such as second-harmonic gen-
erators (p. 668), electro-optic and acousto-optic modulators, 
and the like spurred a great deal of contemporary research in 
crystal optics. The wavefront reconstruction technique known 
as holography (p. 652), which produces magnificent three- 
dimensional images, was found to have numerous additional 
applications (nondestructive testing, data storage, etc.).

The military orientation of much of the developmental work 
in the 1960s continued into the 2000s with added vigor. Today 
that technological interest in Optics ranges across the spectrum 
from “smart bombs” and spy satellites to “death rays” and infra-
red gadgets that see in the dark. But economic considerations 
coupled with the need to improve the quality of life have brought 
products of the discipline into the consumer marketplace as 
never before. Lasers are in use everywhere: reading videodiscs 
in living rooms, cutting steel in factories, scanning labels in  
supermarkets, and performing surgery in hospitals. Millions of 
optical display systems on clocks and calculators and comput-
ers are blinking all around the world. The almost exclusive use, 
for the last one hundred years, of electrical signals to handle 
and transmit data is now rapidly giving way to more efficient 
optical techniques. A far-reaching revolution in the methods of 
processing and communicating information is quietly taking 
place, a revolution that will continue to change our lives in the 
years ahead.

Profound insights are slow in coming. What few we have took 
over three thousand years to glean, even though the pace is ever 
quickening. It is marvelous indeed to watch the answer subtly 
change while the question immutably remains—what is light?*

several workers began to inculcate Optics with the mathemati-
cal techniques and insights of communications theory. Just as 
the idea of momentum provides another dimension in which to 
visualize aspects of mechanics, the concept of spatial frequency 
offers a rich new way of appreciating a broad range of optical 
phenomena. Bound together by the mathematical formalism of 
Fourier analysis (p. 308), the outgrowths of this contemporary 
emphasis have been far-reaching. Of particular interest are the 
theory of image formation and evaluation (p. 552), the transfer 
functions (p. 578), and the idea of spatial filtering (p. 328).

The advent of the high-speed digital computer brought with 
it a vast improvement in the design of complex optical systems. 
Aspherical lens elements (p. 160) took on renewed practical 
significance, and the diffraction-limited system with an appre-
ciable field of view became a reality. The technique of ion bom-
bardment polishing, in which one atom at a time is chipped 
away, was introduced to meet the need for extreme precision in 
the preparation of optical elements. The use of single and mul-
tilayer thin-film coatings (reflecting, antireflecting, etc.) be-
came commonplace (p. 443). Fiberoptics evolved into a practi-
cal communications tool (p. 204), and thin-film light guides 
continued to be studied. A great deal of attention was paid to the 
infrared end of the spectrum (surveillance systems, missile 
guidance, etc.), and this in turn stimulated the development of 
infrared materials. Plastics began to be used extensively in  
Optics (lens elements, replica gratings, fibers, aspherics, etc.). 
A new class of partially vitrified glass ceramics with exceed-
ingly low thermal expansion was developed. A resurgence in 
the construction of astronomical observatories (both terrestrial 
and extraterrestrial) operating across the whole spectrum was 
well under way by the end of the 1960s and vigorously sus-
tained into the twenty-first century (p. 236).

The first laser was built in 1960, and within a decade laser-
beams spanned the range from infrared to ultraviolet. The 
availability of high-power coherent sources led to the discov-
ery of a number of new optical effects (harmonic generation, 
frequency mixing, etc.) and thence to a panorama of marvelous 

*For more reading on the history of Optics, see F. Cajori, A History of Physics,  
and V. Ronchi, The Nature of Light. Excerpts from a number of original papers  
can conveniently be found in W. F. Magie, A Source Book in Physics, and in  
M. H. Shamos, Great Experiments in Physics.
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The issue of the actual nature of light is central to a complete 
treatment of Optics, and we will struggle with it throughout this 
work. The straightforward question “Is light a wave phenome-
non or a particle phenomenon?” is far more complicated than it 
might at first seem. For example, the essential feature of a par-
ticle is its localization; it exists in a well-defined, “small” region 
of space. Practically, we tend to take something familiar like a 
ball or a pebble and shrink it down in imagination until it be-
comes vanishingly small, and that’s a “particle,” or at least the 
basis for the concept of “particle.” But a ball interacts with its 
environment; it has a gravitational field that interacts with the 
Earth (and the Moon, and Sun, etc.). This field, which spreads 
out into space—whatever it is—cannot be separated from the 
ball; it is an inextricable part of the ball just as it is an inextri-
cable part of the definition of “particle.” Real particles interact 
via fields, and, in a sense, the field is the particle and the particle 
is the field. That little conundrum is the domain of Quantum 
Field Theory, a discipline we’ll talk more about later (p. 148). 
Suffice it to say now that if light is a stream of submicroscopic 
particles (photons), they are by no means “ordinary” miniball 
classical particles.

On the other hand, the essential feature of a wave is its non-
localization. A classical traveling wave is a self-sustaining dis-
turbance of a medium, which moves through space transporting 
energy and momentum. We tend to think of the ideal wave as a 
continuous entity that exists over an extended region. But when 
we look closely at real waves (such as waves on strings), we see 
composite phenomena comprising vast numbers of particles 
moving in concert. The media supporting these waves are atomic 
(i.e., particulate), and so the waves are not continuous entities in 
and of themselves. The only possible exception might be the 
electromagnetic wave. Conceptually, the classical electromag-
netic wave (p. 54) is supposed to be a continuous entity, and it 
serves as the model for the very notion of wave as distinct from 
particle. But in the past century we found that the energy of  
an electromagnetic wave is not distributed continuously. The 
classical formulation of the electromagnetic theory of light, 
however wonderful it is on a macroscopic level, is profoundly 
wanting on a microscopic level. Einstein was the first to suggest 
that the electromagnetic wave, which we perceive macroscopi-
cally, is the statistical manifestation of a fundamentally granular 
underlying microscopic phenomenon (p. 61). In the subatomic 

domain, the classical concept of a physical wave is an illusion. 
Still, in the large-scale regime in which we ordinarily work, 
electromagnetic waves seem real enough and classical theory 
applies superbly well.

Because both the classical and quantum-mechanical treat-
ments of light make use of the mathematical description of 
waves, this chapter lays out the basics of what both formal isms 
will need. The ideas we develop here will apply to all physical 
waves, from a surface tension ripple in a cup of tea to a pulse of 
light reaching us from some distant galaxy.

2.1 One-Dimensional Waves

An essential aspect of a traveling wave is that it is a self-
sustaining disturbance of the medium through which it propa-
gates. The most familiar waves, and the easiest to visualize 
(Fig. 2.1), are the mechanical waves, among which are waves 
on strings, surface waves on liquids, sound waves in the air, 
and compression waves in both solids and fluids. Sound waves 
are longitudinal—the medium is displaced in the direction of 
motion of the wave. Waves on a string (and electromagnetic 
waves) are transverse—the medium is displaced in a direction 
perpendicular to that of the motion of the wave. In all cases, 
although the energy-carrying disturbance advances through the 
medium, the individual participating atoms remain in the vi-
cinity of their equilibrium positions: the disturbance advances, 
not the material medium. That’s one of several crucial features 
of a wave that distinguishes it from a stream of particles. The 
wind blowing across a field sets up “waves of grain” that sweep 
by, even though each stalk only sways in place. Leonardo da 
Vinci seems to have been the first person to recognize that a 
wave does not transport the medium through which it travels, 
and it is precisely this property that allows waves to propagate 
at very great speeds.

What we want to do now is figure out the form the wave equa-
tion must have. To that end, envision some such disturbance c 
moving in the positive x-direction with a constant speed v. The 
specific nature of the disturbance is at the moment unimportant. 
It might be the vertical displacement of the string in Fig. 2.2 or 
the magnitude of an electric or magnetic field associated with an 

Wave Motion
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 2.1 One-Dimensional Waves 19

electromagnetic wave (or even the quantum-mechanical proba-
bility amplitude of a matter wave).

Since the disturbance is moving, it must be a function of 
both position and time;

 c(x, t) = ƒ(x, t) (2.1)

where ƒ(x, t) corresponds to some specific function or wave 
shape. This is represented in Fig. 2.3a, which shows a pulse 
traveling in the stationary coordinate system S at a speed v. The 
shape of the disturbance at any instant, say, t = 0, can be found 
by holding time constant at that value. In this case,

 c(x, t) 0 t = 0 = ƒ(x, 0) = ƒ(x) (2.2)

represents the profile of the wave at that time. For example, if 
ƒ(x) = e-ax2

, where a is a constant, the profile has the shape of 
a bell; that is, it is a Gaussian function. (Squaring the x makes 
it symmetrical around the x = 0 axis.) Setting t = 0 is analo-
gous to taking a “photograph” of the pulse as it travels by. 

(a)

(b)

Figure 2.1  (a) A longitudinal wave in a spring. (b) A transverse wave in a 
spring.

v

Figure 2.2  A wave on a string.

c = f (x–vt)

xx′0 0′

S S′

c = f (x′)

x′0′

S′

c = f (x,t)
v

x

S

vt

x

x′

0

(a)

(b)

(c)

Figure 2.3  Moving reference frame.

For the moment we limit ourselves to a wave that does not 
change its shape as it progresses through space. After a time t the 
pulse has moved along the x-axis a distance vt, but in all other 
respects it remains unaltered. We now introduce a coordinate sys-
tem S′, that travels along with the pulse (Fig. 2.3b) at the speed v.  
In this system c is no longer a function of time, and as we move 
along with S′, we see a stationary constant profile described by 
Eq. (2.2). Here, the coordinate is x′ rather than x, so that

 c = ƒ(x′) (2.3)
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20 Chapter 2 Wave Motion

The disturbance looks the same at any value of t in S′ as it did 
at t = 0 in S when S and S′ had a common origin (Fig. 2.3c). 

We now want to rewrite Eq. (2.3) in terms of x to get the 
wave as it would be described by someone at rest in S. It follows 
from Fig. 2.3c that

 x′ = x - vt (2.4)

and substituting into Eq. (2.3)

 c(x, t) = ƒ(x - vt) (2.5)

This then represents the most general form of the one-dimensional 
wavefunction. To be more specific, we have only to choose a 
shape, Eq. (2.2), and then substitute (x - vt) for x in ƒ(x). The 
resulting expression describes a wave having the desired pro-
file, moving in the positive x-direction with a speed v. Thus, 
c(x, t) = e-a(x - vt)2

 is a bell-shaped wave, a pulse.
To see how this all works in a bit more detail, let’s unfold  

the analysis for a specific pulse, for example, c(x) =   
3>[10x2 + 1] = ƒ(x). That profile is plotted in Fig. 2.4a, and if 
it was a wave on a rope, c would be the vertical displacement 
and we might even replace it by the symbol y. Whether c rep-
resents displacement or pressure or electric field, we now have 
the profile of the disturbance. To turn ƒ(x) into c(x, t), that is, 
to turn it into the description of a wave moving in the positive 
x-direction at a speed v, we replace x wherever it appears in 
ƒ(x) by (x - vt), thereby yielding c(x, t) = 3>[10(x - vt)2 + 1]. 
If v is arbitrarily set equal to, say, 1.0 m>s  and the function is 
plotted successively at t = 0, t = 1 s, t = 2 s, and t = 3 s, we get 
Fig. 2.4b, which shows the pulse sailing off to the right at 1.0 m>s, 
just the way it’s supposed to. Incidentally, had we substituted 
(x + vt) for x in the profile function, the resulting wave would 
move off to the left.

If we check the form of Eq. (2.5) by examining c after an 
increase in time of ∆t and a corresponding increase of v ∆t in x, 
we find

ƒ[(x + v ∆t) - v(t + ∆t)] = ƒ(x - vt)

and the profile is unaltered.
Similarly, if the wave was traveling in the negative x-direction, 

that is, to the left, Eq. (2.5) would become

 c = ƒ(x + vt), with v 7 0 (2.6)

We may conclude therefore that, regardless of the shape of the 
disturbance, the variables x and t must appear in the function as 
a unit, that is, as a single variable in the form (x ∓ vt).  
Equation (2.5) is often expressed equivalently as some function 
of (t - x>v), since

 ƒ(x - vt) = F (-  
x - vt

v ) = F(t - x>v) (2.7)

The pulse shown in Fig. 2.2 and the disturbance described 
by Eq. (2.5) are spoken of as one-dimensional because the 
waves sweep over points lying on a line—it takes only one 

space variable to specify them. Don’t be confused by the fact 
that in this particular case the rope happens to rise up into a 
second dimension. In contrast, a two-dimensional wave propa-
gates out across a surface, like the ripples on a pond, and can 
be described by two space variables.

2.1.1 The Differential Wave Equation

In 1747 Jean Le Rond d’Alembert introduced partial differen-
tial equations into the mathematical treatment of physics. That 
same year, he wrote an article on the motion of vibrating strings 
in which the so-called differential wave equation appears for 
the first time. This linear, homogeneous, second-order, partial 
differential equation is usually taken as the defining expression 
for physical waves in a lossless medium. There are lots of dif-
ferent kinds of waves, and each is described by its own wave-
function c(x). Some are written in terms of pressure, or dis-
placement, while others deal with electromagnetic fields, but 
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Figure 2.4  (a) The profile of a pulse given by the function ƒ(x) =  
3>(10x2 + 1). (b) The profile shown in (a) is now moving as a wave,  
c(x, t) = 3>[10(x - vt)2 + 1], to the right. We assign it a speed of  
1 m>s and it advances in the positive x-direction.
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remarkably all such wavefunctions are solutions of the same 
differential wave equation. The reason it’s a partial differen-
tial equation is that the wave must be a function of several in-
dependent variables, namely, those of space and time. A linear 
differential equation is essentially one consisting of two or 
more terms, each composed of a constant multiplying a func-
tion c(x) or its derivatives. The relevant point is that each such 
term must appear only to the first power; nor can there be any 
cross products of c with its derivatives, or of its derivatives. 
Recall that the order of a differential equation equals the order 
of the highest derivative in that equation. Furthermore, if a 
differential equation is of order N, the solution will contain N 
arbitrary constants. 

We now derive the one-dimensional form of the wave 
equation guided by the foreknowledge (p. 22) that the most 
basic of waves traveling at a fixed speed requires two con-
stants (amplitude and frequency or wavelength) to specify it, 
and this suggests second derivatives. Because there are two 
independent variables (here, x and t) we can take the deriva-
tive of c(x, t) with respect to either x or t. This is done by just 
differentiating with respect to one variable and treating the 
other as if it were constant. The usual rules for differentiation 
apply, but to make the distinction evident the partial derivative 
is written as 0>0x.

To relate the space and time dependencies of c(x, t), take the 
partial derivative of c(x, t) = ƒ(x′) with respect to x, holding t 
constant. Using x′ = x ∓ vt, and inasmuch as

0c
0x

=
0ƒ

0x

 
0c
0x

=
0ƒ

0x′
 
0x′
0x

=
0ƒ

0x′
 (2.8)

because 
0x′
0x

=
0(x ∓ vt)

0x
= 1 

Holding x constant, the partial derivative with respect to time is

 
0c
0t

=
0ƒ

0x′
 
0x′
0t

=
0ƒ

0x′
 (∓v) = ∓v 

0ƒ

0x′
 (2.9)

Combining Eqs. (2.8) and (2.9) yields

 
0c
0t

= ∓v 
0c
0x

 

This says that the rate of change of c with t and with x are 
equal, to within a multiplicative constant, as shown in Fig. 2.5. 
The second partial derivatives of Eqs. (2.8) and (2.9) are

 
02c

0x2 =
02ƒ

0x′2 (2.10)

and 
02c

0t2 =
0
0t

 a∓v 
0ƒ

0x′
b = ∓v 

0
0x′

 a0ƒ

0t
b 

x

t = t0 time held constant

c(x, t0)

c(x0, vt0)

vt

x = x0 position held constant

c(x0, t)

c(x0, vt0)

x0

vt0

Figure 2.5  Variation of c with x and t.

Since

0c
0t

=
0ƒ

0t

 
02c

0t2 = ∓v 
0

0x′
 a0c

0t
b

It follows, using Eq. (2.9), that

02c

0t2 = v2 
02ƒ

0x′2

Combining this with Eq. (2.10), we obtain

 
02c

0x2 =
1

v2 
02c

0t2  (2.11)

which is the desired one-dimensional differential wave equation.

EXAMPLE 2.1 

The wave shown in Fig. 2.4 is given by

c(x, t) =
3

[10(x - vt)2 + 1]

Show, using brute force, that this is a solution to the one- 
dimensional differential wave equation.

SOLUTION

02c

0x2 =
1

v2 
02c

0t2

Continued
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22 Chapter 2 Wave Motion

Differentiating with respect to x:

 
0c
0x

=
0
0x
c 3

10(x - vt)2 + 1
d

 
0c
0x

= (-1) 3[10(x - vt)2 + 1]-2 20(x - vt)

 
0c
0x

= (-1) 60[10(x - vt)2 + 1]-2(x - vt)

 
02c

0x2 =
-60(-2) 20(x - vt)(x - vt)

[10(x - vt)2 + 1]3

-  
60

[10(x - vt)2 + 1]2

 
02c

0x2 =
2400(x - vt)2

[10(x - vt)2 + 1]3 -
60

[10(x - vt)2 + 1]2

Differentiating with respect to t:

 
0c
0t

=
0
0t
c 3

10(x - vt)2 + 1
d

 
0c
0t

= (-1) 3[10(x - vt)2 + 1]-2 20(-v)(x - vt)

 
0c
0t

= 60v(x - vt) [10(x - vt)2 + 1]-2

 
02c

0t2 =
60v(x - vt)(-2) 20(x - vt)(-v)

[10(x - vt)2 + 1]3

+
-60v2

[10(x - vt)2 + 1]2

 
02c

0t2 =
2400v2(x - vt)2

[10(x - vt)2 + 1]3 -
60v2

[10(x - vt)2 + 1]2

Hence  
02c

0x2 =
1

v2 
02c

0t2  

Note that Eq. (2.11) is a so-called homogeneous differential 
equation; it doesn’t contain a term (such as a “force” or a 
“source”) involving only independent variables. In other 
words, c is in each term of the equation, and that means that if 
c is a solution any multiple of c will also be a solution. Equa-
tion 2.11 is the wave equation for undamped systems that do 
not contain sources in the region under consideration. The ef-
fects of damping can be described by adding in a 0c>0t term to 
form a more general wave equation, but we’ll come back to 
that later (p. 81).

As a rule, partial differential equations arise when the sys-
tem being described is continuous. The fact that time is one of 
the independent variables reflects the continuity of temporal 
change in the process under analysis. Field theories, in general, 
treat continuous distributions of quantities in space and time 

and so take the form of partial differential equations. Max-
well’s formulation of electromagnetism, which is a field theory, 
yields a variation of Eq. (2.11), and from that the concept of 
the electromagnetic wave arises in a completely natural way 
(p. 54).

We began this discussion with the special case of waves that 
have a constant shape as they propagate, even though, as a rule, 
waves don’t maintain a fixed profile. Still, that simple assump-
tion has led us to the general formulation, the differential wave 
equation. If a function that represents a wave is a solution of that 
equation, it will at the same time be a function of (x ∓ vt) —
specifically, one that is twice differentiable (in a nontrivial way) 
with respect to both x and t. 

EXAMPLE 2.2

Does the function

c(x, t) =  exp [(-4ax2 - bt2 + 41ab xt)]

where in a and b are constants, describe a wave? If so, what is 
its speed and direction of propagation?

SOLUTION
Factor the bracketed term:

c(x, t) = exp [-a(4x2 + bt2>a - 41b>a xt)]

c(x, t) = exp [-4a(x - 1b>4a t)2]

That’s a twice differentiable function of (x - vt), so it is a solu-
tion of Eq. (2.11) and therefore describes a wave. Here 
v = 1

21b>a and it travels in the positive x-direction.

2.2 Harmonic Waves

Let’s now examine the simplest waveform, one for which the 
profile is a sine or cosine curve. These are variously known as 
sinusoidal waves, simple harmonic waves, or more succinctly 
as harmonic waves. We shall see in Chapter 7 that any wave 
shape can be synthesized by a superposition of harmonic waves, 
and they therefore take on a special significance.

Choose as the profile the simple function

 c(x, t) 0 t = 0 = c(x) = A sin kx = ƒ(x) (2.12)

where k is a positive constant known as the propagation 
number. It’s necessary to introduce the constant k simply  
because we cannot take the sine of a quantity that has physical 
units. The sine is the ratio of two lengths and is therefore  
unitless. Accordingly, kx is properly in radians, which is not a 
real physical unit. The sine varies from +1 to -1 so that the 
maximum value of c(x) is A. This maximum disturbance is 
known as the amplitude of the wave (Fig. 2.6). To transform 
Eq. (2.12) into a progressive wave traveling at speed v in the 
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positive x-direction, we need merely replace x by (x - vt), in 
which case

 c(x, t) = A sin k(x - vt) = ƒ(x - vt) (2.13)

This is clearly a solution of the differential wave equation (see 
Problem 2.24). Holding either x or t fixed results in a sinusoidal 
disturbance; the wave is periodic in both space and time. The 
spatial period is known as the wavelength and is denoted by l. 
Wavelength is the number of units of length per wave. The cus-
tomary measure of l is the nanometer, where 1 nm = 10-9 m, 
although the micron (1 mm = 10-6 m) is often used and the 
older angstrom (1 A° = 10-10 m) can still be found in the litera-
ture. An increase or decrease in x by the amount l should leave 
c unaltered, that is,

 c(x, t) = c(x ± l, t) (2.14)

In the case of a harmonic wave, this is equivalent to altering the 
argument of the sine function by ±2p. Therefore,

sin k(x - vt) = sin k[(x ± l) - vt] = sin [k(x - vt) ± 2p]

and so 0 kl 0 = 2p 

or, since both k and l are positive numbers,

 k = 2p>l (2.15)

Figure 2.6 shows how to plot the profile given by Eq. (2.12) 
in terms of l. Here w is the argument of the sine function, also 
called the phase. In other words, c(x) = A sin w. Notice that 
c(x) = 0 whenever sin w = 0, which happens when 
w = 0, p, 2p, 3p, and so on. That occurs at x = 0, l>2, l, and 
3l>2, respectively.

In an analogous fashion to the above discussion of l, we 
now examine the temporal period, t. This is the amount of 
time it takes for one complete wave to pass a stationary ob-
server. In this case, it is the repetitive behavior of the wave in 
time that is of interest, so that

 c(x, t) = c(x, t ± t) (2.16)

and sin k(x - vt) = sin k[x - v(t ± t)] 

 sin k(x - vt) = sin [k(x - vt) ± 2p] 

Therefore,

0 kvt 0 = 2p

But these are all positive quantities; hence

 kvt = 2p (2.17)

or 
2p
l

 vt = 2p 

from which it follows that

 t = l>v (2.18)

The period is the number of units of time per wave (Fig. 2.7), 
the inverse of which is the temporal frequency n, or the num-
ber of waves per unit of time (i.e., per second). Thus,

n K 1>t

in units of cycles per second or Hertz. Equation (2.18) then  
becomes

 v = nl (2.19)

Imagine that you are at rest and a harmonic wave on a string is 
progressing past you. The number of waves that sweep by per 
second is n, and the length of each is l. In 1.0 s, the overall 
length of the disturbance that passes you is the product nl. If, 
for example, each wave is 2.0 m long and they come at a rate 
of 5.0 per second, then in 1.0 s, 10 m of wave fly by. This is 
just what we mean by the speed of the wave (v)—the rate, in 
m>s, at which it advances. Said slightly differently, because a 
length of wave l passes by in a time t, its speed must equal 
l>t = nl. Incidentally, Newton derived this relationship in 
the Principia (1687) in a section called “To find the velocity 
of waves.”

Two other quantities are often used in the literature of wave 
motion. One is the angular temporal frequency

 v K 2p>t = 2pn (2.20)

Figure 2.6  A harmonic function, which serves as the profile of a harmonic wave. 
One wavelength corresponds to a change in phase w of 2p rad.

c(x) = Asinkx = Asin2px�l = Asinw 

0 x

c
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24 Chapter 2 Wave Motion

apply equally well to waves that are not harmonic, as long as 
each such wave is made up of a single regularly repeated 
profile-element (Fig. 2.8).

EXAMPLE 2.3

A Nd:YAG laser puts out a beam of 1.06 mm electromagnetic 
radiation in vacuum. Determine (a) the beam’s temporal fre-
quency; (b) its temporal period; and (c) its spatial frequency.

SOLUTION
(a) Since v = nl

n =
v
l

=
2.99 * 108 m>s
1.06 * 10-6 m

= 2.82 * 1014 Hz

or n = 282 TH. (b) The temporal period is t = 1>n =
1>2.82 * 1014 Hz = 3.55 * 10-15s, or 3.55 fs. (c) The spatial 
frequency is k = 1>l = 1>1.06 * 10-6 m = 943 * 103m-1, 
that is, 943 thousand waves per meter.

Using the above definitions we can write a number of equiv-
alent expressions for the traveling harmonic wave:

 c = A sin k(x ∓ vt) [2.13]

 c = A sin 2p ax
l

∓
t
t
b (2.22)

 c = A sin 2p (kx ∓ nt) (2.23)

 c = A sin (kx ∓ vt) (2.24)

 c = A sin 2pn ax
v

∓ tb (2.25)

Of these, Eqs. (2.13) and (2.24) will be encountered most  
frequently. Note that all these idealized waves are of infinite 
extent. That is, for any fixed value of t, there is no mathematical 
limitation on x, which varies from - ∞  to + ∞. Each such wave 
has a single constant frequency and is therefore monochromatic 
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c

c

c
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c

Figure 2.7  A harmonic wave moving along the x-axis during a time of 
one period. Note that if this is a picture of a rope any one point on it only 
moves vertically. We’ll discuss the significance of the rotating arrow in 
Section 2.6. For the moment observe that the projection of that arrow  
on the vertical axis equals the value of c at x = 0.

given in units of radians per second. The other, which is impor-
tant in spectroscopy, is the wave number or spatial frequency

 k K 1>l (2.21)

measured in inverse meters. In other words, k is the number of 
waves per unit of length (i.e., per meter). All of these quantities 

l

l

(a)

(b) (c)

l

Figure 2.8  (a) The waveform produced by a saxophone. Imagine any num-
ber of profile-elements (b) that, when repeated, create the waveform (c). The 
distance over which the wave repeats itself is called the wavelength, l.
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SOLUTION
(a) Factor 1>6.0 * 10-7 from the term in parentheses and it be-
comes clear that c(y, t) is a twice differentiable function of 
(  y ± vt), so it does represent a harmonic wave. (b) We could 
also simply use Eq. (2.22) 

c = A sin 2p ax
l

+
t
t
b

whereupon it follows that the period t = 2.0 * 10-15 s.  
Hence n = 1>t = 5.0 * 1014 Hz. (c) The wavelength is l =
6.0 * 10-7m. (d) The amplitude is A = 0.040. (e) The wave 
travels in the negative y direction. (f ) The speed v = nl =
(5.0 * 1014 Hz)(6.0 * 10-7m) = 3.0 * 108 m>s. Alternatively 
if we factor 1>6.0 * 10-7 from the parentheses the speed be-
comes 6.0 * 10-7>2.0 * 10-15 = 3.0 * 108 m>s.

Spatial Frequency

Periodic waves are structures that move through space and 
time displaying wavelengths, temporal periods, and temporal 
frequencies; they undulate in time. In modern Optics we are 
also interested in stationary periodic distributions of informa-
tion that conceptually resemble snapshots of waves. Indeed, 
later on in Chapters 7 and 11 we’ll see that ordinary images of 
buildings and people and picket fences can all be synthesized 
using periodic functions in space, utilizing a process called 
Fourier analysis.

What we need to keep in mind here is that optical informa-
tion can be spread out in space in a periodic way much like a 
wave profile. To make the point we convert the sinusoid of  
Fig. 2.6 into a diagram of smoothly varying brightness, namely, 
Fig. 2.10. This sinusoidal brightness variation has a spatial  
period of several millimeters (measured, e.g., from bright peak 
to bright peak). Here a pair of black and white bands corresponds 
to one “wavelength,” that is, so many millimeters (or centimeters) 
per black and white pair. The inverse of that—one over the 

or, even better, monoenergetic. Real waves are never mono-
chromatic. Even a perfect sinusoidal generator cannot have 
been operating forever. Its output will unavoidably contain a 
range of frequencies, albeit a small one, just because the wave 
does not extend back to t = - ∞ . Thus all waves comprise a 
band of frequencies, and when that band is narrow the wave is 
said to be quasimonochromatic.

Before we move on, let’s put some numbers into Eq. (2.13) 
and see how to deal with each term. To that end, arbitrarily let 
v = 1.0 m>s and l = 2.0 m. Then the wavefunction

c = A sin 
2p
l

 (x - vt)

in SI units becomes

c = A sin p(x - t)

Figure 2.9 shows how the wave progresses to the right at 1.0 m>s as 
the time goes from t = 0 [whereupon c = A sin px] to t = 1.0 s  
[whereupon c = A sin p(x - 1.0)] to t = 2.0 s [whereupon 
c = A sin p(x - 2.0)].

EXAMPLE 2.4

Consider the function

c (y, t) = (0.040) sin 2p a y

6.0 * 10-7 +
t

2.0 * 10-15b

where everything is in appropriate SI units. (a) Does this ex-
pression have the form of a wave? Explain. If so, determine its 
(b) frequency, (c) wavelength, (d) amplitude, (e) direction of 
propagation, and (f ) speed.

t = 0

t = 2.0 s

c = A sinpx
x  c

1

0 0
1/2

3/2

+A
1 0

–A
2 0

2 3 x  (m)
0

+A

– A

c = A sinp(x – 2)
x  c

1

0 0
1/2

3/2

+A
1 0

–A
2 0

2 3 x  (m)
0

+A

– A

t = 1.0 s
c = A sinp(x – 1)

x  c

1

0 0
1/2

3/2

–A
1 0

+A
2 0

2 3 x  (m)
0

+A

– A

Figure 2.9  A progressive wave of the form c(x, t) = A sin k(x - vt), 
moving to the right at a speed of 1.0 m>s.

Figure 2.10  A sinusoidal brightness distribution of relatively low spatial 
frequency.

M02_HECH6933_05_GE_C02.indd   25 26/08/16   11:14 AM



26 Chapter 2 Wave Motion

which is equivalent to

 c(x, t) = A sin (vt - kx) (2.29)

or c(x, t) = A cos avt - kx -
p

2
b 

The initial phase angle is just the constant contribution to the 
phase arising at the generator and is independent of how far in 
space, or how long in time, the wave has traveled. 

The phase in Eq. (2.26) is (kx - vt), whereas in Eq. (2.29) 
it’s (vt - kx). Nonetheless, both of these equations describe 
waves moving in the positive x-direction that are otherwise 
identical except for a relative phase difference of p. As is often 
the case, when the initial phase is of no particular significance 
in a given situation, either Eq. (2.26) or (2.29) or, if you like, a 
cosine function can be used to represent the wave. Even so, in 
some situations one expression for the phase may be mathemat-
ically more appealing than another; the literature abounds with 
both, and so we will use both.

The phase of a disturbance such as c(x, t) given by  
Eq. (2.28) is

w (x, t) = (kx - vt + e)

spatial period—is the spatial frequency, the number of black 
and white pairs per millimeter (or per centimeter). Figure 2.11 
depicts a similar pattern with a shorter spatial period and a high-
er spatial frequency.  These are single spatial frequency distri-
butions akin to monochromatic profiles in the time domain.  As 
we go on we’ll see how images can be built up out of the super-
position of individual spatial frequency contributions just like 
those of Figs. 2.10 and 2.11.

2.3 Phase and Phase Velocity

Examine any one of the harmonic wavefunctions, such as

 c(x, t) = A sin (kx - vt) (2.26)

The entire argument of the sine is the phase w of the wave, 
where

 w = (kx - vt) (2.27)

At t = x = 0,

c(x, t) 0 x =  0 = c(0, 0) = 0
                                      t =  0 

which is certainly a special case. More generally, we can write

 c(x, t) = A sin (kx - vt + e) (2.28)

where e is the initial phase. To get a sense of the physical 
meaning of e, imagine that we wish to produce a progressive 
harmonic wave on a stretched string, as in Fig. 2.12. In order to 
generate harmonic waves, the hand holding the string would 
have to move such that its vertical displacement y was propor-
tional to the negative of its acceleration, that is, in simple har-
monic motion (see Problem 2.27). But at t = 0 and x = 0, the 
hand certainly need not be on the x-axis about to move down-
ward, as in Fig. 2.12. It could, of course, begin its motion on an 
upward swing, in which case e = p, as in Fig. 2.13. In this lat-
ter case,

c(x, t) = y(x, t) = A sin (kx - vt + p)

v

v

v

v

t = 0

t = t�4

t = t�2

t = t

t = 3t�4

e = 0

Figure 2.12  With e = 0 note that at x = 0 and t = t>4 = p>2v,  
y = A sin (-p>2) = -A.

Figure 2.11  A sinusoidal brightness distribution of relatively high spatial 
frequency.
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 2.3 Phase and Phase Velocity 27

The term on the left represents the speed of propagation of the 
condition of constant phase. Imagine a harmonic wave and 
choose any point on the profile, for example, a crest of the 
wave. As the wave moves through space, the displacement y of 
the crest remains fixed. Since the only variable in the harmonic 
wavefunction is the phase, it too must be constant for that mov-
ing point. That is, the phase is fixed at such a value as to yield 
the constant y corresponding to the chosen point. The point 
moves along with the profile at the speed v, and so too does the 
condition of constant phase.

Taking the appropriate partial derivatives of w as given, for ex-
ample, by Eq. (2.29) and substituting them into Eq. (2.32), we get

 a0x
0t
b
w

= ±
v

k
= ±v (2.33)

The units of v are rad>s and the units of k are rad>m. The units 
of v>k are appropriately m>s. This is the speed at which the 
profile moves and is known commonly as the phase velocity of 
the wave. The phase velocity is accompanied by a positive sign 
when the wave moves in the direction of increasing x and a neg-
ative one in the direction of decreasing x. This is consistent with 
our development of v as the magnitude of the wave velocity: 
v 7 0.

Consider the idea of the propagation of constant phase 
and how it relates to any one of the harmonic wave equa-
tions, say,

c = A sin k(x ∓ vt)

with w = k(x - vt) = constant 

As t increases, x must increase. Even if x 6 0 so that w 6 0, x 
must increase (i.e., become less negative). Here, then, the condi-
tion of constant phase moves in the direction of increasing x. As 
long as the two terms in the phase subtract from each other, the 
wave travels in the positive x-direction. On the other hand, for

w = k(x + vt) = constant

as t increases x can be positive and decreasing or negative and 
becoming more negative. In either case, the constant-phase 
condition moves in the decreasing x-direction.

EXAMPLE 2.5

A propagating wave at time t = 0 can be expressed in SI units 
as c(y, 0) = (0.030 m) cos (py>2.0). The disturbance moves in 
the negative y-direction with a phase velocity of 2.0 m>s. Write 
an expression for the wave at a time of 6.0 s.

SOLUTION
Write the wave in the form

c(y, t) = A cos 2p ay

l
±

t
t
b

and is obviously a function of x and t. In fact, the partial deriva-
tive of w with respect to t, holding x constant, is the rate-of-
change of phase with time, or

 ` a0w
0t
b

x
` = v (2.30)

The rate-of-change of phase at any fixed location is the angular 
frequency of the wave, the rate at which a point on the rope in 
Fig. 2.12 oscillates up and down. That point must go through 
the same number of cycles per second as the wave. For each 
cycle, w changes by 2p. The quantity v is the number of radians 
the phase sweeps through per second. The quantity k is the 
number of radians the phase sweeps through per meter.

Similarly, the rate-of-change of phase with distance, holding 
t constant, is

 ` a0w
0x
b

t
` = k (2.31)

These two expressions should bring to mind an equation 
from the theory of partial derivatives, one used frequently in 
Thermodynamics, namely,

 a0x
0t
b
w

=
-(0w>0t)x

(0w>0x)t
 (2.32)

v

v

v

v

t = 0

t = t�4

t = t�2

t = t

t = 3t�4

e = p

Figure 2.13  With e = p note that at x = 0 and t = t>4, y =  
A sin (p>2) = A.

Continued

M02_HECH6933_05_GE_C02.indd   27 26/08/16   11:14 AM



28 Chapter 2 Wave Motion

2.4 The Superposition Principle

The form of the differential wave equation [Eq. (2.11)] reveals 
an intriguing property of waves, one that is quite unlike the be-
havior of a stream of classical particles. Suppose that the wave-
functions c1 and c2 are each separate solutions of the wave 
equation; it follows that (c1 + c2) is also a solution. This is 
known as the Superposition Principle, and it can easily be 
proven, since it must be true that

02c1

0x2 =
1

v2 
02c1

0t2  and 
02c2

0x2 =
1

v2 
02c2

0t2

Adding these yields

02c1

0x2 +
02c2

0x2 =
1

v2 
02c1

0t2 +
1

v2 
02c2

0t2

Here A = 0.030 m and

c(y, 0) = (0.030 m) cos 2p a y

4.0
b

We need the period and since l = 4.0 m, v = nl = l>t;
t = l>v = (4.0 m)>(2.0 m>s) = 2.0 s. Hence

c(y, t) = (0.030 m) cos 2p a y

4.0
+

t
2.0

b

The positive sign in the phase indicates motion in the negative 
y-direction. At t = 6.0 s

c(y, 6.0) = (0.030 m) cos 2p a y

4.0
+ 3.0b

Any point on a harmonic wave having a fixed magnitude 
moves such that w(x, t) is constant in time, in other words, 
dw(x, t)>dt = 0 or, alternatively, dc(x, t)>dt = 0. This is true for 
all waves, periodic or not, and it leads (Problem 2.34) to the 
expression

 ±v =
-(0c>0t)x

(0c>0x)t
 (2.34)

which can be used to conveniently provide v when we have 
c(x, t). Note that because v is always a positive number, when 
the ratio on the right turns out negative the motion is in the 
negative x-direction.

Figure 2.14 depicts a source producing hypothetical two- 
dimensional waves on the surface of a liquid. The essentially 
sinusoidal nature of the disturbance, as the medium rises and 
falls, is evident in the diagram. But there is another useful way 
to envision what’s happening. The curves connecting all the 
points with a given phase form a set of concentric circles. Fur-
thermore, given that A is everywhere constant at any one dis-
tance from the source, if w is constant over a circle, c too must 
be constant over that circle. In other words, all the correspond-
ing peaks and troughs fall on circles, and we speak of these as 
circular waves, each of which expands outward at the speed v.

Figure 2.14  Circular waves. (E.H.)

A solar flare on the Sun caused circular seismic ripples to flow across the surface. (NASA)
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 2.4 The Superposition Principle 29

the two coexisting waves in Fig. 2.15. At every point (i.e., every 
value of kx) we simply add  c1 and c2, either of which could be 
positive or negative. As a quick check, keep in mind that wher-
ever either constituent wave is zero (e.g., c1 = 0), the resultant 
disturbance equals the value of the other nonzero constituent 
wave (c = c2), and those two curves cross at that location (e.g., 
at kx = 0 and +3.14 rad). On the other hand, c = 0 wherever 
the two constituent waves have equal magnitudes and opposite 
signs (e.g., at kx = +2.67 rad). Incidentally, notice how a rela-
tive positive phase difference of 1.0 rad between the two curves 
shifts c2 to the left with respect to c1 by 1.0 rad.

Developing the illustration a bit further, Fig. 2.16 shows how 
the resultant arising from the superposition of two nearly equal-
amplitude waves depends on the phase-angle difference between 
them. In Fig. 2.16a the two constituent waves have the same 
phase; that is, their phase-angle difference is zero, and they are 
said to be in-phase; they rise and fall in-step, reinforcing each 
other. The composite wave, which then has a substantial ampli-
tude, is sinusoidal with the same frequency and wavelength as the 
component waves (p. 293). Following the sequence of the draw-
ings, we see that the resultant amplitude diminishes as the phase-
angle difference increases until, in Fig. 2.16d, it almost vanishes 
when that difference equals p. The waves are then said to be 180° 
out-of-phase. The fact that waves which are out-of-phase tend to 
diminish each other has given the name interference to the 
whole phenomenon.

and so 
02

0x2 (c1 + c2) =
1

v2 
02

0t2 (c1 + c2) 

which establishes that (c1 + c2) is indeed a solution. What 
this means is that when two separate waves arrive at the same 
place in space wherein they overlap, they will simply add to (or 
subtract from) one another without permanently destroying or 
disrupting either wave. The resulting disturbance at each point 
in the region of overlap is the algebraic sum of the individual 
constituent waves at that location (Fig. 2.15). Once having 
passed through the region where the two waves coexist, each 
will move out and away unaffected by the encounter.

Keep in mind that we are talking about a linear superposi-
tion of waves, a process that’s widely valid and the most com-
monly encountered. Nonetheless, it is also possible for the wave 
amplitudes to be large enough to drive the medium in a nonlin-
ear fashion (p. 667). For the time being we’ll concentrate on the 
linear differential wave equation, which results in a linear Su-
perposition Principle.

Much of Optics involves the superposition of waves in one 
way or another. Even the basic processes of reflection and re-
fraction are manifestations of the scattering of light from count-
less atoms (p. 96), a phenomenon that can only be treated satis-
factorily in terms of the overlapping of waves. It therefore 
becomes crucial that we understand the process, at least quali-
tatively, as soon as possible. Consequently, carefully examine 

c1(x0)

c1

c1(x0)

c1 = 1.0 sin kx
c2 = 0.9 sin (kx + 1.0 rad)
c = c1 + c2

–1 10 2 3

–2

–1

1

2

kx  (rad)
kx0

c(x, 0)

c(x0)

c

c2(x0)

c2

t = 0

Figure 2.15  The superposition of two equal-wavelength sinusoids c1 and 
c2, having amplitudes A1 and A2, respectively. The resultant, c, is a sinu-
soid with the same wavelength, which at every point equals the algebraic 
sum of the constituent sinusoids. Thus at x = x0, c(x0) = c1(x0) +  c2(x0); 
the magnitudes add. The amplitude of c is A and it can be determined in 
several ways; see Fig. 2.19.

Figure 2.16  The superposition of two sinusoids with amplitudes of 
A1 = 1.0 and A2 = 0.9. In (a) they are in-phase. In (b) c1 leads c2 by 
p>3. In (c) c1 leads c2 by 2p>3. And (d) c1 and c2 are out-of-phase by 
p and almost cancel each other. To see how the amplitudes can be deter-
mined, go to Fig. 2.20.
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30 Chapter 2 Wave Motion

and z̃ = x + iy = r (cos u + i sin u) 

The Euler formula*

eiu = cos u + i sin u

leads to the expression e-iu = cos u - i sin u, and adding and 
subtracting these two equations yields

cos u =
eiu + e-iu

2

and sin u =
eiu - e-iu

2i  

Moreover, the Euler formula allows us (Fig. 2.17b) to write

z̃ = reiu = r cos u + ir sin u

where r is the magnitude of z̃ and u is the phase angle of z̃, in 
radians. The magnitude is often denoted by 0 z̃ 0  and referred to 
as the modulus or absolute value of the complex number. The 
complex conjugate, indicated by an asterisk (Fig. 2.17c), is 
found by replacing i wherever it appears, with - i, so that

z̃* = (x + iy)* = (x - iy)

z̃* = r (cos u - i sin u)

and z̃* = re-iu 

The operations of addition and subtraction are quite straight-
forward:

z̃1 ± z̃2 = (x1 + iy1) ± (x2 + iy2)

and therefore

z̃1 ± z̃2 = (x1 ± x2) + i(y1 ± y2)

Notice that this process is very much like the component addi-
tion of vectors.

Multiplication and division are most simply expressed in 
polar form

z̃1z̃2 = r1r2ei(u1 +u2)

and 
z̃1

z̃2
=

r1

r2
 ei(u1 +u2) 

A number of facts that will be useful in future calculations 
are well worth mentioning at this point. It follows from the 
ordinary trigonometric addition formulas (Problem 2.44) that

ez̃1 + z̃2 = ez̃1ez̃2

2.5 The Complex Representation

As we develop the analysis of wave phenomena, it will become 
evident that the sine and cosine functions that describe harmon-
ic waves can be somewhat awkward for our purposes. The ex-
pressions formulated will sometimes be rather involved and the 
trigonometric manipulations required to cope with them will be 
even more unattractive. The complex-number representation of-
fers an alternative description that is mathematically simpler to 
process. In fact, complex exponentials are used extensively in 
both Classical and Quantum Mechanics, as well as in Optics.

The complex number z̃ has the form

 z̃ = x + iy (2.35)

where i = 1-1. The real and imaginary parts of z̃ are, respec-
tively, x and y, where both x and y are themselves real numbers. 
This is illustrated graphically in the Argand diagram in Fig. 2.17a. 
In terms of polar coordinates (r, u),

x = r cos u    y = r sin u

*If you have any doubts about this identity, take the differential of 
z̃ = cos u + i sin u, where r = 1. This yields dz ˜ = i  z̃ du, and integration  
gives z̃ = exp (i  u).

Imaginary

x r cos u

y

Real

(a)
(x + iy)

u

Im
x

– y

Re

(c)

(x – iy)

~z*

~z

u

Im

Re

(b)

u

r r sin u    

Im

Re

(d)

A
A sin vt 

A cos vt 

vt 

Figure 2.17  An Argand diagram is a representation of a complex num-
ber in terms of its real and imaginary components. This can be done 
using either (a) x and y or (b) r and u. Moreover, when u is a constantly 
changing function of time (d), the arrow rotates at a rate v.

Water waves overlapping and interfering. (E.H.)
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 2.6 Phasors and the Addition of Waves 31

and so, if z̃1 = x and z̃2 = iy,

ez̃ = ex + iy = exeiy

The modulus of a complex quantity is given by

r = 0 z̃ 0 K (z̃ z̃*)1>2

and 0 ez̃ 0 = ex 

Inasmuch as cos 2p = 1 and sin 2p = 0,

ei2p = 1

Similarly,

eip = e-ip = -1 and e±ip>2 = ± i

The function ez̃ is periodic; that is, it repeats itself every i2p:

ez̃ + i2p = ez̃ei2p = ez̃

Any complex number can be represented as the sum of a real 
part Re (z̃) and an imaginary part Im (z)

z̃ = Re ( z̃  ) + i Im ( z̃  )

such that

Re ( z̃  ) =
1
2

 ( z̃ + z̃*) and Im ( z̃  ) =
1
2i

 ( z̃ - z̃*)

Both of these expressions follow immediately from the Argand 
diagram, Fig. 2.17a and c. For example, z̃ + z̃* = 2x because 
the imaginary parts cancel, and so Re (z̃) = x.

From the polar form where

Re ( z̃  ) = r cos u and Im ( z̃  ) = r sin u

it is clear that either part could be chosen to describe a har-
monic wave. It is customary, however, to choose the real part, in 
which case a harmonic wave is written as

 c(x, t) = Re [Aei(vt - kx +e)] (2.36)

which is, of course, equivalent to

c(x, t) = A cos (vt - kx + e)

Henceforth, wherever it’s convenient, we shall write the wave-
function as

 c(x, t) = Aei(vt - kx +e) = Aeiw (2.37)

and utilize this complex form in the required computations. 
This is done to take advantage of the ease with which complex 
exponentials can be manipulated. Only after arriving at a final 
result, and then only if we want to represent the actual wave, 
must we take the real part. It has, accordingly, become quite 
common to write c(x, t), as in Eq. (2.37), where it is understood 
that the actual wave is the real part.

Although the complex representation is commonplace in 
contemporary physics, it must be applied with caution: after 

c = A sin kx

kx

A

–A

A�0

(a)

c = A sin (kx + p�3)

c = A sin (kx + p�2)

c = A sin (kx + 2p�3)

c = A sin (kx + p)

p�3

p�3

p�2

kx

(b)

kx

(c)

kx

A

A

–A

(d)

kx

A�p

A�2p�3

A�p�2

A�p�3

(e)

p�2

2p�3

2p�3

p

p

Figure 2.18  A plot of the function c = A sin (kx + vt) and the corre-
sponding phasor diagrams. In (a), (b), (c), (d), and (e), the values of vt are 
0, p>3, p>2, 2p>3, and p, respectively. Again the projection of the rotat-
ing arrow on the vertical axis equals the value of c on the kx = 0 axis.

expressing a wave as a complex function and then performing 
operations with/on that function, the real part can be recov-
ered only if those operations are restricted to addition, sub-
traction, multiplication and/or division by a real quantity, and 
differentiation and/or integration with respect to a real vari-
able. Multiplicative operations (including vector dot and cross 
products) must be carried out exclusively with real quantities. 
Wrong results can arise from multiplying complex quantities 
and then taking the real part (see Problem 2.47).

2.6 Phasors and the Addition of Waves

The arrow in the Argand diagram (Fig. 2.17d) is set rotating at a 
frequency v by letting the angle equal vt. This suggests a 
scheme for representing (and ultimately adding) waves that we 
will introduce here qualitatively and develop later (p. 294) quan-
titatively. Figure 2.18 depicts a harmonic wave of amplitude A 
traveling to the left. The arrow in the diagram has a length A and 
revolves at a constant rate such that the changing angle it makes 
with the reference x-axis is vt. This rotating arrow and its asso-
ciated phase angle together constitute a phasor, which tells us 
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32 Chapter 2 Wave Motion

triangle in Fig. 2.20c (but for the fact that A1 7 A2), and so A 
now lies between A1 and A2. Finally, when the phase-angle dif-
ference for the two waves (and the two phasors) is p rad (i.e., 
180°), they almost cancel and the resulting amplitude is a mini-
mum. Notice (in Fig. 2.20d) that the resultant phasor points 
along the reference axis and so has the same phase (i.e., zero) as 
A1∠w1. Thus it is 180° out-of-phase with A2∠w2; the same is 
true of the corresponding waves in Fig. 2.16d.

This was just the briefest introduction to phasors and phasor 
addition. We will come back to the method in Section 7.1, 
where it will be applied extensively.

2.7 Plane Waves

A light wave can be described at a given time at a point in space 
by its frequency, amplitude, direction of propagation, and so 
forth, but that doesn’t tell us much about the optical disturbance 
existing over an extended area of space. To find out about that 
we introduce the spatial concept of a wavefront. Light is vibra-
tory, it corresponds to harmonic oscillations of some sort, and 
the one-dimensional sine wave is an important element in begin-
ning to envision the phenomenon. Figure 2.14 shows how radi-
ally traveling sinusoids, fanned out in two dimensions, can be 
understood to form a unified expanding disturbance, a circular 
wave. Each crest, from every one-dimensional wavelet traveling 
outward, lies on a circle and that’s true of the troughs as well—
indeed, it’s true for any specific wave magnitude. For any par-
ticular phase (say, 5p>2) the component sinusoids have a par-
ticular magnitude (e.g., 1.0) and all points with that magnitude 
lie on a circle (of magnitude 1.0). In other words, the loci of all 
the points where the phase of each one-dimensional wavelet is 
the same form a series of concentric circles, each circle having a 
particular phase (for crests that would be p>2, 5p>2, 9p>2, etc.).

everything we need to know about the corresponding harmonic 
wave. It’s common to express a phasor in terms of its amplitude, 
A, and phase, w, as A∠w.

To see how this works, let’s first examine each part of  
Fig. 2.18 separately. The phasor in Fig. 2.18a has a zero phase 
angle; that is, it lies along the reference axis; the associated sine 
function can also serve as a reference. In Fig. 2.18b the phasor 
has a phase angle of +p>3 rad, and the sine curve is shifted to 
the left by p>3 rad. That sine curve reaches its first peak at a 
smaller value of kx than does the reference curve in part (a), and 
therefore it leads the reference by p>3 rad. In parts (c), (d),  
and (e) of Fig. 2.18, the phase angles are +p>2 rad, +2p>3 rad, 
and +p rad, respectively. The entire sequence of curves can be 
seen as a wave, c = A sin (kx + vt), traveling to the left. It is 
equivalently represented by a phasor rotating counterclockwise 
such that its phase angle at any moment is vt. Much the same 
thing happens in Fig. 2.7, but there the wave advances to the 
right and the phasor rotates clockwise.

When wavefunctions are combined, we are usually interest-
ed in the resulting amplitude and phase. With that in mind, re-
examine the way waves add together in Fig. 2.16. Apparently, 
for disturbances that are in-phase (Fig. 2.16a) the amplitude of 
the resultant wave, A, is the sum of the constituent amplitudes: 
A = A1 + A2 = 1.0 + 0.9 = 1.9. This is the same answer we 
would get if we added two colinear vectors pointing in the same 
direction. Similarly (Fig. 2.16d), when the component waves 
are 180° out-of-phase, A = A1 - A2 = 1.0 - 0.9 = 0.1 as if 
two colinear oppositely directed vectors were added. Although 
phasors are not vectors, they do add in a similar way. Later, 
we’ll prove that two arbitrary phasors, A1∠w1 and A2∠w2, 
combine tip-to-tail, as vectors would (Fig. 2.19), to produce a 
resultant A∠w. Because both phasors rotate together at a rate v, 
we can simply freeze them at t = 0 and not worry about their 
time dependence, which makes them a lot easier to draw.

The four phasor diagrams in Fig. 2.20 correspond to the four 
wave combinations taking place sequentially in Fig. 2.16. When 
the waves are in-phase (as in Fig. 2.16a), we take the phases of 
both wave-1 and wave-2 to be zero (Fig. 2.20a) and position the 
corresponding phasors tip-to-tail along the zero-w reference 
axis. When the waves differ in phase by p>3 (as in Fig. 2.16b), 
the phasors have a relative phase (Fig. 2.20b) of p>3. The resul-
tant, which has an appropriately reduced amplitude, has a phase 
w that is between 0 and p>3, as can be seen in both Figs. 2.16b 
and 2.20b. When the two waves differ in phase by 2p>3 (as in 
Fig. 2.16c), the corresponding phasors almost form an equilateral 

A

A1
w w1

w2

A2

Figure 2.19  The sum of two 
phasors A1∠w1 and A2∠w2 
equals A∠w. Go back and look 
at Fig. 2.13, which depicts the 
overlapping of two sinusoids 
having amplitudes of A1 = 1.0 
and A2 = 0.9 and phases of  
w1 = 0 and w2 = 1.0 rad.

w

A2�p /3A�w

A1�0

p /3

p

(b)

w

A2�2p /3
A�w

A1�0

2p /3

(c)

A1�0 A2�0

A�0
(a)

A1�0

A2�p

A�0

(d)

Figure 2.20  The addition of  
phasors representing two waves 
having amplitudes of A1 = 1.0  
and A2 = 0.9 with four different 
relative phases, as shown in  
Fig. 2.16.
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we force the vector (r$ - r$0) to sweep out a plane perpendicular 
to k$, as its endpoint (x, y, z) takes on all allowed values. With

 k$ = kxî + ky ĵ + kzk̂ (2.39)

Equation (2.38) can be expressed in the form

 kx(x - x0) + ky(y - y0) + kz(z - z0) = 0 (2.40)

or as kxx + kyy + kzz = a (2.41)

where

 a = kxx0 + kyy0 + kzz0 = constant (2.42)

The most concise form of the equation of a plane perpendicular 
to k$ is then just

 k$ ~ r$ = constant = a (2.43)

The plane is the locus of all points whose position vectors each 
have the same projection onto the k$-direction.

We can now construct a set of planes over which c(  r$) varies 
in space sinusoidally, namely, 

 c( r$) = A sin (k$ ~ r$) (2.44)

 c( r$) = A cos (k$ ~ r$) (2.45)

or c( r$) = Aei $k·$r (2.46)

For each of these expressions c(  r$) is constant over every plane 
defined by k$ ~ r$ = constant, which is a surface of constant 
phase (i.e., a wavefront). Since we are dealing with harmonic 
functions, they should repeat themselves in space after a dis-
placement of l in the direction of k$. Figure 2.22 is a rather 
humble representation of this kind of expression. We have 
drawn only a few of the infinite number of planes, each having 
a different c(  r$). The planes should also have been drawn with 
an infinite spatial extent, since no limits were put on r$. The 
disturbance clearly occupies all of space. 

Quite generally, at any instant a wavefront in three dimen-
sions is a surface of constant phase, sometimes called a phase 
front. In actuality wavefronts usually have extremely compli-
cated configurations. The light wave reflected from a tree or a 
face is an extended, irregular, bent surface full of bumps and 
depressions moving out and away, changing as it does. In the 
remainder of this chapter we’ll study the mathematical repre-
sentations of several highly useful idealized wavefronts, ones 
that are uncomplicated enough to write easy expressions for.

The plane wave is perhaps the simplest example of a three-
dimensional wave. It exists at a given time, when all the sur-
faces on which a disturbance has constant phase form a set of 
planes, each generally perpendicular to the propagation direc-
tion. There are quite practical reasons for studying this sort of 
disturbance, one of which is that by using optical devices, we 
can readily produce light resembling plane waves.

The mathematical expression for a plane that is perpendicular 
to a given vector k$ and that passes through some point (x0, y0, z0) 
is rather easy to derive (Fig. 2.21). First we write the position 
vector in Cartesian coordinates in terms of the unit basis vectors 
(Fig. 2.21a),

r$ = xî + yĵ + zk̂

It begins at some arbitrary origin O and ends at the point  
(x, y, z), which can, for the moment, be anywhere in space.  
Similarly,

(r$ - r$0) = (x - x0)î + (y - y0)ĵ + (z - z0)k̂

By setting

 (r$ - r$0) ~k$ = 0 (2.38)

k�

+A

0

–A

c
 =

0c
 =

0c
 =

0

c
 =

–A

c
 =

A
c
 =

A

l

c (r�)

Displacement in the
direction of k�

Figure 2.22  Wavefronts 
for a harmonic plane wave.

x
y

z

0
ĵ
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0
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Figure 2.21  (a) The Cartesian 
unit basis vectors. (b) A plane 
wave moving in the  

k$-direction.
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34 Chapter 2 Wave Motion

Therefore,

lk = 2p

and

k = 2p>l
The vector k$, whose magnitude is the propagation number k 
(already introduced), is called the propagation vector.

At any fixed point in space where r$ is constant, the phase is 
constant as is c(  r$); in short, the planes are motionless. To get 
things moving, c(  r$) must be made to vary in time, something 
we can accomplish by introducing the time dependence in an 
analogous fashion to that of the one-dimensional wave. Here 
then

 c( r$, t) = Aei( $k·$r ∓vt) (2.48)

with A, v, and k constant. As this disturbance travels along in 
the k$-direction, we can assign a phase corresponding to it at 
each point in space and time. At any given time, the surfaces 
joining all points of equal phase are the wavefronts. Note that 
the wavefunction will have a constant value over the wavefront 
only if the amplitude A has a fixed value at every point on the 
wavefront. In general, A is a function of r$ and may not be con-
stant over all space or even over a wavefront. In the latter case, 
the wave is said to be inhomogeneous. We will not be con-
cerned with this sort of disturbance until later, when we con-
sider laserbeams and total internal reflection.

The phase velocity of a plane wave given by Eq. (2.48) is 
equivalent to the propagation velocity of the wavefront. In  
Fig. 2.24, the scalar component of r$ in the direction of k$ is rk. 
The disturbance on a wavefront is constant, so that after a time 
dt, if the front moves along k$ a distance drk, we must have

 c( r$, t) = c(rk + drk, t + dt) = c(rk, t) (2.49)

In exponential form, this is

Aei( $k·$r ∓vt) = Aei(krk + kdrk ∓vt ∓v dt) = Aei(krk ∓vt)

Another approach to visualizing the harmonic plane wave is 
shown in Fig. 2.23, which depicts two slices across an ideal 
cylindrical beam. The light is imagined to be composed of an 
infinitude of sinusoidal wavelets all of the same frequency mov-
ing forward in lockstep along parallel paths. The two slices are 
separated by exactly one wavelength and catch the sinusoids at 
the place in their cycles where they are all at a crest. The two 
surfaces of constant phase are flat discs and the beam is said to 
consist of “plane waves.” Had either slice been shifted a bit 
along the length of beam the magnitude of the wave on that new 
front would be different, but it still would be planar. In fact, if 
the location of the slice is held at rest as the beam progresses 
through it, the magnitude of the wave there would rise and fall 
sinusoidally. Notice that each wavelet in the diagram has the 
same amplitude (i.e., maximum magnitude). In other words, the 
composite plane wave has the same “strength” everywhere over 
its face. We say that it is therefore a homogeneous wave.

The spatially repetitive nature of these harmonic functions 
can be expressed by

 c( r$) = c(r$ +
lk$
k ) (2.47)

where k is the magnitude of k$ and k$>k is a unit vector parallel 
to it (Fig. 2.24). In the exponential form, this is equivalent to

Aei $k·$r = Aei $k·($r +l$k>k) = Aei $k·$reilk

For this to be true, we must have

eilk = 1 = ei2p

x y

z

r�

r�k

k�

l

lk��k

Figure 2.24 Plane waves.

Figure 2.23 A beam consisting of harmonic wavelets of the same fre-
quency and wavelength. The wavelets are all in step so that they have the 
same phase over the flat surfaces of the two transverse slices. The beam is 
therefore composed of plane waves.
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and of course

 a2 + b2 + g2 = 1 (2.54)

EXAMPLE 2.6

As we will see in the next chapter, the electric field (E$) of  
a particular electromagnetic plane wave can be given by the 
expression

E$ = (100 V>m) ĵ ei(kz +vt)

(a) What is the amplitude of this wave in the electric field?  
(b) In what direction does the wave travel? (c) What is the direc-
tion of E$? (d) If the speed of the wave is 2.998 * 108m>s and 
its wavelength is 500 nm, find its frequency.

SOLUTION (a) The amplitude is simple: 100 V/m. (b) Here 
k$ ~ r$ = kz, so the planar wavefront is perpendicular to the z-axis. 
In other words, kx and ky are zero and k = kz. The phase 
(kz + vt) contains a +  sign, which means the wave travels in 
the negative z-direction. (c) The vector E$ lies along the direction 
of ĵ, but since the wave is harmonic, the direction of E$  is time 
dependent and oscillates, so we should better say ± ĵ. (d)

v = nl

n =
v
l

=
2.998 * 108 m>s

500 * 10-9 m

n = 6.00 * 1014 Hz

We have examined plane waves with a particular emphasis 
on harmonic functions. The special significance of these waves 
is twofold: first, physically, sinusoidal waves can be generated 
relatively simply by using some form of harmonic oscillator; 
second, any three-dimensional wave can be expressed as a 
combination of plane waves, each having a distinct amplitude 
and propagation direction.

We can certainly imagine a series of plane wavefronts like 
those in Fig. 2.22 where the disturbance varies in some fashion 
other than harmonically (see photo). It will be seen in the next 

and so it must be that k drk = ±v dt 

The magnitude of the wave velocity, drk>dt, is then

 
drk

dt
= ±

v

k
= ±v (2.50)

We could have anticipated this result by rotating the coordinate 
system in Fig. 2.24 so that k$ was parallel to the x-axis. For that 
orientation

c(  r$, t) = Aei(kx ∓vt)

since k$ ~ r$ = krk = kx. The wave has thereby been effective ly 
reduced to the one-dimensional disturbance already discussed.

Now consider the two waves in Fig. 2.25; both have the same 
wavelength l such that k1 = k2 = k = 2p>l. Wave-1 propagat-
ing along the z-axis can be written as

c1 = A1 cos a2p
l

 z - vtb

where, because k$1 and r$ are parallel, k$1 ~ r$ = kz = (2p>l)z.
Similarly for wave-2, k$2 ~ r$ = kzz + kyy = (k cos u)z + (k sin u)y 
and

c2 = A2 cos c2p
l

 (z cos u + y sin u) - vtd

We’ll return to these expressions and what happens in the re-
gion of overlap when we consider interference in more detail.

The plane harmonic wave is often written in Cartesian coor-
dinates as

 c(x, y, z, t) = Aei(kxx + kyy + kzz ∓vt) (2.51)

or c(x, y, z, t) = Aei[k(ax +by +gz) ∓vt] (2.52)

where a, b, and g are the direction cosines of k$ (see Problem 
2.48). In terms of its components, the magnitude of the propa-
gation vector is

 0 k$ 0 = k = (k2
x + k2

y + k2
z)1>2 (2.53)

y

z

l

u

k� 2

k� 1

l

Figure 2.25 Two overlapping waves of the same wavelength traveling in 
different directions.

The image of a single collimated laser pulse caught as it swept along the 
surface of a ruler. This ultrashort burst of light corresponded to a portion 
of a plane wave. It extended in time for 300 * 10-5 s and was only a  
fraction of a millimeter long. (J. Valdmanis and N. H. Abramson.)
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36 Chapter 2 Wave Motion

certainly appear symmetrically* in the three-dimensional equa-
tion, a fact to be kept in mind. The wavefunction c(x, y, z, t) 
given by Eq. (2.52) is a particular solution of the differential 
equation we are looking for. In analogy with the derivation of 
Eq. (2.11), we compute the following partial derivatives from 
Eq. (2.52):

 
02c

0x2 = -a2k2c (2.55)

 
02c

0y2 = -b2k2c (2.56)

 
02c

0z2 = -g2k2c (2.57)

and 
02c

0t2 = -v2c (2.58)

Adding the three spatial derivatives and utilizing the fact that 
a2 + b2 + g2 = 1, we obtain

 
02c

0x2 +
02c

0y2 +
02c

0z2 = -k2c (2.59)

Combining this with the time derivative, Eq. (2.58), and re-
membering that v = v>k, we arrive at

 02c

0x2 +
02c

0y2 +
02c

0z2 =
1

v2 
02c

0t2
 (2.60)

the three-dimensional differential wave equation. Note that x, y, 
and z do appear symmetrically, and the form is precisely what 
one might expect from the generalization of Eq. (2.11).

Equation (2.60) is usually written in a more concise form by 
introducing the Laplacian operator

 ∇2 K
02

0x2 +
02

0y2 +
02

0z2 (2.61)

whereupon it becomes simply

 ∇2c =
1

v2 
02c

0t2  (2.62)

Now that we have this most important equation, let’s briefly 
return to the plane wave and see how it fits into the scheme of 
things. A function of the form

 c(x, y, z, t) = Aeik(ax +by +gz ∓ vt) (2.63)

section that harmonic plane waves are, indeed, a special case of 
a more general plane-wave solution.

Mathematically the plane wave extends out to infinity in all 
its directions, and, of course, physically that cannot be. A real 
“plane wave” is a finite thing that, no matter how big, only re-
sembles a mathematical plane. Since lenses and mirrors and 
laserbeams are all finite, that “resemblance” is usually good 
enough. 

EXAMPLE 2.7

An electromagnetic plane wave is described by its electric field 
E. The wave has an amplitude E0, an angular frequency v, a 
wavelength l, and travels at speed c outward in the direction of 
the unit propagation vector

k̂ = (4î + 2ĵ)>220

(not to be confused with the unit basis vector k̂). Write an ex-
pression for the scalar value of the electric field E. 

SOLUTION
We want an equation of the form

E(x, y, z, t) = E0ei k̂ ·( $r -vt)

Here

k$ ~ r$ =
2p
l

 k̂ ~ r$

and

k$ ~ r$ =
2p

l220
 (4î + 2ĵ) ~ (xî + yĵ + zk̂)

k$ ~ r$ =
p

l25
 (4x + 2y)

Hence

E = E0e
i c p

l25
 (4x+2y)   - vtd

2.8  The Three-Dimensional Differential 
Wave Equation

Of all the three-dimensional waves, only the plane wave (har-
monic or not) can move through space with an unchanging pro-
file. Clearly, the idea of a wave as a disturbance whose profile 
is unaltered is somewhat lacking. Alternatively, we can define a 
wave as any solution of the differential wave equation. What we 
need now is a three-dimensional wave equation. This should be 
rather easy to obtain, since we can guess at its form by gener-
alizing from the one-dimensional expression, Eq. (2.11). In 
Cartesian coordinates, the position variables x, y, and z must 

*There is no distinguishing characteristic for any one of the axes in Cartesian  
coordinates. We should therefore be able to change the names of, say, x to z,  
y to x, and z to y (keeping the system right-handed) without altering the  
differential wave equation.
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We can obtain this result without being familiar with Eq. (2.67). 
Start with the Cartesian form of the Laplacian, Eq. (2.61);  
operate on the spherically symmetrical wavefunction c(r); and 
convert each term to polar coordinates. Examining only the  
x-dependence, we have

0c
0x

=
0c
0r

 
0r
0x

and 
02c

0x2 =
02c

0r2  a0r
0x
b

2

+
0c
0r

 
02r

0x2 

since c( r$) = c(r) 

Using x2 + y2 + z2 = r2 

we have 
0r
0x

=
x
r
 

02r

0x2 =
1
r
 

0
0x

 x + x 
0
0x

 a1
r
b =

1
r
 a1 -

x2

r2b

and so 
02c

0x2 =
x2

r2 
02c

0r2 +
1
r
 a1 -

x2

r2b 
0c
0r

 

Now having 02c>0x2, we form 02c>0y2 and 02c>0z2, and on  
adding get

∇2c(r) =
02c

0r2 +
2
r
 
0c
0r

is equivalent to Eq. (2.52) and, as such, is a solution of  
Eq. (2.62). It can also be shown (Problem 2.49) that

 c(x, y, z, t) = ƒ(ax + by + gz - vt) (2.64)

and c(x, y, z, t) = g(ax + by + gz + vt) (2.65)

are both plane-wave solutions of the differential wave equation. 
The functions f and g, which are twice differentiable, are other-
wise arbitrary and certainly need not be harmonic. A linear 
combination of these solutions is also a solution, and we can 
write this in a slightly different manner as

 c( r$, t) = C1ƒ( r$ · k$>k - vt) + C2g( r$ · k$>k + vt) (2.66)

where C1 and C2 are constants.
Cartesian coordinates are particularly suitable for describing 

plane waves. However, as various physical situations arise, we 
can often take better advantage of existing symmetries by mak-
ing use of some other coordinate representations.

2.9 Spherical Waves

Toss a stone into a tank of water. The surface ripples that ema-
nate from the point of impact spread out in two-dimensional 
circular waves. Extending this imagery to three dimensions, en-
vision a small pulsating sphere surrounded by a fluid. As the 
source expands and contracts, it generates pressure variations 
that propagate outward as spherical waves.

Consider now an idealized point source of light. The radiation 
emanating from it streams out radially, uniformly in all direc-
tions. The source is said to be isotropic, and the resulting wave-
fronts are again concentric spheres that increase in diameter as 
they expand out into the surrounding space. The obvious sym-
metry of the wavefronts suggests that it might be more conve-
nient to describe them in terms of spherical coordinates  
(Fig. 2.26). In this representation the Laplacian operator is

∇2 =
1

r2 
0
0r

 ar2 
0
0r
b +

1

r2 sin u
 

0
0u

 asin u 
0
0u
b

 +
1

r2 sin2 u
 

02

0f2 (2.67)

where r, u, f are defined by

x = r sin u cos f, y = r sin u sin f, z = r cos u

Remember that we are looking for a description of spherical 
waves, waves that are spherically symmetrical (i.e., ones that do 
not depend on u and f) so that

c( r$) = c(r, u, f) = c(r)

The Laplacian of c(r) is then simply

 ∇2c(r) =
1

r2 
0
0r

 ar2 
0c
0r
b (2.68)

Figure 2.26  The geometry of spherical coordinates.
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38 Chapter 2 Wave Motion

spheres filling all space. Each wavefront, or surface of constant 
phase, is given by

kr = constant.

Notice that the amplitude of any spherical wave is a function of r, 
where the term r-1 serves as an attenuation factor. Unlike the plane 
wave, a spherical wave decreases in amplitude, thereby changing its 
profile, as it expands and moves out from the origin.* Figure 2.27 
illustrates this graphically by showing a “multiple exposure” of a 
spherical pulse at four different times. The pulse has the same extent 
in space at any point along any radius r; that is, the width of the 
pulse along the r-axis is a constant. Figure 2.28 is an attempt to  

which is equivalent to Eq. (2.68). This result can be expressed 
in a slightly different form:

 ∇2c =
1
r
 

02

0r2 (rc) (2.69)

The differential wave equation can then be written as

 
1
r
 

02

0r2 (rc) =
1

v2 
02c

0t2  (2.70)

Multiplying both sides by r yields

 
02

0r2 (rc) =
1

v2 
02

0t2 (rc) (2.71)

Notice that this expression is now just the one-dimensional dif-
ferential wave equation, Eq. (2.11), where the space variable is 
r and the wavefunction is the product (rc). The solution of  
Eq. (2.71) is then simply

rc(r, t) = ƒ(r - vt)

or c(r, t) =
ƒ(r - vt)

r
 (2.72)

This represents a spherical wave progressing radially outward 
from the origin, at a constant speed v, and having an arbitrary 
functional form ƒ. Another solution is given by

c(r, t) =
g(r + vt)

r

and in this case the wave is converging toward the origin.* The 
fact that this expression blows up at r = 0 is of little practical 
concern.

A special case of the general solution

 c(r, t) = C1 
ƒ(r - vt)

r
+ C2 

g(r + vt)
r

 (2.73)

is the harmonic spherical wave

 c(r, t) = a𝒜
r
b cos k(r ∓ vt)  (2.74)

or c(r, t) = a𝒜
r
b eik(r ∓ vt) (2.75)

wherein the constant 𝒜 is called the source strength. At any 
fixed value of time, this represents a cluster of concentric 

*The attenuation factor is a direct consequence of energy conservation. Chapter 
3 contains a discussion of how these ideas apply specifically to electromagnetic 
radiation.

*Other more complicated solutions exist when the wave is not spherically  
symmetrical. See C. A. Coulson, Waves, Chapter 1.

Figure 2.27  A “quadruple exposure” of a spherical pulse.
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Figure 2.28  Spherical wavefronts.
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where

x = r cos u, y = r sin u,  and z = z

The simple case of cylindrical symmetry requires that

c( r$) = c(r, u, z) = c(r)

The u-independence means that a plane perpendicular to the  
z-axis will intersect the wavefront in a circle, which may vary in 
r, at different values of z. In addition, the z-independence fur-
ther restricts the wavefront to a right circular cylinder centered 
on the z-axis and having infinite length. The differential wave 
equation becomes

 
1
r
 
0
0r

 ar -
0c
0r
b =

1

v2 
02c

0t2  (2.77)

After a bit of manipulation, in which the time dependence is 
separated out, Eq. (2.77) becomes something called Bessel’s 
equation. The solutions of Bessel’s equation for large values of 
r gradually approach simple trigonometric forms. When r is 
sufficiently large,

c(r, t) ≈
𝒜2r

 eik(r ∓ vt)

 c(r, t) ≈
𝒜2r

 cos k(r ∓ vt) (2.78)

This represents a set of coaxial circular cylinders filling all 
space and traveling toward or away from an infinite line 
source. No solutions in terms of arbitrary functions can now 
be found as there were for both spherical [Eq. (2.73)] and 
plane [Eq. (2.66)] waves.

A plane wave impinging on the back of a flat opaque 
screen containing a long, thin slit will result in the emission, 
from that slit, of a disturbance resembling a cylindrical wave 
(see Fig. 2.31). Extensive use has been made of this tech-
nique to generate cylindrical lightwaves (p. 406).

2.11 Twisted Light

Ever since the early 1990s it has been possible to create re-
markable spiral beams of light. The mathematical expressions 
for such waves are too complicated to work out here but when 
written in complex form, like Eq. (2.52), they possess a phase 
term exp (- i/f). The quantity / is an integer, increasing values 

relate the diagrammatic representation of c(r, t) in the previous fig-
ure to its actual form as a spherical wave. It depicts half the spherical 
pulse at two different times, as the wave expands outward. Remem-
ber that these results would obtain regardless of the direction of r, 
because of the spherical symmetry. We could also have drawn a 
harmonic wave, rather than a pulse, in Figs. 2.27 and 2.28. In this 
case, the sinusoidal disturbance would have been bounded by the 
curves

c = 𝒜>r and c = -𝒜>r
The outgoing spherical wave emanating from a point source 

and the incoming wave converging to a point are idealizations. 
In actuality, light can only approximate spherical waves, as it 
can only approximate plane waves.

As a spherical wavefront propagates out, its radius increases. 
Far enough away from the source, a small area of the wavefront 
will closely resemble a portion of a plane wave (Fig. 2.29).

2.10 Cylindrical Waves

We will now briefly examine another idealized waveform, the 
infinite circular cylinder. Unfortunately, a precise mathematical 
treatment is far too involved to do here. We shall, instead, just 
outline the procedure. The Laplacian of c in cylindrical coordi-
nates (Fig. 2.30) is

 ∇2c =
1
r
 
0
0r

 ar 
0c
0r
b +

1

r2 
02c

0u2 +
02c

0z2  (2.76)

Figure 2.29  The flattening of spherical 
waves with distance.

Figure 2.30  The geometry of cylindrical coordinates.
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40 Chapter 2 Wave Motion

of which result in waves of increasing complexity. Again, think 
of a cylindrical beam as a stream of sinusoidal component 
wavelets like those in Fig. 2.23, where now, rather than forming 
a plane, the surface of constant phase twists around like a cork-
screw. In its simplest manifestation (f = ±1) the wavefront 
follows a single continuous spiral, either right or left handed, 
circulating around a central propagation axis. 

Such beams have what’s called an azimuthal (f) phase de-
pendence. Looking down the central axis toward the source the 
phase changes with angle, just as the time on a clock face chang-
es with the angle f between the vertical 12–6 line and the min-
ute hand. If a component-wave peak occurs at 12, as in Fig. 2.32, 
a trough might occur directly beneath the axis at 6. Examine the 
diagram carefully, noticing that as it goes from 12 to 1 to 2 to 3 
and so on the wavelets advance. Their phases are all different on 
the slice; they’re each shifted successively by p>6. The disc-
shaped slice cuts across the beam but it is not a surface of con-
stant phase, and the overall disturbance is not a plane wave. 

Still the component sinusoids (all of wavelength l) are cor-
related and all of their peaks lie along a spiral. Now rather than 
having the wavelets intersect the disc on a single circle, sup-
pose them to be multiplied in number so that they fill the disc; 
the constant-phase spiral line will sweep out a twisted surface 
that looks like an elongated flat spring (e.g., an Archimedes’ 
screw or a stretched Slinky). That surface of constant phase is 
a wavefront. 

Let’s extend Fig. 2.32 to form a beam, overlooking the fact 
that a real beam would expand as it traveled forward. Figure 2.33 

Figure 2.31  Cylindrical waves emerging from a long, narrow slit.

Figure 2.32  A group of harmonic wavelets all precisely arrayed so that 
their phases spiral around the central axis of the beam. The condition of 
constant phase lies on a family of helices, one of which is shown as a dot-
ted spiral.  

Figure 2.33  Twisted light. The empty region at the center of the helicoid is a shaft devoid of light. 
It corresponds to a phase singularity around which there is a rotational motion. The structure is 
known as an optical vortex.
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shows a number of wavelets displaced in space, all of which 
reach their peak values on the wavefront, which is an advancing 
helicoid that winds forward once per l (that’s the pitch of the 
helix) while traveling at the speed of light. This particular heli-
coidal wavefront happens to correspond to a maximum (i.e., 
wavelet peaks); it could have had any value. Since the beam is 
monochromatic, there will be a nested progression of twisted 
wavefronts immediately entwined behind it, each of a slightly 
different phase and magnitude, changing from one to the next 
sinusoidally. 

Return to Fig. 2.32 and imagine that all of the wavelets are 
slid radially toward the center without otherwise changing them. 
Along the central axis there would then be a tumult of overlap-
ping waves of every phase, with the effect that the phase of the 
composite disturbance would be indeterminate. Accordingly, the 
central axis corresponds to a phase singularity. At any axial 

point, for every wavelet providing a positive contribution, there 
will be a wavelet providing an equal negative one. In any event, 
the optical field along the axis must be zero, which means that 
the central axis and its immediate surroundings correspond to a 
region of zero intensity (i.e., no light). Running down the middle 
of the helicoid is a black core, or optical vortex, around which 
the so-called “twisted light” spirals much like a tornado. When 
shined on a screen the beam will produce a bright ring surround-
ing the dark circular vortex.

In Chapter 8 we’ll study circularly polarized light and al-
though it might seem similar to twisted light the two are en-
tirely different. For one thing polarized light is associated with 
spin angular momentum and twisted light carries orbital angu-
lar momentum. Moreover, twisted light need not even be polar-
ized. But we’ll come back to all of that later on when we talk 
about photon spin.

2.6 How many wavelengths of a green laser (l = 532 nm) can fit into 
a distance equal to the thickness of a human hair (100 mm)? How far 
will the same number of waves extend if they originate from a micro-
wave oven (n = 2.45 GHz)?

2.7* Find the wavelength of electromagnetic waves emitted from a 
50-Hz electrical grid. Compare it with the wavelength of a 5-GHz 
 radiation used for WiFi communication and the standard 540-THz 
light used in the definition of the candela.

2.8* Compute the wavelength of ultrasound waves with a frequency 
of 500 MHz in air. The speed of sound in air is 343 m/s.

2.9* Sitting on the end of a pier, you observe the waves washing along 
and notice they are very regular. Using a stopwatch, you record 20 waves 
passing by in 10 seconds. If when one crest washes by a column of the 
pier, another crest is also washing by the next column 5 meters away, 
with another in between, determine the period, frequency, wavelength, 
and speed of the wave.

2.10* Pressure waves travel through steel at about 6 km/s. What will 
be the wavelength of a wave corresponding to a D note (n ≈  294 Hz)?

2.11 Compare the wavelengths of the A note (n =  440 Hz) played in 
air (v ≈  343 m/s) and water (v ≈  1500 m/s).

2.12* A 20-Hz vibrator is activated at one end of a 6-m-long string. 
The first disturbance reaches the other end of the string in 1.2 s. How 
many wavelengths will fit on the string?

2.13* Show that for a periodic wave v = (2p>l)v.

Complete solutions to all problems—except those with an asterisk— 
can be found in the back of the book.

2.1* Show that the function

c(z, t) = (z + vt)2

is a nontrivial solution of the differential wave equation. In what direc-
tion does it travel?

2.2* Show that the function

c(y, t) = (y - 4t)2

is a solution of the differential wave equation. In what direction does it 
travel?

2.3* Consider the function

c(z, t) =
A

(z - vt)2 + 1

where A is a constant. Show that it is a solution of the differential wave 
equation. Determine the speed of the wave and the direction of propa-
gation.

2.4* Helium-Neon lasers typically operate at a wavelength of 632.8 nm 
(in the red region of the visible spectrum). Determine the frequency of a 
beam at this wavelength.

2.5* Establish that

c(y, t) = Ae-a(by -  ct)2

where A, a, b, and c are all constant, is a solution of the differential 
wave equation. This is a Gaussian or bell-shaped function. What is its 
speed and direction of travel?

problems

 Problems 41
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42 Chapter 2 Wave Motion

2.14* Make up a table with columns headed by values of u running 
from -p>2 to 2p in intervals of p>4. In each column place the cor-
responding value of sin u, beneath those the values of cos u, beneath 
those the values of sin (u - p>4), and similarly with the functions  
sin (u - p>2), sin (u - 3p>4), and sin (u + p>2). Plot each of these 
functions, noting the effect of the phase shift. Does sin u lead or lag 
sin (u - p>2). In other words, does one of the functions reach a par-
ticular magnitude at a smaller value of u than the other and therefore 
lead the other (as cos u leads sin u)?

2.15* Make up a table with columns headed by values of kx running from 
x = -l>2 to x = +l in intervals of x of l>4 — of course, k =  2p>l. In 
each column place the corresponding values of cos (kx - p>4) and  
beneath that the values of cos (kx + 3p>4). Next plot the functions  
15 cos (kx - p>4) and 25 cos (kx + 3p>4).

2.16* Make up a table with columns headed by values of vt running 
from t = -t>2 to t = +t in intervals of t of t>4— of course, v =  
2p>t. In each column place the corresponding values of sin (vt +   
p>4) and sin (p>4 - vt) and then plot these two functions.

2.17* The profile of a transverse harmonic wave, travelling at 2.5 m/s 
on a string, is given by 

y = (0.1 m) sin (0.707 m-1) x.

Determine its wavelength, period, frequency, and amplitude.

2.18* Figure P.2.18 represents the profile (t = 0) of a transverse wave 
on a string traveling in the positive x-direction at a speed of 20.0 m>s. 
(a) Determine its wavelength. (b) What is the frequency of the wave? 
(c) Write down the wavefunction for the disturbance. (d) Notice that as 
the wave passes any fixed point on the x-axis the string at that location 
oscillates in time. Draw a graph of the c versus t showing how a point 
on the rope at x = 0 oscillates.

2.20* A transverse wave on a string travels in the negative y-direction 
at a speed of 40.0 cm>s. Figure P.2.20 is a graph of c versus t showing 
how a point on the rope at y = 0 oscillates. (a) Determine the wave’s 
period. (b) What is the frequency of the wave? (b) What is the wave-
length of the wave? (d) Sketch the profile of the wave (c versus y).

Figure P.2.18
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2.19* Figure P.2.19 represents the profile (t = 0) of a transverse wave 
on a string traveling in the positive z-direction at a speed of  
100 cm>s. (a) Determine its wavelength. (b) Notice that as the wave 
passes any fixed point on the z-axis the string at that location oscillates 
in time. Draw a graph of c versus t showing how a point on the rope at 
x = 0 oscillates. (c) What is the frequency of the wave?

2.21 Given the wavefunctions

c1 = 5 sin 2p(0.4x + 2t)

and

c2 = 2 sin (5x - 1.5t)

determine in each case the values of (a) frequency, (b) wavelength, (c) 
period, (d) amplitude, (e) phase velocity, and (f) direction of motion. 
Time is in seconds and x is in meters.

2.22* The wavefunction of a transverse wave on a string is 

c(x, t) = (0.2 m) cos 2p[(4 rad/m)x - (20 Hz)t]

Determine the (a) frequency, (b) period, (c) amplitude, (d) wavelength, 
(e) phase velocity, and (f) direction of travel of this function.

2.23* A wave is given in SI units by the expression

c(y, t) = (0.25) sin 2pay

2
+

t
0.05

b
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Find its (a) wavelength, (b) period, (c) frequency, (d) amplitude, (e) 
phase velocity, and (f) direction of propagation.

2.24* Show that

  c(x, t) = A sin k(x - vt) [2.13]

is a solution of the differential wave equation.

2.25* Show that

c(x, t) = A cos (kx - vt)

is a solution of the differential wave equation.

2.26* Express the wavefunction c(x, t) = A cos (kx - vt) using the 
sine function.

2.27 Show that if the displacement of the string in Fig. 2.12 is given by

y(x, t) = A sin [kx - vt + e]

then the hand generating the wave must be moving vertically in simple 
harmonic motion.

2.28 Write the expression for the wavefunction of a harmonic wave 
of amplitude 103 V>m, period 2.2 * 10-15 s, and speed 3 * 108 m>s.
The wave is propagating in the negative x-direction and has a value of 
103 V>m at t = 0 and x = 0.

2.29 Consider the pulse described in terms of its displacement at  
t = 0 by

y(x, t) ∙ t =  0 =
C

2 + x2

where C is a constant. Draw the wave profile. Write an expression for 
the wave, having a speed v in the negative x-direction, as a function of 
time t. If v = 1 m>s, sketch the profile at t = 2 s.

2.30* Determine the magnitude of the wavefunction c(z, t) = A cos
[k(z + vt) + p] at the point z = 0, when t = t>2 and when t = 3p>4.

2.31 Which of the following is a valid wavefunction?

(a) c1 = A(x + at)

(b) c2 = A(y - bt2)

(c) c3 = A(kx - vt + p)

The quantities A, a, b, and k are positive constants.

2.32* Use Eq. (2.32) to calculate the phase velocity of a wave whose 
representation in SI units is

c(z, t) = A cos p(2 * 104z - 6 * 1012t)

2.33* The displacement of a wave on a vibrating string is given by

c(y, t) = (0.050 m) sin 2p ay

l
+

t
t
b

where the wave travels at 20 m>s and it has a period of 0.10 s. What is 
the displacement of the string at y = 2.58 m and time a t = 3.68 s?

2.34 Begin with the following theorem: If z = ƒ(x, y) and x = g(t), 
y = h(t), then

dz
dt

=
0z
0x

 
dx
dt

+
0z
0y

 
dy

dt

Derive Eq. (2.34).

2.35 Using the results from Problem 2.34, show that for a wave with 
a phase w(x, t) = k(x - vt) we can determine the speed by setting 
dw>dt = 0. Apply the technique to Problem 2.32.

2.36* A Gaussian wave has the form c(x, t) = Ae-a(bx + ct)2
. Use the 

fact that c(x, t) = ƒ(x ∓ vt) to determine its speed and then verify 
your answer using Eq. (2.34).

2.37 Create an expression for the profile of a harmonic wave travel-
ing in the z-direction whose magnitude at z = -l>12 is 0.866, at z =   
+l>6 is 1>2, and at z = l>4 is 0.

2.38 Which of the following expressions correspond to traveling 
waves? For each of those, what is the speed of the wave? The quanti-
ties a, b, and c are positive constants.

(a) c(z, t) = (az - bt)2

(b) c(x, t) = (ax + bt + c)2

(c) c(x, t) = 1>(ax2 + b)

2.39* Determine which of the following describe traveling waves:

(a) c(y, t) = e-(a2y2 + b2t2 - 2abty)

(b) c(z, t) = A sin (az2 - bt2)

(c) c(x, t) = A sin 2p ax
a

+
t
b
b

2

(d) c(x, t) = A cos2 2p(t - x)

Where appropriate, draw the profile and find the speed and direction of 
motion.

2.40 Given the traveling wave c(x, t) = 5.0 exp (-ax2 - bt2 -   
21ab xt), determine its direction of propagation. Calculate a few val-
ues of c and make a sketch of the wave at t = 0, taking a = 25 m-2 
and b = 9.0 s-2. What is the speed of the wave?

2.41* What is the phase difference of a sound wave between two 
points 20 cm apart (extending directly in a line from a speaker) 
when the A note (v =  440 Hz) is played? The speed of sound is 
v =  343 m/s.

2.42 Consider orange light with a frequency of 5 * 1014 Hz and a 
phase velocity of 3 * 108 m>s. Find the shortest distance along the 
wave between two points having a phase difference of 180°.

 Problems 43
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44 Chapter 2 Wave Motion

2.43 Write an expression for the wave shown in Fig. P.2.43. Find its 
wavelength, velocity, frequency, and period.

2.44* Working with exponentials directly, show that the magnitude of 
c = Aeivt is A. Then rederive the same result using Euler’s formula. 
Prove that eiaeib = ei(a+b).

2.45* Show that the imaginary part of a complex number z̃ is given by 
(z̃ - z̃*)>2i.

2.46* Take the complex quantities z̃1 = (x1 + iy1) and z̃2 = (x2 + iy2) 
and show that

Re ( z̃1 + z̃2) = Re ( z̃1) + Re ( z̃2)

2.47* Take the complex quantities z̃1 = (x1 + iy1) and z̃2 = (x2 + iy2) 
and show that

Re ( z̃1) * Re ( z̃2) Z Re ( z̃1 * z̃2) 

2.48 Beginning with Eq. (2.51), verify that

c(x, y, z, t) = Aei[k(ax +by +gz) ∓vt]

and that a2 + b2 + g2 = 1 

Draw a sketch showing all the pertinent quantities.

2.49* Show that Eqs. (2.64) and (2.65), which are plane waves of  
arbitrary form, satisfy the three-dimensional differential wave equation.

2.50* The electric field of an electromagnetic plane wave is given in 
SI units by

E$ = E$0ei(3x -22 y - 9.9 * 108t)

(a) What is the wave’s angular frequency? (b) Write an expression  
for k$. (c) What is the value of k? (d) Determine the speed of the wave.

2.51* Consider the function

c(z, t) = A exp [- (a2z2 + b2t2 + 2abzt)]

where A, a, and b are all constants, and they have appropriate SI units. Does 
this represent a wave? If so, what is its speed and direction of propagation?

2.52 De Broglie’s hypothesis states that every particle has associated 
with it a wavelength given by Planck’s constant (h = 6.62 * 10-34 J · s) 
divided by the particle’s momentum. What is the de Broglie wave-
length of a 3.31-g bullet moving at 500 m>s? If the wave is moving 
with the speed of the bullet itself, what is its frequency? Compare this 
to other known wave phenomena.

2.53 Write an expression in Cartesian coordinates for a harmonic 
plane wave of amplitude A and frequency v propagating in the direc-
tion of the vector k$, which in turn lies on a line drawn from the origin 
to the point (4, 2, 1). [Hint: First determine k$ and then dot it with r$.]

2.54* Write an expression in Cartesian coordinates for a harmonic 
plane wave of amplitude A and frequency v propagating in the positive 
x-direction.

2.55 Show that c(k$ ~ r$, t) may represent a plane wave where k$ is nor-
mal to the wavefront. [Hint: Let r$1 and r$2 be position vectors drawn to 
any two points on the plane and show that c( r$1, t) = c( r$2, t).]

2.56* Show explicitly, that the function

c(r$, t) = A exp [i(k$ ~ r$ + vt + e)]

describes a wave provided that v = v>k.

2.57* Make a table with the columns headed by u running from -p 
to 2p in intervals of p>4. In each column place the corresponding 
value of sin u and beneath those the values of sin (u + p>2). Next add 
these, column by column, to yield the corresponding values of the 
function sin u + sin (u + p>2). Plot the three functions and make 
some observations.

2.58* Make a table with the columns headed by u running from -p to 
2p in intervals of p>4. In each column place the corresponding value 
of sin u and beneath those the values of sin (u - 3p>4). Next add these, 
column by column, to yield the corresponding values of the function 
sin u + sin (u - 3p>4). Plot the three functions and make some 
 observations.

2.59* Two waves with equal frequencies and amplitudes arrive at  
the same point in space. At t = 0, the wavefunction of the first  
wave is c1(t) = A sin vt and the second wave’s wavefunction is 
c2(t) = A sin (vt + w). Express the sum of the two waves as a single 
wave. Determine its amplitude and phase shift. Compare with the previ-
ous two problems.

2.60* Make up a table with columns headed by values of kx running 
from x = -l>2 to x = +l in intervals of x of l>4. In each column 
place the corresponding values of cos kx and beneath that the values of 
cos (kx + p). Next plot the three functions cos kx, cos (kx + p), and 
cos kx + cos (kx + p).

Figure P.2.43 A harmonic wave.
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3
The work of J. Clerk Maxwell and subsequent developments 
since the late 1800s have made it evident that light is most cer-
tainly electromagnetic in nature. Classical electrodynamics, as 
we shall see, unalterably leads to the picture of a continuous 
transfer of energy by way of electromagnetic waves. In con-
trast, the more modern view of Quantum Electrodynamics  
(p. 91) describes electromagnetic interactions and the transport 
of energy in terms of massless elementary “particles” known as 
photons. The quantum nature of radiant energy is not always 
apparent, nor is it always of practical concern in Optics. There 
is a range of situations in which the detecting equipment is such 
that it is impossible, and desirably so, to distinguish individual 
quanta.

If the wavelength of light is small in comparison to the size of 
the apparatus (lenses, mirrors, etc.), one may use, as a first ap-
proximation, the techniques of Geometrical Optics. A somewhat 
more precise treatment, which is applicable as well when the di-
mensions of the apparatus are small, is that of Physical Optics. In 
Physical Optics the dominant property of light is its wave nature. 
It is even possible to develop most of the treatment without ever 
specifying the kind of wave one is dealing with. Certainly, as far 
as the classical study of Physical Optics is concerned, it will suf-
fice admirably to treat light as an electromagnetic wave.

We can think of light as the most tenuous form of matter. 
Indeed, one of the basic tenets of Quantum Mechanics is that 
both light and material particles display similar wave-particle 
properties. As Erwin C. Schrödinger (1887–1961), one of the 
founders of quantum theory, put it:

In the new setting of ideas the distinction [between particles 
and waves] has vanished, because it was discovered that all par-
ticles have also wave properties, and vice versa. Neither of the 
two concepts must be discarded, they must be amalgamated. 
Which aspect obtrudes itself depends not on the physical  
object, but on the experimental device set up to examine it.*

The quantum-mechanical treatment associates a wave equa-
tion with a particle, be it a photon, electron, proton, or whatever. 
In the case of material particles, the wave aspects are introduced 
by way of the field equation known as Schrödinger’s Equation. 

For light we have a representation of the wave nature in the 
form of the classical electromagnetic field equations of 
Maxwell. With these as a starting point one can construct a 
quantum-mechanical theory of photons and their interaction 
with charges. The dual nature of light is evidenced by the 
fact that it propagates through space in a wavelike fashion 
and yet displays particlelike behavior during the processes 
of emission and absorption. Electromagnetic radiant energy 
is created and destroyed in quanta or photons and not con-
tinuously as a classical wave. Nonetheless, its motion 
through a lens, a hole, or a set of slits is governed by wave 
characteristics. If we’re unfamiliar with this kind of behav-
ior in the macroscopic world, it’s because the wavelength  
of a material object varies inversely with its momentum  
(p. 68), and even a grain of sand (which is barely moving) 
has a wavelength so small as to be indiscernible in any con-
ceivable experiment.

The photon has zero mass, and exceedingly large num-
bers of low-energy photons can be envisioned as present in 
a beam of light. Within that model, dense streams of pho-
tons act on the average to produce well-defined classical 
fields (p. 63). We can draw a rough analogy with the f low 
of commuters through a train station during rush hour. Each 
commuter presumably behaves individually as a quantum 
of humanity, but all have the same intent and follow fairly 
similar trajectories. To a distant, myopic observer there is a 
seemingly smooth and continuous f low. The behavior of 
the stream en masse is predictable from day to day, and so 
the precise motion of each commuter is unimportant, at 
least to the observer. The energy transported by a large 
number of photons is, on the average, equivalent to the  
energy transferred by a classical electromagnetic wave.  
For these reasons the classical field representation of elec-
tromagnetic phenomena has been, and will continue to be, 
so useful. Nonetheless, it should be understood that the  
apparent continuous nature of electromagnetic waves is a 
fiction of the macroscopic world, just as the apparent con-
tinuous nature of ordinary matter is a fiction—it just isn’t 
that simple.

Quite pragmatically, then, we can consider light to be a clas-
sical electromagnetic wave, keeping in mind that there are situ-
ations for which this description is woefully inadequate.

*SOURCE: Erwin C. Schrodinger (1887–1991). Science Theory and Man, Dover 
Publications, New York, 1957.
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46 Chapter 3 Electromagnetic Theory, Photons, and Light

to the problem of electromagnetic induction in 1831. His first 
apparatus made use of two coils mounted on a wooden spool 
(Fig. 3.1a). One, called the primary, was attached to a battery 
and a switch; the other, the secondary, was attached to a galva-
nometer. He found that the galvanometer deflected in one direc-
tion just for a moment whenever the switch was closed, returning 
to zero almost immediately, despite the constant current still in 
the primary. Whenever the switch was opened, interrupting  
the primary current, the galvanometer in the secondary circuit 
momentarily swung in the opposite direction and then promptly 
returned to zero. 

Using a ferromagnetic core to concentrate the “magnetic 
force,” Faraday wound two coils around opposing sections of a 
soft iron ring (Fig. 3.1b). Now the effect was unmistakable— a 
changing magnetic field generated a current. Indeed, as he 
would continue to discover, change was the essential aspect of 
electromagnetic induction. 

By thrusting a magnet into a coil, Faraday showed that 
there is a voltage— otherwise known as the induced electro-
motive force or emf— across the coil’s terminals. (Electromo-
tive force is a dreadful, outmoded term—it’s not a force, but a 
voltage—so we’ll avoid it and just use emf.) Furthermore, the 
amplitude of the emf depends on how rapidly the magnet is 
moved. The induced emf depends on the rate-of-change of B 
through the coil and not on B itself. A weak magnet moved 
rapidly can induce a greater emf than a strong magnet moved 
slowly.

When the same changing B-field passes through two differ-
ent wire loops, as in Fig. 3.2, the induced emf is larger across 
the terminals of the larger loop. In other words, here where the 
B-field is changing, the induced emf is proportional to the area 
A of the loop penetrated perpendicularly by the field. If the 
loop is successively tilted over, as is shown in Fig. 3.3, the area 
presented perpendicularly to the field (A#) varies as A cos u, 
and, when u = 90°, the induced emf is zero because no amount 
of B-field then penetrates the loop: when ∆B>∆t Z 0, emf r A#. 
The converse also holds: when the field is constant, the in-
duced emf is proportional to the rate-of-change of the perpen-
dicular area penetrated. If a coil is twisted or rotated or even 
squashed while in a constant B-field so that the perpendicular  

3.1  Basic Laws of Electromagnetic 
Theory

Our intent in this section is to review and develop some of the 
ideas needed to appreciate the concept of electromagnetic waves.

We know from experiments that charges, even though sepa-
rated in vacuum, experience a mutual interaction. Recall the fa-
miliar electrostatics demonstration in which a pith ball somehow 
senses the presence of a charged rod without actually touching 
it. As a possible explanation we might speculate that each charge 
emits (and absorbs) a stream of undetected particles (virtual 
photons). The exchange of these particles among the charges 
may be regarded as the mode of interaction. Alternatively, we 
can take the classical approach and imagine instead that every 
charge is surrounded by something called an electric field. We 
then need only suppose that each charge interacts directly with 
the electric field in which it is immersed. Thus if a point charge q. 
experiences a force F$E, the electric field E$  at the position of the 
charge is defined by F$E = q.E$ . In addition, we observe that a 
moving charge may experience another force F$M, which is pro-
portional to its velocity v$. We are thus led to define yet another 
field, namely, the magnetic induction or just the magnetic field 
BB$ , such that F$M = q.v$ : B$ . If forces F$E and F$M occur concur-
rently, the charge is moving through a region pervaded by both 
electric and magnetic fields, whereupon F$ = q.E$ + q.v$ : B$ . 
The units of E$  are volts per meter or newtons per coulomb. The 
unit of B$  is the tesla.

As we’ll see, electric fields are generated by both electric 
charges and time-varying magnetic fields. Similarly, magnetic 
fields are generated by electric currents and by time-varying 
electric fields. This interdependence of E$  and B$  is a key point in 
the description of light.

3.1.1 Faraday’s Induction Law

“Convert magnetism into electricity” was the brief remark  
Michael Faraday jotted in his notebook in 1822, a challenge he 
set himself with an easy confidence that made it seem so attain-
able. After several years doing other research, Faraday returned 

Battery

SecondaryCoil

Galvanometer

B

(a)
i

Primary Secondary

Iron core

(b)

B

Coil

Wooden core

PrimarySwitch

Figure 3.1  (a) The start of a current in one coil produces a time-varying magnetic field that induces 
a current in the other coil. (b) An iron core couples the primary coil to the secondary.
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∆B
∆t

Figure 3.2  A larger time-varying 
magnetic flux passes through the 
larger loop and induces a greater 
emf across its terminals.

Large emf

Small emf

Zero emf
B

(a)

u

u
r r cos u

B

A

(b)

∆B
∆t

Figure 3.3  (a) The induced emf is proportional to the perpendicular  
area intercepted by the magnetic field. (b) That perpendicular area  
varies as cos u.

d S�

d��

B�

C Figure 3.4  B$-field 
through an open area A, 
which is bounded by the 
closed curve C.

area initially penetrated is altered, there will be an induced 
emf r ∆A#>∆t and it will be proportional to B. In summary,  
when A# = constant, emf r A#∆B>∆t and, when B = constant,   
emf r B∆A#>∆t. 

All of this suggests that the emf depends on the rate-of-
change of both A# and B, that is, on the rate of change of their 
product. This should bring to mind the notion of the flux of the 
field—the product of field and area where the penetration is per-
pendicular. Accordingly, the flux of the magnetic field through 
the wire loop is

ΦM = B# A = BA# = BA cos u

More generally, if B varies in space, as it’s likely to, the flux of 
the magnetic field through any open area A bounded by the con-
ducting loop (Fig. 3.4) is given by

 ΦM = 6
A
B$ · dS $ (3.1)

where dS $ points outward perpendicular to the surface. The 
induced emf, developed around the loop, is then

 emf = -  
dΦM

dt
 (3.2)

The minus sign tells us that the induced emf will drive an  
induced current, which will create an induced magnetic field 
that opposes the flux change that caused it in the first place. 
That’s Lenz’s Law and it’s very useful for figuring out the direc-
tions of induced fields. If the induced magnetic field did not 
oppose the flux change, that change would increase endlessly. 
We should not, however, get too involved with the image of 
wires and current and emf. Our present concern is with the elec-
tric and magnetic fields themselves.

In very general terms, an emf is a potential difference, and 
that’s a potential-energy difference per unit charge. A potential-
energy difference per unit charge corresponds to work done per 
unit charge, which is force per unit charge times distance, and 
that’s electric field times distance. The emf exists only as a re-
sult of the presence of an electric field: 

 emf = C
C
E$ · dO $ (3.3)

taken around the closed curve C, corresponding to the loop. 
Equating Eqs. (3.2) and (3.3), and making use of Eq. (3.1), we get

 C
C
E$ · dO $ = -  

d
dt6A

B$ · dS $ (3.4)

Here the dot products give us the amount of E$  parallel to the path 
C and the amount of B$  perpendicular to the surface A. Notice 
that A is not a closed area [as it will be in Eqs. 3.7) and (3.9)].

We began this discussion by examining a conducting loop, 
and have arrived at Eq. (3.4); this expression, except for the 
path C, contains no reference to the physical loop. In fact, the 
path can be chosen arbitrarily and need not be within, or any-
where near, a conductor. The electric field in Eq. (3.4) arises 
not from the presence of electric charges but rather from the 
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48 Chapter 3 Electromagnetic Theory, Photons, and Light

from fluid dynamics, where both the concepts of field and flux 
were introduced. The flow of a fluid, as represented by its veloc-
ity field, is depicted via streamlines, much as the electric field is 
pictured via field lines. Figure 3.6 shows a portion of a moving 
fluid within which there is a region isolated by an imaginary 
closed surface. The discharge rate, or volume flux (Av), is the 
volume of fluid flowing past a point in the tube per unit time. The 
volume flux through both end surfaces is equal in magnitude—
what flows in per second flows out per second. The net fluid flux 
(into and out of the closed area) summed over all the surfaces 
equals zero. If, however, a small pipe is inserted into the region 
either sucking out fluid (a sink) or delivering fluid (a source), the 
net flux will then be nonzero. 

To apply these ideas to the electric field, consider an imagi-
nary closed area A placed in some arbitrary electric field, as de-
picted in Fig. 3.7. The flux of electric field through A is taken to be

 ΦE = T
A
E$ · dS $  (3.6)

The circled double integral serves as a reminder that the sur-
face is closed. The vector dS $ is in the direction of an outward 
normal. When there are no sources or sinks of the electric 
field within the region encompassed by the closed surface, 
the net flux through the surface equals zero—that much is a 
general rule for all such fields.

In order to find out what would happen in the presence of 
internal sources and sinks, consider a spherical surface of  

time-varying magnetic field. With no charges to act as sources 
or sinks, the field lines close on themselves, forming loops  
(Fig. 3.5). We can confirm the direction of the induced E-field 
by imagining that there was a wire loop in space being pene-
trated perpendicularly by the increasing flux. The E-field in 
the region of the loop must be such as to drive an induced cur-
rent. That current (flowing clockwise looking downward) 
would, by Lenz’s Law, create a downward induced magnetic 
field that would oppose the increasing upward flux.

We are interested in electromagnetic waves traveling in 
space where there are no wire loops, and the magnetic flux 
changes because B$  changes. The Induction Law (Eq. 3.4) can 
then be rewritten as

 C
C
E$ · dO $ = - 6

A

0B $
0t

· dS $ (3.5)

A partial derivative with respect to t is taken because BB$  is usu-
ally also a function of the space variables. This expression in 
itself is rather fascinating, since it indicates that a time-varying 
magnetic field will have an electric field associated with it.

The line integral around a closed path in any field is called 
the circulation of that field. Here it equals the work done on a 
unit charge in moving it once around the path C.

3.1.2 Gauss’s Law—Electric

Another fundamental law of electromagnetism is named after the 
German mathematician Karl Friedrich Gauss (1777–1855). 
Gauss’s Law is about the relationship between the flux of the 
electric field and the sources of that flux, charge. The ideas derive 

B$

E$

ΦM

Increasing

Figure 3.5  A time-varying B$-field. Surrounding each point where ΦM is 
changing, the E$-field forms closed loops. Imagine a current pushed along 
by E$. It would induce a B$-field downward that opposes the upward increas-
ing B$-field that gave rise to it.

Johann Karl 
Friedrich Gauss (Pearson 

Education, Inc.)

A�2v2

A�1 v1 Figure 3.6  A tube of fluid flow. 
Notice how the area vectors on  
the ends point outward.
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In order to apply the calculus, it’s useful to approximate the 
charge distribution as being continuous. Then if the volume en-
closed by A is V and the charge distribution has a density r, 
Gauss’s Law becomes

 T
A
 E$ · dS $ =

1
P0

 333
V

 r  dV  (3.7)

The field is produced by charge, and the net flux of the field through 
any closed surface is proportional to the total charge enclosed.

Electric Permittivity

For the special case of vacuum, the electric permittivity of free 
space is given by P0 = 8.854 2 * 10-12 C2>N · m2. The value 
of P0 is fixed by definition, and the weird numerical value it has 
is more a result of the units selected than it is an insight into the 
nature of the vacuum. If the charge is embedded in some mate-
rial medium its permittivity (P) will appear in Eq. (3.7) instead 
of P0. One function of the permittivity in Eq. (3.7) is, of course, 
to balance out the units, but the concept is basic to the descrip-
tion of the parallel plate capacitor (see Section 3.1.4). There P is 
the medium-dependent proportionality constant between the 
device’s capacitance and its geometric characteristics. Indeed P 
is often measured by a procedure in which the material under 
study is placed within a capacitor. Conceptually, the permittiv-
ity embodies the electrical behavior of the medium; in a sense, 
it is a measure of the degree to which the material is permeated 
by the electric field in which it is immersed, or if you like, how 
much field the medium will “permit.”

In the early days of the development of the subject, people in 
various areas worked in different systems of units, a state of af-
fairs leading to some obvious difficulties. This necessitated the 
tabulation of numerical values for P in each of the different sys-
tems, which was, at best, a waste of time. The same problem 
regarding densities was neatly avoided by using specific gravity 
(i.e., density ratios). Thus it was advantageous to tabulate val-
ues not of P but of a new related quantity that is independent of 
the system of units being used. Accordingly, we define KE as 
P>P0. This is the dielectric constant (or relative permittivity), 
and it is appropriately unitless. The permittivity of a material 
can then be expressed in terms of P0 as

 P = KE P0 (3.8)

and, of course, KE for vacuum is 1.0.
Our interest in KE anticipates the fact that the permittivity is 

related to the speed of light in dielectric materials, such as glass, 
air, and quartz.

3.1.3 Gauss’s Law—Magnetic

There is no known magnetic counterpart to the electric charge; 
that is, no isolated magnetic poles have ever been found, despite 

radius r centered on and surrounding a positive point-charge (q~) 
in vacuum. The E-field is everywhere outwardly radial, and at 
any distance r it is entirely perpendicular to the surface: 
E = E# and so

ΦE = T
A
E# dS = T

A
E dS

Moreover, since E is constant over the surface of the sphere, it 
can be taken out of the integral:

ΦE = E T
A

 dS = E4pr2

But we know from Coulomb’s Law that the point-charge has an 
electric field given by

E =
1

4pP0
 
q~
r2

and so 

ΦE =
q~
P0

This is the electric flux associated with a single point-charge q. 
within the closed surface. Since all charge distributions are 
made up of point-charges, it’s reasonable that the net flux due 
to a number of charges contained within any closed area is

ΦE =
1
P0

^q~

Combining the two equations for ΦE, we get Gauss’s Law,

T
A

 E$ · dS $ =
1
P0

^q.

This tells us that if more flux passes out of some volume of 
space than went into that volume it must contain a net positive 
charge, and if less flux emerges the region must contain a net 
negative charge.

dS�

E�

Figure 3.7  E$-field 
through a closed area A.
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50 Chapter 3 Electromagnetic Theory, Photons, and Light

experiences a force when placed in a magnetic field B equal  
to qmB in the direction of B, just as an electric charge qe ex-
periences a force qeE. Suppose we carry this north-seeking 
monopole around a closed circular path perpendicular to and 
centered on a current-carrying wire and determine the work 
done in the process. Since the direction of the force changes, 
because B$  changes direction, we will have to divide the circular 
path into tiny segments (∆/) and sum up the work done over 
each. Work is the component of the force parallel to the dis-
placement times the displacement: ∆W = qmB‘ ∆/, and the total 
work done by the field is ^qmB‘ ∆/. In this case, B$  is every-
where tangent to the path, so that B‘ = B = m0i>2pr, which is 
constant around the circle. With both qm and B constant, the 
summation becomes

qm^B‘ ∆/ = qmB^∆/ = qmB2pr

where ^∆/ = 2pr is the circumference of the circular path.
If we substitute for B the equivalent current expression, 

namely, m0i>2pr, which varies inversely with r, the radius can-
cels—the work is independent of the circular path taken. Since 
no work is done in traveling perpendicular to B$ , the work must 
be the same if we move qm (out away from the wire or in toward 
it) along a radius, carrying it from one circular segment to another 
as we go around. Indeed, W is independent of path altogether—
the work will be the same for any closed path encompassing the 
current. Putting in the current expression for B leads to 

qm^B‘ ∆/ =qm (m0i>2pr)2pr

Canceling the “charge” qm, we get the rather remarkable expression

^B‘ ∆/ = m0i

which is to be summed over any closed path surrounding the 
current. The magnetic charge has disappeared, which is nice, 
since we no longer expect to be able to perform this little 
thought experiment with a monopole. Still, the physics was 
consistent, and the equation should hold, monopoles or no. 
Moreover, if there are several current-carrying wires encom-
passed by the closed path, their fields will superimpose and add, 
yielding a net field. The equation is true for the separate fields 
and must be true as well for the net field. Hence

^B‘ ∆/ = m0^i

As ∆/ S 0, the sum becomes an integral around a closed path:

C
C

 B$ · dO $ = m0^i

Today this equation is known as Ampère’s Law, though at one 
time it was commonly referred to as the “work rule.” It relates a 
line integral of B$  tangent to a closed curve C, with the total cur-
rent i passing within the confines of C.

extensive searching, even in lunar soil samples. Unlike the 
electric field, the magnetic field B$  does not diverge from or 
converge toward some kind of magnetic charge (a monopole 
source or sink). Magnetic fields can be described in terms of 
current distributions. Indeed, we might envision an elementary 
magnet as a small current loop in which the lines of B$  are con-
tinuous and closed. Any closed surface in a region of magnetic 
field would accordingly have an equal number of lines of B$  
entering and emerging from it (Fig. 3.8). This situation arises 
from the absence of any monopoles within the enclosed vol-
ume. The flux of magnetic field ΦM through such a surface is 
zero, and we have the magnetic equivalent of Gauss’s Law:

 ΦM = T
A

 B$ · dS $ = 0 (3.9)

3.1.4 Ampère’s Circuital Law

Another equation that will be of great interest is associated   
with André Marie Ampère (1775–1836). Known as the Circuit-
al Law, its physical origins are a little obscure—it will take a bit 
of doing to justify it, but it’s worth it. Accordingly, imagine a 
straight current-carrying wire in vacuum and the circular B-
field surrounding it (Fig. 3.9). We know from experiments that 
the magnetic field of a straight wire carrying a current i is 
B = m0i>2pr. Now, suppose we put ourselves back in time to 
the nineteenth century, when it was common to think of mag-
netic charge (qm). Let’s define this monopole charge so that it 

d S�

B�
Figure 3.8  B$-field 
through a closed area A.

r

∆ℓ
i

B

Figure 3.9  The B$-field surrounding a  
current-carrying wire.

M03_HECH6933_05_GE_C03.indd   50 26/08/16   11:50 AM



 3.1 Basic Laws of Electromagnetic Theory 51

As the charge varies, the electric field changes, and taking the 
derivative of both sides yields

P 
0E
0t

=
i
A

and P(0E>0t) is effectively a current density. James Clerk Max-
well hypothesized the existence of just such a mechanism, 
which he called the displacement current density,* defined by

 J$D K P 
0E$
0t

 (3.12)

The restatement of Ampère’s Law as

 C
C
B$ · dO $ = m6

A
aJ$ + P 

0E$
0t
b · dS $ (3.13)

was one of Maxwell’s greatest contributions. It points out that 
even when J$ = 0, a time-varying E$-field will be accompanied 
by a B$-field (Fig. 3.12).

3.1.5 Maxwell’s Equations

The set of integral expressions given by Eqs. (3.5), (3.7), (3.9), 
and (3.13) have come to be known as Maxwell’s Equations. 
Remember that these are generalizations of experimental  

When the current has a nonuniform cross section, Ampère’s 
Law is written in terms of the current density or current per unit 
area J, integrated over the area:

 C
C
 B$ · dO $ = m06

A
 J$ · dS $ (3.10)

The open surface A is bounded by C (Fig. 3.10). The quantity 
m0 is called the permeability of free space and it’s defined as 
4p * 10-7 N · s2>C2. When the current is imbedded in a mate-
rial medium its permeability (m) will appear in Eq. (3.10). As in 
Eq. (3.8),

 m = KMm0 (3.11)

with KM being the dimensionless relative permeability.
Equation (3.10), though often adequate, is not the whole 

truth. Ampère’s Law is not particular about the area used, pro-
vided it’s bounded by the curve C, which makes for an obvious 
problem when charging a capacitor, as shown in Fig. 3.11a. If 
flat area A1 is used, a net current of i flows through it and there 
is a B$-field along curve C. The right side of Eq. (3.10) is  
nonzero, so the left side is nonzero. But if area A2 is used in-
stead to encompass C, no net current passes through it and the 
field must now be zero, even though nothing physical has actu-
ally changed. Something is obviously wrong!

Moving charges are not the only source of a magnetic field. 
While charging or discharging a capacitor, one can measure a  
B$-field in the region between its plates (Fig. 3.11b), which is 
indistinguishable from the field surrounding the leads, even 
though no electric current actually traverses the capacitor.  
Notice, however, that if A is the area of each plate and Q the 
charge on it,

E =
Q

PA

d S�

J�

B�

C

Figure 3.10  Current density 
through an open area A.
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Figure 3.11  (a) Ampère’s Law is indifferent to which area A1 or A2 is 
bounded by the path C. Yet a current passes through A1 and not through 
A2, and that means something is very wrong. (b) B$-field concomitant with 
a time-varying E$-field in the gap of a capacitor.

*Maxwell’s own words and ideas concerning this mechanism are examined in  
an article by A. M. Bork, Am. J. Phys. 31, 854 (1963). Incidentally, Clerk is  
pronounced clark.
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52 Chapter 3 Electromagnetic Theory, Photons, and Light

in terms of derivatives at specific points in space and that will 
provide a whole new perspective. To do that, if only in outline 
form (for a more rigorous treatment see Appendix 1), con-
sider the differential vector operator known as “del,” symbol-
ized by an inverted capital delta ∇ and written in Cartesian 
coordinates as

�$ = î 
0
0x

+ ĵ 
0
0y

+ k̂ 
0
0z

Del can operate on a vector field via the dot product to produce 
a scalar, or via the cross product to produce a vector. Thus with 
E$ = Exî + Eyĵ + Ezk̂

�$ · E$ = a î 
0
0x

+ ĵ 
0
0y

+ k̂ 
0
0z
b · (Exî + Eyĵ + Ezk̂)

This is referred to as the divergence of the vector field E$ ,

div E$ = �$ · E$ =
0Ex

0x
+

0Ey

0y
+

0Ez

0z

a name given to it by the great English electrical engineer and 
physicist Oliver Heaviside (1850–1925). The divergence of E$  is 
the change in Ex along the x-axis plus the change in Ey along the 
y-axis plus the change in Ez along the z-axis. And it can be pos-
itive, negative, or zero.  The equation tells us how to calculate 
divergence, but it doesn’t help any in figuring out what it means 
physically. 

It’s easier to visualize, and certainly easier to talk about, a 
moving fluid than it is a static electric field and so the imagery 
tends to get confused.  The best way to think of all of this is to 
picture a streaming fluid field in its steady state and then in 
your mind’s eye take a photograph of it; the electric field due 
to some charge distribution is analogous to that static image. 
Loosely speaking, a positive divergence gives rise to a dis-
persing, a moving away of the field from a specific location. 
At any point in a field if the “flow” is greater away than to-
ward that point, there is a divergence there and it is positive. 
As we saw with Gauss’s Law a source produces a net flux 
through a closed surface surrounding it, and similarly a source 
(a positive charge) at a point in space produces a positive diver-
gence at that point. 

The divergence of a field can be less than obvious, since it 
depends on both the strength of the field and its tendency to be 
either converging toward or diverging from the point of interest. 
For example, consider a positive charge at point P1. The electric 
field “flows” outward—using the word “flow” very loosely—
and at P1 there is a positive divergence. Yet beyond P1 anywhere 
in the surrounding space at some point P2, the field does indeed 
spread out as 1>r2 (contributing a positive divergence), but it 
also weakens as 1>r2 (contributing a negative divergence). The 
result is that everywhere beyond the point-charge the div E$  is 
zero. The field does not tend to diverge from any point that it 
passes through in the surrounding space. That conclusion can 

results. The simplest statement of Maxwell’s Equations applies 
to the behavior of the electric and magnetic fields in free space, 
where P = P0 and m = m0. There are presumably no currents 
and no charges floating around and so both r and J$ are zero. In 
that instance,

 C
C

 E$ · dO $ = -33
A

 
0B$
0t

· dS $ (3.14)

 C
C

 B$ · dO $ = m0P033
A

 
0E$
0t

· dS $ (3.15)

 T
A

 B$ · dS $ = 0 (3.16)

 T
A

 E$ · dS $ = 0 (3.17)

Observe that except for a multiplicative scalar, the electric 
and magnetic fields appear in the equations with a remarkable 
symmetry. However E$  affects B$ , B$  will in turn affect E$ . The 
mathematical symmetry implies a good deal of physical sym-
metry.

When a vector is associated with every point in a region of 
space, we have what’s called a vector field; the electric and 
magnetic fields are vector fields. Maxwell’s Equations as 
written above describe these fields using integrals computed 
around curves and over surfaces in extended regions of space. 
By contrast, each of Maxwell’s Equations can be reformulated 

B�

E�

ΦE

Increasing

Figure 3.12  A time-varying E$-field. Surrounding each point where ΦE 
is changing, the B$-field forms closed loops. Considering Eq. (3.12), an 
increasing upward electric field is equivalent to an upward displacement 
current. According to the right-hand rule the induced B-field circulates 
counterclockwise looking down.
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This multiplies out to

�$ : E$ = a0Ez

0y
-

0Ey

0z
b î + a0Ex

0z
-

0Ez

0x
b ĵ + a0Ey

0x
-

0Ex

0y
b k̂

Each parenthetical term provides the tendency for the E-field to 
circulate around the associated unit vector. Thus the first term 
deals with circulation of the field in the yz-plane about the î unit 
vector passing through a specific point in space. The resulting 
circulation is the vector sum of the individual contributions.

The mathematical relationship between the circulation of the 
electric field and its curl can be appreciated by going back to 
Faraday’s Law. Accordingly, consider a point P in an E-field  
lying on a small area ∆A bounded by a closed curve C. The cir-
culation of the field is given by the left side of Eq. (3.14), where-
as the right side is an area integral. Accordingly, divide the line 
integral by the area ∆A to get the circulation per unit area. We 
want the tendency for the field to circulate around the point so 
shrink C, and hence ∆A, down to P. That is, make C infinitesi-
mal, whereupon the circulation per unit area becomes the curl:

lim
∆A S 0

 
1

∆  A
 C

C
 E$ · dO $ = curl E$ = �$ : E$

Although we haven’t actually proven it (that’s left for Appendix 1) 
we can anticipate from Eq. (3.14) that the differential version 
of Faraday’s Law is

 �$ : E$ = -  
0B$
0t

 [A1.5]

In electrostatics E-fields begin and end on charges, they do not 
close on themselves, and they have no circulation. Therefore the 
curl of any electrostatic E-field is zero. Only E-fields created by 
time-varying B-fields have curl.

Essentially the same arguments can be applied to Ampère’s 
Law, which for simplicity we will look at only in vacuum  
[Eq. (3.15)]. It deals with the circulation of the magnetic field 
arising from a time-varying E-field. By analogy with the above 
discussion the differential version of Ampère’s Law is

�$ : B$ = m0P0 
0E$
0t

These vector formulas are beautifully concise and easy to re-
member. In Cartesian coordinates they actually correspond to 
the following eight differential equations:

Faraday’s Law:

 
0Ez

0y
-

0Ey

0z
= -  

0Bx

0t
  (i)

 
0Ex

0z
-

0Ez

0x
= -  

0By

0t
  (ii) (3.18)

 
0Ey

0x
-

0Ex

0y
= -  

0Bz

0t
  (iii)

be generalized: a nonzero divergence of the electric field occurs 
only at the locations where there are charges.

Again loosely speaking, flux is related to net “flow” through 
a surface and divergence is related to net “flow” from a point. 
The two can be tied together by another wonderful mathemati-
cal definition of the divergence of a vector field, namely,

lim
∆V S 0

 
1

∆V
 T

A
 E$ · dS $ = div E$ = �$ · E$

In other words, take any point in the vector field and surround it 
by a small closed surface of area A and small volume ∆V . Write 
an expression for the net flux of the field through A—that’s the 
above double integral. Now divide the net flux by the volume 
enclosed within A to get the flux per unit volume. Then shrink 
that volume down to a point. What results is the divergence of 
the field at that point. You can stop the shrinking process when 
the surface is very very tiny and see if the net flux is positive, 
negative, or zero; if the shrinking is then continued, in the limit 
the divergence will turn out to be correspondingly positive, 
negative or zero. So flux and divergence are indeed intimately 
related concepts.

It follows from Gauss’s Law in integral form, Eq. (3.7), that 
the net flux equals the net charge enclosed. Dividing by volume 
yields the charge density r at the point. Thus the differential 
version of Gauss’s Law for electric fields is

 �$ · E$ =
r

P0
 [A1.9]

If we know how the E-field differs from point to point in space 
we can determine the charge density at any point, and vice 
versa.

In much the same way, the integral form of Gauss’s Law for 
magnetism, Eq. (3.9), and the fact there are no magnetic charges, 
lead to the differential version of Gauss’s Law for magnetic 
fields:

 �$ · B$ = 0 [A1.10]

The divergence of the magnetic field at any point in space is 
zero.

Now let’s revisit Faraday’s Law [Eq. (3.14)] with the intent 
of producing a differential form of it. Recall that the law advises 
that a time-varying B-field is always accompanied by an E-field 
whose lines close on themselves. The left side of Eq. (3.14) is 
the circulation of the electric field. To accomplish the reformu-
lation we need to use the differential operator Maxwell called 
the curl of the vector field because it reveals a tendency for the 
field to circulate around a point in space. The curl operator is sym-
bolized by the vector �$  : , which is read “del cross.” In Carte-
sian coordinates it is

�$ : E$ = a î 
0
0x

+ ĵ 
0
0y

+ k̂ 
0
0z
b : (Exî + Ey ĵ + Ezk̂)
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The time-varying electric field induces a magnetic field by 
means of Eq. (3.15) or (3.19). If the charge’s velocity is constant, 
the rate-of-change of the E$-field is steady, and the resulting  
B$-field is constant. But here the charge is accelerating. 0E$>0t is 
itself not constant, so the induced B$-field is time-dependent. The 
time-varying B$-field generates an E$-field, Eq. (3.14) or (3.18), 
and the process continues, with E$  and B$  coupled in the form of 
a pulse. As one field changes, it generates a new field that extends 
a bit farther, and the pulse moves out from one point to the next 
through space.

We can draw an overly mechanistic but rather picturesque 
analogy, if we imagine the electric field lines as a dense radial 
distribution of strings (p. 70). When somehow plucked, each string 
is distorted, forming a kink that travels outward from the source. All 
these kinks combine at any instant to yield a three-dimensional 
expanding pulse in the continuum of the electric field.

The E$- and B$-fields can more appropriately be considered as 
two aspects of a single physical phenomenon, the electromag-
netic field, whose source is a moving charge. The disturbance, 
once it has been generated in the electromagnetic field, is an 
untethered wave that moves beyond its source and independently 
of it. Bound together as a single entity, the time-varying electric 
and magnetic fields regenerate each other in an endless cycle. 
The electromagnetic waves reaching us from the relatively 
nearby Andromeda galaxy (which can be seen with the naked 
eye) have been on the wing for 2 200 000 years.

We have not yet considered the direction of wave propaga-
tion with respect to the constituent fields. Notice, however, that 
the high degree of symmetry in Maxwell’s Equations for free 
space suggests that the disturbance will propagate in a direction 
that is symmetrical to both E$  and B$ . That implies that an elec-
tromagnetic wave cannot be purely longitudinal (i.e., as long as 
E$  and B$  are not parallel). Let’s now replace conjecture with a 
bit of calculation.

Appendix 1 shows that Maxwell’s Equations for free space 
can be manipulated into the form of two extremely concise vec-
tor expressions:

 ∇2E$ = P0m0 
02E$
0t2  [A1.26]

and ∇2B$ = P0m0 
02B$
0t2  [A1.27]

The Laplacian,* ∇2, operates on each component of E$  and B$ , 
so that the two vector equations actually represent a total of six 
scalar equations. In Cartesian coordinates,

 
02Ex

0x2 +
02Ex

0y2 +
02Ex

0z2 = P0m0 
02Ex

0t2  

Ampères’s Law:

 
0Bz

0y
-

0By

0z
= m0P0 

0Ex

0t
  (i)

 
0Bx

0z
-

0Bz

0x
= m0P0 

0Ey

0t
  (ii) (3.19)

 
0By

0x
-

0Bx

0y
= m0P0 

0Ez

0t
  (iii)

Gauss’s Law Magnetic:

 
0Bx

0x
+

0By

0y
+

0Bz

0z
= 0 (3.20)

Gauss’s Law Electric:

 
0Ex

0x
+

0Ey

0y
+

0Ez

0z
= 0 (3.21)

We now have all that is needed to comprehend the magnificent 
process whereby electric and magnetic fields, inseparably coupled 
and mutually sustaining, propagate out into space as a single entity, 
free of charges and currents, sans material matter, sans aether.

3.2 Electromagnetic Waves

We have relegated to Appendix 1 a complete and mathemati-
cally elegant derivation of the electromagnetic wave equation. 
Here the focus is on the equally important task of developing a 
more intuitive appreciation of the physical processes involved. 
Three observations, from which we might build a qualitative 
picture, are readily available to us: the general perpendicularity 
of the fields, the symmetry of Maxwell’s Equations, and the 
interdependence of E$  and B$  in those equations.

In studying electricity and magnetism, one soon becomes 
aware that a number of relationships are described by vector 
cross-products or, if you like, right-hand rules. In other words, 
an occurrence of one sort produces a related, perpendicularly 
directed response. Of immediate interest is the fact that a time-
varying E$-field generates a B$-field, which is everywhere per-
pendicular to the direction in which E$  changes (Fig. 3.12). In 
the same way, a time-varying B$-field generates an E$-field, 
which is everywhere perpendicular to the direction in which B$  
changes (Fig. 3.5). Consequently, we might anticipate the gen-
eral transverse nature of the E$- and B$-fields in an electromag-
netic disturbance.

Consider a charge that is somehow caused to accelerate from 
rest. When the charge is motionless, it has associated with it a 
constant radial E$-field extending in all directions presumably to 
infinity (whatever that means). At the instant the charge begins 
to move, the E$-field is altered in the vicinity of the charge, and 
this alteration propagates out into space at some finite speed. 

*In Cartesian coordinates,

∇2E$ = î∇2Ex + ĵ∇2Ey + k̂∇2Ez
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This brilliant analysis was one of the great intellectual tri-
umphs of all time. It has become customary to designate the 
speed of light in vacuum by the symbol c, which comes from 
the Latin word celer, meaning fast. In 1983 the 17th Con-
férence Générale des Poids et Mesures in Paris adopted a new 
definition of the meter and thereby fixed the speed of light in 
vacuum as exactly

c = 2.997 924 58 * 108 m>s
The speed of light as given by Eq. (3.24) is independent of both 
the motion of the source and the observer. That’s an extraordi-
nary conclusion and it’s amazing that no one seems to have ap-
preciated its implications until Einstein formulated the Special 
Theory of Relativity in 1905.

3.2.1 Transverse Waves

The experimentally verified transverse character of light must 
now be explained within the context of electromagnetic theory. 
To that end, consider the fairly simple case of a plane wave 
propagating in vacuum in the positive x-direction. The electric 
field intensity is a solution of Eq. [A1.26], where E$  is constant 
over each of an infinite set of planes perpendicular to the x-axis. 
It is therefore a function only of x and t; that is, E$ =  E$  (x, t).  
We now refer back to Maxwell’s Equations, and in particular 
to Eq. (3.21), which is generally read as the divergence of E$  
equals zero. Since E$  is not a function of either y or z, the equa-
tion can be reduced to

 
0Ex

0x
= 0 (3.25)

If Ex is not zero—that is, if there is some component of the 
field in the direction of propagation—this expression tells us 
that it does not vary with x. At any given time, Ex is constant 
for all values of x, but of course, this possibility cannot 
therefore correspond to a traveling wave advancing in the 
positive x-direction. Alternatively, it follows from Eq. (3.25) 
that for a wave, Ex = 0; the electromagnetic wave has no 
electric field component in the direction of propagation. The 
E$ -field associated with the plane wave is then exclusively 
transverse.

The fact that the E$-field is transverse means that in order 
to completely specify the wave we will have to specify the 
moment-by-moment direction of E$ . Such a description cor-
responds to the polarization of the light, and it will be treat-
ed in Chapter 8. Without any loss of generality, we deal here 
with plane or linearly polarized waves, for which the direc-
tion of the vibrating E$-vector is fixed. Thus we orient our 
coordinate axes so that the electric field is parallel to the y-
axis, whereupon

 E$ = ĵEy(x, t) (3.26)

 
02Ey

0x2 +
02Ey

0y2 +
02Ey

0z2 = P0m0 
02Ey

0t2  (3.22)

 
02Ez

0x2 +
02Ez

0y2 +
02Ez

0z2 = P0m0 
02Ez

0t2  

 
02Bx

0x2 +
02Bx

0y2 +
02Bx

0z2 = P0m0 
02Bx

0t2  

 
02By

0x2 +
02By

0y2 +
02By

0z2 = P0m0 
02By

0t2  (3.23)

 
02Bz

0x2 +
02Bz

0y2 +
02Bz

0z2 = P0m0 
02Bz

0t2  

Expressions of this sort, which relate the space and time varia-
tions of some physical quantity, had been studied long before 
Maxwell’s work and were known to describe wave phenomena 
(p. 20). Each and every component of the electromagnetic field 
(Ex, Ey, Ez, Bx, By, Bz) obeys the scalar differential wave equation

 
02c

0x2 +
02c

0y2 +
02c

0z2 =
1

v2 
02c

0t2  [2.60]

provided that

 v = 1>2P0m0  (3.24)

To evaluate v, Maxwell made use of the results of electrical  
experiments performed in 1856 in Leipzig by Wilhelm Weber 
(1804–1891) and Rudolph Kohlrausch (1809–1858). Equivalently, 
nowadays m0 is assigned a value of 4p * 10-7 m·kg>C2 in SI 
units, and until recently one might determine P0 directly from 
simple capacitor measurements. In any event, in modern units

P0m0 ≈ (8.85 * 10-12 s2·C2>m3·kg)(4p * 10-7 m·kg>C2)

or P0m0 ≈ 11.12 * 11-18 s2>m2 

And now the moment of truth—in free space, the predicted 
speed of all electromagnetic waves would then be

v =
12P0m0

≈ 3 * 108 m>s

This theoretical value was in remarkable agreement with the 
previously measured speed of light (315 300 km>s) determined 
by Fizeau. The results of Fizeau’s experiments, performed in 
1849 with a rotating toothed wheel, were available to Maxwell 
and led him to comment:

This velocity [i.e., his theoretical prediction] is so nearly that of 
light, that it seems we have strong reason to conclude that light itself 
(including radiant heat, and other radiations if any) is an electromag-
netic disturbance in the form of waves propagated through the elec-
tromagnetic field according to electromagnetic laws. (SOURCE: 
James Clark Maxwell, 1852)
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56 Chapter 3 Electromagnetic Theory, Photons, and Light

The constant of integration, which represents a time-independent 
field, has been disregarded. Comparison of this result with  
Eq. (3.28) makes it evident that in vacuum

 Ey = cBz (3.30)

Since Ey and Bz differ only by a scalar, and so have the same 
time dependence, E$  and B$  are in-phase at all points in space. 
Moreover, E$ = ĵEy(x, t) and B$ = k̂Bz(x, t) are mutually perpen-
dicular, and their cross-product, E$ : B$ , points in the propaga-
tion direction, î (Fig. 3.14).

In ordinary dielectric materials, which are essentially non-
conducting and nonmagnetic, Eq. (3.30) can be generalized:

E = vB

where v is the speed of the wave in the medium and v = 1>1Pm.
Plane waves, though important, are not the only solutions to 

Maxwell’s Equations. As we saw in the previous chapter, the 
differential wave equation allows many solutions, among which 
are cylindrical and spherical waves (Fig. 3.15). Still, the point 
must be made again that spherical EM waves, although a useful 
notion that we will occasionally embrace, do not actually exist. 
Indeed, Maxwell’s Equations forbid the existence of such waves. 
No arrangement of emitters can have their radiation fields com-
bine to produce a truly spherical wave. Moreover, we know from 
Quantum Mechanics that the emission of radiation is fundamen-
tally anisotropic. Like plane waves, spherical waves are an ap-
proximation to reality.

Return to Eq. (3.18) and the curl of the electric field. Since 
Ex = Ez = 0 and Ey is a function only of x and not of y and z, it 
follows that

 
0Ey

0x
= -  

0Bz

0t
 (3.27)

Therefore Bx and By are constant and of no interest at present.  
The time-dependent B$-field can only have a component in the 
z-direction. Clearly then, in free space, the plane electromag-
netic wave is transverse (Fig. 3.13). Except in the case of normal 
incidence, such waves propagating in real material media are 
sometimes not transverse—a complication arising from the fact 
that the medium may be dissipative or contain free charge. For the 
time being we shall be working with only dielectric (i.e., noncon-
ducting) media that are homogeneous, isotropic, linear, and sta-
tionary, in which case plane electromagnetic waves are transverse.

We have not specified the form of the disturbance other than 
to say that it is a plane wave. Our conclusions are therefore 
quite general, applying equally well to both pulses and continu-
ous waves. We have already pointed out that harmonic func-
tions are of particular interest because any waveform can be 
expressed in terms of sinusoidal waves using Fourier techniques 
(p. 310). We therefore limit the discussion to harmonic waves 
and write Ey(x, t) as

 Ey(x, t) = E0y cos [v(t - x>c) + e] (3.28)

the speed of propagation being c. The associated magnetic flux 
density can be found by directly integrating Eq. (3.27), that is,

Bz = -L  
0Ey

0x
  dt

Using Eq. (3.28), we obtain

Bz = -  
E0y v

c L  sin [v(t - x>c) + e] dt

or Bz(x, t) =
1
c

 E0y cos [v(t - x>c) + e] (3.29)

E
0y

B$

E$

B

c

x

y

z

(a)

0z

l

B0

E0

v� v�

E�

B�
B�

E�

(b)

Figure 3.14  (a) Orthogonal harmonic E$- and B$-fields for a plane polar-
ized wave. (b) The wave propagates in the direction of E$ 3 B$.
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x

y

z

c

Figure 3.13  The field configuration in a plane harmonic electro- 
magnetic wave traveling in vacuum.
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itself can somehow store energy. This is a major logical step, 
since it imparts to the field the attribute of physical reality—if 
the field has energy it is a thing-in-itself. Moreover, inasmuch 
as the classical field is continuous, its energy is continuous. 
Let’s assume as much and see where it leads. 

When a parallel-plate capacitor (of capacitance C) is charged 
to a voltage V we can imagination that the energy (1

2CV2) that is 
stored, via the interaction of the charges, resides in the field E 
occupying the gap. With a plate area A and a separation d, 
C = P0 A>d. The energy per unit volume in the gap is

uE =
1
2 CV2

Ad
=

1
2 (P0 A>d  )(Ed  )2

Ad

And so we conclude that the energy density of the E-field in 
empty space is

 uE =
P0

2
 E2 (3.31)

Similarly, the energy density of the B-field alone can be deter-
mined by considering a hollow coil or inductor (of inductance L) 
carrying a current I. A simple air-core solenoid of cross-sectional 
area A and length l with n turns per unit length has an induc-
tance L = m0n2lA. The B-field inside the coil is B = m0nI, and 
so the energy density in that region is

uB =
1
2 LI2

Al
=

1
2 (m0n2lA)(B>m0n)2

Al

And taking the logic one step further, the energy density of any 
B-field in empty space is

 uB =
1

2m0
 B2 (3.32)

The relationship E = cB was derived specifically for plane 
waves; nonetheless, it’s applicable to a variety of waves. Using 
it and the fact that c = 1>1P0m0 , it follows that

 uE = uB (3.33)

The energy streaming through space in the form of an elec-
tromagnetic wave is shared equally between the constituent 
electric and magnetic fields. Inasmuch as

 u = uE + uB (3.34)

 u = P0E2 (3.35)

or, equivalently,

 u =
1
m0

 B2 (3.36)

Keep in mind that the fields change and u is a function of time. 
To represent the flow of electromagnetic energy associated 

x

E�

B�

c

y

z

r�

Figure 3.15  Portion of a 
spherical wavefront far from 
the source.

EXAMPLE 3.1

A sinusoidal electromagnetic plane wave with an amplitude 
of 1.0 V>m and a wavelength of 2.0 m travels in the positive  
z-direction in vacuum. (a) Write an expression for E$(z, t) if the 
E-field is in the x-direction and E$(0, 0) = 0. (b) Write an ex-
pression for B$(z, t). (c) Verify that E$ : B$  is in the direction of 
propagation.

SOLUTION

(a) E$(z, t) = î(1.0 V>m) sin k(z - ct), where k = 2p>2 = p and 
so

E$(z, t) = î(1.0 V>m) sin p(z - ct)

Notice that the E-field is in the x-direction and E$(0, 0) = 0. 

(b) From Eq. (3.30), E = cB,

B$(z, t) = ĵ 
(1.0 V>m)

c
 sin p (z - ct)

(c) E$ : B$  is in the direction of î : ĵ, which is in the basis 
vector k̂ or z-direction.

3.3 Energy and Momentum

One of the most significant properties of the electromagnetic 
wave is that it transports energy and momentum. The light from 
even the nearest star beyond the Sun travels 25 million million 
miles to reach the Earth, yet it still carries enough energy to do 
work on the electrons within your eye.

3.3.1 The Poynting Vector

Any electromagnetic wave exists within some region of space, 
and it is therefore natural to consider the radiant energy per unit 
volume, or energy density, u. We suppose that the electric field 
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Let’s now apply the above considerations to the case of a 
harmonic, linearly polarized (the directions of the E$- and B$-fields 
are fixed) plane wave traveling through free space in the direc-
tion of k$:

 E$ = E$0 cos (k$ · r$ - vt) (3.41)

 B$ = B$0 cos (k$ · r$ - vt) (3.42)

Using Eq. (3.40), we find

 S$ = c2P0E$0 : B$0 cos2 (k$ · r$ - vt) (3.43)

This is the instantaneous flow of energy per unit area per unit time.

Averaging Harmonic Functions

It should be evident that E$ : B$ cycles from maxima to minima. 
At optical frequencies (≈1015 Hz), S$ is an extremely rapidly 
varying function of time (indeed, twice as rapid as the fields, 
since cosine-squared has double the frequency of cosine). 
Therefore its instantaneous value is a very difficult quantity to 
measure directly (see photo). This suggests that in everyday 
practice we employ an averaging procedure. That is, we absorb 
the radiant energy during some finite interval of time using, for 
example, a photocell, a film plate, or the retina of a human eye.

The specific form of Eq. (3.43), and the central role played by 
harmonic functions, suggest that we take a moment to study the 
average values of such functions. The time-averaged value of some 
function ƒ(t) over an interval T is written as 8ƒ(t)9T and given by

8ƒ(t)9T =
1
T

 L
t + T>2

t - T>2
 ƒ(t) dt

The resulting value of 8ƒ(t)9T very much depends on T. To find 
the average of a harmonic function, evaluate

8eivt9T =
1
T

 L
t + T>2

t - T>2
 eivt dt =

1
ivt

 eivt 0 t+T�2

t-T�2

8eivt9T =
1

ivT
 (eiv (t + T>2) - eiv (t - T>2))

and 8eivt9T =
1

ivT
 eivt(eivT>2 - e-ivT>2) 

The parenthetical term should remind us (p. 30) of sin vT>2.
Hence

8eivt9T = asin vT>2
vT>2 b eivt

The ratio in brackets is so common and important in Optics that 
it’s given its own name; (sin u)>u is called (sinc u). Taking the 
real and imaginary parts of the above expression yields

8cos vt9T = (sinc u) cos vt

and 8sin vt9T = (sinc u) sin vt 

with a traveling wave, let S symbolize the transport of energy 
per unit time (the power) across a unit area. In the SI system it 
has units of W>m2. Figure 3.16 depicts an electromagnetic 
wave traveling with a speed c through an area A. During a very 
small interval of time ∆t, only the energy contained in the cylin-
drical volume, u(c ∆t A), will cross A. Thus

 S =
uc ∆t A

∆t A
= uc (3.37)

or, using Eq. (3.35),

 S =
1
m0

 EB (3.38)

We now make the reasonable assumption (for isotropic media) 
that the energy flows in the direction of the propagation of the 
wave. The corresponding vector S$ is then

 S$ =
1
m0

 E$ : B$  (3.39)

or S$ = c2P0 E$ : B$  (3.40)

The magnitude of SS$ is the power per unit area crossing a surface 
whose normal is parallel to S$. Named after John Henry Poynting 
(1852–1914), it has come to be known as the Poynting vector. 

Before we move on it should be pointed out that Quantum 
Mechanics maintains that the energy associated with an electro-
magnetic wave is actually quantized; it’s not continuous. Still, 
in ordinary circumstances classical theory works perfectly well 
and so we’ll continue to talk about lightwaves as if they were 
some continuous “stuff” capable of filling regions of space.

c∆t

Figure 3.16  The flow of electromagnetic energy.
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It’s left for Problem 3.16 to show that 8cos2 vt9T = 1
2[1 +

sinc vT cos 2vt], which oscillates about a value of 1>2 at a  
frequency of 2v and rapidly approaches 1>2 as T increases be-
yond a few dozen periods. In the case of light t ≈ 10-15 s and 
so averaging over even a microsecond corresponds to T ≈ 109t, 
far more than enough to drive the sinc function to some totally 
negligible value, whereupon 8cos2 vt9T = 1>2. Figure 3.18 
suggests the same result; we chop off the humps above the 1>2 
line and use them to fill in the missing areas beneath the line. 
After enough cycles, the area under the ƒ(t) curve divided by T, 
which is 8ƒ(t)9T, approaches 1>2.

3.3.2 Irradiance

When we talk about the “amount” of light illuminating a surface, 
we are referring to something called the irradiance,* denoted by 
I—the average energy per unit area per unit time. Any kind of 
light-level detector has an entrance window that admits radiant en-
ergy through some fixed area A. The dependence on the size of that 
particular window is removed by dividing the total energy received 
by A. Furthermore, since the power arriving cannot be measured 
instantaneously, the detector must integrate the energy flux over 
some finite time, T. If the quantity to be measured is the net energy 
per unit area received, it depends on T and is therefore of limited 
utility. Someone else making a similar measurement under the 
same conditions can get a different result using a different T. If, 

The average of the cosine is itself a cosine, oscillating with the 
same frequency but having a sinc-function amplitude that drops 
off from its initial value of 1.0 very rapidly (Fig. 3.17 and Table 
1 in the Appendix). Since sinc u = 0 at u = vT>2 = p, which 
happens when T = t, it follows that cos vt averaged over an in-
terval T equal to one period equals zero. Similarly, cos vt aver-
ages to zero over any whole number of periods, as does sin vt. 
That’s reasonable in that each of these functions encompasses as 
much positive area above the axis as negative area below the 
axis, and that’s what the defining integral corresponds to. After 
an interval of several periods, the sinc term will be so small that 
the fluctuations around zero will be negligible: 8cos vt9T and 
8sin vt9T are then essentially zero.

(a) The output of an electron probe that reveals the oscillations of the electric 
field of an intense pulse of red light (≈750 nm) consisting of only a few 
cycles. The time scale is in femtoseconds. (b) This is the first more-or-less 
direct measurement of the oscillatory E-field of a lightwave. (Max Planck Institute 

of Quantum Optics)

(a)

(b)
–0.2

0.8

0.6

0.4

0.2

1
sin u

u

u (radians)

0 5 10 15 20 25 30

Figure 3.17  sinc u. Notice how the sinc function has a value of zero at 
u = p, 2p, 3p, and so forth.

*In the past physicists generally used the word intensity to mean the flow of 
energy per unit area per unit time. By international, if not universal, agreement, 
that term is slowly being replaced in Optics by the word irradiance.
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60 Chapter 3 Electromagnetic Theory, Photons, and Light

refer to E$  as the optical field and use Eqs. (3.46) and (3.47) 
almost exclusively.

EXAMPLE 3.2

Imagine a harmonic plane electromagnetic wave traveling in 
the z-direction in a homogeneous isotropic dielectric. If the 
wave, whose amplitude is E0, has a magnitude of zero at t = 0 
and z = 0, (a) show that its energy density is given by

u(t) = PE2
0 sin2 k(z - vt)

(b) Find an expression for the irradiance of the wave.

SOLUTION

(a) From Eq. (3.34) applied to a dielectric,

u =
P
2

 E2 +
1

2m
 B2

where

E = E0 sin k(z - vt)

Using E = vB

u =
P
2

E2 +
1

2m
 
E2

v2 = PE2

u = PE2
0 sin 2k(z - vt)

(b) The irradiance follows from Eq. (3.37) namely, S = uv, and 
so

S = PvE2
0 sin2 k(z - vt)

whereupon

I = 8S9T =
1
2

 PvE2
0

The time rate of flow of radiant energy is the optical power 
P or radiant flux, generally expressed in watts. If we divide the 
radiant flux incident on or exiting from a surface by the area of 
the surface, we have the radiant flux density (W>m2). In the 
former case, we speak of the irradiance, in the latter the exi-
tance, and in either instance the flux density. The irradiance is 
a measure of the concentration of power. The faintest stars that 
can be seen in the night sky by the unaided human eye have ir-
radiances of only about 0.6 * 10-9 W>m2.

EXAMPLE 3.3

The electric field of an electromagnetic plane wave is expressed 
as

E$ = (-2.99 V>m) ĵ ei(kz -vt)

however, the T is now divided out, a highly practical quantity re-
sults, one that corresponds to the average energy per unit area per 
unit time, namely, I.

The time-averaged value (T W t) of the magnitude of the 
Poynting vector, symbolized by 8S9T, is a measure of I. In the 
specific case of harmonic fields and Eq. (3.43),

8S9T = c2P0 0E$0 : B$0 0 8cos2 (k$ · r$ - vt)9

Because 8cos2(k$ · r$ - vt)9T = 1
2 for T W t (see Problem 3.15)

8S9T =
c2P0

2
 0E$0 : B$0 0

or I K 8S9T =
cP0

2
 E2

0  (3.44)

The irradiance is proportional to the square of the amplitude 
of the electric field. Two alternative ways of saying the same 
thing are simply

 I =
c
m0

 8B29T (3.45)

and I = P0c8E29T  (3.46)

Within a linear, homogeneous, isotropic dielectric, the expres-
sion for the irradiance becomes

 I = Pv8E29T (3.47)

Since, as we have learned, E$  is considerably more effective at 
exerting forces and doing work on charges than is B$ , we shall 

0 2 4 6 8 10 12 14

(radians)

cos2 vt

vt

0.8

0.4

0.2

1

0.6

1/2

Figure 3.18  Using the peaks above the 1
2 line to fill the troughs beneath 

it suggests that the average is 1
2.

Continued
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3.3.3 Photons

Light is absorbed and emitted in tiny discrete bursts, in “particles” 
of electromagnetic “stuff,” known as photons. That much has 
been confirmed and is well established.* Ordinarily, a light 
beam delivers so many minute energy quanta that its inherent 
granular nature is totally hidden and a continuous phenomenon 
is observed macroscopically. That sort of thing is commonplace 
in Nature; the forces exerted by the individual gas molecules in 
a wind blend into what seems a continuous pressure, but it obvi-
ously isn’t. Indeed, that analogy between a gas and a flow of 
photons is one we will come back to presently.

As the great French physicist Louis de Broglie put it, “Light 
is, in short, the most refined form of matter,” and all matter, 
including light, is quantized. At base it comes in minute ele-
mentary units— quarks, leptons, Ws and Zs, and photons. That 
overarching unity is among the most appealing reasons to em-
brace the photon as particle. Still, these are all quantum par-
ticles, very different from the ordinary “particles” of everyday 
experience.

The Failure of Classical Theory

In 1900 Max Planck produced a rather tentative, and somewhat 
erroneous, analysis of a process known as blackbody radiation 
(p. 612). Nonetheless, the expression he came up with beauti-
fully fit all the existing experimental data, a feat no other for-
mulation had even come close to. Basically, he considered elec-
tromagnetic (EM) waves in equilibrium within an isothermal 
chamber (or cavity). All the EM-radiation within the cavity is 

Given that v = 2.99 * 1015 rad>s and k = 1.00 * 107 rad>m, 
find (a) the associated vector magnetic field and (b) the irradi-
ance of the wave.

SOLUTION

(a) The wave travels in the +  z-direction. E$0 is in the - ĵ 
or -y-direction. Since E$ : B$  is in the k̂ or +  z-direction,  
B$0 must be in the î or +  x-direction. E0 = vB0 and v = v>k =
2.99 * 1015>1.00 * 107 = 2.99 * 108 m>s and so

B$ = a 2.99 V>m
2.99 * 108 m>sb î ei(kz -vt)

B$ = (10-8 T)î ei(kz -vt)

(b) Since the speed is 2.99 * 108 m>s we are dealing with  
vacuum, hence

I =
cP0

2
E2

0

I =
(2.99 * 108 m>s)(8.854 * 10-12 C2>N · m2)

2
 (2.99 V>m)2

I = 0.011 8 W>m2

The Inverse Square Law

We saw earlier that the spherical-wave solution of the dif-
ferential wave equation has an amplitude that varies in-
versely with r. Let’s now examine this same feature within 
the context of energy conservation. Consider an isotropic 
point source in free space, emitting energy equally in all 
directions (i.e., emitting spherical waves). Surround the 
source with two concentric imaginary spherical surfaces of 
radii r1 and r2, as shown in Fig. 3.19. Let E0(r1) and E0(r2) 
represent the amplitudes of the waves over the first and sec-
ond surfaces, respectively. If energy is to be conserved, the 
total amount of energy f lowing through each surface per 
second must be equal, since there are no other sources or 
sinks present. Multiplying I by the surface area and taking 
the square root, we get

r1E0(r1) = r2E0(r2)

Inasmuch as r1 and r2 are arbitrary, it follows that

rE0(r) = constant,

and the amplitude must drop off inversely with r. The irradiance 
from a point source is proportional to 1>r2. This is the well-
known Inverse Square Law, which is easily verified with a 
point source and a photographic exposure meter.

r2 r1

Figure 3.19  The geometry of the Inverse Square Law.

*See the summary article by R. Kidd, J. Ardini, and A. Anton, “Evolution of the 
modern photon,” Am. J. Phys. 57 (1), 27 (1989).
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Electromagnetic Theory. Einstein’s startling treatment estab-
lished that the electromagnetic field itself is quantized. Each 
constituent photon has an energy given by the product of 
Planck’s Constant and the frequency of the radiation field:

 ℰ = hn (3.48)

Photons are stable, chargeless, massless elementary particles 
that exist only at the speed c. To date, experiments have estab-
lished that if the photon has a charge it’s less than 5 * 10-30 
times the charge of the electron, and if it has any mass at all it’s 
less than 10-52 kg. If we try to imagine a photon as a tiny con-
centration of electromagnetic energy its size turns out to be less 
than 10-20 m. In other words, as with the electron, no experi-
ment to date has been able to establish any size at all for it. With 
zero size (whatever that means) the photon presumably has no 
internal parts and must be taken to be a “fundamental” or “ele-
mentary” particle.

In 1924 Satyendra N. Bose formulated a new and rigorous 
proof of Planck’s blackbody equation using statistical methods 
applied to light quanta. The cavity was envisioned to be filled 
with a “gas” of photons, which were taken to be totally indis-
tinguishable, one from the other. That was a crucial feature of 
this quantum-mechanical treatment. It meant that the micropar-
ticles were completely interchangeable, and this had a profound 
effect on the statistical formulation. In a mathematical sense, 
each particle of this quantum “gas” is related to every other 
particle, and no one of them can be taken as statistically inde-
pendent of the system as a whole. That’s very different from the 
independent way classical microparticles behave in an ordinary 
gas. The quantum-mechanical probability function that de-
scribes the statistical behavior of thermal light is now known as 
the Bose-Einstein distribution. The photon, whatever it is, be-
came an indispensable tool of theoretical physics.

In 1932 two Soviet scientists, Evgenii M. Brumberg and  
Sergei I. Vavilov, performed a series of simple straightforward 
experiments that affirmed the basic quantum nature of light.  
Before the advent of electronic detectors (e.g., photomultipliers)  
they devised a photometric technique using the human eye to 
study the statistical character of light. The trick was to lower the 
irradiance down to a level where it was very close to the thresh-
old of vision. This they did in a dark room by shining an  
exceedingly weak (≈200 * 10-18 W) beam of green light  
(505 nm) onto a shutter that could be opened for short intervals 
(0.1 s). Every time the shutter opened and closed it could pass 
an average of about 50 photons. Though the eye could in theory 
ideally “see” a few photons, 50 was just about the threshold of 
reliable detection. And so Brumberg and Vavilov simply looked 
at the shutter and recorded their observations. If light were a 
classical wave with energy uniformly distributed over wave-
fronts, the researchers would have seen a faint flash every time 
the shutter opened. But if light was a stream of photons that 
came in random flurries, things would be very different. What 
they observed was unmistakable: half the times that the shutter 
opened they saw a flash, the other half they saw nothing, and 

emitted and absorbed by the walls of the enclosure—none en-
ters from outside. This ensures that its spectral composition will 
match that emanating from an ideal black surface. The goal was 
to predict the spectrum of the radiation that would emerge from 
a small opening in the cavity. Totally stymied by the problem, 
as a last resort, Planck turned to the classical statistical analysis 
of Maxwell and Boltzmann, which was developed as the basis 
of the kinetic theory of gases. Philosophically, this is a com-
pletely deterministic treatment that assumes one can follow, at 
least in principle, every atom as it moves around in the system. 
Consequently, each atom is taken to be recognizable, indepen-
dent, and enumerable. For purely computational reasons, 
Planck hypothesized that each one of the oscillators lining the 
walls of the chamber could absorb and emit only discrete 
amounts of energy proportional to its oscillatory frequency, n. 
These energy jolts were equal to whole number multiples of  
hn, where h, now called Planck’s Constant, was found to be 
6.626 * 10-34 J·s. Being a rather traditional man, Planck other-
wise held fast to the classical wave picture of light, insisting that 
only the oscillators were quantized.

Prophetically, J. J. Thomson (1903)—the discoverer of 
the electron—extended the idea, suggesting that electro-
magnetic waves might actually be radically different from 
other waves; perhaps local concentrations of radiant energy 
truly existed. Thomson had observed that when a beam of 
high-frequency EM-radiation (X-rays) was shone onto a 
gas, only certain of the atoms, here and there, were ionized. 
It was as if the beam had “hot spots” rather than having its 
energy distributed continuously over the wavefront (see 
photo below).

The concept of the photon in its modern incarnation came into 
being in 1905 by way of Einstein’s brilliant theoretical work on 
the Photoelectric Effect. When a metal is bathed in EM-radiation, 
it emits electrons. The details of that process had been studied 
experimentally for decades, but it defied analysis via classical 

A beam of X-rays enters a cloud chamber on the left. The tracks are made by 
electrons emitted via either the Photoelectric Effect (these tend to leave long 
tracks at large angles to the beam) or the Compton Effect (short tracks more 
in the forward direction). Although classically the X-ray beam has its energy 
uniformly distributed along transverse wavefronts, the scattering seems  
discrete and random. (From the Smithsonian Report, 1915.)
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roughly of the order of the wavelength of the light. Thus repre-
senting a photon as a short electromagnetic wavetrain (as in 
Fig. 3.20) can be useful, but it should not be taken literally.  
Insisting on a “particle” photon, a miniscule bullet, we might 
naively think of it as being somewhere within the region of the 
EM wavetrain, but that too is problematic. Still, we can say that 
the photon moving through space at speed c—and it exists only 
at c—is a tiny, stable, chargeless, massless entity. It carries en-
ergy, linear momentum, and angular momentum; it manifests 
behavior that is electromagnetic, and oscillatory, and it can be 
somewhat unlocalized, more a “puff” than a traditional “parti-
cle.” It is a quantum particle, just as the other fundamental par-
ticles are quantum particles.  The primary difference is that they 
have mass and can exist at rest, and the photon does not, and 
cannot.  In short, the thing called photon is the sum of its prop-
erties as revealed in countless experiments, and there really is, 
as yet, no satisfactory way to describe it in macroscopic terms 
beyond that.

A Barrage of Photons

When we analyze phenomena involving the activity of immense 
numbers of participants, the use of statistical techniques is often 
the only practical way to proceed. In addition to the classical 
Maxwell-Boltzmann statistics (for distinguishable particles), 
there are two kinds of quantum-mechanical statistics (for indis-
tinguishable particles): Bose-Einstein and Fermi-Dirac. The first 
treats particles that are not subject to the Pauli Exclusion Prin-
ciple (i.e., particles that have zero or integer spins). Fermi-Dirac 
statistics treats particles that are subject to the Pauli Exclusion 
Principle (i.e., those that have spins that are odd integer multi-
ples of 1

2). Photons are called bosons, they are spin-1 particles, 
and the manner in which they group together obeys Bose-Einstein 
statistics. Similarly, electrons are fermions; they are spin-1

2 par-
ticles that obey Fermi-Dirac statistics.

Microparticles have defining physical characteristics such as 
charge and spin—characteristics that do not change. When 
these are given, we have completely specified the kind of par-
ticle being considered. Alternatively, there are alterable proper-
ties of any given microparticle that describe its momentary con-
dition, such as energy, momentum, and spin orientation. When 
all of these alterable quantities are given, we have specified the 
particular state the particle happens to be in at the moment.

Fermions are committed loners; only one fermion can occupy 
any given state. By comparison, bosons are gregarious; any 
number of them can occupy the same state, and moreover, they 
actually tend to cluster close together. When a very large num-
ber of photons occupy the same state, the inherent granularity 
of the light beam essentially vanishes and the electromagnetic 
field appears as the continuous medium of an electromagnetic 
wave. Thus we can associate a monochromatic (monoenergetic) 
plane wave with a stream of photons having a high population 
density, all progressing in the same state (with the same energy, 

the occurrences were completely random. Brumberg and 
Vavilov rightly concluded that because the beam was inherently 
quantum mechanical and therefore fluctuating, when a pulse 
happened to contain enough photons to exceed the threshold of 
perception they saw it and when it didn’t they didn’t. As ex-
pected, raising the irradiance rapidly reduced the number of 
null observations.

Unlike ordinary objects, photons cannot be seen directly; 
what is known of them usually comes from observing the re-
sults of their being either created or annihilated. Light is nev-
er seen just sailing along through space. A photon is observed 
by detecting the effect it has on its surroundings, and it has a 
readily observable effect when it either comes into, or goes out 
of, existence. Photons begin and end on charged particles; most 
often they are emitted from and absorbed by electrons. And 
these are usually the electrons circulating in the clouds around 
atoms. A number of experiments have directly confirmed the 
quantal nature of the emission process. For example, imagine a 
very dim source surrounded, at equal distances, by identical 
photodetectors each capable of measuring a minute amount of 
light. If the emission, no matter how faint, is a continuous wave, 
as is maintained classically, all the detectors should register 
each emitted pulse in coincidence. That does not happen; in-
stead, counts are registered by detectors independently, one at a 
time, in clear agreement with the idea that atoms emit localized 
light quanta in random directions.

Furthermore, it has been confirmed that when an atom emits 
light (i.e., a photon), it recoils in the opposite direction, just as 
a pistol recoils when it fires a bullet. In Fig. 3.20 atoms pumped 
up with excess energy (i.e., excited, p. 74) are formed into a 
narrow beam. They soon spontaneously radiate photons in ran-
dom directions and are themselves kicked backward, often lat-
erally away from the beam. The resulting spread of the beam is 
a quantum-mechanical effect inconsistent with the classical pic-
ture of the emission of a continuous symmetrical wave.

Where in a beam of light does a particular photon reside? 
That is not a question we can answer. We cannot track photons 
as you might track a flying cannonball.  Photons on the wing 
cannot be localized with any precision, although we can do bet-
ter along the propagation direction than transverse to it. An ar-
gument can be made that the longitudinal indeterminacy is 

Atoms
Excitation

energy

Emitted photons

Figure 3.20  When so-called excited atoms forming a narrow beam radi-
ate photons, they recoil laterally and the beam spreads out. Alternatively if 
the beam is formed of atoms that are not excited (i.e., they are in their 
ground states), it remains narrow all the way to the screen.
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woman’s face. The barrage of photons forming the image is a 
statistical tumult; we cannot predict when a photon will arrive 
at any given location. But we can determine the likelihood of 
one or more photons hitting any particular point during a sub-
stantial time interval. At any location on the screen, the mea-
sured (or classically computed) value of the irradiance is 
proportional to the probability of detecting a photon at that 
location (p. 148).

Figure 1.1, which is a pictorial record of the arrival of indi-
vidual photons, was produced using a special kind of photo-
multiplier tube. To underscore the inherent photonic nature of 
radiant energy, let’s now use an entirely different and more 
straightforward photographic approach to record the incidence 
of light. A photographic emulsion contains a distribution of 
microscopic (≈10-6 m) silver halide crystals, each compris-
ing approximately 1010 Ag atoms. A single photon can interact 
with such a crystal, disrupting a silver–halogen bond and free-
ing up an Ag atom. One or more silver atoms then serve as a 
development center on the exposed crystal. The film is devel-
oped using a chemical reducing agent. It dissolves each ex-
posed crystal, depositing at that site all of its Ag atoms as a 
single clump of the metal.

Figure 3.21 shows a series of photographs taken with in-
creasing amounts of illumination. Using extremely dim light, a 
few thousand photons, the first picture is composed of roughly 
as many silver clumps, making a pattern that only begins to 
suggest an overall image. As the number of participating pho-
tons goes up (roughly by a factor of 10 for each successive 
picture), the image becomes increasingly smooth and recog-
nizable. When there are tens of millions of photons forming the 
image, the statistical nature of the process is lost and the picture 
assumes a familiar continuous appearance.

Photon Counting

What, if anything, can be said about the statistical nature of the 
barrage of photons delivered as a beam of light? To answer that 
question, researchers have conducted experiments in which 
they literally counted individual photons. What they found was 
that the pattern of arrival of photons was characteristic of the 
type of source.* We cannot go into the theoretical details here, 
but it is informative at least to look at the results for the two 
extreme cases of what is often called coherent and chaotic 
light.

Consider an ideal continuous laserbeam of constant irradi-
ance; remember that irradiance is a time-averaged quantity 
via Eq. (3.46). The beam has a constant optical power P—
which is also a time-averaged quantity—and, from Eq. (3.49), 

same frequency, same momentum, same direction). Different 
monochromatic plane waves represent different photon states.

Unlike the photon, because electrons are fermions, large 
numbers of them cannot cluster tightly in the same state, and a 
monoenergetic beam of electrons does not manifest itself on a 
macroscopic scale as a continuous classical wave. In that re-
gard, EM-radiation is quite distinctive.

For a uniform monochromatic light beam of frequency n, the 
quantity I>hn is the average number of photons impinging on a 
unit area (normal to the beam) per unit time, namely, the photon 
flux density. More realistically, if the beam is quasimonochro-
matic (p. 25) with an average frequency n0, its mean photon flux 
density is I>hn0. Given that an incident quasimonochromatic 
beam has a cross-sectional area A, its mean photon flux is

 Φ = AI>hn0 = P>hn0 (3.49)

where P is the optical power of the beam in watts. The mean 
photon flux is the average number of photons arriving per unit 
of time (Table 3.1). For example, a small 1.0-mW He-Ne laser-
beam with a mean wavelength of 632.8 nm delivers a mean  
photon flux of P>hn0 = (1.0 * 10-3 W)>[(6.626 * 10-34 J · s) 
(2.998 * 108 m>s)>(632.8 * 10-9 m)] = 3.2 * 1015 photons per 
second.

Imagine a uniform beam of light having a constant irradi-
ance (and therefore a constant mean photon flux) incident on a 
screen. The energy of the beam is deposited on the screen in a 
random flurry of minute bursts. And, of course, if we look 
carefully enough any light beam will be found to fluctuate in 
intensity. Individually, the incoming photons register at loca-
tions on the plane that are totally unpredictable, and arrive at 
moments in time that are equally unpredictable. It looks as if 
the beam is composed of a random stream of photons, but that 
conclusion, however tempting, goes beyond the observation. 
What can be said is that the light delivers its energy in a stac-
cato of impacts that are random in space and time across the 
beam.

Suppose that we project a light pattern onto the screen;  
it might be a set of interference fringes or the image of a  

TABLE 3.1  The Mean Photon Flux Density for a 
Sampling of Common Sources

Light  Mean Photon Flux Density 
Source Φ>A in units of (photons>s · m2)

Laserbeam (10 mW, He-Ne, 
  focused to 20 mm) 1026

Laserbeam (1 mW, He-Ne) 1021

Bright sunlight 1018

Indoor light level 1016

Twilight 1014

Moonlight 1012

Starlight 1010

*See P. Koczyk, P. Wiewior, and C. Radzewicz, “Photon counting statistics—
Undergraduate experiment,’’ Am. J. Phys. 64 (3), 240 (1996) and A. C. Funk 
and M. Beck, “Sub-Poissonian photocurrent statistics: Theory and undergraduate 
experiment,” Am. J. Phys. 65 (6), 492 (1997). 
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pause repeat the procedure, and do it again and again, tens of 
thousands of times. The results are presented in a histogram 
(Fig. 3.23), where the number of trials in which N photons 
were counted is plotted against N. Few trials register either 
very few photons or very many photons. On average, the num-
ber of photons per trial is Nav = ΦT = PT>hn0. The shape of 
the data plot, which can be derived using probability theory, 
closely approximates the well-known Poisson distribution. It 
represents a graph of the probability that the detector (during 
a trial interval lasting a time T ) will record zero photons, one 
photon, two photons, and so forth.

The Poisson distribution is the same symmetrical curve one 
gets when counting either the number of particles randomly 
emitted by a long-lived radioactive sample, or the number of 
raindrops randomly descending on an area in a steady shower. 
It’s also the curve of the probability of getting a head, plotted 
against the number of heads occurring (N), for a coin tossed 

a corresponding mean photon flux Φ. Figure 3.22 depicts the 
random arrival of photons on a time scale that is short com-
pared to the interval over which the irradiance is averaged. 
Thus it is possible for the macroscopic quantity P to be mea-
sured to be constant, even though there is an underlying dis-
continuous transfer of energy.

Now pass the beam through a shutter that stays open for a 
short sampling time T (which might be in the range from about 
10 ms to perhaps 10 ms), and count the number of photons  
arriving at a photodetector during that interval. After a brief 

Figure 3.21  These photographs 
(which were electronically enhanced) 
are a compelling illustration of the 
granularity displayed by light in its 
interaction with matter. Under 
exceedingly faint illumination, the 
pattern (each spot corresponding to 
one photon) seems almost random, 
but as the light level increases the 
quantal character of the process 
gradually becomes obscured. (See 
Advances in Biological and Medical 
Physics V, 1957, 211–242.) (Radio 

Corporation of America)
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Figure 3.22  With a laser as the source one gets a constant optical power 
and the corresponding random set of photon counts, each indicated by a 
white line. The arrival of each photon is an independent event and they tend 
not to cluster together in what would otherwise be called “bunching.”
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Figure 3.23  A typical histogram showing the probability or photon-count 
distribution for a laserbeam of constant irradiance.
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Squeezed Light

A light field can be characterized by its strength (i.e., amplitude 
or energy) and phase. Accordingly, it’s helpful to think of it rep-
resented by a phasor, since it, too, has an amplitude and phase.  
But according to quantum theory there is an inherent uncertainty 
associated with both of these quantities.  All else held constant, 
successive measurements of each of these quantities will gener-
ally result in slightly different values such that there will always 
be indeterminacies. There’s always a little blurriness in both the 
length and direction of the phasor representing the optical field.  
Moreover, these two concepts are linked in a special way remi-
niscent of the Heisenberg Uncertainty Principle; the indeter-
minacy in energy, the spread of measured values, is inversely 
proportional to the indeterminacy in the phase. The product of 
the two indeterminacies must be greater than, or at best equal to, 
a minimum attainable value (h>4p) set by Planck’s Constant. 
The quantity (h>4p) is best referred to as the quantum of action 
because it sets the lower limit on all change. Accordingly, this sort 
of relationship should not be surprising for pairs of concepts that 
are closely associated. 

For the light from an incandescent lamp the product of the 
indeterminacies is much larger than h>4p. In contrast, the inde-
terminacies associated with laser light tend to be small and com-
parable to each other. In fact, for a well-stabilized laserbeam the 
product of the indeterminacies can approach h>4p. Any efforts to 
lessen the range of variation in measurements of the amplitude 
(i.e., to lessen its blurriness) will tend to increase the spread in the 
measurements of phase, and vice versa.

Figure 3.22 depicts the photon arrivals associated with light 
from a c-w laser.  If we average the incident energy over adequate-
ly long time intervals the irradiance turns out to be fairly constant. 
Still it’s clear that there are short-duration fluctuations— 
the random clatter of uncorrelated photons or quantum noise, 
also known as shot-noise. Indeed, there will always be fluctua-
tions in a light beam, as there are in any kind of beam. Laser light 
is said to be in a coherent or Glauber state (after Roy Glauber, 
who won the 2005 Nobel Prize in Physics). The photons don’t 
cluster very much and hence there isn’t a substantial amount of 
what is called photon bunching. That’s not the case in Fig. 3.24 
for the thermal light from a chaotic (or thermal) source, where 

more than about 20 times. Thus with Nmax = 20 the highest 
probability occurs near the average value Nav, namely, at 12 Nmax 
or 10 and the lowest at N = 0 and N = 20. The most probable 
value will be 10 heads out of 20 tosses, and the likelihood of 
getting either no heads or all heads is vanishingly small. It 
would seem that however an ideal laser produces light, it gener-
ates a stream of photons whose individual arrival is random and 
statistically independent. For reasons that will be explored later, 
an ideal monoenergetic beam—a monochromatic plane wave—
is the epitome of what is known as coherent light.

Not surprisingly, the statistical distribution of the number 
of photons arriving at a detector depends on the nature of the 
source; it is fundamentally different for an ideal source of co-
herent light at one extreme, as compared to an equally idealized 
completely incoherent or chaotic source at the other extreme. A 
stabilized laser resembles a source of coherent radiation, and an 
ordinary thermal source such as a lightbulb or a star or a gas 
discharge lamp more closely resembles a chaotic source. In the 
case of ordinary light, there are inherent fluctuations in the ir-
radiance and therefore in the optical power (p. 59). These fluc-
tuations are correlated, and the associated number of emitted 
photons, though random in time, is correspondingly also cor-
related (Fig. 3.24). The greater the optical power, the greater the 
number density of photons. Because the arrival of photons at 
the detector is not a succession of independent events, Bose-
Einstein statistics apply (Fig. 3.25). Here the most likely num-
ber of counts per interval is zero, whereas, ideally, for laser light 
the most likely number of photons to be measured during a 
sampling interval equals the average number recorded. Thus 
even if a beam of laser light and a beam of ordinary light have 
the same average irradiance and the same frequency spectrum, 
they are still inherently distinguishable—a result that extends 
beyond classical theory.
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Figure 3.25  Poisson and Bose-Einstein photon-count distributions.
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Figure 3.24  With a thermal source one gets a time-varying optical power 
and the corresponding set of photon counts, each indicated by a white 
line. Now there are fluctuations that are correlated, and the photon arrivals 
are no longer independent. The fact that there is clustering is known as 
“photon bunching.”
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It’s possible to compute the resulting force via Electromag-
netic Theory, whereupon Newton’s Second Law (which main-
tains that force equals the time rate-of-change of momentum) 
suggests that the wave itself carries momentum. Indeed, when-
ever we have a flow of energy, it’s reasonable to expect that 
there will be an associated momentum—the two are the related 
time and space aspects of motion.

As Maxwell showed, the radiation pressure, �, equals the 
energy density of the electromagnetic wave. From Eqs. (3.31) 
and (3.32), for a vacuum, we know that

uE =
P0

2
 E2 and uB =

1
2m0

 B2

Since � = u = uE + uB,

� =
P0

2
 E2 +

1
2m0

 B2

Alternatively, using Eq. (3.37), we can express the pressure in 
terms of the magnitude of the Poynting vector, namely,

 �(t) =
S(t)
c

 (3.50)

Notice that this equation has the units of power divided by 
area, divided by speed—or, equivalently, force times speed di-
vided by area and speed, or just force over area. This is the 
instantaneous pressure that would be exerted on a perfectly 
absorbing surface by a normally incident beam.

Inasmuch as the E$- and B$-fields are rapidly varying, S(t) is 
rapidly varying, so it is eminently practical to deal with the  
average radiation pressure, namely,

 8�(t)9T =
8S(t)9T

c
=

I
c

 (3.51)

expressed in newtons per square meter. This same pressure is 
exerted on a source that itself is radiating energy.

Referring back to Fig. 3.16, if p is momentum, the force ex-
erted by the beam on an absorbing surface is

 A� =
∆p

∆t
 (3.52)

If pV is the momentum per unit volume of the radiation, then an 
amount of momentum ∆p = pV(c ∆t A) is transported to A dur-
ing each time interval ∆t, and

A� =
p V(c ∆t A)

∆t
= A 

S
c

Hence the volume density of electromagnetic momentum is

 p V =
S

c2 (3.53)

the more pronounced variations in irradiance are a manifestation 
of the underlying bunching of the light quanta. 

One might expect that shot-noise would be the least amount of 
noise a beam could display, and well-stabilized lasers do approach 
that level. Nonetheless, today it is possible to make the progres-
sion of photons in a laserbeam even more uniform than it would 
be ordinarily.  Such highly organized light, known in the trade as 
amplitude squeezed light, has a very narrow photon-distribution 
curve (Fig. 3.25), since almost all same-sized sampling intervals 
pick up pretty much the same number of photons. That curve is a 
Sub-Poissonian distribution. Photons arrive in time as if nearly 
equally spaced in a procession, one behind the other. That figura-
tion is said to display anti-bunching. The observation of Sub-
Poissonian light is generally taken to be direct evidence of the 
existence of photons. 

The result of amplitude squeezing is a beam of “non-classical 
light” with almost constant irradiance and much reduced photon 
noise. In fact, the noise level is less than the shot-noise associated 
with the existence of independent photons. Thus a remarkable 
aspect of squeezed light is that its photons show quantum correla-
tions; they are not entirely independent of each other. Of course, 
by squeezing the indeterminacy in the amplitude we broaden the 
indeterminacy in the phase, but that’s not an issue in most present-
day applications. We could define squeezed or non-classical light 
as light for which the two indeterminacies are markedly different. 
The study of squeezed light only began in the 1980s and already 
research groups that require well-smoothed beams have managed 
(2008) to reduce photon noise by up to 90%. 

3.3.4 Radiation Pressure and Momentum

As long ago as 1619, Johannes Kepler proposed that it was the 
pressure of sunlight that blew back a comet’s tail so that it al-
ways pointed away from the Sun. That argument particularly 
appealed to the later proponents of the corpuscular theory of 
light. After all, they envisioned a beam of light as a stream of 
particles, and such a stream would obviously exert a force as it 
bombarded matter. For a while it seemed as though this effect 
might at last establish the superiority of the corpuscular over the 
wave theory, but all the experimental efforts to that end failed to 
detect the force of radiation, and interest slowly waned.

Ironically, it was Maxwell in 1873 who revived the subject by 
establishing theoretically that waves do indeed exert pressure. 
“In a medium in which waves are propagated,” wrote Maxwell, 
“there is a pressure in the direction normal to the waves, and 
numerically equal to the energy in a unit of volume.”

When an electromagnetic wave impinges on some material 
surface, it interacts with the charges that constitute bulk matter. 
Regardless of whether the wave is partially absorbed or reflect-
ed, it exerts a force on those charges and hence on the surface 
itself. For example, in the case of a good conductor, the wave’s 
electric field generates currents, and its magnetic field gener-
ates forces on those currents.
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68 Chapter 3 Electromagnetic Theory, Photons, and Light

When the surface under illumination is perfectly reflecting, 
the beam that entered with a velocity +c will emerge with a 
velocity -c. This corresponds to twice the change in momen-
tum that occurs on absorption, and hence

8�(t)9T = 2 
8S(t)9T

c

Notice, from Eqs. (3.50) and (3.52), that if some amount of 
energy ℰ is transported per square meter per second, then there 
will be a corresponding momentum ℰ>c transported per square 
meter per second.

In the photon picture, each quantum has an energy ℰ = hn. 
We can then expect a photon to carry linear momentum in the 
amount

 p =
ℰ
c

=
h
l

 (3.54)

Its vector momentum would be

p$ = Uk$

where k$ is the propagation vector and U K h>2p. This all fits in 
rather nicely with Special Relativity, which relates the mass m, 
energy, and momentum of a particle by

ℰ = [(cp)2 + (mc2)2]1>2

For a photon m = 0 and ℰ = cp.
These quantum-mechanical ideas have been confirmed ex-

perimentally utilizing the Compton Effect, which detects the 
energy and momentum transferred to an electron upon interac-
tion with an individual X-ray photon (see photo on page 62).

The average flux density of electromagnetic energy from the 
Sun impinging normally on a surface just outside the Earth’s 
atmosphere is about 1400 W>m2. Assuming complete absorp-
tion, the resulting pressure would be 4.7 * 10-6 N>m2, or  
1.8 * 10-9 ounce>cm2, as compared with, say, atmospheric 
pressure of about 105 N>m2. The pressure of solar radiation at 
the Earth is tiny, but it is still responsible for a substantial plan-
etwide force of roughly 10 tons. Even at the very surface of the 
Sun, radiation pressure is relatively small (see Problem 3.40). 
As one might expect, it becomes appreciable within the blazing 
body of a large bright star, where it plays a significant part in 
supporting the star against gravity. Despite the Sun’s modest 
flux density, it nonetheless can produce appreciable effects over 
long-acting times. For example, had the pressure of sunlight ex-
erted on the Viking spacecraft during its journey been neglected, 
it would have missed Mars by about 15 000 km. Calculations 
show that it is even feasible to use the pressure of sunlight to 
propel a space vehicle among the inner planets.* Ships with im-
mense reflecting sails driven by solar radiation pressure may 
someday ply the dark sea of local space.

EXAMPLE 3.4

In a homogeneous, isotropic, linear dielectric the Poynting vec-
tor is in the direction of the linear momentum carried by a plane 
wave. Show that in general the volume density of momentum 
can be written as the vector

p$V = P E$ : B$

Then prove that for the plane wave in Example 3.1

p$V =
P
v

 E2
0 sin2 k(z - vt) k̂

SOLUTION 
From Eq. (3.39)

S$ =
1
m

 E$ : B$

From Eq. (3.53) in a dielectric where the speed of the wave is v

p$V =
S$
v2

and since S$ =
1
m

 E$ : B$  

p$V =
Pm
m

 E$ : B$ = P E$ : B$

For a plane wave traveling in the z-direction

E = E0 sin k(z - vt)

Using the results of Example 3.1

p$V =
S$
v2 =

P
v

 E2
0 sin k(z - vt) k̂

Two tiny pinwheels about 5 mm in diameter (that’s roughly only 1>15 the 
width of a human hair). These microscopic gears are so small they can be 
spun around by the pressure of a light beam. (Galajda and Ormos/Hungarian Academy 

of Sciences)

*The charged-particle flux called the “solar wind” is 1000 to 100 000 times less 
effective in providing a propulsive force than is sunlight.
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common source-mechanism for all EM-radiation. What we 
find is that the various types of radiant energy seem to have a 
common origin in that they are all associated with nonuniform-
ly moving charges. We are, of course, dealing with waves in the 
electromagnetic field, and charge is that which gives rise to 
field, so this is not altogether surprising.

A stationary charge has a constant E$-field, no B$-field, and 
hence produces no radiation—where would the energy come 
from if it did? A uniformly moving charge has both an E$- and a 
B$-field, but it does not radiate. If you traveled along with the 
charge, the current would thereupon vanish, hence B$  would 
vanish, and we would be back at the previous case, uniform mo-
tion being relative. That’s reasonable, since it would make no 
sense at all if the charge stopped radiating just because you 
started walking along next to it. That leaves nonuniformly mov-
ing charges, which assuredly do radiate. In the photon picture 
this is underscored by the conviction that the fundamental inter-
actions between substantial matter and radiant energy are be-
tween photons and charges.

We know in general that free charges (those not bound with-
in an atom) emit electromagnetic radiation when accelerated. 
That much is true for charges changing speed along a straight 
line within a linear accelerator, sailing around in circles inside  
a cyclotron, or simply oscillating back and forth in a radio  
antenna—if a charge moves nonuniformly, it radiates. A free 
charged particle can spontaneously absorb or emit a photon, 
and an increasing number of important devices, ranging from 
the free-electron laser to the synchrotron radiation generator, 
utilize this mechanism on a practical level.

3.4.1 Linearly Accelerating Charges

Consider a charge moving at a constant speed. It essentially has 
attached to it an unchanging radial electric field and a surround-
ing circular magnetic field. Although at any point in space the  
E$-field changes from moment to moment, at any instant its 
value can be determined by supposing that the field lines move 
along, fixed to the charge. Thus the field does not disengage 
from the charge, and there is no radiation.

The electric field of a charge at rest can be represented, as in 
Fig. 3.26, by a uniform, radial distribution of straight field lines. 
For a charge moving at a constant velocity v$, the field lines are 
still radial and straight, but they are no longer uniformly distrib-
uted. The nonuniformity becomes evident at high speeds and is 
usually negligible when v 6 6  c.

In contrast, Fig. 3.27 shows the field lines associated with an 
electron accelerating uniformly to the right. The points O1, O2, 
O3, and O4 are the positions of the electron after equal time in-
tervals. The field lines are now curved, and this is a significant 
difference. As a further contrast, Fig. 3.28 depicts the field of an 
electron at some arbitrary time t2. Before t = 0 the particle was 
always at rest at the point O. The charge was then uniformly ac-
celerated until time t1, reaching a speed v, which was maintained 

The pressure exerted by light was actually measured as long 
ago as 1901 by the Russian experimenter Pyotr Nikolaievich 
Lebedev (1866–1912) and independently by the Americans  
Ernest Fox Nichols (1869–1924) and Gordon Ferrie Hull 
(1870–1956). Their accomplishments were formidable, con-
sidering the light sources available at the time. Nowadays, with 
the advent of the laser, light can be focused down to a spot size 
approaching the theoretical limit of about one wavelength in 
radius. The resulting irradiance, and therefore the pressure, is 
appreciable, even with a laser rated at just a few watts. It has 
thus become practical to consider radiation pressure for all 
sorts of applications, such as separating isotopes, accelerating 
particles, cooling and trapping atoms (p. 75), and even opti-
cally levitating small objects.

Light can also transport angular momentum, but that raises a 
number of issues that will be treated later (p. 344).

3.4 Radiation

Electromagnetic radiation comes in a broad range of wave-
lengths and frequencies, although in vacuum it all travels at 
the same speed. Despite the fact that we distinguish different 
regions of the spectrum with names like radiowaves, micro-
waves, infrared, and so forth, there is only one entity, one es-
sence of electromagnetic wave. Maxwell’s Equations are 
independent of wavelength and so suggest no fundamental dif-
ferences in kind. Accordingly, it is reasonable to look for a 

The tiny starlike speck is a minute (one-thousandth of an inch diameter) 
transparent glass sphere suspended in midair on an upward 250-mW  
laserbeam. (Bell Laboratories)
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It is now apparent that during the interval when the particle  
accelerated, the field lines became distorted and a kink appeared. 
The exact shape of the lines within the region of the kink is of 
little interest here. What is significant is that there now exists a 
transverse component of the electric field E$T, which propagates 
outward as a pulse. At some point in space the transverse electric 
field will be a function of time, and it will therefore be accompa-
nied by a magnetic field.

The radial component of the electric field drops off as 1>r2, 
while the transverse component goes as 1>r. At large distances 
from the charge, the only significant field will be the E$T- 
component of the pulse, which is known as the radiation field.* 
For a positive charge moving slowly (v 6 6  c), the electric and 
magnetic radiation fields can be shown to be proportional to 
r$ : ( r$ : a$) and (a$ : r$), respectively, where a$ is the accelera-
tion. For a negative charge the reverse occurs, as shown in  
Fig. 3.29. Observe that the irradiance is a function of u and that 
I(0) = I(180°) = 0 while I(90°) = I(270°) is a maximum. Energy 
is most strongly radiated perpendicular to the acceleration 
causing it.

The energy that is radiated out into the surrounding space is 
supplied to the charge by some external agent. That agent is 

constant thereafter. We can anticipate that the surrounding field 
lines will somehow carry the information that the electron has 
accelerated. We have ample reason to assume that this “informa-
tion” will propagate at the speed c. If, for example, t2 = 10-8 s, 
no point beyond 3 m from O would be aware of the fact that the 
charge had even moved. All the lines in that region would be 
uniform, straight, and centered on O, as if the charge were still 
there. At time t2 the electron is at point O2 moving with a con-
stant speed v. In the vicinity of O2 the field lines must then re-
semble those in Fig. 3.26b. Gauss’s Law requires that the lines 
outside the sphere of radius ct2 connect to those within the sphere 
of radius c(t2 - t1), since there are no charges between them.  

–

(a)

–

(b)

v

Figure 3.26  (a) Electric field of a stationary electron. (b) Electric field of 
a moving electron.
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Figure 3.27  Electric field of a uniformly accelerating electron.
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Figure 3.28  A kink in the E$-field lines.

*The details of this calculation using J. J. Thomson’s method of analyzing the 
kink can be found in J. R. Tessman and J. T. Finnell, Jr., “Electric Field of an 
Accelerating Charge,” Am. J. Phys. 35, 523 (1967). As a general reference 
for radiation, see, for example, Marion and Heald, Classical Electromagnetic 
Radiation, Chapter 7.
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in Fig. 3.29. Again the distribution of radiation is symmetri-
cal around a$, which is now the centripetal acceleration acting 
inward along the radius drawn from the center of the circular 
orbit to the charge. And once more, energy is most strongly 
radiated perpendicular to the acceleration causing it. The 
higher the speed, the more an observer at rest in the labora-
tory will “see” the backward lobe of the radiation pattern 
shrink while the forward lobe elongates in the direction of 
motion. At speeds approaching c, the particle beam (usually 
with a diameter comparable to that of a straight pin) radiates 
essentially along a narrow cone pointing tangent to the orbit 
in the instantaneous direction of v$ (Fig. 3.30). Moreover, for 
v ≈ c the radiation will be strongly polarized in the plane of 
the motion.

This “searchlight,” often less than a few millimeters in di-
ameter, sweeps around as the particle clumps circle the ma-
chine, much like the headlight on a train rounding a turn. 
With each revolution the beam momentarily (6  12 ns) flashes 
through one of many windows in the device. As we will learn 
(p. 324), when a signal has a short duration it must comprise 
a broad range of frequencies. The result is a tremendously 
intense source of rapidly pulsating radiation, tunable over a 
wide range of frequencies, from infrared to light to X-rays. 
When magnets are used to make the circulating electrons 
wiggle in and out of their circular orbits, bursts of high-fre-
quency X-rays of unparalleled intensity can be created. These 
beams are hundreds of thousands of times more powerful 
than a dental X-ray (which is roughly a fraction of a watt) and 
can easily burn a finger-sized hole through a 3-mm-thick lead 
plate.

Although this technique was first used to produce light in an 
electron synchrotron as long ago as 1947, it took several de-
cades to recognize that what was an energy-robbing nuisance to 
the accelerator people might be a major research tool in itself 
(see photo on next page).

In the astronomical realm, we can expect that some re-
gions exist that are pervaded by magnetic fields. Charged 
particles trapped in these fields will move in circular or heli-
cal orbits, and if their speeds are high enough, they will emit 

responsible for the accelerating force, which in turn does work 
on the charge.

3.4.2 Synchrotron Radiation

A free charged particle traveling on any sort of curved path is ac-
celerating and will radiate. This provides a powerful mechanism 
for producing radiant energy, both naturally and in the laboratory. 
The synchrotron radiation generator, a research tool developed in 
the 1970s, does just that. Clumps of charged particles, usually 
electrons or positrons, interacting with an applied magnetic field 
are made to revolve around a large, essentially circular track at a 
precisely controlled speed. The frequency of the orbit determines 
the fundamental frequency of the emission (which also contains 
higher harmonics), and that’s continuously variable, more or less, 
as desired. Incidentally, it’s necessary to use clumps of charge; a 
uniform loop of current does not radiate.

A charged particle slowly revolving in a circular orbit ra-
diates a doughnut-shaped pattern similar to the one depicted 

u

I(u)

(v << c)

a�

r�

–

E� � B�

E� � B�

B�

B�
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Figure 3.29  The toroidal radiation pattern of a linearly accelerating 
charge (split to show cross section).

B�

v�

Figure 3.30  Radiation pattern for an orbiting charge.
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synchrotron radiation. Figure 3.31 shows five photographs of 
the extragalactic Crab Nebula.* Radiation emanating from 
the nebula extends over the range from radio frequencies to 
the extreme ultraviolet. Assuming the source to be trapped 
circulating charges, we can anticipate strong polarization ef-
fects. These are evident in the first four photographs, which 
were taken through a polarizing filter. The direction of the 
electric field vector is indicated in each picture. Since in syn-
chrotron radiation, the emitted E$-field is polarized in the or-
bital plane, we can conclude that each photograph corre-
sponds to a particular uniform magnetic field orientation 
normal to the orbits and to E$ .

It is believed that a majority of the low-frequency radio-
waves reaching the Earth from outer space have their origin in 
synchrotron radiation. In 1960 radio astronomers used these 
long-wavelength emissions to identify a class of objects known 
as quasars. In 1955 bursts of polarized radiowaves were discov-
ered emanating from Jupiter. Their origin is now attributed to 
spiraling electrons trapped in radiation belts surrounding the 
planet.

Figure 3.31  (a) Synchrotron radiation  
arising from the Crab Nebula. In these photos 
only light whose E$-field direction is as indicated 
was recorded. (Mount Wilson Institute/Mount Wilson 

Observatory.) (b) The Crab Nebula in unpolarized 
light.

(a)

(b)

The first beam of “light” from the National Synchrotron Light Source (1982) 
emanating from its ultraviolet electron storage ring. (The National Synchrotron Light 

Source, Brookhaven National Laboratory)

*The Crab Nebula is believed to be expanding debris left over after the cata-
clysmic death of a star. From its rate of expansion, astronomers calculated 
that the explosion took place in 1050 c.e. This was subsequently corroborated 
when a study of old Chinese records (the chronicles of the Beijing Observatory) 
revealed the appearance of an extremely bright star, in the same region of the 
sky, in 1054 c.e.

In the first year of the period Chihha, the fifth moon, the day Chichou 
[i.e., July 4, 1054], a great star appeared…. After more than a year, it gradu-
ally became invisible.

There is little doubt that the Crab Nebula is the remnant of that supernova.

3.4.3 Electric Dipole Radiation

Perhaps the simplest electromagnetic wave–producing mecha-
nism to visualize is the oscillating dipole—two charges, one 
plus and one minus, vibrating to and fro along a straight line. 
And yet this arrangement is surely the most important of all.

Both light and ultraviolet radiation arise primarily from the 
rearrangement of the outermost, or weakly bound, electrons in 
atoms and molecules. It follows from the quantum-mechanical 
analysis that the electric dipole moment of the atom is the ma-
jor source of this radiation. The rate of energy emission from a 
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Very near the atom, the E$-field has the form of a static electric 
dipole. A bit farther out, in the region where the closed loops form, 
there is no specific wavelength. The detailed treatment shows that 
the electric field is composed of five different terms, and things are 
fairly complicated. Far from the dipole, in what is called the wave 
or radiation zone, the field configuration is much simpler. In this 
zone, a fixed wavelength has been established; E$ and B$ are trans-
verse, mutually perpendicular, and in phase. Specifically,

 E =
p 0k2 sin u

4pP0
 
cos (kr - vt)

r
 (3.56)

and B = E>c, where the fields are oriented as in Fig. 3.33. The 
Poynting vector S$ = E$ : B$>m0 always points radially outward 
in the wave zone. There, the B$-field lines are circles concentric 
with, and in a plane perpendicular to, the dipole axis. This is 
understandable, since B$  can be considered to arise from the 
time-varying oscillator current.

The irradiance (radiated radially outward from the source) 
follows from Eq. (3.44) and is given by

 I(u) =
p 2

0v
4

32p2c3P0
 
sin2 u

r2  (3.57)

material system, although a quantum-mechanical process, can 
be envisioned in terms of the classical oscillating electric di-
pole. This mechanism is therefore central to understanding the 
way atoms, molecules, and even nuclei emit and absorb elec-
tromagnetic waves. Figure 3.32 schematically depicts the elec-
tric field distribution in the region of an electric dipole. In this 
configuration, a negative charge oscillates linearly in simple 
harmonic motion about an equal stationary positive charge. If 
the angular frequency of the oscillation is v, the time-dependent 
dipole moment p (t) has the scalar form

 p = p 0 cos vt (3.55)

Note that p (t) could represent the collective moment of the 
oscillating charge distribution on the atomic scale or even an 
oscillating current in a linear television antenna.

At t = 0, p = p 0 = qd, where d is the initial maximum sep-
aration between the centers of the two charges (Fig. 3.32a). The 
dipole moment is actually a vector in the direction from -q to 
+q. The figure shows a sequence of field line patterns as the 
displacement, and therefore the dipole moment decreases, then 
goes to zero, and finally reverses direction. When the charges 
effectively overlap, p = 0, and the field lines must close on 
themselves.

l

(a)

(b)

(e)

(c)

(d)

B�

E�

Figure 3.32  The E$-field of an oscillating electric dipole.

M03_HECH6933_05_GE_C03.indd   73 26/08/16   11:50 AM



74 Chapter 3 Electromagnetic Theory, Photons, and Light

That at least saves some height, allowing the device to be built 
only 14l tall. Moreover, this use of the Earth also generates a so-
called ground wave that hugs the planet’s surface, where most 
people with radios are likely to be located. A commercial sta-
tion usually has a range somewhere between 25 and 100 miles.

3.4.4 The Emission of Light from Atoms

Surely the most significant mechanism responsible for the natu-
ral emission and absorption of radiant energy— especially of 
light—is the bound charge, electrons confined within atoms. 
These minute negative particles, which surround the massive 
positive nucleus of each atom, constitute a kind of distant, tenu-
ous charged cloud. Much of the chemical and optical behavior 
of ordinary matter is determined by its outer or valence elec-
trons. The remainder of the cloud is ordinarily formed into 
“closed,” essentially unresponsive, shells around and tightly 
bound to the nucleus. These closed or filled shells are made up 
of specific numbers of electron pairs. Even though it is not com-
pletely clear what occurs internally when an atom radiates, we 
do know with some certainty that light is emitted during read-
justments in the outer charge distribution of the electron cloud. 
This mechanism is ultimately the predominant source of light in 
the world.

Usually, an atom exists with its clutch of electrons arranged 
in some stable configuration that corresponds to their lowest 
energy distribution or level. Every electron is in the lowest pos-
sible energy state available to it, and the atom as a whole is in 
its so-called ground-state configuration. There it will likely 
remain indefinitely, if left undisturbed. Any mechanism that 
pumps energy into the atom will alter the ground state. For in-
stance, a collision with another atom, an electron, or a photon 
can affect the atom’s energy state profoundly. An atom can exist 
with its electron cloud in only certain specific configurations 
corresponding to only certain values of energy. In addition to 
the ground state, there are higher energy levels, the excited 
states, each associated with a specific cloud configuration and 
a specific well-defined energy. When one or more electrons oc-
cupies a level higher than its ground-state level, the atom is 
said to be excited—a condition that is inherently unstable and 
temporary.

At low temperatures, atoms tend to be in their ground 
state; at progressively higher temperatures, more and more of 
them will become excited through atomic collisions. This  
sort of mechanism is indicative of a class of relatively gentle 
excitations—glow discharge, flame, spark, and so forth—which 
energize only the outermost unpaired valence electrons. We will 
initially concentrate on these outer electron transitions, which 
give rise to the emission of light, and the nearby infrared and 
ultraviolet.

When enough energy is imparted to an atom (typically to the 
valence electron), whatever the cause, the atom can react by 
suddenly ascending from a lower to a higher energy level 

again an Inverse-Square-Law dependence on distance. The an-
gular flux density distribution is toroidal, as in Fig. 3.29. The 
axis along which the acceleration takes place is the symmetry 
axis of the radiation pattern. Notice the dependence of the irradi-
ance on v4—the higher the frequency, the stronger the radia-
tion. That feature will be important when we consider scattering.

It’s not difficult to attach an AC generator between two con-
ducting rods and send currents of free electrons oscillating up 
and down that “transmitting antenna.” Figure 3.34a shows the 
arrangement carried to its logical conclusion—a fairly standard 
AM radio tower. An antenna of this sort will function most  
efficiently if its length corresponds to the wavelength being 
transmitted or, more conveniently, to 1

2l. The radiated wave is 
then formed at the dipole in synchronization with the oscillating 
current producing it. AM radiowaves are unfortunately several 
hundred meters long. Consequently, the antenna shown in the 
figure has half the 1

2l-dipole essentially buried in the Earth. 

� 

r�
u

x

y

z

B�

B�E� E�

p

Figure 3.33  Field orientations 
for an oscillating electric dipole.

E

(a)

(b)

E�

B�

Figure 3.34 (a) Electromagnetic waves from a transmitting tower.  
(b) Automobiles often have radio antennas that stick straight up about  
a meter. The vertically oscillating electric field of a passing radiowave 
induces a voltage along the length of the antenna, and that becomes  
the input signal to the receiver.
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representation of the manifest wave nature of the photon. But 
the two are not equivalent in all respects: the electromagnetic 
wavetrain is a classical creation that describes the propagation 
and spatial distribution of light extremely well; yet its energy is 
not quantized, and that is an essential characteristic of the pho-
ton. So when we consider photon wavetrains, keep in mind that 
there is more to the idea than just a classical oscillatory pulse 
of electromagnetic wave. Of course, the reason even to intro-
duce the notion of the emission of wavetrains is to have a basis 
for talking about the frequency of the light. This is perhaps the 
central problem in any naïve photon model: what agency man-
ifests the frequency?

The emission spectra of single atoms or low-pressure gas-
es, whose atoms do not interact appreciably, consist of sharp 
“lines,” that is, fairly well-defined frequencies characteristic 
of the atoms. There is always some frequency broadening of 
that radiation due to atomic motion, collisions, and so forth; 
hence it’s never precisely monochromatic. Generally, how-
ever, the atomic transition from one level to another is char-
acterized by the emission of a well-defined, narrow range of 
frequencies. On the other hand, the spectra of solids and liq-
uids, in which the atoms are interacting with one another, are 
broadened into wide frequency bands. When two atoms are 
brought close together, the result is a slight shift in their re-
spective energy levels because they act on each other. The 
many interacting atoms in a solid create a tremendous num-
ber of such shifted levels, in effect spreading out each of their 
original levels, blurring them into essentially continuous 
bands. Materials of this nature emit and absorb over broad 
ranges of frequencies.

Optical Cooling

The linear momentum carried by photons can be transferred to 
moving atoms or ions, thereby drastically changing their mo-
tion. After about ten thousand absorption and subsequent emis-
sion cycles, an atom, which was originally moving at perhaps 
700 m>s, can be slowed to near zero speed. Since, in general, 
temperature is proportional to the average kinetic energy (KE) of 
the particles constituting a system, this process is called optical 
or laser cooling. With it, KE temperatures in the microkelvin 

(Fig. 3.35). The electron will make a very rapid transition, a 
quantum jump, from its ground-state orbital configuration to 
one of the well-delineated excited states, one of the quantized 
rungs on its energy ladder. As a rule, the amount of energy 
taken up in the process equals the energy difference between 
the initial and final states, and since that is specific and well 
defined, the amount of energy that can be absorbed by an 
atom is quantized (i.e., limited to specific amounts). This state 
of atomic excitation is a short-lived resonance phenomenon. 
Usually, after about 10-8 s or 10-9 s, the excited atom sponta-
neously relaxes back to a lower state, most often the ground 
state, losing the excitation energy along the way. This energy 
readjustment can occur by way of the emission of light or  
(especially in dense materials) by conversion to thermal energy 
through interatomic collisions within the medium. (As we’ll 
soon see, this latter mechanism results in the absorption of light 
at the resonant frequency and the transmission or reflection of 
the remaining frequencies—it’s responsible for most of the col-
oration in the world around us.)

If the atomic transition is accompanied by the emission of 
light (as it is in a rarefied gas), the energy of the photon ex-
actly matches the quantized energy decrease of the atom. That 
corresponds to a specific frequency, by way of ∆ℰ = hn, a fre-
quency associated with both the photon and the atomic transi-
tion between the two particular states. This is said to be a reso-
nance frequency, one of several (each with its own likelihood 
of occurring) at which the atom very efficiently absorbs and 
emits energy. The atom radiates a quantum of energy that pre-
sumably is created spontaneously, on the spot, by the shifting 
electron.

Even though what occurs during the atom-transition inter-
val of 10-8 s is far from clear, it can be helpful to imagine the 
orbital electron somehow making its downward energy transi-
tion via a gradually damped oscillatory motion at the specific 
resonance frequency. The radiated light can then be envisioned 
in a semiclassical way as emitted in a short oscillatory direc-
tional pulse, or wavetrain, lasting less than roughly 10-8 s—a 
picture that is in agreement with certain experimental observa-
tions (see Section 7.4.2, and Fig. 7.45). It’s useful to think of 
this electromagnetic pulse as associated in some inextricable 
fashion with the photon. In a way, the pulse is a semiclassical 

(b)  Excitation of
       the ground state

(c)  De-excitation with
      emission of a photon

(d)  Ground state ≈10–8
       seconds later

(a)  The ground state about to
      receive a blast of energy

ℰ = hn

∆ℰ = hn

photon

ℰ = hn
Figure 3.35  The excitation 
of an atom. (a) Energy in  
the amount hn is delivered  
to the atom. (b) Since this 
matches the energy needed 
to reach an excited state,  
the atom absorbs the energy 
and attains a higher energy 
level. (c) With the emission  
of a photon, it drops back  
(d) and returns to the ground 
state in about 10-8 s.
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Notice that the radiation pressure force is frequency depen-
dent and the atoms experience a speed-dependent force via the 
Doppler Effect. That means that n0 and nL have to be kept in the 
proper relationship as v decreases. There are a number of very 
clever ways this is accomplished.

3.5 Light in Bulk Matter

The response of dielectric or nonconducting materials to elec-
tromagnetic fields is of special concern in Optics. We will, of 
course, be dealing with transparent dielectrics in the form of 
lenses, prisms, plates, films, and so forth, not to mention the 
surrounding sea of air.

The net effect of introducing a homogeneous, isotropic di-
electric into a region of free space is to change P0 to P and m0 to 
m in Maxwell’s Equations. The phase speed in the medium now 
becomes

 v = 1>1Pm (3.58)

The ratio of the speed of an electromagnetic wave in vacuum to 
that in matter is known as the absolute index of refraction n:

 n K
c
v

= ± A Pm
P0m0

 (3.59)

In terms of the relative permittivity and relative permeability of 
the medium, n becomes

 n = ± 1KEKM (3.60)

where n is usually positive.
There are magnetic substances that are transparent in the 

infrared and microwave regions of the spectrum. But we are 
primarily interested in materials that are transparent in the vis-
ible, and these are all essentially “nonmagnetic.” Indeed, KM 
generally doesn’t deviate from 1.0 by any more than a few parts 
in 104 (e.g., for diamond KM = 1.0 - 2.2 * 10-5). Setting 
KM = 1.0 in the formula for n results in an expression known 
as Maxwell’s Relation, namely,

 n ≈ 1KE (3.61)

wherein KE is presumed to be the static dielectric constant. As 
indicated in Table 3.2, this relationship seems to work well only 
for some simple gases. The difficulty arises because KE and 
therefore n are actually frequency dependent. The dependence 
of n on the wavelength (or color) of light is a well-known  
effect called dispersion. It arises on a microscopic level, and 
so Maxwell’s Equations are quite oblivious to it. Sir Isaac Newton 
used prisms to disperse white light into its constituent colors 
over three hundred years ago, and the phenomenon was well 
known, if not well understood, even then.

range are attainable. Laser cooling has become the basis for a 
variety of applications including the atomic clock, the atom in-
terferometer, and the focusing of atomic beams. For us it brings 
together the ideas of Sections 3.3.4 and 3.4.4 in a compelling, 
practical way.

Figure 3.36 depicts a beam of atoms, each of mass m travel-
ing with a velocity v$, colliding with a counterdirected beam of 
laser photons having a propagation vector k$L. The laser fre-
quency nL is selected to be just beneath the resonant frequency 
(n0) of the atoms. Because of its motion, any particular atom  
“sees” an oncoming photon with a frequency that is Doppler-
shifted* upward by an amount 0 k$L · v$ 0 >2p = nLv>c. When the 
laser frequency is tuned so that n0 = nL(1 + v>c), collisions 
with the photons will resonate the atoms. In the process, each 
photon transfers its momentum of Uk$L to the absorbing atom 
whose speed is thereupon reduced by an amount ∆v where 
m ∆v = UkL. 

The cloud of atoms is not very dense, and each excited 
atom can drop back to its ground state with the spontaneous 
emission of a photon of energy hn0. This emission is random-
ly directed, and so although the atom recoils, the average 
amount of momentum regained by it over thousands of cycles 
tends to zero. The change in momentum of the atom per pho-
ton absorption-emission cycle is therefore effectively Uk$L, and 
it slows down. In each cycle (as seen by someone at rest in the 
lab), the atom absorbs a photon of energy hnL, emits a photon 
of energy hn0, and in the process loses an amount of KE cor-
responding to hnLv>c, which is proportional to the Doppler 
Shift. 

By contrast, an atom moving in the opposite direction, away 
from the light source, sees photons to have a frequency 
nL(1 - v>c), far enough away from n0 that there can be little or 
no absorption, and therefore no momentum gain.

*Imagine an observer moving at vo, toward a source that is sending out waves 
having a speed v at a frequency ns. As a result of the Doppler Effect, he will expe-
rience a frequency no = ns(v + vo)>v. For more of the details, see almost any 
introductory physics text, for example, E. Hecht, Physics: Calculus, Sect. 11.11.

k�Lv�
Atoms Photons

m

Figure 3.36  A stream of atoms colliding with a laserbeam in a process 
called laser cooling.
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(e) n = 1KE

n2 = KE

KE = 2.453
P = P0KE

P = (8.854 2 * 10-12)2.453

P = 2.172 * 10-11C2>N · m2

(f ) I =
P v
2

 E2
0

I =
(2.172 * 10-11C2>N ·m2)(1.909 * 108 m>s)(180 V>m)2

2

I = 67.2 W>m2

Scattering and Absorption

What is the physical basis for the frequency dependence of n? 
The answer to that question can be found by examining the in-
teraction of an incident electromagnetic wave with the array of 
atoms constituting a dielectric material. An atom can react to 
incoming light in two different ways, depending on the incident 
frequency or equivalently on the incoming photon energy 
(ℰ = hn). Generally, the atom will “scatter” the light, redirect-
ing it without otherwise altering it. On the other hand, if the 
photon’s energy matches that of one of the excited states, the 
atom will absorb the light, making a quantum jump to that high-
er energy level. In the dense atomic landscape of ordinary gases 
(at pressures of about 102 Pa and up), solids, and liquids, it’s 
very likely that this excitation energy will rapidly be trans-
ferred, via collisions, to random atomic motion, thermal energy, 
before a photon can be emitted. This commonplace process (the 
taking up of a photon and its conversion into thermal energy) 
was at one time widely known as “absorption,” but nowadays 
that word is more often used to refer just to the “taking up” as-
pect, regardless of what then happens to the energy. Conse-
quently, it’s now better referred to as dissipative absorption. 
All material media partake in dissipative absorption to some 
extent, at one frequency or another.

In contrast to this excitation process, ground-state or non-
resonant scattering occurs with incoming radiant energy of 
other frequencies—that is, lower than the resonance frequen-
cies. Imagine an atom in its lowest state and suppose that it in-
teracts with a photon whose energy is too small to cause a tran-
sition to any of the higher, excited states. Despite that, the 
electromagnetic field of the light can be supposed to drive the 
electron cloud into oscillation. There is no resulting atomic 
transition; the atom remains in its ground state while the cloud 
vibrates ever so slightly at the frequency of the incident light. 
Once the electron cloud starts to vibrate with respect to the pos-
itive nucleus, the system constitutes an oscillating dipole and so 

EXAMPLE 3.5

An electromagnetic wave travels through a homogeneous  
dielectric medium with a frequency of v = 2.10 * 1015 rad>s 
and k = 1.10 * 107 rad>m. The E$@field of the wave is

E$ = (180 V>m) ĵ ei(kx -vt)

Determine (a) the direction of B$, (b) the speed of the wave,  
(c) the associated B$@field, (d) the index of refraction, (e) the per-
mittivity, and (f ) the irradiance of the wave.

SOLUTION

(a) B$  is in the direction of k̂, since the wave moves in the direc-
tion of E$ : B$  and that is in the î or +x-direction.

(b) The speed is v = v>k

v =
2.10 * 1015 rad>s
1.10 * 107 rad/m

v = 1.909 * 108 m>s or 1.91 * 108 m>s
(c) E0 = vB0 = (1.909 * 108 m>s)B0

B0 =
180 V>m

1.909 * 108 m>s = 9.43 * 10-7 T

B$ = (9.43 * 10-7 T ) k̂ ei(kx -vt)

(d) n = c>v = (2.99 * 108 m>s)>(1.909 * 108 m>s) and 

n =1.566 3, or 1.57

TABLE 3.2  Maxwell’s Relation

Gases at 0°C and 1 atm

Substance 1KE n

Air 1.000 294 1.000 293
Helium 1.000 034 1.000 036
Hydrogen 1.000 131 1.000 132
Carbon dioxide 1.000 49  1.000 45

Liquids at 20°C

Substance 1KE n

Benzene 1.51 1.501
Water 8.96 1.333
Ethyl alcohol (ethanol) 5.08 1.361
Carbon tetrachloride 4.63 1.461
Carbon disulfide 5.04 1.628

Solids at room temperature

Substance 1KE n

Diamond 4.06 2.419
Amber 1.6  1.55
Fused silica 1.94 1.458
Sodium chloride 2.37 1.50

Values of KE correspond to the lowest possible frequencies, in some cases as low 
as 60 Hz, whereas n is measured at about 0.5 * 1015 Hz. Sodium D light was 
used (l = 589.29 nm).
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H. A. Lorentz, we can average the contributions of large num-
bers of atoms to represent the behavior of an isotropic  
dielectric medium.

When a dielectric is subjected to an applied electric field, the 
internal charge distribution is distorted. This corresponds to the 
generation of electric dipole moments, which in turn contribute 
to the total internal field. More simply stated, the external field 
separates positive and negative charges in the medium (each 
pair of which is a dipole), and these charges then contribute an 
additional field component. The resultant dipole moment per 
unit volume is called the electric polarization, P$. For most  
materials P$ and E$  are proportional and can satisfactorily be re-
lated by

 (P - P0)E$ = P$ (3.62)

Electric polarization is a measure of the difference between the 
electric fields with and without the medium in place. When 
P = P0, P$ = 0. The units of P$ are C · m>m3, which is C>m2.

The redistribution of charge and the consequent polariza-
tion can occur via the following mechanisms. There are mol-
ecules that have a permanent dipole moment as a result of 
unequal sharing of valence electrons. These are known as po-
lar molecules; the nonlinear water molecule is a fairly typical 
example (Fig. 3.37). Each hydrogen–oxygen bond is polar co-
valent, with the H-end positive with respect to the O-end. 
Thermal agitation keeps the molecular dipoles randomly ori-
ented. With the introduction of an electric field, the dipoles 
align themselves, and the dielectric takes on an orientational 
polarization. In the case of nonpolar molecules and atoms, 
the applied field distorts the electron cloud, shifting it relative 
to the nucleus, thereby producing a dipole moment. In addi-
tion to this electronic polarization, there is another process 
that’s applicable specifically to molecules, for example, the 
ionic crystal NaCl. In the presence of an electric field, the 
positive and negative ions undergo a shift with respect to each 
other. Dipole moments are therefore induced, resulting in 
what is called ionic or atomic polarization.

If the dielectric is subjected to an incident harmonic electro-
magnetic wave, its internal charge structure will experience 
time-varying forces and >or torques. These will be proportional 
to the electric field component of the wave.* For fluids that are 
polar dielectrics, the molecules actually undergo rapid rota-
tions, aligning themselves with the E$(t)-field. But these mole-
cules are relatively large and have appreciable moments of  
inertia. At high driving frequencies v, polar molecules will be 
unable to follow the field alternations. Their contributions to P$ 
will decrease, and KE will drop markedly. The relative permit-
tivity of water is fairly constant at approximately 80, up to 
about 1010 Hz, after which it falls off quite rapidly.

presumably will immediately begin to radiate at that same fre-
quency. The resulting scattered light consists of a photon that 
sails off in some direction carrying the same amount of energy 
as did the incident photon—the scattering is elastic. In effect, 
the atom resembles a little dipole oscillator, a model employed 
by Hendrik Antoon Lorentz (1878) in order to extend Maxwell’s 
Theory, in a classical way, to the atomic domain. If the incident 
light is unpolarized, the atomic oscillators scatter in random  
directions.

When an atom is irradiated with light, the process of excita-
tion and spontaneous emission is rapidly repeated. In fact, with 
an emission lifetime of ≈10-8 s, an atom could emit upward of 
108 photons per second in a situation in which there was enough 
energy to keep reexciting it. Atoms have a very strong tendency 
to interact with resonant light (they have a large absorption 
cross section). This means that the saturation condition, in 
which the atoms of a low-pressure gas are constantly emitting 
and being reexcited, occurs at a modest value of irradiance 
(≈102 W>m2). So it’s not very difficult to get atoms firing out 
photons at a rate of 100 million per second.

Generally, we can imagine that in a medium illuminated by 
an ordinary beam of light, each atom behaves as though it was 
a “source” of a tremendous number of photons (scattered either 
elastically or resonantly) that fly off in all directions. A stream 
of energy like this resembles a classical spherical wave. Thus 
we imagine an atom (even though it is simplistic to do so) as a 
point source of spherical electromagnetic waves—provided 
we keep in mind Einstein’s admonition that “outgoing radiation 
in the form of spherical waves does not exist.”

When a material with no resonances in the visible is bathed 
in light, nonresonant scattering occurs, and it gives each par-
ticipating atom the appearance of being a tiny source of 
spherical wavelets. As a rule, the closer the frequency of the 
incident beam is to an atomic resonance, the more strongly will 
the interaction occur and, in dense materials, the more energy 
will be dissipatively absorbed. It is precisely this mechanism of 
selective absorption (see Section 4.9) that creates much of the 
visual appearance of things. It is primarily responsible for the 
color of your hair, skin, and clothing, the color of leaves and 
apples and paint.

3.5.1 Dispersion

Dispersion corresponds to the phenomenon whereby the  
index of refraction of a medium is frequency dependent. All 
material media are dispersive; only vacuum is nondispersive. 

Maxwell’s Theory treats substantial matter as continuous, 
representing its electric and magnetic responses to applied E$- 
and B$-fields in terms of constants, P and m. Consequently, KE 
and KM are also constant, and n is therefore unrealistically inde-
pendent of frequency. To deal theoretically with dispersion, it’s 
necessary to incorporate the atomic nature of matter and to ex-
ploit some frequency-dependent aspect of that nature. Following 

*Forces arising from the magnetic component of the field have the form 
F$M = q.v$ : B$  in comparison to F$E = q.E$ for the electric component; but 
v 6 6  c, so it follows from Eq. (3.30) that F$M is generally negligible.
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Once somehow momentarily disturbed, an electron bound in this 
way will oscillate about its equilibrium position with a natural or 
resonant frequency given by v0 = 1kE>me, where me is its 
mass. This is the oscillatory frequency of the undriven system and 
so F = -v2

0 me 

x. Using v0, which is observable, we can get rid of 
kE which was a figment of the spring model.

A material medium is envisioned as an assemblage, in vacu-
um, of a very great many polarizable atoms, each of which is 
small (by comparison to the wavelength of light) and close to its 
neighbors. When a lightwave impinges on such a medium, each 
atom can be thought of as a classical forced oscillator being 
driven by the time-varying electric field E(t) of the wave, which 
is assumed here to be applied in the x-direction. Figure 3.38b is 
a mechanical representation of just such an oscillator in an iso-
tropic medium where the negatively charged shell is fastened to 
a stationary positive nucleus by identical springs. Even under 
the illumination of bright sunlight, the amplitude of the oscilla-
tions will be no greater than about 10-17 m. The force (FE)  
exerted on an electron of charge qe by the E(t) field of a har-
monic wave of frequency v is of the form

 FE = qeE(t) = qeE0 cos vt (3.63)

Notice that if the driving force is in one direction the restoring 
force is in the opposite direction, which is why it has a minus 

In contrast, electrons have little inertia and can continue to 
follow the field, contributing to KE(v) even at optical frequencies 
(of about 5 * 1014 Hz). Thus the dependence of n on v is gov-
erned by the interplay of the various electric polarization mecha-
nisms contributing at the particular frequency. With this in mind, 
it is possible to derive an analytical expression for n(v) in terms 
of what’s happening within the medium on an atomic level.

The electron cloud of the atom is bound to the positive nucleus 
by an attractive electric force that sustains it in some sort of equi-
librium configuration. Without knowing much more about the de-
tails of all the internal atomic interactions, we can anticipate that, 
like other stable mechanical systems, which are not totally disrupt-
ed by small perturbations, a net force, F, must exist that returns the 
system to equilibrium. Moreover, we can reasonably expect that 
for very small displacements, x, from equilibrium (where F = 0), 
the force will be linear in x. In other words, a plot of F(x) versus x 
will cross the x-axis at the equilibrium point (x = 0) and will be a 
straight line very close on either side. Thus for small displacements 
it can be supposed that the restoring force has the form F = -kE 

x, 
where kE is a kind of elastic constant much like a spring constant. 
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Figure 3.37  Assorted molecules and their dipole moments ( p ). The 
dipole moment of an object is the charge on either end times the separa-
tion of those charges.
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Figure 3.38  (a) Distortion of the electron cloud in response to an applied 
E$-field. (b) The mechanical oscillator model for an isotropic medium—all 
the springs are the same, and the oscillator can vibrate equally in all  
directions.
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80 Chapter 3 Electromagnetic Theory, Photons, and Light

Using the fact that n2 = KE = P>P0, we can arrive at an expres-
sion for n as a function of v, which is known as a dispersion 
equation:

 n2(v) = 1 +
Nq2

e

P0 me
 a 1

v2
0 - v2b (3.70)

At frequencies increasingly above resonance, (v2
0 - v2) 6 0, 

and the oscillator undergoes displacements that are approxi-
mately 180° out-of-phase with the driving force. The resulting 
electric polarization will therefore be similarly out-of-phase 
with the applied electric field. Hence the dielectric constant and 
therefore the index of refraction will both be less than 1. At 
frequencies increasingly below resonance, (v2

0 - v2) 7 0, the 
electric polarization will be nearly in-phase with the applied 
electric field. The dielectric constant and the corresponding in-
dex of refraction will then both be greater than 1. This kind of 
behavior, which actually represents only part of what happens, 
is nonetheless generally observed in all sorts of materials.

We can test the utility of the analysis using a dispersive 
prism (p. 199) made of the sample material under study, but first 
we rewrite Eq. (3.70), as is done in Problem 3.62:

(n2 - 1)-1 = -Cl-2 + Cl-2
0

where, since v = 2pc>l, the multiplicative constant is given by 
C = 4p2c2P0me>Nq2

e. Figure 3.39 is a plot of (n2 - 1)-1versus 
l-2 using data from a student experiment. A crown-glass prism 
was illuminated with the various wavelengths from a He dis-
charge tube, and the index of refraction was measured for each 
one (Table 3.3). The resulting curve is indeed a straight line;  
its slope (using y = mx + b) equals -C, and its y-intercept cor-
responds to Cl-2

0 . From this it follows that the resonant fre-
quency is 2.95 * 1015 Hz, which is properly in the ultraviolet.

As a rule, any given substance will actually undergo several 
transitions from n 7 1 to n 6 1 as the illuminating frequency is 

sign: F = -kEx = -mev
2
0 x. Newton’s Second Law provides 

the equation of motion; that is, the sum of the forces equals the 
mass times the acceleration:

 qeE0 cos vt - mev
2
0 x = me 

d2x

dt2  (3.64)

The first term on the left is the driving force, and the second is 
the opposing restoring force. To satisfy this expression, x will 
have to be a function whose second derivative isn’t very much 
different from x itself. Furthermore, we can anticipate that the 
electron will oscillate at the same frequency as E(t), so we “guess” 
at the solution

x(t) = x0 cos vt

and substitute it in the equation to evaluate the amplitude x0. In 
this way we find that

 x(t) =
qe>me

(v2
0 - v2)

 E0 cos vt (3.65)

or x(t) =
qe>me

(v2
0 - v2)

 E(t) (3.66)

This is the relative displacement between the negative cloud 
and the positive nucleus. It’s traditional to leave qe positive 
and speak about the displacement of the oscillator. Without a 
driving force (no incident wave), the oscillator will vibrate at 
its resonance frequency v0. In the presence of a field whose 
frequency is less than v0, E(t) and x(t) have the same sign, 
which means that the oscillator can follow the applied force 
(i.e., is in-phase with it). However, when v 7 v0, the dis-
placement x(t) is in a direction opposite to that of the instanta-
neous force qeE(t) and therefore 180° out-of-phase with it. 
Remember that we are talking about oscillating dipoles where 
for v0 7 v, the relative motion of the positive charge is a vi-
bration in the direction of the field. Above resonance the posi-
tive charge is 180° out-of-phase with the field, and the dipole 
is said to lag by p rad (see Fig. 4.9).

The dipole moment is equal to the charge qe times its dis-
placement, and if there are N contributing electrons per unit vol-
ume, the electric polarization, or density of dipole moments, is

 P = qe 

xN (3.67)

Hence from Eq. (3.66)

 P =
qe

2NE>me

(v2
0 - v2)

 (3.68)

and from Eq. (3.62)

 P = P0 +
P(t)

E(t)
= P0 +

q2
eN>me

(v2
0 - v2)

 (3.69)
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Figure 3.39  Graph of (n2 - 1)-1 versus l-2 for the data shown in  
Table 3.3. See N. Gauthier, Phys. Teach., 25, 502 (1987).
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the forced oscillators reradiate. In solids, liquids, and gases at 
high pressure (≈103 atm), the interatomic distances are roughly 
10 times less than those of a gas at standard temperature and 
pressure. Atoms and molecules in this relatively close proximity 
experience strong interactions and a resulting “frictional” force. 
The effect is a damping of the oscillators and a dissipation of 
their energy within the substance in the form of “heat” (random 
molecular motion).

Had we included a damping force proportional to the speed 
(of the form me gdx>dt) in the equation of motion, the disper-
sion equation (3.71) would have been

 n2(v) = 1 +
Nqe

2

P0 me
 

ĵ

ƒi

v0
2

j - v2 + igj  

v
 (3.72)

Although this expression is fine for rarefied media such as 
gases, there is another complication that must be overcome if 
the equation is to be applied to dense substances. Each atom 
interacts with the local electric field in which it is immersed. 
Yet unlike the isolated atoms considered above, those in a 
dense material will also experience the induced field set up by 
their brethren. Consequently, an atom “sees” in addition to the 
applied field E(t) another field,* namely, P(t)>3P0. Without go-
ing into the details here, it can be shown that

 
n2 - 1

n2 + 2
=

Nq2
e

3P0 me
 

ĵ

ƒj

v2
0j - v2 + igjv

 (3.73)

Thus far we have been considering electron-oscillators almost 
exclusively, but the same results would have been applicable to 
ions bound to fixed atomic sites as well. In that instance me 
would be replaced by the considerably larger ion mass. Thus, 
although electronic polarization is important over the entire op-
tical spectrum, the contributions from ionic polarization sig-
nificantly affect n only in regions of resonance (v0j = v).

The implications of a complex index of refraction will be 
considered later, in Section 4.8. At the moment we limit the 
discussion, for the most part, to situations in which absorption 
is negligible (i.e., v2

0j - v2 7 7  gjv) and n is real, so that

 
n2 - 1

n2 + 2
=

Nq2
e

3P0 me ĵ

ƒj

v2
0j - v2 (3.74)

Colorless, transparent materials have their characteristic fre-
quencies outside the visible region of the spectrum (which is why 
they are, in fact, colorless and transparent). In particular, glasses 
have effective natural frequencies above the visible in the ultra-
violet, where they become opaque. In cases for which v2

0j 7 7  v2, 
by comparison, v2 may be neglected in Eq. (3.74), yielding an 
essentially constant index of refraction over that frequency region. 

made to increase. The implication is that instead of a single 
frequency v0 at which the system resonates, there apparently 
are several such frequencies. It would seem reasonable to gen-
eralize matters by supposing that there are N molecules per unit 
volume, each with ƒj oscillators having natural frequencies v0j,  
where j = 1, 2, 3, . . . . In that case,

 n2(v) = 1 +
Nq2

e

P0 me ĵ
a fj

v2
0j - v2b (3.71)

This is essentially the same result as that arising from the quantum-
mechanical treatment, with the exception that some of the terms 
must be reinterpreted. Accordingly, the quantities v0j would 
then be the characteristic frequencies at which an atom may 
absorb or emit radiant energy. The ƒj terms, which satisfy the 
requirement that g jƒj = 1, are weighting factors known as os-
cillator strengths. They reflect the emphasis that should be 
placed on each one of the modes. Since they measure the likeli-
hood that a given atomic transition will occur, the ƒj terms are 
also known as transition probabilities.

A similar reinterpretation of the ƒj terms is even required 
classically, since agreement with the experimental data de-
mands that they be less than unity. This is obviously contrary to 
the definition of the ƒj that led to Eq. (3.71). One then supposes 
that a molecule has many oscillatory modes but that each of these 
has a distinct natural frequency and strength.

Notice that when v equals any of the characteristic frequen-
cies, n is discontinuous, contrary to actual observation. This is 
simply the result of having neglected the damping term, which 
should have appeared in the denominator of the sum. Inciden-
tally, the damping, in part, is attributable to energy lost when 

TABLE 3.3  Dispersion of Crown Glass*

 Wavelength l (nm) Index of Refraction n

 1. 728.135 1.534 6

 2. 706.519, 1.535 2 
 706.570 

 3. 667.815 1.536 29

 4. 587.562, 1.539 54 
 587.587 

 5. 504.774 1.544 17

 6. 501.567 1.544 73

 7. 492.193 1.545 28

 8. 471.314 1.546 24

 9. 447.148 1.549 43

10. 438.793 1.550 26

11. 414.376 1.553 74

12. 412.086 1.554 02

13. 402.619 1.555 30

14. 388.865 1.557 67

* The wavelengths are those of a He discharge tube. The corresponding  
indices were measured.

*This result, which applies to isotropic media, is derived in almost any text on 
Electromagnetic Theory.
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As we have seen, atoms within a molecule can also vibrate 
about their equilibrium positions. But the nuclei are massive, 
and so the natural oscillatory frequencies are low, in the infrared. 
Molecules such as H2O and CO2 have resonances in both the 
infrared and ultraviolet. When water is trapped within a piece of 
glass during its manufacture, these molecular oscillators are 
available, and an infrared absorption band exists. The presence 
of oxides also results in infrared absorption. Figure 3.42 shows 
the n(v) curves (ranging from the ultraviolet to the infrared) for 
a number of important optical crystals. Note how they rise in 
the ultraviolet and fall in the infrared. At the even lower fre-
quencies of radiowaves, glass is again transparent. In compari-
son, a piece of stained glass evidently has a resonance in the 
visible where it absorbs out a particular range of frequencies, 
transmitting the complementary color.

As a final point, notice that if the driving frequency is great-
er than any of the v0j terms, then n2 6 1 and n 6 1. Such a 
situation can occur, for example, if we beam X-rays onto a glass 
plate. This is an intriguing result, since it leads to v 7 c, in 
seeming contradiction to Special Relativity. We will consider 
this behavior again later on, when we discuss the group velocity 
(Section 7.2.2).

In partial summary then, over the visible region of the spec-
trum, electronic polarization is the operative mechanism deter-
mining n(v). Classically, one imagines electron-oscillators  
vibrating at the frequency of the incident wave. When the wave’s 
frequency is appreciably different from a characteristic or natural 
frequency, the oscillations are small, and there is little dissipa-
tive absorption. At resonance, however, the oscillator amplitudes 
are increased, and the field does an increased amount of work 
on the charges. Electromagnetic energy removed from the wave 

For example, the important characteristic frequencies for glasses 
occur at wavelengths of about 100 nm. The middle of the visible 
range is roughly five times that value, and there, v2

0j 7 7  v2. Notice 
that as v increases toward v0j, (v

2
0j - v2) decreases and n gradu-

ally increases with frequency, as is clearly evident in Fig. 3.40. 
This is called normal dispersion. In the ultraviolet region, as v 
approaches a natural frequency, the oscillators will begin to reso-
nate. Their amplitudes will increase markedly, and this will be 
accompanied by damping and a strong absorption of energy from 
the incident wave. When v0j = v in Eq. (3.73), the damping term 
obviously becomes dominant. The regions immediately sur-
rounding the various v0j in Fig. 3.41 are called absorption 
bands. There dn>dv is negative, and the process is spoken of as 
anomalous (i.e., abnormal) dispersion. When white light passes 
through a glass prism, the blue constituent has a higher index 
than the red and is therefore deviated through a larger angle (see 
Section 5.5.1). In contrast, when we use a liquid-cell prism con-
taining a dye solution with an absorption band in the visible, the 
spectrum is altered markedly (see Problem 3.59). All substances 
possess absorption bands somewhere within the electromagnetic 
frequency spectrum, so that the term anomalous dispersion, be-
ing a carryover from the late 1800s, is certainly a misnomer.
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structure. These engineered composite media came to be called 
metamaterials, and just above their resonant frequencies they do 
indeed display negative indices of refraction. 

Negative-index materials have a number of remarkable prop-
erties and we’ll examine some of them later on (p. 114). One of 
the strangest behaviors has to do with the Poynting vector. In an 
ordinary homogeneous isotropic material like glass the phase 
velocity of an EM wave and its Poynting vector (the direction of 
energy flow) are the same. That’s not the case with a negative-
index material. While E$ : B$ is again the all-important direction 
of energy flow, the phase velocity is in the opposite direction, its 
negative; the wave propagates forward as the ripples that consti-
tute it travel backward. Because the phase velocity is in the op-
posite direction to the cross-product, determined by the right-
hand rule, negative-index media are also widely known as 
left-handed materials. 

Today the field is quite robust and researchers have succeeded 
in producing negative-index media using a variety of structures, 
including ones fabricated out of dielectrics, known as photonic 
crystals. Since it is theoretically possible to create metamaterials 
that will work in the visible region of the spectrum, the potential 
applications, which run from “superlenses” to cloaking devices, 
are quite amazing.

3.6  The Electromagnetic-Photon 
Spectrum

In 1867, when Maxwell published the first extensive account of 
his Electromagnetic Theory, the frequency band was only known 
to extend from the infrared, across the visible, to the ultraviolet. 
Although this region is of major concern in Optics, it is a small 
segment of the vast electromagnetic spectrum (see Fig. 3.43). 

and converted into mechanical energy is dissipated thermally 
within the substance, and one speaks of an absorption peak or 
band. The material, although essentially transparent at other 
frequencies, is fairly opaque to incident radiation at its charac-
teristic frequencies (see photo of lenses on p. 84).

Negative Refraction

Recall that the refractive index of a material is related to both 
the electrical permittivity and the magnetic permeability by 
way of Eq. (3.59): n = ± 1Pm>P0m0. Presumably the square 
root could be either positive or negative, but no one was ever 
concerned with the latter possibility. Then in 1968 the Russian 
physicist Victor G. Veselago showed that if both the permittivity 
and the permeability of a material were negative it would have 
a negative index and display a variety of bizarre characteristics. 
At the time there were substances available which under appro-
priate circumstances and in limited frequency ranges displayed 
either P 6 0 or m 6 0, but no known transparent or even trans-
lucent material existed that did both at once. Not surprisingly, 
the theory generated little interest until decades later.

A lightwave is roughly five thousand times the size of an atom 
and when it propagates through a dielectric it doesn’t “see” the 
individual atoms, the multitude of which scatter the wave. If any-
thing, the EM wave behaves as if it “sees” a more-or-less continu-
ous medium and hence preserves its overall characteristics as it 
travels along. The same would be true if a much longer wave, such 
as a several-centimeter-long microwave, propagated through a re-
gion filled with little closely spaced antennas that would scatter it. 
At the turn out of the twentieth century researchers started fabri-
cating three-dimensional arrays of such scatterers. Some consist-
ed of little open rings that when penetrated by an oscillating mag-
netic field would have a capacitance, an inductance, and hence a 
resonant frequency just like an atom in a dielectric. To scatter the 
electric field, lattices of tiny conducting wires were included in the 

An array of small conducting scatterers (split-ring resonators) used to  
fabricate a metamaterial. Operating in the microwave region of the  
spectrum it has P 6 0, m 6 0, and n 6 0. (Ames Laboratory, USDOE)

The smaller the scatterers in a metamaterial are, the shorter the operating 
wavelength. These tiny resonators are about the size of a lightwave and are 
designed to function at about 200 THz. (Ames Laboratory, USDOE)
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84 Chapter 3 Electromagnetic Theory, Photons, and Light

This section enumerates the main categories (there is actually 
some overlapping) into which the spectrum is usually divided.

3.6.1 Radiofrequency Waves

In 1887, eight years after Maxwell’s death, Heinrich Hertz, then 
professor of physics at the Technische Hochschule in Karlsruhe, 

A group of semiconductor lenses made from ZnSe, CdTe, GaAs, and Ge. 
These materials are particularly useful in the infrared (2 mm to 30 mm), 
where they are highly transparent despite the fact that they are quite opaque 
in the visible region of the spectrum. (Two-Six Incorporated/II-IV Inc.)
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Figure 3.43  The electromagnetic-photon spectrum.

Germany, succeeded in generating and detecting electromag-
netic waves.* His transmitter was essentially an oscillatory dis-
charge across a spark gap (a form of oscillating electric  
dipole). For a receiving antenna, he used an open loop of wire 
with a brass knob on one end and a fine copper point on the 
other. A small spark visible between the two ends marked the 
detection of an incident electromagnetic wave. Hertz focused 
the radiation, determined its polarization, reflected and refracted 
it, caused it to interfere setting up standing waves, and then even 
measured its wavelength (on the order of a meter). As he put it:

I have succeeded in producing distinct rays of electric force, 
and in carrying out with them the elementary experiments 
which are commonly performed with light and radiant heat. . . . 
We may perhaps further designate them as rays of light of very 
great wavelength. The experiments described appear to me, at 
any rate, eminently adapted to remove any doubt as to the iden-
tity of light, radiant heat, and electromagnetic wave motion. 
(Heinrich Hertz, Journal of Science, 1889)

The waves used by Hertz are now classified in the radiofre-
quency range, which extends from a few hertz to about 109 Hz 
(l, from many kilometers to 0.3 m or so). These are generally 
emitted by an assortment of electric circuits. For example, the 
60-Hz alternating current circulating in power lines radiates 

*David Hughes may well have been the first person who actually performed this 
feat, but his experiments in 1879 went unpublished and unnoticed for many 
years.
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with a wavelength of 5 * 106 m, or about 3 * 103 miles. There 
is no upper limit to the theoretical wavelength; one could lei-
surely swing the proverbial charged pith ball and, in so doing, 
produce a rather long, if not very strong, wave. Indeed, waves 
more than 18 million miles long have been detected streaming 
down toward Earth from outer space. The higher frequency end 
of the band is used for television and radio broadcasting.

At 1 MHz (106 Hz), a radiofrequency photon has an energy 
of 6.62 * 10-28 J or 4 * 10-9 eV, a very small quantity by any 
measure. The granular nature of the radiation is generally ob-
scured, and only a smooth transfer of radiofrequency energy is 
apparent.

3.6.2 Microwaves

The microwave region extends from about 109 Hz up to about 
3 * 1011 Hz. The corresponding wavelengths go from roughly 
30 cm to 1.0 mm. Radiation capable of penetrating the Earth’s 
atmosphere ranges from less than 1 cm to about 30 m. Micro-
waves are therefore of interest in space-vehicle communications, 
as well as radio astronomy. In particular, neutral hydrogen atoms, 
distributed over vast regions of space, emit 21-cm (1420-MHz) 
microwaves. A good deal of information about the structure of 
our own and other galaxies has been gleaned from this particular 
emission.

Molecules can absorb and emit energy by altering the state of 
motion of their constituent atoms—they can be made to vibrate 
and rotate. Again, the energy associated with either motion is 
quantized, and molecules possess rotational and vibrational en-
ergy levels in addition to those due to their electrons. Only polar 
molecules will experience forces via the E$-field of an incident 
electromagnetic wave that will cause them to rotate into align-
ment, and only they can absorb a photon and make a rotational 
transition to an excited state. Since massive molecules are not 
able to swing around easily, we can anticipate that they will 
have low-frequency rotational resonances (far IR, 0.1 mm, to 
microwave, 1 cm). For instance, water molecules are polar (see 

Fig. 3.37), and if exposed to an electromagnetic wave, they will 
swing around, trying to stay lined up with the alternating E$-field. 
This will occur with particular vigor at any one of its rotational 
resonances. Consequently, water molecules efficiently and dis-
sipatively absorb microwave radiation at or near such a frequen-
cy. The microwave oven (12.2 cm, 2.45 GHz) is an obvious  
application. On the other hand, nonpolar molecules, such as car-
bon dioxide, hydrogen, nitrogen, oxygen, and methane, cannot 
make rotational transitions by way of the absorption of photons.

Nowadays microwaves are used for everything from trans-
mitting telephone conversations and interstation television to 
cooking hamburgers, from guiding planes and catching speed-
ers (by radar) to studying the origins of the Universe, opening 
garage doors, and viewing the surface of the planet (see photo 
on p. 86). They are also quite useful for studying Physical  
Optics with experimental arrangements that are scaled up to 
convenient dimensions.

Photons in the low-frequency end of the microwave spec-
trum have little energy, and one might expect their sources to be 
electric circuits exclusively. Emissions of this sort can, howev-
er, arise from atomic transitions, if the energy levels involved 
are quite near each other. The apparent ground state of the cesi-
um atom is a good example. It is actually a pair of closely spaced 
energy levels, and transitions between them involve an energy of 
only 4.14 * 10-5 eV. The resulting microwave emission has a 
frequency of 9.192 631 77 * 109 Hz. This is the basis for the 
well-known cesium clock, the standard of frequency and time.

The range of radiation that straddles both microwaves and 
infrared (roughly 50 GHz to 10 THz) is often called terahertz 
radiation or T-rays. They’re not absorbed by most dry, non- 
polar materials such as plastic, paper, or fat. Water will absorb 
T-rays, and they’re reflected by metals because of the free elec-
trons. As a result, they can be used to image internal structure 
that would otherwise be hidden from view (see above photo).

3.6.3 Infrared

The infrared region, which extends roughly from 3 * 1011 Hz 
to about 4 * 1014 Hz, was first detected by the renowned as-
tronomer Sir William Herschel (1738–1822) in 1800. As the 

Microwave antennae on the top of the Eiffel Tower in Paris. (E.H.)

A picture of a candy bar made using T-rays. The nuts, which were  
hidden beneath the chocolate, are visible as a result of refraction.  
(V. Rudd, Picometrix, Inc.)
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body radiates IR quite weakly, starting at around 3000 nm, 
peaking in the vicinity of 10 000 nm, and trailing off from there 
into the extreme IR and, negligibly, beyond. This emission is 
exploited by see-in-the-dark sniperscopes, as well as by some 
rather nasty “heat”-sensitive snakes (Crotalidae, pit vipers, and 
Boidae, constrictors) that tend to be active at night.

Besides rotating, a molecule can vibrate in several different 
ways, with its atoms moving in various directions with respect 
to one another. The molecule need not be polar, and even a lin-
ear system such as CO2 has three basic vibrational modes and a 
number of energy levels, each of which can be excited by pho-
tons. The associated vibrational emission and absorption spec-
tra are, as a rule, in the IR (1000 nm– 0.1 mm). Many molecules 
have both vibrational and rotational resonances in the IR and 
are good absorbers, which is one reason IR is often mislead-
ingly called “heat waves”—just put your face in the sunshine 
and feel the resulting buildup of thermal energy.

Infrared radiant energy is generally measured with a device 
that responds to the heat generated on absorption of IR by a 
blackened surface. There are, for example, thermocouple, pneu-
matic (e.g., Golay cells), pyroelectric, and bolometer detectors. 
These in turn depend on temperature-dependent variations in 
induced voltage, gas volume, permanent electric polarization, 
and resistance, respectively. The detector can be coupled by 
way of a scanning system to a cathode ray tube to produce an 
instantaneous televisionlike IR picture (see photo) known as a 
thermograph (which is quite useful for diagnosing all sorts of 
problems, from faulty transformers to faulty people). Photo-
graphic films sensitive to near IR (61300 nm) are also avail-
able. There are IR spy satellites that look out for rocket launch-
ings, IR resource satellites that look out for crop diseases, and 
IR astronomical satellites that look out into space. There are 
“heat-seeking” missiles guided by IR, and IR lasers and tele-
scopes peering into the heavens.

Small differences in the temperatures of objects and their 
surroundings result in characteristic IR emission that can be 
used in many ways, from detecting brain tumors and breast  

name implies, this band of EM-radiation lies just beneath red 
light. The infrared, or IR, is often subdivided into four regions: 
the near IR, that is, near the visible (780–3000 nm); the inter-
mediate IR (3000–6000 nm); the far IR (6000–15000 nm); and 
the extreme IR (15000 nm–1.0 mm). This is again a rather loose 
division, and there is no universality in the nomenclature. Radi-
ant energy at the long-wavelength extreme can be generated by 
either microwave oscillators or incandescent sources (i.e., mo-
lecular oscillators). Indeed, any material will radiate and absorb 
IR via thermal agitation of its constituent molecules.

The molecules of any object at a temperature above absolute 
zero (-273°C) will radiate IR, even if only weakly (see Section 
13.1.1). On the other hand, infrared is copiously emitted in a 
continuous spectrum from hot bodies, such as electric heaters, 
glowing coals, and ordinary house radiators. Roughly half the 
electromagnetic energy from the Sun is IR, and the common 
lightbulb actually radiates far more IR than light. Like all warm-
blooded creatures, we too are infrared emitters. The human 

An IR photo. In the visible, the shirt was dark brown and the undershirt, like 
the ball, was black. (E.H.)

A photograph of an 18- by 75-mile area northeast of Alaska. It was taken by the Seasat satellite 800  
kilometers (500 miles) above the Earth. The overall appearance is somewhat strange because this is  
actually a radar or microwave picture. The wrinkled gray region on the right is Canada. The small, bright shell 
shape is Banks Island, embedded in a black band of shore-fast, first-year sea ice. Adjacent to that is open water, 
which appears smooth and gray. The dark gray blotchy area at the far left is the main polar  
ice pack. There are no clouds because the radar “sees” right through them. (NASA)
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does not create color by altering white light to different degrees, 
as had been thought for centuries, but simply fans out the light, 
separating it into its constituent colors. Not surprisingly, the 
very concept of whiteness seems dependent on our perception 
of the Earth’s daylight spectrum—a broad frequency distribu-
tion that generally falls off more rapidly in the violet than in the 
red (Fig. 3.44). The human eye-brain detector perceives as 
white a wide mix of frequencies, usually with about the same 
amount of energy in each portion. That is what we mean when 
we speak about “white light”—much of the color of the spec-
trum, with no region predominating. Nonetheless, many differ-
ent distributions will appear more or less white. We recognize a 

cancers to spotting a lurking burglar. The CO2 laser, because it 
is a convenient source of continuous power at appreciable levels 
of 100 W and more, is widely used in industry, especially in 
precision cutting and heat treating. Its extreme-IR emissions 
(18.3 mm–23.0 mm) are readily absorbed by human tissue, 
making the laserbeam an effective bloodless scalpel that cauter-
izes as it cuts.

3.6.4 Light

Light corresponds to the electromagnetic radiation in the  
narrow band of frequencies from about 3.84 * 1014 Hz to 
roughly 7.69 * 1014 Hz (see Table 3.4). It is generally pro-
duced by a rearrangement of the outer electrons in atoms and 
molecules. (Don’t forget synchrotron radiation, which is a dif-
ferent mechanism.)*

In an incandescent material, a hot, glowing metal filament, 
or the solar fireball, electrons are randomly accelerated and un-
dergo frequent collisions. The resulting broad emission spec-
trum is called thermal radiation, and it is a major source of 
light. In contrast, if we fill a tube with some gas and pass an 
electric discharge through it, the atoms therein will become ex-
cited and radiate. The emitted light is characteristic of the par-
ticular energy levels of those atoms, and it is made up of a series 
of well-defined frequency bands or lines. Such a device is 
known as a gas discharge tube. When the gas is the krypton 86 
isotope, the lines are particularly narrow (zero nuclear spin, 
therefore no hyperfine structure). The orange-red line of Kr 86, 
whose vacuum wavelength is 605.780 210 5 nm, has a width (at 
half height) of only 0.000 47 nm, or about 400 MHz. Accord-
ingly, until 1983 it was the international standard of length 
(with 1 650 763.73 wavelengths equaling a meter).

Newton was the first to recognize that white light is actually 
a mixture of all the colors of the visible spectrum, that the prism 

Thermograph of the author. This 
photo looks much better in color. 
Note the cool beard and how far the 
hairline has receded since the first 
edition of this book. (E.H.)

*There is no need here to define light in terms of human physiology. On the 
contrary, there is plenty of evidence to indicate that this would not be a very 
good idea. For example, see T. J. Wang, “Visual Response of the Human Eye to X 
Radiation,” Am. J. Phys. 35, 779 (1967).

An arm viewed in a broad band  
of radiant energy extending from 
468.5 nm (which is light) to  
827.3 nm (which is near-infrared). 
The technique has many biomedical 
applications, among which is the 
early detection of skin cancer.

TABLE 3.4  Approximate Frequency and Vacuum 
Wavelength Ranges for the Various Colors

Color l0 (nm) n (THz)*

Red 780–622 384–482

Orange 622–597 482–503

Yellow 597–577 503–520

Green 577–492 520–610

Blue 492–455 610–659

Violet 455–390 659–769

*1 terahertz (THz) = 1012 Hz, 1 nanometer (nm) = 10-9 m.
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graphics, and most other applications are designed to operate at a 
color temperature of 6500 K.

Colors are the subjective human physiological and psycho-
logical responses, primarily, to the various frequency regions 
extending from about 384 THz for red, through orange, yel-
low, green, and blue, to violet at about 769 THz (Table 3.4). 
Color is not a property of the light itself but a manifestation of 
the electrochemical sensing system—eye, nerves, brain. To be 
more precise, we should not say “yellow light” but rather 
“light that is seen as yellow.” Remarkably, a variety of differ-
ent frequency mixtures can evoke the same color response 
from the eye-brain sensor. A beam of red light (peaking at, 
say, 430 THz) overlapping a beam of green light (peaking at, 
say, 540 THz) will result, believe it or not, in the perception of 
yellow light, even though no frequencies are actually present 
in the so-called yellow band. Apparently, the eye-brain aver-
ages the input and “sees” yellow (Section 4.9). That’s why a 
color television screen can manage with only three phosphors: 
red, green, and blue.

In a flood of bright sunlight where the photon flux density 
might be 1021 photons>m2 · s, we can generally expect the 
quantum nature of the energy transport to be thoroughly 
masked. However, in very weak beams, since photons in the 

piece of paper to be white whether it’s seen indoors under in-
candescent light or outside under skylight, even though those 
whites are quite different. In fact, there are many pairs of col-
ored light beams (e.g., 656-nm red and 492-nm cyan) that will 
produce the sensation of whiteness, and the eye cannot always 
distinguish one white from another; it cannot frequency analyze 
light into its harmonic components the way the ear can analyze 
sound (see Section 7.3).

The thermal radiation from an ideal emitter, a so-called black-
body, depends on its temperature (Fig. 13.2). Most hot glowing 
objects more or less resemble a blackbody and emit a broad range 
of frequencies where the cooler the object is, the more energy is 
given off at the low-frequency end of its spectrum. Moreover, the 
hotter it is, the brighter it is. Although anything above absolute 
zero emits EM-radiation, things have to be fairly hot before they 
begin to radiate copiously in the visible; witness the fact that you 
emit mostly infrared with no detectable light at all. By compari-
son a match flame at a comparatively low 1700 K glows red-
orange; a slightly hotter candle flame, at about 1850 K, appears 
more yellow; while an incandescent bulb at about 2800 K  
to 3300 K puts out a spectrum that contains a little more blue and 
appears yellow-white. At a still higher 6500 K we reach a spec-
trum usually referred to as daylight. Digital cameras, DVDs, web 

Figure 3.44  Various spectral distributions of light. (Dr. Gottipaty N. Rao, Adelphi University)
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3.6.6 X-rays

X-rays were rather fortuitously discovered in 1895 by Wilhelm 
Conrad Röntgen (1845–1923). Extending in frequency from 
roughly 2.4 * 1016 Hz to 5 * 1019 Hz, they have extremely 
short wavelengths; most are smaller than an atom. Their photon 
energies (100 eV to 0.2 MeV) are large enough so that X-ray 
quanta can interact with matter one at a time in a clearly granular 
fashion, almost like bullets of energy. One of the most practical 
mechanisms for producing X-rays is the rapid deceleration of 
high-speed charged particles. The resulting broad-frequency 
bremsstrahlung (German for “braking radiation”) arises when a 
beam of energetic electrons is fired at a material target, such as a 
copper plate. Collisions with the Cu nuclei produce deflections 
of the beam electrons, which in turn radiate X-ray photons.

In addition, the atoms of the target may become ionized dur-
ing the bombardment. Should that occur through removal of an 

visible range (hn ≈ 1.6 eV to 3.2 eV) are energetic enough to 
produce effects on a distinctly individual basis, the granularity 
will become evident. Research on human vision indicates that 
as few as 10 light photons, and possibly even 1, may be detect-
able by the eye.

3.6.5 Ultraviolet

Adjacent to and just beyond light in the spectrum is the ultravio-
let region (approximately 8 * 1014 Hz to about 3.4 * 1016 Hz), 
discovered by Johann Wilhelm Ritter (1776–1810). Photon en-
ergies therein range from roughly 3.2 eV to 100 eV. Ultraviolet, 
or UV, rays from the Sun will thus have more than enough en-
ergy to ionize atoms in the upper atmosphere and in so doing 
create the ionosphere. These photon energies are also of the or-
der of the magnitude of many chemical reactions, and ultraviolet 
rays become important in triggering those reactions. Fortunately, 
ozone (O3) in the atmosphere absorbs what would otherwise be 
a lethal stream of solar UV. At wavelengths less than around 290 
nm, UV is germicidal (i.e., it kills microorganisms). The parti-
clelike aspects of radiant energy become increasingly evident as 
the frequency rises.

Humans cannot see UV very well because the cornea absorbs 
it, particularly at the shorter wavelengths, while the eye lens ab-
sorbs most strongly beyond 300 nm. A person who has had a 
lens removed because of cataracts can see UV (l 7 300 nm).  
In addition to insects, such as honeybees, a fair number of other 
creatures can visually respond to UV. Pigeons, for example, are 
capable of recognizing patterns illuminated by UV and probably 
employ that ability to navigate by the Sun even on overcast days.

An atom emits a UV photon when an electron makes a long 
jump down from a highly excited state. For example, the outer-
most electron of a sodium atom can be raised to higher and 
higher energy levels until it is ultimately torn loose altogether at 
5.1 eV, and the atom is ionized. If the ion subsequently recom-
bines with a free electron, the latter will rapidly descend to the 
ground state, most likely in a series of jumps, each resulting in 
the emission of a photon. It is possible, however, for the elec-
tron to make one long plunge to the ground state, radiating a 
single 5.1-eV UV photon. Even more energetic UV can be gen-
erated when the inner, tightly bound electrons of an atom are 
excited.

The unpaired valence electrons of isolated atoms can be an 
important source of colored light. But when these same atoms 
combine to form molecules or solids, the valence electrons are 
ordinarily paired in the process of creating the chemical bonds 
that hold the thing together. Consequently, the electrons are of-
ten more tightly bound, and their molecular-excited states are 
higher up in the UV. Molecules in the atmosphere, such as N2, 
O2, CO2, and H2O, have just this sort of electronic resonance in 
the UV.

Nowadays there are ultraviolet photographic films and mi-
croscopes, UV orbiting celestial telescopes, synchrotron sourc-
es, and ultraviolet lasers.

An ultraviolet photograph of Venus taken by Mariner 10. (DVIDS/NASA)

An early X-ray photograph of the Sun taken March 1970. The limb of the 
Moon is visible in the southeast corner. (Dr. G. Vaiana and NASA)
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A single gamma-ray photon carries so much energy that it can 
be detected with little difficulty. At the same time, its wave-
length is so small that it is now extremely difficult to observe 
any wavelike properties.

We have gone full cycle from the radiofrequency wavelike re-
sponse to gamma-ray particlelike behavior. Somewhere, not far 
from the (logarithmic) center of the spectrum, there is light. As 
with all electromagnetic radiation, its energy is quantized, but 
here in particular what we “see” will depend on how we “look.”

3.7 Quantum Field Theory

A charged particle exerts forces on other charged particles. It 
creates a web of electromagnetic interaction around itself that 
extends out into space. That imagery leads to the concept of the 
electric field, which is a representation of the way the electro-
magnetic interaction reveals itself on a macroscopic level. The 
static electric field is, in effect, a spatial conception summariz-
ing the interaction among charges. Through Faraday’s vision, 
the idea of the field was extended, and it became appropriate to 
imagine that one charge sets up an E$-field in space and another 
charge, immersed in that field, interacts directly with it, and 
vice versa. What began as a mapping of the force distribution 
(whatever its cause) became a thing, a field, capable itself of 
exerting force. Still the picture seems straightforward, even if 
many questions come to mind. Does the static E$-field have a 
physical reality in-and-of itself? If it does, does it fill space with 
energy and how exactly does that happen? Is anything actually 
flowing? How does the field produce a force on a charge? Does 
it take time to exert its influence?

Once the electromagnetic field became a reality, physicists 
could imagine disturbances of that tenuous medium that so con-
veniently spans the void of space; light was an electromagnetic 

inner electron strongly bound to the nucleus, the atom will emit 
X-rays as the electron cloud returns to the ground state. The 
resulting quantized emissions are specific to the target atom, 
revealing its energy-level structure, and accordingly are called 
characteristic radiation.

Traditional medical film radiography generally produces 
little more than simple shadow castings, rather than photo-
graphic images in the usual sense; it has not been possible to 
fabricate useful X-ray lenses. But modern focusing methods  
using mirrors (see Section 5.4) have begun an era of X-ray  
imagery, creating detailed pictures of all sorts of things, from 
imploding fusion pellets to celestial sources, such as the Sun 
(see photo on p. 89), distant pulsars, and black holes—objects 
at  temperatures of millions of degrees that emit predominantly 
in the X-ray region. Orbiting X-ray telescopes have given us an 
exciting new eye on the Universe (see photo above). There are 
X-ray microscopes, picosecond X-ray streak cameras, X-ray 
diffraction gratings, and interferometers, and work continues on 
X-ray holography. In 1984 a group at the Lawrence Livermore 
 National Laboratory succeeded in producing laser radiation at a 
wavelength of 20.6 nm. Although this is more accurately in the 
extreme ultraviolet (XUV), it’s close enough to the X-ray  region 
to qualify as the first soft X-ray laser.

3.6.7 Gamma Rays

Gamma rays are the highest energy (104 eV to about 1019 eV), 
shortest wavelength electromagnetic radiations. They are emitted 
by particles undergoing transitions within the atomic nucleus.  

The Crab Nebula (which is 6000 
light years from Earth) is what 
remains of an exploded star, a 
supernova that was seen on Earth 
in 1054 a.d. The nebula is a bright 
source of long wavelength radio 
waves. Here the individual photon 
energies are relatively low. Notice 
that the background of distant 
stars is absent from the image. 
(DVIDS/NASA)

At the center of the Crab Nebula 
(which is located in the constella-
tion Taurus) is a rapidly spinning 
neutron star, or pulsar, that emits 
flashes of radiation 30 times a sec-
ond. This image of the nebula was 
taken using near-infrared radiant 
energy. Regions that are relatively 
hot show up as bright areas in the 
photo. Some stars in the back-
ground appear brighter in visible 
light than in near-IR radiation, and 
vice versa. (DVIDS/NASA)

This amazingly detailed X-ray 
image of the Crab Nebula  
(see p. 72) was taken by the orbit-
ing Chandra X-Ray Observatory. 
The picture reveals the locations  
of the most energetic particles in 
the pulsar. (DVIDS/NASA)

An optical image of the Crab 
Nebula. The light forming this  
picture comes from particles of 
intermediate energy. The filaments 
are due to hot gases at tempera-
tures of tens of thousands of 
degrees. (DVIDS/NASA)

M03_HECH6933_05_GE_C03.indd   90 26/08/16   11:51 AM



 3.7 Quantum Field Theory 91

is the most fundamental and arguably the most successful of all 
physical theories. Light quanta come out of the theory in a com-
pletely natural way by quantizing the electromagnetic field. The 
apparent implication of this is that all microparticles originate in 
the same way from their own individual fields: the field’s the 
thing, as it were. Thus the electron is the quantum of the elec-
tron field, the proton is the quantum of the proton field, and so 
forth. Filling in the details has been the business of field theorists 
since the mid-twentieth century.

There are two distinct philosophical currents in contemporary 
QFT: the field-centered and the particle-centered. In the field-
centered view, fields are the fundamental entities, and particles 
are just the quanta of the fields. In the particle-centered view, 
particles are the fundamental entities, and fields are just the 
macroscopic coherent states of particles. The field tradition 
goes back to L. de Broglie (1923), E. Schrödinger, P. Jordan, 
and W. Pauli, whose research laid the foundations of the quan-
tum-mechanical variant sometimes called Wave Mechanics. 
The particle tradition began with the early work of W. Heisenberg 
(1925), although its spiritual mentor was P. A. M. Dirac, who set 
the particle agenda with his theory of the electron-positron pair. 
The particular offshoot of QFT that strives to provide a relativis-
tic quantum-mechanical treatment of the electromagnetic inter-
action is called Quantum Electrodynamics (QED), and it too has 
its particle-centered and field-centered proponents. Some of the 
basic ideas of QED have been made accessible on this level by 
R. P. Feynman, and insofar as they illuminate Optics we’ll ex-
plore them later in this text (p. 149).

Contemporary physics by way of QFT holds that all fields 
are quantized; that each of the fundamental Four Forces (Gravi-
tational, Electromagnetic, Strong, and Weak) is mediated by  
a special kind of field particle. These messenger bosons are 
continuously absorbed and emitted by the interacting material 
particles (electrons, protons, etc.). This ongoing exchange is the 
interaction. The mediating particle of the electric field is the 
virtual photon. This massless messenger travels at the speed of 
light and transports momentum and energy. When two electrons 
repel one another, or an electron and proton attract, it is by emit-
ting and absorbing virtual photons and thereby transferring mo-
mentum from one to the other, that transfer being a measure of 
the action of force. The messenger particles of the electromag-
netic force are called virtual photons because they are bound to 
the interaction. Virtual photons can never escape to be detected 
directly by some instrument, however unsettling that is philo-
sophically and however hard that makes it to establish their ex-
istence. Indeed, virtual photons (as distinct from real photons) 
exist only as the means of interaction. They are creatures of 
theory whose metaphysical status is yet to be determined.*

On a macroscopic level, messenger particles can manifest 
themselves as a continuous field provided they can group in very 
large numbers. Fundamental particles have an intrinsic angular 

wave in the electromagnetic field. Although it’s easy enough to 
envision a wave sweeping through an existing field (p. 70), it’s 
not so obvious how a localized pulse launched into space, like 
the one shown in Fig. 3.45, might be conceptualized. There is 
no static field filling space, extending out in front of the pulse; 
if the pulse advances through the medium of the electromag-
netic field, it must first create that medium itself as it progress-
es. That’s not impossible to imagine on some level, but it’s 
hardly what one would call a classical wave. For any traditional 
wave, a medium in equilibrium is the fundamental starting 
point; it exists at any location before and after the wave passes. 
So this idea of an electromagnetic wave, which is so beautiful 
mathematically, is not quite so transparent conceptually.

As early as 1905, Einstein already considered the classical 
equations of Electromagnetic Theory to be descriptions of the 
average values of the quantities being considered. “To me it 
seems absurd,” he wrote to Planck, “to have energy continuously 
distributed in space without assuming an aether. . . . While Fara-
day’s representation was useful in the development of electrody-
namics, it does not follow in my opinion that this view must be 
maintained in all its detail.” Classical theory wonderfully ac-
counted for everything being measured, but it was oblivious to 
the exceedingly fine granular structure of the phenomenon. Us-
ing thermodynamic arguments, Einstein proposed that electric 
and magnetic fields were quantized, that they are particulate 
rather than continuous. After all, classical theory evolved decades 
before the electron was even discovered. If charge (the funda-
mental source of electromagnetism) is quantized, shouldn’t the 
theory reflect that in some basic way?

Today, we are guided by Quantum Mechanics, a highly math-
ematical theory that provides tremendous computational and 
predictive power but is nonetheless disconcertingly abstract. In 
particular, the subdiscipline that treats microparticles and their 
interactions, Quantum Field Theory (QFT), in its various forms, 

Figure 3.45  An ultrashort pulse 
of green light from a neodymium-
doped glass laser. The pulse passed, 
from right to left, through a water 
cell whose wall is marked in milli-
meters. During the 10-picosecond 
exposure, the pulse moved about 
2.2 mm. (Bell Laboratories)

*For a discussion of the issues being struggled with, see H. R. Brown and  
R. Harré, Philosophical Foundations of Quantum Field Theory.
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important class of interactions that have spin-1 messengers are 
known as gauge forces, and the electromagnetic force is the 
model for all the gauge forces. Today, the magic of action-at-a-
distance is understood via the no less mysterious exchange of 
virtual particles, but at least now a highly predictive mathemati-
cal theory is in place that describes the phenomenon.

momentum, or spin, that determines their grouping characteris-
tics. Quantum Theory tells us that the desired field behavior can 
occur only if forces are mediated by messenger particles having 
angular momenta equal to integer multiples of h>2p (i.e., 
0, 1h>2p, 2h>2p, 3h>2p, . . .). The angular momentum of the 
virtual photon is 1(h>2p); it’s a spin-1 particle. The exceedingly 

3.6 The electric field of an electromagnetic wave traveling in the pos-
itive x-direction is given by

E$ = E0 ĵ sin 
pz
z0

 cos (kx - vt)

(a) Describe the field verbally. (b) Determine an expression for k.  
(c) Find the phase speed of the wave.

3.7* If the electric field E$(z, t) of an EM wave in vacuum is, at a cer-
tain location and time, given by E$ = (10 V>m)(cos 0.5p) î write an 
expression for the associated B$@field.

3.8* A 500-nm harmonic EM wave, whose electric field is in the z- 
direction, is travelling in the y-direction in vacuum. (a) What is the 
frequency of the wave? (b) Determine both v and k for this wave. (c) 
If the electric field amplitude is 700 V>m, what is the amplitude of 
the magnetic field? (d) Write an expression for both E(t) and B(t) 
given that each is zero at x = 0 and t = 0. Put in all the appropriate 
units.

3.9* The E-field of an electromagnetic wave is described by

E$ = ( î + ĵ)E0 sin (kz - vt + p>6)

Write an expression for the B-field. Determine B$(0, 0).

3.10* Using the wave given in the previous problem, determine 
E$(-l>2, 0) and draw a sketch of the vector representing it at that moment.

3.11* A plane electromagnetic wave traveling in the y-direction 
through vacuum is given by

E$(x, y, z, t) = E0 î ei(ky -vt)

Determine an expression for the corresponding magnetic field of the 
electromagnetic wave. Draw a diagram showing E$0, B$0, and k$, the 
propagation vector.

3.12* Given that the B$@field of an electromagnetic wave in vacuum is

B$(x, y, z, t) = B0 ĵ ei(kz +vt)

write an expression for the associated E$@field. What is the direction of 
propagation?

3.13* Calculate the energy input necessary to charge a parallel-plate 
capacitor by carrying charge from one plate to the other. Assume the 

Complete solutions to all problems—except those with an asterisk— 
can be found in the back of the book.

3.1 Consider the plane electromagnetic wave in vacuum (in SI units) 
given by the expressions:

Ex = 0, Ey = 4 cos [2p * 1014(t - x>c) +  p/2], and Ez = 0

(a)  Calculate the frequency, wavelength, direction of motion, ampli-
tude, initial phase angle, and polarization of the wave.

(b) Write an expression for the magnetic flux density.

3.2 Write an expression for the E$- and B$-fields that constitute a plane 
harmonic wave traveling in the +z-direction. The wave is linearly po-
larized with its plane of vibration at 45° to the yz-plane.

3.3* Considering Eq. (3.30), show that the expression

k$ : E$ = vB$

is correct as it applies to a plane wave for which the direction of the 
electric field is constant. 

3.4* Imagine an electromagnetic wave with its E$-field in the y- 
direction. Show that Eq. (3.27)

0E
0x

= -  
0B
0t

applied to the harmonic wave B$  

E$ = E$0 cos (kx - vt)  B$ = B$0 cos (kx - vt)

yields the fact that

E0 = cB0

in agreement with Eq. (3.30).

3.5* An electromagnetic wave is specified (in SI units) by the follow-
ing function:

E$ = (-6î + 315 ĵ)(104 V>m) ei31
3(15x + 2y)p* 107 - 9.42 * 1015t4

Remember that E$0 and k$ are perpendicular to each other.

Find (a) the direction along which the electric field oscillates, (b) the 
scalar value of amplitude of the electric field, (c) the direction of prop-
agation of the wave, (d) the propagation number and wavelength, (e) 
the frequency and angular frequency, and (f ) the speed.

problems
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3.21* The following is the expression for the E$@field of an electro-
magnetic wave traveling in a homogeneous dielectric:

E$ = (-100 V>m) î ei(kz -vt)

Here v = 1.80 * 1015 rad>s and k = 1.20 * 107 rad>m.

(a) Determine the associated B$-field. (b) Find the index of refraction. 
(c) Compute the permittivity. (d) Find the irradiance. (e) Draw a dia-
gram showing E$0, B$0, and k$, the propagation vector.

3.22* An incandescent lamp emits a radiant energy of 10 W. Assume 
it to be a point source and calculate the irradiance 0.5 m away.

3.23* Consider a linearly polarized plane electromagnetic wave trav-
elling in the +x-direction in free space having as its plane of vibration 
the xy-plane. Given that its frequency is 5 MHz and its amplitude is 
E0 = 0.05 V>m,

(a) Find the period and wavelength of the wave.

(b) Write an expression for E(t) and B(t).

(c) Find the flux density, 8S9, of the wave.

3.24* On average, the net electromagnetic power radiated by the Sun, its 
so-called luminosity (L), is 4.0 * 1026 W. Determine the mean amplitude 
of the electric field due to all the radiant energy arriving at the top of 
Earth’s atmosphere (1.5 * 1011 m from the Sun).

3.25 A linearly polarized harmonic plane wave with a scalar am-
plitude of 8 V>m is propagating along a line in the xy-plane at 40° 
to the x-axis with the xy-plane as its plane of vibration. Please 
write a vector expression describing the wave assuming both kx 
and ky are positive. Calculate the f lux density, taking the wave to 
be in vacuum.

3.26 Pulses of UV lasting 3.00 ns each are emitted from a laser that 
has a beam of diameter 2.0 mm. Given that each burst carries an energy 
of 5.0 J, (a) determine the length in space of each wavetrain, and (b) 
find the average energy per unit volume for such a pulse.

3.27* A laser provides pulses of EM-radiation in vacuum lasting 
5 * 10-11 s. If the radiant flux density is 2 * 1020 W>m2, determine 
the amplitude of the electric field of the beam.

3.28 A 2.0-mW laser has a beam diameter of 1 mm. Assuming negli-
gible divergence of the beam, compute the energy density in the vicinity 
of the laser.

3.29* A cloud of locusts having a density of 120 insects per cubic 
meter is flying north at a rate of 5 m>min. What is the flux density of 
these locusts? That is, how many locusts cross an area of 1 m2 perpen-
dicular to their flight path per second?

3.30 Imagine that you are standing in the path of an antenna that is 
radiating plane waves of frequency 200 MHz and has a flux density of 
19.88 * 10-2 W>m2. Compute the photon flux density, that is, the 
number of photons per unit time per unit area. How many photons, on 
the average, will be found in a cubic meter of this region?

energy is stored in the field between the plates and compute the energy 
per unit volume, uE, of that region, that is, Eq. (3.31). Hint: Since the 
electric field increases throughout the process, either integrate or use 
its average value E>2.

3.14* Starting with Eq. (3.32), prove that the energy densities of the 
electric and magnet fields are equal (uE = uB) for an electromagnetic 
wave.

3.15 The time average of some function ƒ(t) taken over an interval T 
is given by

8ƒ(t)9T =
1
T

 L
t + T

t
ƒ(t′) dt′

where t′ is just a dummy variable. If t = 2p>v is the period of a har-
monic function, show that r$

8sin2 (k$ · r$ - vt)9 = 1
2

8cos2 (k$ · r$ - vt)9 = 1
2

and

8sin (k$ · r$ - vt) cos (k$ · r$ - vt)9 = 0

when T = t and when T 7 7  t.

3.16* Show that a more general formulation of the previous problem 
yields

8cos2vt9T = 1
2 [1 +  sinc vT cos 2vt]

for any interval T.

3.17* With the previous problem in mind, prove that

8sin2vt9T = 1
2[1 -  sinc vT cos 2vt]

for any interval T.

3.18* Prove that the irradiance of a harmonic EM wave in vacuum is 
given by

I =
1

2cm0
 E2

0

and then determine the average rate at which energy is transported per 
unit area by a plane wave having an amplitude of 12.0 V>m.

3.19* A 1.0-mW laser produces a nearly parallel beam 1.0 cm2 in 
cross-sectional area at a wavelength of 650 nm. Determine the amplitude 
of the electric field in the beam, assuming the wavefronts are homoge-
neous and the light travels in vacuum.

3.20* A nearly cylindrical laserbeam impinges normally on a 
perfectly absorbing surface. The irradiance of the beam (assuming 
it to be uniform over its cross section) is 40 W>cm2. If the diame-
ter of the beam is 2.0>1p cm how much energy is absorbed per 
minute?
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94 Chapter 3 Electromagnetic Theory, Photons, and Light

3.41* A surface is placed perpendicular to a beam of light of constant 
irradiance (I). Suppose that the fraction of the irradiance absorbed by 
the surface is a. Show that the pressure on the surface is given by

� = (2 - a)I>c

3.42* A light beam with an irradiance of 2.50 * 106 W>m2 impinges 
normally on a surface that reflects 70.0% and absorbs 30.0%. Com-
pute the resulting radiation pressure on the surface.

3.43 What force on the average will be exerted on the (50 m * 50 m) 
flat, highly reflecting side of a space station wall if it’s facing the Sun 
while orbiting Earth?

3.44 A parabolic radar antenna with a 2-m diameter transmits 100-kW 
pulses of energy. If its repetition rate is 500 pulses per second, each 
lasting 2 ms, determine the average reaction force on the antenna.

3.45 Consider the plight of an astronaut floating in free space with 
only a 20-W lantern (inexhaustibly supplied with power). How long 
will it take to reach a speed of 10 m>s using the radiation as propul-
sion? The astronaut’s total mass is 100 kg.

3.46 Consider the uniformly moving charge depicted in Fig. 3.26b. 
Draw a sphere surrounding it and show via the Poynting vector that the 
charge does not radiate.

3.47* A plane, harmonic, linearly polarized lightwave has an electric 
field intensity given by

Ez = E0 cosp1015  at -
x

0.6c
b

while travelling in a piece of glass. Find:

(a) The frequency of the light.

(b) Its wavelength.

(c) The index of refraction of the glass.

3.48* What is the speed of light in diamond if the index of refraction 
is 2.42?

3.49* Given that the wavelength of a lightwave in vacuum is 550 nm, 
what will it be in water, where n = 1.33?

3.50* Determine the index of refraction of a medium if it is to reduce 
the speed of light by 15% as compared to its speed in vacuum.

3.51 If the speed of light (the phase speed) in diamond is 1.24 * 108 m>s, 
what is its index of refraction?

3.52* What is the distance that blue light travels in water (where n =
1.33) in 2.00 s?

3.53* A 550-nm lightwave in vacuum enters a glass plate of index 
1.60 and propagates perpendicularly across it. How many waves span 
the glass if it is 1.00 cm thick?

3.54* Yellow light from a sodium lamp (l0 = 589 nm) traverses a tank 
of glycerin (of index 1.47), which is 25.0 m long, in a time t1. If it takes 
a time t2 for the light to pass through the same tank when filled with 
carbon disulfide (of index 1.63), determine the value of t2 - t1.

3.31* How many photons per second are emitted from a 1.0-W green 
LED if we assume a wavelength of 550 nm?

3.32 A 4.0-V incandescent flashlight bulb draws 0.25 A, converting 
about 1.0% of the dissipated power into light (l ≈ 550 nm). If the beam 
has a cross-sectional area of 10 cm2 and is approximately cylindrical,

(a) How many photons are emitted per second?

(b) How many photons occupy each meter of the beam?

(c) What is the flux density of the beam as it leaves the flashlight?

3.33* An isotropic quasimonochromatic point source radiates at a rate 
of 200 W. What is the flux density at a distance of 1 m? What are the 
amplitudes of the E$- and B$-fields at that point?

3.34 Using energy arguments, show that the amplitude of a cylindri-
cal wave must vary inversely with 1r. Draw a diagram indicating 
what’s happening.

3.35* What is the momentum of a 1020-Hz gamma ray photon?

3.36 Consider an electromagnetic wave impinging on an electron.  
It is easy to show kinematically that the average value of the time  
rate-of-change of the electron’s momentum p$ is proportional to the 
average value of the time rate-of-change of the work, W, done on it by 
the wave. In particular,

h d p$
dt

i =
1
c

 h dW
dt

i  î

Accordingly, if this momentum change is imparted to some completely 
absorbing material, show that the pressure is given by Eq. (3.51).

3.37* A harmonic electromagnetic plane wave with a wavelength of 
0.12 m travels in vacuum in the positive z-direction. It oscillates along 
the x-axis such that at t = 0 and z = 0, the E-field has a maximum 
value of E(0, 0) = +6.0 V>m. (a) Write an expression for E$(z, t).  
(b) Write an expression for the magnetic field. (c) Write an expression 
for the vector momentum density of the wave.

3.38* Derive an expression for the radiation pressure when the nor-
mally incident beam of light is totally reflected. Generalize this result 
to the case of oblique incidence at an angle u with the normal.

3.39 A completely absorbing screen receives 100 W of light for 10 s. 
Compute the total linear momentum transferred to the screen.

3.40 The average magnitude of the Poynting vector for sunlight arriv-
ing at the top of Earth’s atmosphere (1.5 * 1011 m from the Sun) is 
about 1.3 kW>m2.

(a)  Compute the average radiation pressure exerted on a metal reflec-
tor facing the Sun.

(b)  Approximate the average radiation pressure at the surface of the 
Sun whose diameter is 1.4 * 109 m.
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3.62* Show that Eq. (3.70) can be rewritten as

(n2 - 1)-1 = -Cl-2 + Cl-2
0

where C = 4p2c2P0  

me>Nq2
e.

3.63 Augustin Louis Cauchy (1789–1857) determined an empirical 
equation for n(l) for substances that are transparent in the visible. His 
expression corresponded to the power series relation

n = C1 + C2>l2 + C3>l4 + g

where the Cs are all constants. In light of Fig. 3.41, what is the physical 
significance of C1?

3.64 Referring to the previous problem, realize that there is a region 
between each pair of absorption bands for which the Cauchy Equation 
(with a new set of constants) works fairly well. Examine Fig. 3.41: 
what can you say about the various values of C1 as v decreases across 
the spectrum? Dropping all but the first two terms, use Fig. 3.40 to 
determine approximate values for C1 and C2 for borosilicate crown 
glass in the visible.

3.65* Crystal quartz has refractive indexes of 1.557 and 1.547 at 
wavelengths of 400.0 nm and 500.0 nm, respectively. Using only the 
first two terms in Cauchy’s equation, calculate C1 and C2 and deter-
mine the index of refraction of quartz at 610.0 nm.

3.66* In 1871 Sellmeier derived the equation

n2 = 1 +
ĵ

Ajl
2

l2 - l2
0j

where the Aj terms are constants and each l0j is the vacuum wave-
length associated with a natural frequency n0j, such that l0jn0j = c. 
This formulation is a considerable practical improvement over the 
Cauchy Equation. Show that where l 7 7  l0j, Cauchy’s Equation is 
an approximation of Sellmeier’s. Hint: Write the above expression 
with only the first term in the sum; expand it by the binomial theorem; 
take the square root of n2 and expand again.

3.67* If an ultraviolet photon is to dissociate the oxygen and 
 carbon atoms in the carbon dioxide molecule, it must provide 8 eV 
of energy. What is the minimum frequency of the appropriate 
  radiation?

3.55* A lightwave travels from point A to point B in vacuum. Suppose 
we introduce into its path a flat glass plate (ng = 1.50) of thickness 
L = 1.00 mm. If the vacuum wavelength is 500 nm, how many waves 
span the space from A to B with and without the glass in place? What 
phase shift is introduced with the insertion of the plate?

3.56 The low-frequency relative permittivity of water varies from 
88.00 at 0°C to 55.33 at 100°C. Explain this behavior. Over the same 
range in temperature, the index of refraction (l = 589.3 nm) goes 
from roughly 1.33 to 1.32. Why is the change in n so much smaller 
than the corresponding change in KE?

3.57 Show that for substances of low density, such as gases, which 
have a single resonant frequency v0, the index of refraction is given by

n ≈ 1 +
Nq2

e

2P0  

me(v
2
0 - v2)

3.58* In the next chapter, Eq. (4.47), we’ll see that a substance re-
flects radiant energy appreciably when its index differs most from the 
medium in which it is embedded.

(a)  The dielectric constant of ice measured at microwave frequencies is 
roughly 1, whereas that for water is about 80 times greater—why?

(b)  How is it that a radar beam easily passes through ice but is consid-
erably reflected when encountering a dense rain?

3.59 Fuchsin is a strong (aniline) dye, which in solution with alcohol 
has a deep red color. It appears red because it absorbs the green com-
ponent of the spectrum. (As you might expect, the surfaces of crystals 
of fuchsin reflect green light rather strongly.) Imagine that you have a 
thin-walled hollow prism filled with this solution. What will the spec-
trum look like for incident white light? By the way, anomalous disper-
sion was first observed in about 1840 by Fox Talbot, and the effect was 
christened in 1862 by Le Roux. His work was promptly forgotten, only 
to be rediscovered eight years later by C. Christiansen.

3.60* Take Eq. (3.71) and check out the units to make sure that they 
agree on both sides.

3.61 The resonant frequency of lead glass is in the UV fairly near the 
visible, whereas that for fused silica is far into the UV. Use the disper-
sion equation to make a rough sketch of n versus v for the visible re-
gion of the spectrum.
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beam cannot be seen from the side. Nor does the light tire or 
diminish in any way. When a star in a nearby galaxy 1.7 * 105 
light-years away was seen to explode in 1987, the flash of light 
that reached Earth had been sailing through space for 170 000 
years before it got here. Photons are timeless.

Now, suppose we mix a wisp of air into the void—some 
molecules of nitrogen, oxygen, and so forth. These molecules 
have no resonances in the visible, no one of them can be raised 
into an excited state by absorbing a quantum of light, and the 
gas is therefore transparent. Instead, each molecule behaves as 
a little oscillator whose electron cloud can be driven into a 
ground-state vibration by an incoming photon. Immediately 
upon being set vibrating, the molecule initiates the re-emission 
of light. A photon is absorbed, and without delay another pho-
ton of the same frequency (and wavelength) is emitted; the light 
is elastically scattered. The molecules are randomly oriented, 
and photons scatter out every which way (Fig. 4.1). Even when 

4.1 Introduction

Our present concern is with the basic phenomena of transmission 
(p. 101), reflection (p. 104), and refraction (p. 108). These will be 
described classically in two ways: first, via the general notions of 
waves and rays (p. 116) and then from the more specific perspec-
tive of Electromagnetic Theory (p. 121). After that, we’ll turn to 
a highly simplified treatment of Quantum Electrodynamics 
(QED) for a modern interpretation of what’s happening (p. 149).

Most students have already studied these fundamental propa-
gation phenomena in some introductory way and found ideas 
like the Laws of Reflection and Refraction to be straightforward 
and simple. But that’s only because such treatments are from a 
macroscopic perspective that tends to be misleadingly superfi-
cial. For instance, reflection, which looks as obvious as light 
“bouncing off a surface,” is a wonderfully subtle affair usually 
involving the coordinated behavior of countless atoms. The 
more deeply we explore these processes, the more challenging 
they become. Beyond that, many fascinating questions need to 
be addressed: How does light move through a material medium? 
What happens to it as it does? Why does light appear to travel at 
a speed other than c when photons can exist only at c?

Each encounter of light with bulk matter can be viewed as a 
cooperative event arising when a stream of photons sails through, 
and interacts with, an array of atoms suspended (via electromag-
netic fields) in the void. The details of that journey determine why 
the sky is blue and blood is red, why your  cornea is  transparent 
and your hand opaque, why snow is white and rain is not. At its 
core, this chapter is about scattering, in  particular, the absorption 
and prompt re-emission of EM- radiation by electrons associated 
with atoms and molecules. The processes of transmission, reflec-
tion, and refraction are macroscopic  manifestations of scatter-
ing occurring on a  submicroscopic level.

To begin the analysis, let’s first consider the propagation of 
radiant energy through various homogeneous media.

4.2 Rayleigh Scattering

Imagine a narrow beam of sunlight having a broad range of 
frequencies advancing through empty space. As it progresses, 
the beam spreads out very slightly, but apart from that, all the 
energy continues forward at c. There is no scattering, and the 

The Propagation  
of Light4

Molecules of air

White
light

Blue light
laterally scattered

Blue light
laterally scattered

Red-orange-yellow light

(a)

(b)

Figure 4.1  (a) Sunlight traversing a region of widely spaced air mole-
cules. The light laterally scattered is mostly blue, and that’s why the sky is 
blue. The unscattered light, which is rich in red, is viewed only when the 
Sun is low in the sky at sunrise and sunset. (b) Solar rays reach about 18° 
beyond the daytime terminator because of atmospheric scattering. Over 
this twilight band the skylight fades to the complete darkness of night. 
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 4.2 Rayleigh Scattering 97

Rayleigh Scattering the precise shape of the scatterers is usu-
ally of little consequence. The amount of scattering is propor-
tional to the diameter of the scatterer divided by the wave-
length of the incident radiation. Accordingly, the blue end of 
the spectrum is scattered most. A human’s blue eyes, a blue-
jay’s feathers, the blue-tailed skink’s blue tail, and the ba-
boon’s blue buttocks are all colored via Rayleigh Scattering. 
Indeed, in the animal kingdom scattering is the cause of al-
most all the blue, much of the green, and even some of the 
purple coloration. Scattering from the tiny  alveolar cells in the 
barbs of the jay’s feathers make it blue, whereas a parrot’s 
green is a blend of yellow arising from  preferential absorption 
(p. 144) and blue via scattering. The blue appearance of veins 
is in part due to scattering.

As we will see in a moment, a dense uniform substance will 
not appreciably scatter laterally, and that applies to much of the 
lower atmosphere. After all, if blue light were strongly scattered 
out at sea level, a far-off mountain would appear reddish and 
that’s not the case even over distances of tens of kilometers. In 
the middle regions of the atmosphere, the density is still great 
enough to suppress Rayleigh Scattering; something else must 
be contributing to the blue of the sky. What happens in the mid-
atmosphere is that thermal motion of the air results in  rapidly 
changing density fluctuations on a local scale. These momen-
tary, fairly random microscopic fluctuations cause more mole-
cules to be in one place than another and to radiate more in one 
direction than another. M. Smoluchowski (1908) and A. Ein-
stein (1910) independently provided the basic ideas for the 
theory of scattering from these fluctuations, which gives  similar 
results to those of Rayleigh. Scattering from inhomogeneities 
in density is of interest whenever light travels great distances in 
a medium, such as the glass fiber of a communications link 
(p. 208).

Sunlight streaming into the atmosphere from one direction is 
scattered in all directions—Rayleigh Scattering is the same in 
the forward and backward directions. Without an atmosphere, 
the daytime sky would be as black as the void of space, as black 
as the Moon sky. When the Sun is low over the horizon, its light 
passes through a great thickness of air (far more so than it does 
at noon). With the blue-end appreciably attenuated, the reds and 
yellows propagate along the line-of-sight from the Sun to 
 produce Earth’s familiar fiery sunsets.

the light is fairly dim, the number of photons is immense, and it 
looks as if the molecules are scattering little classical spherical 
wavelets (Fig. 4.2)—energy streams out in every direction. 
Still, the scattering process is quite weak and the gas tenuous, 
so the beam is very little attenuated unless it passes through a 
tremendous volume of air.

The amplitudes of these ground-state vibrations, and there-
fore the amplitudes of the scattered light, increase with frequency 
because all the molecules have electronic resonances in the UV. 
The closer the driving frequency is to a resonance, the more 
vigorously the oscillator responds. So, violet light is strongly 
scattered laterally out of the beam, as is blue to a slightly lesser 
degree, as is green to a considerably lesser degree, as is yellow 
to a still lesser degree, and so on. The beam that traverses the 
gas will thus be strong in the red end of the spectrum, while the 
light scattered out (sunlight not having very much violet in it, in 
comparison to blue, in the first place) will abound in blue. The 
human eye also tends to average the broad cacophony of scat-
tered frequencies—rich in violet, blue, and green—into a back-
ground of white plus a vivid 476-nm blue, resulting in our fa-
miliar pale-blue sky.*

Long before Quantum Mechanics, Lord Rayleigh (1871) 
analyzed scattered sunlight in terms of molecular oscillators. 
Using a simple argument based on dimensional analysis (see 
Problem 4.1), he correctly concluded that the intensity of the 
scattered light was proportional to 1>l4 and therefore increases 
with n4. Before this work, it was widely believed that the sky 
was blue because of scattering from minute dust particles. 
Since that time, scattering involving particles smaller than a 
wavelength (i.e., less than about l>10) has been referred to as 
Rayleigh Scattering. Atoms and ordinary molecules fit the 
bill since they are a few tenths of a nanometer in diameter, 
whereas light has a wavelength of around 500 nm. Addition-
ally, non-uniformities, as long as they are small, will scatter 
light. Tiny fibers, bubbles, particles, and droplets all scatter. In 

Figure 4.2  A plane wave, incident from the left, sweeps across an atom 
and spherical wavelets are scattered. The process is continuous, and hun-
dreds of millions of photons per second stream out of the scattering atom 
in all directions.

*G. S. Smith, “Human color vision and the unsaturated blue color of the  
daytime sky,” Am. J. Phys. 73, 590 (2005).

Without an  
atmosphere to 
scatter sunlight, 
the Moon’s sky is 
an eerie black. 
(DVIDS/NASA)
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98 Chapter 4 The Propagation of Light

into vibration by the incident field. Being far apart, they are 
 assumed to be independent of one another and each radiates in 
accord with Eq. (3.56). The scattered electric fields are essen-
tially independent, and there is no interference laterally. 
 Accordingly, the net irradiance at P is the algebraic sum of the 
scattered irradiances from each molecule (p. 73). For an 
 individual scatterer the irradiance is given by Eq. (3.57), and it 
varies with v4.

The advent of the laser has made it relatively easy to observe 
Rayleigh Scattering directly in low-pressure gases, and the 
 results confirm the theory.

4.2.1 Scattering and Interference

In dense media, a tremendous number of close-together atoms 
or molecules contribute an equally tremendous number of 
 scattered electromagnetic wavelets. These wavelets overlap and 
interfere in a way that does not occur in a tenuous medium. As 
a rule, the denser the substance through which light advances, 
the less the lateral scattering, and to understand why that’s so, 
we must examine the interference taking place.

Interference has already been discussed (p. 28) and will be 
treated in further detail in Chapters 7 and 9; here, the basics 
 suffice. Recall that interference is the superposition of two or 
more waves producing a resultant disturbance that is the sum of 
the overlapping wave contributions. Figure 2.16 shows two 
 harmonic waves of the same frequency traveling in the same 
direction. When such waves are precisely in-phase (Fig. 2.16a), 
the resultant at every point is the sum of the two wave-height 
values. This extreme case is called total constructive 
 interference. When the phase difference reaches 180°, the 
waves tend to cancel, and we have the other extreme, called 
total destructive interference (Fig. 2.16d).

The theory of Rayleigh Scattering has independent 
 molecules randomly arrayed in space so that the phases of the 
secondary wavelets scattered off to the side have no particu-
lar relationship to one another and there is no sustained pat-
tern of interference. That situation occurs when the separa-
tion between the molecular scatterers is roughly a wavelength 
or more, as it is in a tenuous gas. In Fig. 4.3a a parallel beam 
of light is incident from the left. This so-called primary light 
field (in this instance composed of plane waves) illuminates a 
group of widely spaced molecules. A continuing progression 
of primary wavefronts sweep over and successively energize 
and reenergize each molecule, which, in turn, scatters light in 
all directions, and in particular out to some lateral point P. 
Because the lengths of their individual paths to P differ greatly 
in comparison to l, some of the wavelets arriving at P are 
ahead of others while some are behind, and that by substan-
tial fractions of a wavelength (Fig. 4.3b). In other words, the 
phases of the wavelets at P differ greatly. (Remember that the 
molecules are also moving around, and that changes the phases 
as well.) At any moment some wavelets interfere construc-
tively, some destructively, and the shifting random hodge-
podge of overlapping wavelets effectively averages away the 
interference. Random, widely spaced scatterers driven by an 
incident primary wave emit wavelets that are essentially in-
dependent of one another in all directions except forward. 
Laterally scattered light, unimpeded by interference, 
streams out of the beam. This is approximately the situation 
existing about 100 miles up in the Earth’s tenuous high- 
altitude atmosphere, where a good deal of blue-light  scattering 
takes place.

That the scattered irradiance should depend on 1>l4 is easily 
seen by returning to the concept of dipole radiation (Sec- 
tion 3.4.3). Each molecule is taken as an electron oscillator driven 

P

P

(a)

(b)

(c)

1

1
2

2

3

3 4

4
P

Figure 4.3  Consider a plane wave entering from the left. (a) The  
scattering of light from a widely spaced distribution of molecules. (b) The 
wavelets arriving at a lateral point P have a jumble of different phases 
and tend not to interfere in a sustained constructive fashion. (c) That  
can probably be appreciated most easily using phasors. As they arrive  
at P the phasors have large phase-angle differences with respect to each 
other. When added tip-to-tail they therefore tend to spiral around keeping 
the resultant phasor quite small. Remember that we are really dealing 
with millions of tiny phasors rather than four substantial ones.
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 4.2 Rayleigh Scattering 99

corresponds to a trough (a negative maximum). In (a), the 
 primary wavefront impinges on molecule A, which begins to 
scatter a spherical wavelet. For the moment, suppose the  wavelet 
is 180° out-of-phase with the incident wave. (A driven oscillator 
is usually out-of-phase with the driver: p. 102.) Thus A begins 
to radiate a trough (a negative E-field) in response to being 
driven by a peak (a positive E-field). Part (b) shows the spherical 
wavelet and the plane wave overlapping, marching out-of-step 
but marching  together. The incident wavefront impinges on B, 
and it, in turn, begins to reradiate a wavelet, which must also be 
out-of-phase by 180°. In (c) and (d), we see the point of all of 
this, namely, that both wavelets are moving forward—they are 
in-phase with each other. That condition would be true for all 
such wavelets regardless of both how many molecules there 
were and how they were distributed. Because of the asymmetry 
introduced by the beam itself, all the scattered wavelets add 
constructively with each other in the forward direction.

4.2.2  The Transmission of Light Through Dense 
Media

Now, suppose the amount of air in the region under consider-
ation is increased. In fact, imagine that each little cube of air, 
one wavelength on a side, contains a great many molecules, 
whereupon it is said to have an appreciable optical density. 
(This usage probably derives from the fact that early experi-
ments on gases indicated that an increase in density is accompa-
nied by a proportionate increase in the index of refraction.) At 
the wavelengths of light, the Earth’s atmosphere at STP has 
about 3 million molecules in such a l3-cube. The scattered 
wavelets (l ≈ 500 nm) radiated by sources so close together 
(≈3 nm) cannot properly be assumed to arrive at some point P 
with random phases—interference will be important. This is 
equally true in liquids and solids where the atoms are 10 times 
closer and arrayed in a far more orderly fashion. In such cases, 
the light beam effectively encounters a uniform medium with 
no discontinuities to destroy the symmetry. Again, the scattered 
wavelets interfere constructively in the forward direction (that 
much is independent of the arrangement of the molecules), but 
now destructive interference predominates in all other direc-
tions. Little or no light ends up scattered laterally or back-
wards in a dense homogeneous medium.

To illustrate the phenomenon, Fig. 4.6 shows a beam moving 
through an ordered array of close-together scatterers. All along 
wavefronts throughout the beam, sheets of molecules are ener-
gized in-phase, radiate, and are reenergized, over and over again 
as the light sweeps past. Thus some molecule A radiates spheri-
cally out of the beam, but because of the ordered close arrange-
ment, there will be a molecule B, a distance ≈l>2 away, such 
that both wavelets cancel in the transverse direction. Here, 
where l is thousands of times larger than the scatterers and their 
spacing, there will likely always be pairs of molecules that tend 
to negate each other’s wavelets in any given lateral direction. 
Even if the medium is not perfectly ordered, the net electric 

Forward Propagation

To see why the forward direction is special, why the wave 
 advances in any medium, consider Fig. 4.4. Notice that for a 
forward point P the light scattered first (by the atom on the far 
left) travels the longest path, whereas the light scattered last 
(from the atom on the right) travels the shortest path. A more 
 detailed description is provided by Fig. 4.5. It depicts a  sequence 
in time showing two molecules A and B, interacting with an 
incoming primary plane wave—a solid arc represents a 
 secondary wavelet peak (a positive maximum); a dashed arc 

P

Figure 4.4  Consider a plane wave entering from the left. Light is scat-
tered more or less in the forward direction.

A

Primary wavefronts

Wavelet

Secondary
wavefront

B

A

B

A

B

A

B

l

(a)

(b)

(c)

(d)

Figure 4.5  In the forward 
direction the scattered wavelets 
arrive in-phase on planar wave-
fronts—trough with trough, peak 
with peak.
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100 Chapter 4 The Propagation of Light

field at a point in any transverse direction will be the sum of a 
great many tiny scattered fields, each somewhat out-of-phase 
with the next, so that the sum (which will be different from 
point to point) will always be small (Fig. 4.7). This makes sense 
from the perspective of conservation of energy—we can’t have 
constructive interference in every direction. Interference pro-
duces a redistribution of energy, out of the regions where it’s 
 destructive into the regions where it’s constructive.

The more dense, uniform, and ordered the medium is (the more 
nearly homogeneous), the more complete will be the  lateral de-
structive interference and the smaller the amount of nonforward 
scattering. Thus most of the energy will go into the forward direc-
tion, and the beam will advance essentially  undiminished (Fig. 4.8).

A and B are separated by l/2

l

B

A

Light
beam

Atoms

Figure 4.6  A plane wave impinging from the left. The medium is  
composed of many closely spaced atoms. Among countless others,  
a wavefront stimulates two atoms, A and B, that are very nearly one-half 
wavelength apart. The wavelets they emit interfere destructively. Trough 
overlaps crest, and they completely cancel each other in the direction 
perpendicular to the beam. That process happens over and over again, 
and little or no light is scattered laterally.

(a) (b)

Figure 4.7  (a) When a great many tiny slightly shifted waves arrive at a 
point in space, there is generally as much positive E-field as negative, and 
the resultant disturbance is nearly zero. (b) The tiny phasors representing 
those waves form a very small circular figure, and the resultant (which 
 oscillates in a way that depends on the number of waves) is never large.

Wavefront

Atom

Figure 4.8  A downward plane wave incident on an ordered array of atoms. Wavelets scatter in all directions and  
overlap to form an ongoing secondary plane wave traveling downward. (E.H.)
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On an overcast day, the sky looks hazy gray because of 
 water droplets comparable in size to lightwaves. In the same 
way, some inexpensive plastic food containers and white 
 garbage-bag plastic look pale blue-white in scattered light and 
are distinctly orange in transmitted light. The garbage bags, in 
 order to be made opaque, contain (2–2.5%) clear TiO2 spheres 
(n = 2.76) about 200 nm in diameter, and these Mie scatter 
bluish white.*

When the transparent particle diameters exceed around  
10 wavelengths the ordinary laws of geometrical optics work 
nicely and we might well refer to the process as geometrical 
scattering.

4.2.3  Transmission and the Index of Refraction

The transmission of light through a homogeneous medium is 
an ongoing repetitive process of scattering and rescattering. 
Each such event introduces a phase shift into the light field, 
which ultimately shows up as a shift in the apparent phase 
 velocity of the transmitted beam from its nominal value of c. 
That corresponds to an index of refraction for the medium 
(n = c>v) that is other than one, even though photons exist 
only at a speed c.

To see how this comes about, return to Fig. 4.5. Recall that 
the scattered wavelets all combine in-phase in the forward 
 direction to form what might best be called the secondary 
wave. For empirical reasons alone we can anticipate that the 
 secondary wave will combine with what is left of the primary 
wave to yield the only observed disturbance within the 
 medium,  namely, the transmitted wave. Both the primary and 
secondary  electromagnetic waves propagate through the 
 inter atomic void with the speed c. Yet the medium can  certainly 
possess an index of refraction other than 1. The refracted wave 
may appear to have a phase velocity less than, equal to, or 
even greater than c. The key to this apparent contradiction 
 resides in  the phase  relationship between the secondary and 
primary waves.

The classical model predicts that the electron-oscillators will 
be able to vibrate almost completely in-phase with the driving 
force (i.e., the primary disturbance) only at relatively low 
 frequencies. As the frequency of the electromagnetic field 
 increases, the oscillators will fall behind, lagging in phase by a 
proportionately larger amount. A detailed analysis reveals that 
at resonance the phase lag will reach 90°, increasing thereafter 
to almost 180°, or half a wavelength, at frequencies well above 
the particular characteristic value. Problem 4.4 explores this 
phase lag for a damped driven oscillator, and Fig. 4.9 summa-
rizes the results.

Scattering on a per-molecule basis is extremely weak. In 
order to have half its energy scattered, a beam of green light 
will have to traverse ≈150 km of atmosphere. Since about 
1000 times more molecules are in a given volume of liquid 
than in the same volume of vapor (at atmospheric pressure), 
we can expect to see an increase in scattering. Still, the liquid 
is a far more ordered state with much less pronounced den-
sity fluctuations, and that should suppress the nonforward 
scattering appreciably. Accordingly, an increased scattering 
per unit volume is observed in liquids, but it’s more like 5 to 
50 times as much rather than 1000 times. Molecule for mol-
ecule,  liquids scatter substantially less than gases. Put a few 
drops of milk in a tank of water and illuminate it with a bright 
 flashlight beam. A faint but unmistakable blue haze will scat-
ter out  laterally, and the direct beam will emerge decidedly 
reddened.

Transparent amorphous solids, such as glass and plastic, 
will also scatter light laterally, but very weakly. Good crys-
tals, like quartz and mica, with their almost perfectly ordered 
structures, scatter even more faintly. Of course, imperfec-
tions of all sorts (dust and bubbles in liquids, f laws and 
 impurities in solids) will serve as scatterers, and when these 
are small, as in the gem moonstone, the emerging light will 
be bluish.

In 1869 John Tyndall experimentally studied the scattering 
produced by small particles. He found that as the size of the 
particles increased (from a fraction of a wavelength), the 
amount of scattering of the longer wavelengths increased 
 proportionately. Ordinary clouds in the sky testify to the fact 
that relatively large droplets of water scatter white light with no 
appreciable coloration. The same is true of the microscopic 
globules of fat and protein in milk.

When the number of molecules in a particle is small, they 
are all close to one another and act in unison; their wavelets 
interfere constructively, and the scattering is strong. As the 
size of the particle approaches a wavelength, the atoms at its 
extremities no longer radiate wavelets that are necessarily 
 in-phase and the scattering begins to diminish. This happens 
first at the short wavelengths (blue), and so as the particle 
size increases, it  scatters proportionately more of the red end 
of the spectrum (and it does so increasingly in the forward 
 direction). 

The theoretical analysis of scattering from spherical parti-
cles about the size of a wavelength or so was first published by 
Gustav Mie in 1908. Mie Scattering depends only weakly on 
wavelength and becomes independent of it (white light in, white 
light out) when the particle size exceeds l. In Mie Scattering  
the theory requires that the scatterers be nearly spherical. The 
amount of scattering increases with the diameter of the trans-
parent bubbles, crystals, fibers, and so on, doing the scattering. 
Unlike Rayleigh Scattering, Mie Scattering is stronger in the 
forward direction than in the backward direction. Reasonably 
enough, Rayleigh Scattering is the small-size limiting case of 
Mie Scattering.

*It has only recently been observed (and that was by chance) that inhomogeneous 
opaque materials, such as milk and white paint, can reduce the effective speed of  
light to as little as one-tenth the value anticipated for the medium. See S. John, 
“Localization of light,” Phys. Today 44, 32 (1991).
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102 Chapter 4 The Propagation of Light

the resultant transmitted wave is phase shifted, and this phase 
difference is crucial.

When the secondary wave lags (or leads) the primary, the 
 resultant transmitted wave must also lag (or lead) it by some 
amount (Fig. 4.11). This qualitative relationship will serve our pur-
poses for the moment, although it should be noted that the phase of 
the resultant also depends on the amplitudes of the  interacting 
waves [see Eq. (7.10)]. At frequencies below v0 the transmitted 
wave lags the free-space wave, whereas at frequencies above v0 it 
leads the free-space wave. For the special case in which v = v0 
the secondary and primary waves are out-of-phase by 180°. The 
former works against the latter, so that the refracted wave is appre-
ciably reduced in amplitude although unaffected in phase.

As the transmitted wave advances through the medium, 
 scattering occurs over and over again. Light traversing the 
 substance is progressively retarded (or advanced) in phase. 
 Evidently, since the speed of the wave is the rate of advance of 
the condition of constant phase, a change in the phase should 
correspond to a change in the speed.

We now wish to show that a phase shift is indeed tantamount 
to a difference in phase velocity. In free space, the resultant  
disturbance at some point P may be written as

 ER(t) = E0 cos vt (4.1)

In addition to these lags there is another effect that must be 
considered. When the scattered wavelets recombine, the resul-
tant secondary wave* itself lags the oscillators by 90°.

The combined effect of both these mechanisms is that at fre-
quencies below resonance, the secondary wave lags the primary 
(Fig. 4.10) by some amount between approximately 90° and 
180°, and at frequencies above resonance, the lag ranges from 
about 180° to 270°. But a phase lag of d Ú 180° is equivalent to 
a phase lead of 360° - d, [e.g., cos (u - 270°) = cos (u + 90°)]. 
This much can be seen on the right side of Fig. 4.9b.

Within the transparent medium, the primary and secondary 
waves overlap and, depending on their amplitudes and relative 
phase, generate the net transmitted disturbance. Except for the 
fact that it is weakened by scattering, the primary wave travels 
into the material just as if it were traversing free space. By 
 comparison to this free-space wave, which initiated the process, 
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Figure 4.9  A schematic representation of (a) amplitude and (b) phase 
lag versus driving frequency for a damped oscillator. The dashed curves 
correspond to decreased damping. The corresponding index of refraction 
is shown in (c).
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Figure 4.10  A primary wave (a) and two possible secondary waves.  
In (b) the secondary lags the primary—it takes longer to reach any given 
value. In (c) the secondary wave reaches any given value before (at an ear-
lier time than) the primary; that is, it leads.

*This point will be made more plausible when we consider the predictions of the 
Huygens–Fresnel Theory in the diffraction chapter. Most texts on E & M treat the 
problem of radiation from a sheet of oscillating charges, in which case the 90° 
phase lag is a natural result (see Problem 4.5).
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and the phase angles are approximately 90°. Consequently, the 
refracted wave lags only slightly, and n is only slightly greater 
than 1. As v increases, the secondary waves have greater ampli-
tudes and lag by greater amounts. The result is a gradually de-
creasing wave speed and an increasing value of n 7 1. Although 
the amplitudes of the secondary waves continue to increase, 
their relative phases approach 180° as v approaches v0. Conse-
quently, their ability to cause a further increase in the resultant 
phase lag diminishes. A turning point (v = v′) is reached 
where the refracted wave begins to experience a decreasing 
phase lag and an increasing speed (dn>dv 6 0). That continues 
until v = v0, whereupon the transmitted wave is appreciably 
reduced in amplitude but unaltered in phase and speed. At that 

If P is surrounded by a dielectric, there will be a cumulative 
phase shift eP, which was built up as the wave moved through 
the medium to P. At ordinary levels of irradiance the medium 
will behave linearly, and the frequency in the dielectric will be 
the same as that in vacuum, even though the wavelength and 
speed may differ. Once again, but this time in the medium, the 
disturbance at P is

 ER (t) = E0 cos (vt - eP) (4.2)

where the subtraction of eP corresponds to a phase lag. An ob-
server at P will have to wait a longer time for a given crest to 
arrive when she is in the medium than she would have had to 
wait in vacuum. That is, if you imagine two parallel waves of 
the same frequency, one in vacuum and one in the material, the 
vacuum wave will pass P a time eP>v before the other wave. 
Clearly then, a phase lag of eP corresponds to a reduction in 
speed, v 6 c and n 7 1. Similarly, a phase lead yields an in-
crease in speed, v 7 c and n 6 1. Again, the scattering process 
is a continuous one, and the cumulative phase shift builds as the 
light penetrates the medium. That is to say, e is a function of the 
length of dielectric traversed, as it must be if v is to be constant 
(see Problem 4.5). In the vast majority of situations encoun-
tered in Optics v 6 c and n 7 1; see Table 4.1. The important 
exception is the case of X-ray propagation, where v 7 v0, 
v 7 c, and n 6 1.

The overall form of n(v), as depicted in Fig. 4.9c, can now be 
understood as well. At frequencies far below v0 the  amplitudes of 
the oscillators and therefore of the secondary waves are very small, 
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Figure 4.11  If the secondary leads the primary, the resultant will 
also lead it. That point is underscored by the phasor diagrams.

TabLe 4.1  approximate Indices of Refraction of 
Various Substances*

Air 1.000 29

Ice 1.31

Water 1.333

Ethyl alcohol (C2H5OH) 1.36

Kerosene 1.448

Fused quartz (SiO2) 1.4584

Karo (sugar) syrup 1.46

Carbon tetrachloride (CCl4) 1.46

Olive oil 1.47

Turpentine 1.472

Old formula Pyrex 1.48

41% Benzene + 59% carbon tetrachloride 1.48

Methyl methacrylate 1.492

Benzene (C6H6) 1.501

Plexiglas 1.51

Oil of cedarwood 1.51

Crown glass 1.52

Sodium chloride (NaCl) 1.544

Light flint glass 1.58

Polycarbonate 1.586

Polystyrene 1.591

Carbon disulfide (CS2) 1.628

Dense flint glass 1.66

Sapphire 1.77

Lanthanum flint glass 1.80

Heavy flint glass 1.89

Zircon (ZrO2 · SiO2) 1.923

Fabulite (SrTiO3) 2.409

Diamond (C) 2.417

Rutile (TiO2) 2.907

Gallium phosphide 3.50

*Values vary with physical conditions—purity, pressure, etc.  
These correspond to a wavelength of 589 nm.
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104 Chapter 4 The Propagation of Light

4.3 Reflection

When a beam of light impinges on the surface of a transparent 
material, such as a sheet of glass, the wave “sees” a vast array 
of closely spaced atoms that will somehow scatter it. Remem-
ber that the wave may be ≈500 nm long, whereas the atoms 
and their separations (≈0.2 nm) are thousands of times small-
er. In the case of transmission through a dense medium, the 
scattered wavelets cancel each other in all but the forward direc-
tion, and just the ongoing beam is sustained. But that can only 
happen if there are no discontinuities. This is not the case at an 
interface between two different transparent media (such as air 
and glass), which is a jolting discontinuity. When a beam of 
light strikes such an interface, some light is always scattered 
backward, and we call this phenomenon reflection.

If the transition between two media is gradual—that is, if the 
dielectric constant (or the index of refraction) changes from that 
of one medium to that of the other over a distance of a wave-
length or more—there will be very little reflection; the interface 
 effectively vanishes. On the other hand, a transition from one 
 medium to the other over a distance of 1>4 wavelength or less 
behaves very much like a totally discontinuous change.

Internal and external Reflection

Imagine that light is traveling across a large homogeneous block 
of glass (Fig. 4.12). Now, suppose that the block is sheared in 
half perpendicular to the beam. The two segments are then sepa-
rated, exposing the smooth, flat surfaces depicted in Fig. 4.12b. 
Just before the cut was made, there was no lightwave traveling  
to the left inside the glass—we know the beam only advances. 
Now there must be a wave (beam-I) moving to the left, reflected 
from the surface of the right-hand block. The implication is that 
a region of scatterers on and beneath the exposed surface of the 
right-hand block is now “unpaired,” and the backward radiation 
they emit can no longer be canceled. The region of oscillators 
that was adjacent to these, prior to the cut, is now on the section 
of the glass that is to the left. When the two sections were to-
gether, these scatterers presumably also emitted wavelets in the 
backward direction that were 180° out-of-phase with, and can-
celed, beam-I. Now they produce reflected beam-II. Each mol-
ecule scatters light in the backward direction, and, in principle, 
each and every molecule contributes to the reflected wave. 

point, n = 1, v = c, and we are more or less at the center of the 
absorption band.

At frequencies just beyond v0 the relatively large-amplitude 
secondary waves lead; the transmitted wave is advanced in phase, 
and its speed exceeds c (n 6 1). As v increases, the whole sce-
nario is played out again in reverse (with some asymmetry due to 
frequency-dependent asymmetry in oscillator amplitudes and 
scattering). At even higher frequencies the secondary waves, 
which now have very small amplitudes, lead by nearly 90°. The 
resulting transmitted wave is advanced very slightly in phase, and 
n gradually approaches 1.

The precise shape of a particular n(v) curve depends on 
the  specific oscillator damping, as well as on the amount of 
 absorption, which in turn depends on the number of oscillators 
 participating.

A rigorous solution to the propagation problem is known as 
the Ewald–Oseen Extinction Theorem. Although the mathemat-
ical formalism, involving integro-differential equations, is far 
too complicated to treat here, the results are certainly of  interest. 
It is found that the electron-oscillators generate an electromag-
netic wave having essentially two terms. One of these precisely 
cancels the primary wave within the medium. The other, and 
only remaining disturbance, moves through the dielectric at a 
speed v = c>n as the transmitted wave.* Henceforth we shall 
simply assume that a lightwave propagating through any 
 substantive medium travels at a speed v Z c. It should also be 
noted that the index of refraction varies with temperature (see 
Table 4.2), but the process is not well understood.

Apparently, any quantum-mechanical model we construct 
will somehow have to associate a wavelength with the photon. 
That’s easily done mathematically via the expression p = h>l, 
even if it’s not clear at this point what is doing the waving. Still 
the wave nature of light seems inescapable; it will have to be 
infused into the theory one way or another. And once we have 
the idea of a photon wavelength, it’s natural to bring in the 
concept of relative phase. Thus the index of refraction arises 
when the absorption and emission process advances or 
 retards the phases of the scattered photons, even as they 
 travel at speed c.

*For a discussion of the Ewald–Oseen Theorem, see Principles of Optics by Born 
and Wolf, Section 2.4.2; this is heavy reading. Also look at Reali, “Reflection 
from dielectric materials,” Am. J. Phys. 50, 1133 (1982).

TabLe 4.2  Temperature Dependence of the Index of 
Refraction of Water

 0 °C 1.3338

20 °C 1.3330

40 °C 1.3307

60 °C 1.3272

80 °C 1.3230

(a) (b)
Beam-IBeam-II

Lightbeam

Figure 4.12  (a) A lightbeam propagating through a dense homogeneous 
medium such as glass. (b) when the block of glass is cut and parted, the 
light is reflected backward at the two new interfaces. Beam-I is externally 
reflected, and beam-II is internally reflected. Ideally, when the two pieces 
are pressed back together, the two reflected beams cancel one another.
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Nonetheless, in practice, it is a thin layer (≈l>2 deep) of un-
paired atomic oscillators near the surface that is effectively re-
sponsible for the reflection. For an air–glass interface, about 4% 
of the energy of an incident beam falling perpendicularly in air 
on glass will be reflected straight back out by this layer of  
unpaired scatterers (p. 126). And that’s true whether the glass is 
1.0 mm thick or 1.00 m thick.

Beam-I reflects off the right-hand block, and because light 
was initially traveling from a less to a more optically dense 
 medium, this is called external reflection. In other words, the 
index of the incident medium (ni) is less than the index of 
the transmitting medium (nt). Since the same thing happens to 
the unpaired layer on the section that was moved to the left, it, 
too, reflects backwards. With the beam incident  perpendicularly 
in glass on air, 4% must again be reflected, this time as beam-II. 
This process is referred to as internal reflection  because  
ni 7 nt. If the two glass regions are made to approach one 
 another increasingly closely (so that we can imagine the gap to 
be a thin film of, say, air—p. 416), the reflected light will 
 diminish until it ultimately vanishes as the two faces merge and 
disappear and the block becomes continuous again. In other 
words, beam-I cancels beam-II; they must have been 180° out-
of-phase. Remember this 180∙ relative phase shift between 
 internally and externally reflected light (see Section 4.10 for a 
more rigorous treatment)—we will come back to it later on.

Experience with the common mirror makes it obvious that 
white light is reflected as white—it certainly isn’t blue. To see 
why, first remember that the layer of scatterers responsible for 
the reflection is effectively about l>2 thick (per Fig. 4.6). Thus 
the larger the wavelength, the deeper the region contributing 
(typically upward of a thousand atom layers), and the more 
scatterers there are acting together. This tends to balance out the 
fact that each scatterer is less efficient as l increases (remember 
1>l4). The combined result is that the surface of a transparent 
medium reflects all wavelengths about equally and doesn’t 
appear colored in any way. That, as we will see, is why this 
page looks white under white-light illumination.

4.3.1 The Law of Reflection

Figure 4.13 shows a beam composed of plane wavefronts 
 impinging at some angle on the smooth, flat surface of an 
 optically dense medium (let it be glass). Assume that the 
 surrounding environment is vacuum. Follow one wavefront as it 
sweeps in and across the molecules on the surface (Fig. 4.14). 
For the sake of simplicity, in Fig. 4.15 we have omitted  everything 
but a few molecular layers at the interface. As the wavefront 
descends, it energizes and reenergizes one scatterer after anoth-
er, each of which radiates a stream of photons that can be re-
garded as a hemispherical wavelet in the incident  medium. Be-
cause the wavelength is so much greater than the separation 
between the molecules, the wavelets emitted back into the inci-
dent medium advance together and add  constructively in only 
one direction, and there is one well- defined reflected beam. That 

Incident

Re�ected

Refracted

Incident
beam

Vacuum

Re�ected
beam

Transmitted or
refracted beam

(a)

(b)

Figure 4.13  A beam of plane waves incident on a distribution of mole-
cules constituting a piece of clear glass or plastic. Part of the incident light 
is reflected and part refracted.

Figure 4.14  A plane wave sweeps in stimulating atoms across the 
 interface. These radiate and reradiate, thereby giving rise to both the 
reflected and transmitted waves. In reality the wavelength of light is  
several thousand times the atomic size and spacing.

would not be true if the incident radiation was short-wavelength 
X-rays, in which circumstance there would be several reflected 
beams. And it would not be true if the scatterers were far apart 
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106 Chapter 4 The Propagation of Light

compared to l, as they are for a diffraction grating (p. 496), in 
which case there would also be several reflected beams. The 
direction of the reflected beam is determined by the constant 
phase difference between the atomic scatterers. That, in turn, is 
determined by the angle made by the incident wave and the sur-
face, the so-called angle-of-incidence.

In Fig. 4.16, the line AB lies along an incoming wavefront, 
while CD lies on an outgoing wavefront—in effect, AB transforms 
on reflection into CD. With Fig. 4.15 in mind, we see that the 
wavelet emitted from A will arrive at C in-phase with the wavelet 
just being emitted from D (as it is stimulated by B), as long as the 
distances AC and BD are equal. In other words, if all the wavelets 
emitted from all the surface scatterers are to overlap in-phase and 
form a single reflected plane wave, it must be that AC = BD. 
Then, since the two triangles have a common hypotenuse

sin ui

BD
=

sin ur

AC

All the waves travel in the incident medium with the same 
speed vi. It follows that in the time (∆t) it takes for point B on 

(a)

(b)

(c)

(f)

A

C

D

(d)

(e)

Figure 4.15  The reflection of a wave as the result of scattering.

B C

ui ur

Vacuum

MediumA D

Figure 4.16  Plane waves enter from the left and are reflected off to  
the right. The reflected wavefront CD is formed of waves scattered by  
the atoms on the surface from A to D. Just as the first wavelet arrives at  
C from A, the atom at D emits, and the wavefront along CD is completed.

the wavefront to reach point D on the surface, the wavelet emitted 
from A reaches point C. In other words, BD = vi∆t = AC, and so 
from the above equation, sin ui = sin ur, which means that

 ui = ur  (4.3)

The angle-of-incidence equals the angle-of-reflection. This 
equation is the first part of the Law of Reflection. It initially 
appeared in the book Catoptrics, which was purported to have 
been written by Euclid. We say that a beam is normally incident 
when ui = 0°, in which case ur = 0° and for a mirror the beam 

A modern phased-array radar system. The field of individual small antennas 
behaves very much like the atoms on a smooth surface. By introducing a 
proper phase shift between adjacent rows the antenna can “look” in any 
direction. A reflecting surface has a similar phase shift determined by ui as 
the incident wave sweeps over the array of atoms. (Raytheon Corp.)

M04_HECH6933_05_GE_C04.indd   106 26/08/16   1:10 PM
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reflects back on itself. Similarly, glancing incidence corre-
sponds to ui ≈ 90° and perforce ur = 90°.

Rays

Drawing wavefronts can get things a bit cluttered, so we intro-
duce another convenient scheme for visualizing the progression 
of light. The imagery of antiquity was in terms of straight-line 
streams of light, a notion that got into Latin as “radii” and 
reached English as “rays.” A ray is a line drawn in space 
 corresponding to the direction of flow of radiant energy. It is 
a mathematical construct and not a physical entity. In a medi-
um that is uniform (homogeneous), rays are straight. If the 
medium behaves in the same manner in every direction (iso-
tropic), the rays are perpendicular to the wavefronts. Thus 
for a point source emitting spherical waves, the rays, which 
are perpendicular to them, point radially outward from the 
source.  Similarly, the rays associated with plane waves are all 
parallel. Rather than sketching bundles of rays, we can simply 
draw one incident ray and one reflected ray (Fig. 4.17a). All 
the angles are now measured from the perpendicular (or nor-
mal) to the surface, and ui and ur have the same numerical 
values as before (Fig. 4.16).

ui ur

Plane-of-incidence

(b)

u
i
u
r

Interface

(a)
l

Figure 4.17  (a) Select one ray to represent the beam of plane waves. 
Both the angle-of-incidence ui and the angle-of-reflection ur are measured 
from a perpendicular drawn to the reflecting surface. (b) The incident ray 
and the reflected ray define the plane-of-incidence, perpendicular to the 
reflecting surface.

The ancient Greeks knew the Law of Reflection. It can be 
deduced by observing the behavior of a flat mirror, and nowa-
days that observation can be done most simply with a flash-
light or, even better, a low-power laser. The second part of the 
Law of Reflection maintains that the incident ray, the perpen-
dicular to the surface, and the reflected ray all lie in a plane 
called the plane-of-incidence (Fig. 4.17b)—this is a three- 
dimensional business. Try to hit some target in a room with a 
flashlight beam by reflecting it off a stationary mirror, and the 
importance of this second part of the law becomes obvious!

Figure 4.18a shows a beam of light incident upon a reflecting 
surface that is smooth (one for which any irregularities are small 
compared to a wavelength). In that case, the light  reemitted by 
millions upon millions of atoms will combine to form a single 
well-defined beam in a process called specular reflection (from 
the word for a common mirror alloy in ancient times, speculum). 
Provided the ridges and valleys are small compared to l, the 
scattered wavelets will still arrive more or less in-phase when 
ui = ur. This is the situation assumed in Figs. 4.13, 4.15, 4.16, 
and 4.17. On the other hand, when the surface is rough in com-
parison to l, although the angle-of- incidence will equal the angle-
of-reflection for each ray, the whole lot of rays will emerge  

The cruiser Aurora, which played a key role in the Communist Revolution 
(1917), docked in St. Petersburg. Where the water is still, the reflection is 
specular. The image blurs where the water is rough and the reflection more 
diffuse. (E.H.)

The F-117A Stealth fighter has an extremely small radar profile, that  
is, it returns very little of the incoming microwaves back to the station that 
sent them. That’s accomplished mostly by constructing the aircraft with flat 
tilted-planes that use the Law of Reflection to scatter the radar waves away 
from their source. One wants to avoid ui = ur ≈ 0. (US Dept of Defense)
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108 Chapter 4 The Propagation of Light

However we visualize it, immediately on entering the trans-
mitting medium, there is a single net field, a single net wave. As 
we have seen, this transmitted wave usually propagates with an 
effective speed vt 6 c. It’s essentially as if the atoms at the 
 interface scattered “slow wavelets” into the glass that combine to 
form the “slow transmitted wave.” We’ll come back to this imag-
ery when we talk about Huygens’s Principle. In any event, 
 because the cooperative phenomenon known as the transmitted 
electromagnetic wave is slower than the incident electromagnetic 
wave, the transmitted wavefronts are refracted, displaced (turned 
with respect to the incident wavefronts), and the beam bends.

4.4.1 The Law of Refraction

Figure 4.19 picks up where we left off with Figs. 4.13 and 4.16. 
The diagram depicts several wavefronts, all shown at a single 
instant in time. Remember that each wavefront is a surface of 

By placing a pair of pins in front of a flat mirror and aligning their  
images with another pair of pins, you can easily verify that ui = ur.  
(E.H.)

Incident medium

ni

nt

Transmitting medium

B

D

vi �t

vt �t
E

A
ui

ut

Figure 4.19  The refraction of waves. The atoms in the region of  
the surface of the transmitting medium reradiate wavelets that combine 
constructively to form a refracted beam. For simplicity the reflected wave 
has not been drawn.

every which way, constituting what is called diffuse reflection 
(see photo). Both of these  conditions are extremes; the reflecting 
behavior of most  surfaces lies somewhere between them. Thus, 
although the  paper of this page was deliberately manufactured to 
be a fairly diffuse scatterer, the cover of the book reflects in a 
manner that is somewhere between diffuse and specular.

4.4 Refraction

Figure 4.13 shows a beam of light impinging on an interface at 
some angle (ui Z 0). The interface corresponds to a major inho-
mogeneity, and the atoms that compose it scatter light both 
backward, as the reflected beam, and forward, as the transmit-
ted beam. The fact that the incident rays are bent or “turned out 
of their way,” as Newton put it, is called  refraction.

Examine the transmitted or refracted beam. Speaking clas-
sically, each energized molecule on the interface radiates 
wavelets into the glass that expand out at speed c. These can be 
imagined as combining into a secondary wave that then recom-
bines with the unscattered remainder of the primary wave, to 
form the net transmitted wave. The process continues over and 
over again as the wave advances in the transmitting  medium.

Figure 4.18  (a) Specular reflection.  
(b) Diffuse reflection. (Donald Dunitz)  
(c) Specular and diffuse are the 
extremes of reflection. This schemat-
ic drawing represents a range of 
reflections between the two that are 
likely to be encountered.

(c)

(c)

Specular Diffuse

(a) (b)
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and in air since xi = sin ui and xt = sin ut that’s equivalent to 
Eq. (4.4). We now know that the Englishman Thomas Harriot 
had come to the same conclusion before 1601, but he kept it to 
 himself.

At first, the indices of refraction were simply experimentally 
determined constants of the physical media. Later,  Newton was 
actually able to derive Snell’s Law using his own corpuscular 
theory. By then, the significance of n as a measure of the speed of 
light was evident. Still later, Snell’s Law was shown to be a natu-
ral consequence of Maxwell’s Electromagnetic Theory (p. 121).

It is again convenient to transform the diagram into a ray 
representation (Fig. 4.21) wherein all the angles are  measured 
from the perpendicular. Along with Eq. (4.4), there goes the 

constant phase, and, to the degree that the phase of the net field 
is retarded by the transmitting medium, each wavefront is held 
back, as it were. The wavefronts “bend” as they cross the bound-
ary because of the speed change. Alternatively, we can envision 
Fig. 4.19 as a multiple-exposure picture of a single wavefront, 
showing it after successive equal intervals of time. Notice that 
in the time ∆t, which it takes for point B on a wavefront (travel-
ing at speed vi) to reach point D, the transmitted portion of that 
same wavefront (traveling at speed vt) has reached point E. If 
the glass (nt = 1.5) is immersed in an incident medium that is 
vacuum (ni = 1) or air (ni = 1.000 3) or anything else where 
nt 7 ni, vt 6 vi, and AE 6 BD, the wavefront bends. The 
 refracted wavefront extends from E to D, making an angle with 
the interface of ut. As before, the two triangles ABD and AED 
in Fig. 4.19 share a common hypotenuse (AD), and so

sin ui

BD
=

sin ut

AE

where BD = vi ∆t and AE = vt ∆t. Hence

sin ui

vi
=

sin ut

vt

Multiply both sides by c, and since ni = c>vi and nt = c>vt

 ni sin ui = nt sin ut  (4.4)

Keep in mind that because of dispersion (Section 3.5.1) ni, nt, ui, 
and ut are generally frequency dependent. This equation works 
for every frequency, but each will “bend” differently.

This expression is the first portion of the Law of Refraction, 
also known as Snell’s Law after the man who proposed it 
(1621), Willebrord Snel van Royen (1591–1626). Snel’s analy-
sis has been lost, but contemporary accounts follow the treat-
ment shown in Fig. 4.20. What was found through observation 
was that the bending of the rays could be quantified via the ratio 
of xi to xt which was constant for all ui. That constant was natu-
rally enough called the index of refraction. In other words,

xi

xt
K nt

Air
Glass

1.0
ni

nt

xi

xt

ui

ut

Figure 4.20  Descartes’s 
arrangement for deriving 
the Law of Refraction. 
The circle is drawn with a 
radius of 1.0.

When light passes from one medium into another some portion is usually 
reflected back at the interface. At normal incidence that portion is given by 
Eq. (4.47). In this case the clear plastic film and the adhesive coating both 
have the same index of refraction and so, as far as light is concerned, each 
one of the hundreds of interfaces simply vanishes. No light is reflected at 
any of the plastic-adhesive interfaces, and the entire multilayered roll is 
transparent. (E.H.)

ni

nt

u
r

u
t

Interface

Plane-of-incidence
u
i

Figure 4.21  The incident, 
reflected, and transmitted 
beams each lie in the plane-of-
incidence.
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110 Chapter 4 The Propagation of Light

When ni 6 nt (that is, when the light is initially traveling with-
in the lower-index medium), it follows from Snell’s Law that 
sin ui 7 sin ut, and since the same function is everywhere positive 
between 0° and 90°, then ui 7 ut. Rather than going straight 
through, the ray entering a higher-index medium bends toward 
the normal (Fig. 4.23a). The reverse is also true (Fig. 4.23b); that 
is, on entering a medium having a lower index, the ray, rather 

understanding that the incident, reflected, and  refracted rays 
all lie in the plane-of-incidence. In other words, the  respective 
unit propagation vectors k̂i, k̂r, and k̂t are coplanar (Fig. 4.22).

Figure 4.22  Refraction at various angles of incidence. Notice that the 
bottom surface is cut circular so that the transmitted beam within the glass 
always lies along a radius and is normal to the lower surface in every case. 
(PSSC College Physics, D. C. Heath & Co., 1968.)

The image of a pen seen through a thick block of clear plastic. The displace-
ment of the image arises from the refraction of light toward the normal at the 
air–plastic interface. If this arrangement is set up with a narrow object (e.g., an 
illuminated slit) and the angles are carefully measured, one can confirm 
Snell’s Law directly. (E.H.)

(a)

Air
Glass

Air
Glass

ni

nt

nt

ni

(b)

Figure 4.23  The bending of rays 
at an interface. (a) When a beam  
of light enters a more optically 
dense medium, one with a greater 
index of refraction (ni 6 nt), it 
bends toward the perpendicular. 
(b) When a beam goes from a 
more dense to a less dense  
medium (ni 7 nt), it bends away 
from the perpendicular.

EXAMPLE 4.1

A ray of light in air having a specific frequency is incident on 
a sheet of glass. The glass has an index of refraction at that fre-
quency of 1.52. If the transmitted ray makes an angle of 19.2° 
with the normal, find the angle at which the light impinges on 
the interface.

SOLUTION

From Snell’s Law

sin ui =
nt

ni
 sin ut

sin ui =
1.52
1.00

 sin 19.2° = 0.499 9

and ui = 30°

than going straight through, will bend away from the normal 
(see photo above). Notice that this implies that the rays will tra-
verse the same path going either way, into or out of either medium. 
The arrows can be reversed and the resulting picture is still true.

It’s fairly common to talk about the optical density of a trans-
parent medium. The concept no doubt came from the widely 
held, although somewhat erroneous, notion that the indices of 
refraction of various media are always proportional to their mass 
densities. As can be seen in Fig. 4.25, which shows the data for a 
random selection of dense transparent materials, the correlation 
is there but it’s inconsistent. For example, acrylic has a specific 
gravity of 1.19 and an index of 1.491, whereas styrene has a lower 
specific gravity (1.06) and a higher index of refraction (1.590). 
Still, the term optical density—referring to index of refraction, 
and not mass density—is useful when comparing media. 
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Snell’s Law can be rewritten in the form

 
sin ui

sin ut
= nti (4.5)

where nti K nt>ni is the relative index of refraction of the two 
media. Note that nti = vi>vt; moreover, nti = 1>nit. For air-to-
water nwa ≈ 4>3, and for air-to-glass nga ≈ 3>2. As a 
 mnemonic think of nga = ng>na as dividing “air into glass,” just 
as light goes from “air into glass.”

Figure 4.24  A beam of light enters from the bottom moving upward.  
(a) Here there are two Plexiglas blocks widely separated in air. (b) By  
making the air gap thin, two of the reflected beams overlap to form the 
bright middle beam traveling to the right. (c) By replacing the air film with 
castor oil the interface between the blocks essentially vanishes, as does 
that reflected beam. (d) And it behaves just like a single solid block.  
(G. Calzà, T. López-Arias, L.M. Gratton, and S. Oss, reprinted with permission from The Physics 

Teacher 48, 270 (2010). Copyright 2010, American Association of Physics Teachers)
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Figure 4.25  Index of refraction versus specific gravity for a random 
selection of dense transparent materials.

EXAMPLE 4.2

A narrow laserbeam traveling in water having an index of 1.33 
impinges at 40.0° with respect to the normal on a water–glass 
interface. If the glass has an index of 1.65 (a) determine the 
relative index of refraction. (b) What is the beam’s transmission 
angle in the glass?

SOLUTION
(a) From the defining equation

  nti =
nt

ni

nGW =
nG

nW
=

1.65
1.33

= 1.24

(b) Using Snell’s Law

sin ut = (sin ui)>nti

sin ut = (sin 40.0°)>1.24 = 0.518  4

and ut = 31.2°

Let ûn be a unit vector normal to the interface pointing in  
the direction from the incident to the transmitting medium  
(Fig. 4.26). As you will have the opportunity to prove in Prob-
lem 4.33, the complete statement of the Law of Refraction can 
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112 Chapter 4 The Propagation of Light

be written vectorially as

 ni(k̂i : ûn) = nt(k̂t : ûn) (4.6)

or alternatively,

 ntk̂t - nik̂i = (nt cos ut - ni cos ui) ûn (4.7)

Refraction of Light from a Point Source

All the usual sources of light are actually multiple-point sources, 
and so it’s appropriate now to study the refraction of a diverging 
bundle of rays from a single point. Think of two homogeneous 
dielectric media separated by a flat interface, as depicted in  
Fig. 4.27. A luminous point S on the left sends out light, some of  
which arrives at the interface where it is refracted; in 4.27a  

k r

k t

un

ur

ui

ut

k i

ntni

Figure 4.26   
The ray geometry.

Air

Water

S

P

ni � nt

Figure 4.28  A point source embedded in an optically dense material—a 
fish in a pool. The observer will see S located somewhere along the curve 
depending on which rays they view. As shown, the ray entering the 
 observer’s eye appears to come from P.

converging a bit more toward the axis, and in 4.27b diverging 
somewhat from it. The rays making different angles will bend 
differently and although they all came from the same axial point S 
they will generally not project back to the same point on the 
axis in either diagram. However, if we limit the light to a narrow 
cone the rays will refract only a little, being nearly normal to the 
interface, and then will indeed appear to come from a single 
point P, as shown in both Fig. 4.27a and b (where the cone an-
gles are exaggeratedly large to allow for the nomenclature to be 
drawn in). Thus, if S in Fig 4.27b is a spot on a fish reflecting 
skylight back out of the water (here to the right), the cone of 
rays entering the tiny pupil of the eye of an observer will be so 
narrow that a fairly sharp image of S will be formed on the ret-
ina. And since the eye-brain system has learned to process light 
by perceiving it as if it flowed in straight lines, the spot, and 
hence that part of the fish, will appear at P. 

The locations S and P are said to be conjugate points. The 
object at S is at an “object distance” from the interface, symbol-
ized as so, and the image at P is a distance si, the “image dis-
tance” from O. Using triangles SAO and PAO in Fig. 4.27b

so tan ui = si tan ut

Because the ray cone is narrow, ui and ut are small and we can 
replace the tangents with sines, whereupon Snell’s Law yields

si>so = nt>ni

Look straight down (i.e., to the left in Fig. 4.27b) on a fish 
(where nt = 1, ni = 4>3, and nt>ni = 3>4), which is 4.0 m be-
neath the surface and it will  appear to be only 3.0 m below. On 
the other hand, if you are 3.0 m above the surface the fish, 
looking straight up, will see you 4.0 m above it.

When the cone of rays from the point S is broad, things get 
more complicated, as pictured in the slice perpendicular to the 
surface shown in Fig 4.28. When viewed at appreciable angles 

Figure 4.27  The bending of light as it enters and leaves two different 
transparent materials across a planar interface. Now imagine that S in  
(b) is underwater—rotate the diagram 90° counterclockwise. An observer 
in the air would see S imaged at P.
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off the normal the transmitted rays will again appear to come 
from many different points. Each of these rays when extended 
back will be tangent to a curve called the caustic. In other 
words, different rays will seem to pass through different points 
(P), all of which lie on the caustic; the greater the initial angle 
of the ray from S, the greater the angle of refraction, and the 
higher up the caustic will be P. 

A cone of rays from S, narrow enough to enter the eye, will 
be seen to come from P (Fig. 4.29). That point is both higher and 
displaced horizontally toward the observer (i.e., shifted along 
the caustic). All of that has the effect of bending the  image of the 
pencil (see photo on page 114), and making spear fishing rather 
tricky. Figure 4.29 suggests a little demonstration: put a coin in 
an opaque mug and, looking down into it, move away horizon-
tally until the lip of the mug just blocks the direct view of the 
coin. Now without moving your eye, slowly fill the mug with 
water and the coin will come into view as its image rises.

Air

Water

S

P

Figure 4.29  Seeing an object beneath the surface of a quantity of water.

Thus since u6 + u7 = 90°, u7 = 90° - u6 = 21.7°. And so Snell’s 
Law at the far-right interface yields

1.55 sin 21.719° = 1.00 sin u8

0.573 6 = sin u8

and u8 = 35.0°; the ray emerges at the same angle it entered.

EXAMPLE 4.3

A ray impinges on a block of glass of index 1.55, as shown in 
the accompanying illustration.

Air

Glass
35.0°

u1 u2

u3 u4
u8

u7
u6u5

Determine the angles u1, u2, u3, u4, u5, u6, u7, and u8.

SOLUTION
From the Law of Reflection u1 = 35.0°. From Snell’s Law

1 sin 35.0° = 1.55 sin u2

sin u2 =
sin 35.0°

1.55
= 0.370 0

and u2 = 21.719°, or 21.7°. Since u2 + u3 = 90°, u3 = 68.281°, 
or 68.3°. From the Law of Reflection u3 = u4 = 68.3° = u5 =u6. 

Fig. 4.19 illustrates the three important changes that occur in 
the beam traversing the interface. (1) It changes direction. Be-
cause the leading portion of the wavefront in the glass slows 
down, the part still in the air advances more rapidly, sweeping 
past and bending the wave toward the normal. (2) The beam in 
the glass has a broader cross section than the beam in the air; 
hence, the transmitted energy is spread thinner. (3) The wave-
length decreases because the frequency is unchanged while the 
speed decreases; l = v>n = c>nn and

 l =
l0

n
 (4.8)

This latter notion suggests that the color aspect of light is better 
thought of as associated with its frequency (or energy, ℰ = hn) 
than its wavelength, since the wavelength changes with the me-
dium through which the light moves. Color is so much a physio-
psychological phenomenon (p. 142) that it must be treated 
rather gingerly. Still, even though it’s a bit simplistic, it’s useful 
to remember that blue photons are more energetic than red pho-
tons. When we talk about wavelengths and colors, we should 
always be referring to vacuum wavelengths (henceforth to be 
represented as l0).

In all the situations treated thus far, it was assumed that the 
reflected and refracted beams always had the same frequency 
as the incident beam, and that’s ordinarily a reasonable 
 assumption. Light of frequency n impinges on a medium and 
presumably drives the molecules into simple harmonic  motion. 
That’s certainly the case when the amplitude of the vibration is 
fairly small, as it is when the electric field driving the molecules 
is small. The E-field for bright sunlight is only about 1000 V>m 
(while the B-field is less than a tenth of the Earth’s surface 
field). This isn’t very large compared to the fields keeping a 
crystal together, which are of the order of 1011 V>m—just 
about the same magnitude as the cohesive field holding the 
electron in an atom. We can usually expect the oscillators to 
vibrate in simple harmonic motion, and so the frequency will 
remain constant—the medium will ordinarly respond linearly. 
That will not be true, however, if the incident beam has an  
exceedingly large-amplitude E-field, as can be the case with a 
high-power laser. So driven, at some frequency n the medium 
can behave in a nonlinear fashion, resulting in reflection and 
refraction of harmonics (2n, 3n, etc.) in addition to n. Nowa-
days, second-harmonic generators (p. 668) are available com-
mercially. You shine red light (694.3 nm) into an appropriately 
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114 Chapter 4 The Propagation of Light

oriented transparent nonlinear crystal (of, for example, potas-
sium dihydrogen phosphate, KDP, or ammonium dihydrogen 
phosphate, ADP) and out will come a beam of UV (347.15 nm).

One feature of the above treatment merits some further 
 discussion. It was reasonably assumed that each point on the 
interface in Fig. 4.13a coincides with a particular point on each 
of the incident, reflected, and transmitted waves. In other words, 
there is a fixed phase relationship between each of the waves at 
all points along the interface. As the incident front sweeps 
across the interface, every point on it in contact with the inter-
face is also a point on both a corresponding reflected front and 
a corresponding transmitted front. This situation is known as 
wavefront continuity, and it will be justified in a more mathe-
matically rigorous treatment in Section 4.6.1.  Interestingly, 
Sommerfeld* has shown that the Laws of  Reflection and Re-
fraction (independent of the kind of wave involved) can be de-
rived directly from the requirement of wavefront continuity and 
the solution to Problem 4.30 demonstrates as much.

Negative Refraction

Though still in its infancy the blossoming technology of 
 metamaterials raises several interesting issues, one of the more 
fascinating being the notion of negative refraction. One cannot 
yet go to a catalogue and order a sheet of left-handed material, 
so we are not concerned with practicalities here.  Instead we’ll 
focus on the physics, which is quite extraordinary. In general, 
energy flows in the direction of the Poynting vector, which is 
the direction of the rays. A wave travels in the direction of the 
propagation vector, which is perpendicular to the wavefronts. 
In a homogeneous isotropic dielectric like glass all of these 

Figure 4.30  A beam of light incident from above on a plate of negative-
index material immersed in air top and bottom.

Rays from the submerged 
portion of the pencil bend 
on leaving the water as 
they rise toward the viewer. 
(E.H.)

*A. Sommerfeld, Optics, p. 151. See also J. J. Sein, Am. J. Phys. 50, 180 (1982).

directions are the same. That’s not the case for a left-handed 
material.

In the simulation presented in Fig. 4.30 we see a horizontal 
plate of material having a negative index of refraction surrounded 
by air or glass or water, some commonplace medium. A beam 
with fairly flat wavefronts approaches the upper interface from 
the top left, traveling in an ordinary positive-index material and 
therefore spreading out slightly as it advances. The beam enters 
the negative-index plate and instead of bending toward the nor-
mal in the fourth quadrant, it propagates into the third quadrant at 
an angle nonetheless in accord with Snell’s Law. Notice that the 
wavefronts now converge instead of diverging; in the steady state 
the wavelets are actually traveling backward, up and to the right, 
back to the first interface. They have a negative phase velocity. 

A refractive turtle. (Anya Levinson and Tom Woosnam)
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In the negative material the propagation vector points up and to 
the right, while the rays point down and to the left. The phase ve-
locity of the wavelets is up to the right even though the Poynting 
vector (the ray direction) is down to the left. Energy flows as usu-
al in the direction of the advancing beam, albeit down to the left.

At the lower interface the wave, entering back into the ordinary 
material, flips around the normal into the fourth quadrant, propagat-
ing parallel to the original incoming beam much as if it had tra-
versed a sheet of glass. Everything is back to normal and the trans-
mitted beam diverges as usual as it propagates down to the right.

4.4.2 Huygens’s Principle

Suppose that light passes through a nonuniform sheet of glass, 
as in Fig. 4.31, so that the wavefront Σ is distorted. How can we 
determine its new form Σ′? Or for that matter, what will Σ′ look 
like at some later time, if it is allowed to continue unobstructed?

A preliminary step toward the solution of this problem ap-
peared in print in 1690 in the work titled Traité de la Lumière, 
which had been written 12 years earlier by the Dutch physicist 
Christiaan Huygens. It was there that he enunciated what has 
since become known as Huygens’s Principle: every point on a 
propagating wavefront serves as the source of spherical sec-
ondary wavelets, such that the wavefront at some later time is 
the envelope of these wavelets.

A further crucial point is that if the propagating wave has a 
frequency n, and is transmitted through the medium at a speed 
vt , then the secondary wavelets have that same frequency and 
speed.* Huygens was a brilliant scientist, and this is the basis of 
a remarkably insightful, though quite naive, scattering theory. 
It’s a very early treatment and naturally has several shortcomings, 
one of which is that it doesn’t overtly incorporate the concept of 
interference and perforce cannot deal with lateral scattering. 
Moreover, the idea that the secondary wavelets propagate at a 
speed determined by the medium (a speed that may even be aniso-
tropic, e.g., p. 354) is a happy guess. Nonetheless, Huygens’s 

Principle can be used to arrive at Snell’s Law in a way that’s 
similar to the treatment that led to Eq. (4.4). As we’ll  see later, 
Huygens’s Principle is closely related to the more mathemati-
cally sophisticated technique known as Fourier analysis.

It’s probably best not to fuss over the physical details (such 
as how to rationalize propagation in vacuum) and just use the 
principle as a tool—a highly useful fiction that works. After all, 
if Einstein is right, there are only scattered photons; the wave-
lets themselves are a theoretical construct.

If the medium is homogeneous, the wavelets may be con-
structed with finite radii, whereas if it is inhomogeneous, the 
wavelets must have infinitesimal radii. Figure 4.32 should make 
this fairly clear; it shows a view of a wavefront Σ, as well as a 
number of spherical secondary wavelets, which, after a time t, 
have propagated out to a radius of vt. The envelope of all these 
wavelets is then asserted to correspond to the advanced wave  
Σ′. It is easy to visualize the process in terms of mechanical 
vibrations of an elastic medium. Indeed, this is the way that 
Huygens envisioned it within the context of an all-pervading 
aether, as is evident from his comment:

We have still to consider, in studying the spreading out of 
these waves, that each particle of matter in which a wave pro-
ceeds not only communicates its motion to the next particle to 
it, which is on the straight line drawn from the luminous point, 
but that it also necessarily gives a motion to all the others 
which touch it and which oppose its motion. The result is that 
around each particle there arises a wave of which this particle 
is a center. (Christiaan Huygens, 1690, Traite de la Lumiere 
[Treatise on Light])

Fresnel, in the 1800s, successfully modified Huygens’s 
 Principle, mathematically adding in the concept of interference. A 
little later on, Kirchhoff showed that the Huygens–Fresnel 
 Principle was a direct consequence of the differential wave 
 equation [Eq. (2.60)], thereby putting it on a firm mathematical 
base. That there was a need for a reformulation of the principle  
is evident from Fig. 4.32, where we deceptively only drew 

S

Glass

Σ

Σ′

Figure 4.31  Distortion of a portion of a wavefront on passing through a 
material of nonuniform thickness.

Σ′

Σ Σ′

Σ
vt

Figure 4.32  According to Huygens’s Principle, a wave propagates as if 
the wavefront were composed of an array of point sources, each emitting  
a spherical wave.*SOURCE: Christiaan Huygens, 1690, Traite de la Lumiere (Treatise on Light).
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Figure 4.33  Huygens’s method for constructing the refracted ray.

hemispherical wavelets.* Had we drawn them as spheres, there 
would have been a backwave moving toward the source—
something that is not  observed. Since this difficulty was taken 
care of theoretically by Fresnel and Kirchhoff, we need not be 
disturbed by it.

Huygens’s Ray Construction

Huygens was one of the great scientific figures of his era, and in 
addition to promoting the wave theory of light he devised a 
technique for graphing refracted rays. Along with his wavelet 
construction this ray scheme is extremely useful for determin-
ing how light propagates in anisotropic crystal media like those 
we will encounter in Chapter 8. With that in mind consider Fig. 
4.33, which illustrates a ray striking an interface between two 
transparent, homogeneous, isotropic, dielectric materials of in-
dices ni and nt at point O. With O as the center, draw two circles 
of radii 1>ni for the incident circle and 1>nt for the refracted 
circle; those radii correspond to the speeds divided by c in the 
two media. Now extend the line of the incident ray until it inter-
sects the larger incident circle. Construct a tangent to the inci-
dent circle at that point and extend it back until it intersects the 
interface at point Q. That line corresponds to a planar incident 
wavefront. Now draw a line from Q tangent to the refracted (or 
transmitted) circle. From this tangent point draw a line back to 
O and that will be the refracted ray. At this juncture Huygens’s 
method is mostly of pedagogical value, so we leave the proof 
that it corresponds to Snell’s Law for Problem 4.10.

4.4.3 Light Rays and Normal Congruence

In practice, one can produce very narrow beams or pencils of 
light (e.g., a laserbeam), and we might imagine a ray to be the 
unattainable limit on the narrowness of such a beam. Bear in 
mind that in an isotropic medium (i.e., one whose properties are 
the same in all directions) rays are orthogonal trajectories of 
the wavefronts. That is to say, they are lines normal to the wave-
fronts at every point of intersection. Evidently, in such a medium 

S

B�
B

A�

B�

A�

A
Glass

�
��

��

Figure 4.34  Wavefronts and rays.

*When the material is inhomogeneous or when there is more than one medium 
involved, it will be the optical path length (see Section 4.5) between the two wave-
fronts that is the same.

a ray is parallel to the propagation vector k$. As you might sus-
pect, this is not true in anisotropic substances, which we will 
consider later (see Section 8.4.1). Within homogeneous isotropic 
materials, rays will be straight lines, since by symmetry they 
cannot bend in any preferred direction, there being none. 
 Moreover, because the speed of propagation is identical in all 
directions within a given medium, the spatial separation between 
two wavefronts, measured along rays, must be the same every-
where.* Points where a single ray intersects a set of wavefronts 
are called corresponding points, for example, A, A′, and A″ in 
Fig. 4.34. Evidently, the separation in time between any two 
 corresponding points on any two sequential wavefronts is 
 identical. If wavefront Σ is transformed into Σ″ after a time t ″, 
the distance between corresponding points on any and all rays 
will be traversed in that same time t ″. This will be true even if the 
wavefronts pass from one homogeneous isotropic medium into 
another. This just means that each point on Σ can be imagined as 
following the path of a ray to arrive at Σ″ in the time t ″.

If a group of rays is such that we can find a surface that is 
orthogonal to each and every one of them, they are said to form 
a normal congruence. For example, the rays emanating from a 
point source are perpendicular to a sphere centered at the source 
and consequently form a normal congruence.

We can now briefly consider a scheme that will also allow us 
to follow the progress of light through various isotropic media. 
The basis for this approach is the Theorem of Malus and Dupin 
(introduced in 1808 by E. Malus and modified in 1816 by C. 
Dupin), according to which a group of rays will preserve its 
normal congruence after any number of reflections and  
refractions (as in Fig. 4.34). From our present vantage point  
of the wave theory, this is equivalent to the statement that rays 
remain orthogonal to wavefronts throughout all propagation 
processes in isotropic media. As shown in Problem 4.32, the 
theorem can be used to derive the Law of Reflection as well as 
Snell’s Law. It is often most convenient to carry out a ray trace 
through an optical system and then reconstruct the wavefronts 
using the idea of equal transit times between corresponding 
points and the orthogonality of the rays and wavefronts.

*See E. Hecht, Phys. Teach. 18, 149 (1980).
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Figure 4.35  Minimum path from the source S to the observer’s eye at P.

4.5 Fermat’s Principle

The laws of reflection and refraction, and indeed the manner in 
which light propagates in general, can be viewed from an 
 entirely different and intriguing perspective afforded us by 
 Fermat’s Principle. The ideas that will unfold presently have 
had a tremendous influence on the development of physical 
thought in and beyond the study of Classical Optics.

Hero of Alexandria, who lived sometime between 150 b.c.e. 
and 250 c.e., was the first to propose what has since become 
known as a variational principle. In his treatment of reflection, 
he asserted that the path taken by light in going from some point 
S to a point P via a reflecting surface was the shortest possible 
one. This can be seen rather easily in Fig. 4.35, which depicts a 
point source S emitting a number of rays that are then “reflected” 
toward P. Presumably, only one of these paths will have any 
physical reality. If we draw the rays as if they emanated from S′ 
(the image of S), none of the distances to P will have been altered 
(i.e., SAP = S′AP, SBP = S′BP, etc.). But obviously the straight-
line path S′BP, which corresponds to ui = ur, is the shortest 
possible one. The same kind of reasoning (Problem 4.35) makes 
it evident that points S, B, and P must lie in what has previously 
been defined as the plane-of-incidence. 

For over fifteen hundred years Hero’s curious observation 
stood alone, until in 1657 Fermat propounded his celebrated 
Principle of Least Time, which encompassed both reflection 
and refraction. A beam of light traversing an interface does not 
take a straight line or minimum spatial path between a point  
in the incident medium and one in the transmitting medium.  
Fermat consequently reformulated Hero’s statement to read: the 
actual path between two points taken by a beam of light is the 
one that is traversed in the least time. As we shall see, even this 

form of the statement is incomplete and a bit erroneous at that. 
For the  moment then, let us embrace it but not passionately.

As an example of the application of the principle to the case 
of refraction, refer to Fig. 4.36, where we minimize t, the transit 
time from S to P, with respect to the variable x. In other words, 
changing x shifts point O, changing the ray from S to P. The 
smallest transit time will then presumably coincide with the 
 actual path. Hence

t =
SO
vi

+
OP
vt

or t =
(h2 + x2)1>2

vi
+

[b2 + (a - x)2]1>2

vt

To minimize t(x) with respect to variations in x, we set 
dt>dx = 0, that is,

dt
dx

=
x

vi (h2 + x2)1>2 +
-(a - x)

vt[b
2 + (a - x)2]1>2 = 0

Using the diagram, we can rewrite the expression as

sin ui

vi
=

sin ut

vt

which is no less than Snell’s Law (Eq. 4.4). If a beam of light is 
to advance from S to P in the least possible time, it must comply 
with the Law of Refraction.

Suppose that we have a stratified material composed of m lay-
ers, each having a different index of refraction, as in Fig. 4.37. 
The transit time from S to P will then be

t =
s1

v1
+

s2

v2
+ g +

sm

vm

or t = ^
m

i = 1
si>vi

ni

S

P

nt

a � x

x

h
ui

ut

0

b

a

Figure 4.36  Fermat’s Principle applied to refraction.
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where si and vi are the path length and speed, respectively, 
 associated with the ith contribution. Thus

 t =
1
c^

m

i = 1
nisi (4.9)

in which the summation is known as the optical path length 
(OPL) traversed by the ray, in contrast to the spatial path length 
^m

i=1 si. Clearly, for an inhomogeneous medium where n is a 
function of position, the summation must be changed to an 
 integral:

 OPL = 3P

S
n(s) ds (4.10)

The optical path length corresponds to the distance in 
 vacuum equivalent to the distance traversed (s) in the medium 
of index n. That is, the two will correspond to the same number 
of wavelengths, (OPL)>l0 = s>l, and the same phase change 
as the light advances.

Inasmuch as t = (OPL)>c, we can restate Fermat’s Principle: 
light, in going from point S to P, traverses the route having the 
smallest optical path length. 

Fermat and Mirages

When light rays from the Sun pass through the inhomogeneous 
atmosphere of the Earth, as shown in Fig. 4.38, they bend so as 
to traverse the lower, denser regions as abruptly as possible, 
minimizing the OPL. Ergo, one can still see the Sun after it has 
actually passed below the horizon. 

In the same way, a road viewed at a glancing angle, as in 
Fig. 4.39, appears to reflect the environs as if it were covered 
with a sheet of water. The air near the roadway is warmer and 
less dense than that farther above it. It was established experi-
mentally by Gladstone and Dale that for a gas of density r

(n - 1) ∝ r

It follows from the Ideal Gas Law that at a fixed pressure, since 
r ∝ P>T, (n - 1) ∝ 1>T ; the hotter the road, the lower the in-
dex of refraction of the air immediately above it. 

According to Fermat’s Principle, a ray leaving a branch in  
Fig. 4.39a heading somewhat downward would take a route that 
minimized the OPL. Such a ray would bend upward, passing 
through more of the less dense air than if it had traveled straight. 
To appreciate how that works, imagine the air divided into an 
infinite number of infinitesimally thin constant-n horizontal  
layers. A ray passing from layer to layer would bend (via Snell’s 
Law) slightly upward at each interface (much as in Fig. 4.36 held 
upside down with the ray run backwards). Of course, if the ray 
comes down nearly vertically it makes a small angle-of-incidence  

S

P

s1 n1

si ni

sm nm

s2 n2

s3 n3

Figure 4.37  A ray propagating through a layered material.

Earth

Apparent position

Ray from Sun
Straight path to Sun

Figure 4.38  The bending of rays through inhomogeneous media.  
Because the rays bend as they pass through the atmosphere the Sun 
appears higher in the sky. 

Cool air

Apparent re�ecting
surface

Hot air

Figure 4.39  (a) At very low angles the rays appear to be coming from 
beneath the road as if reflected in a puddle. (b) A photo of this puddle 
effect. (Matt Malloy and Dan MacIsaac, Northern Arizona University, Physics & Astronomy) 

(b)

(a)
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at each interface between layers, only bends slightly, and soon 
strikes the ground where no one will “see” it. 

On the other hand, it is possible that a light ray that comes in 
at a shallow enough angle to begin with could ultimately ap-
proach an interface at glancing incidence (p. 127). It would then 
be completely reflected (p. 131), thereby starting its climb back 
up into the more dense air (much as in Fig. 4.36 held upside 
down with the ray run forwards).

Any viewer, off on the left in Fig. 4.39, who receives these 
bent rays naturally projects them straight backward as if they 
were reflected from a mirrored surface. Depending on where 
you stand, you’ll see a different mirage puddle, but it will al-
ways be far from you and so will always disappear as you ap-
proach it. The effect is particularly easy to view on long modern 
highways. The only requirement is that you look at the road at 
near glancing incidence, because the rays bend very gradually.* 

The same effect is well known as it applies to sound. Fig-
ure 4.40 depicts the alternative understanding in terms of waves. 
The wavefronts bend because of temperature-induced changes 
in speed and therefore in wavelength. (The speed of sound is 
proportional to the square root of the temperature.) The noises 
of people on a hot beach climb up and away, and the place can 

seem strangely quiet. The opposite occurs in the evening when 
the ground cools before the upper air and distant sounds can 
clearly be heard. 

The Modern Formulation of Fermat’s Principle

The original statement of Fermat’s Principle of Least Time has 
some serious failings and is in need of alteration. To that end, 
recall that if we have a function, say ƒ(x), we can determine the 
specific value of the variable x that causes ƒ(x) to have a station-
ary value by setting dƒ>dx = 0 and solving for x. By a  
stationary value, we mean one for which the slope of ƒ(x) versus  
x is zero or equivalently where the function has a maximum 

, minimum , or a point of inflection with a horizontal 
tangent .

Fermat’s Principle in its modern form reads: a light ray in 
going from point S to point P must traverse an optical path 
length that is stationary with respect to variations of that path. 
In essence what that means is that the curve of the OPL versus 
x will have a somewhat flattened region in the vicinity of where 
the slope goes to zero. The zero-slope point corresponds to the 
actual path taken. In other words, the OPL for the true trajec-
tory will equal, to a first approximation, the OPL of paths 
 immediately adjacent to it.† For example, in a situation where 
the OPL is a minimum, as with the refraction illustrated in Fig. 
4.36, the OPL curve will look something like Fig. 4.41. A small 
change in x in the vicinity of O has little effect on the OPL, but 
a similar change in x anywhere well away from O results in a 
substantial change in OPL. Thus there will be many paths 
neighboring the actual one that would take nearly the same time 
for the light to traverse. This latter insight makes it possible to 
begin to understand how light manages to be so clever in its 
meanderings.

Suppose that a beam of light advances through a homoge-
neous isotropic medium (Fig. 4.42) so that a ray passes from 
points S to P. Atoms within the material are driven by the inci-
dent disturbance, and they reradiate in all directions. Wavelets 
progressing along paths in the immediate vicinity of a stationary 
straight-line path will reach P by routes that differ only slightly 
in OPL (as with group-I in Fig. 4.42b). They will therefore arrive 
nearly in-phase and reinforce each other. Think of each wavelet 

(a)

Cold

Warm

(b)

Warm

Cold

Figure 4.40  The puddle mirage can be understood via waves; the speed, 
and therefore the wavelength, increase in the less dense medium. That bends 
the wavefronts and the rays. The same effect is common with sound waves, 
(a) when the surface air is cold, sounds can be heard much farther than  
normal. (b) And when it’s warm, sounds seem to vanish into the air.

*See, for example, T. Kosa and P. Palffy-Muhoray, “Mirage mirror on the wall,”  
Am. J. Phys. 68 (12), 1120 (2000).

O

O
P

L

x

Figure 4.41  In the situation 
shown in Fig. 4.36 the actual 
location of point O corresponds 
to a path of minimum OPL.

†The first derivative of the OPL vanishes in its Taylor series expansion, since the 
path is stationary.

M04_HECH6933_05_GE_C04.indd   119 26/08/16   1:10 PM



120 Chapter 4 The Propagation of Light

represented by a tiny phasor that rotates once around as the wave 
advances one wavelength (p. 31) along any ray path. Because 
the OPLs are all about the same, the phasors at P all point in 
more or less the same direction, and even though they’re all 
small they combine to make the dominant contribution. 

Wavelets taking other paths far from the stationary one (as 
with group-II in Fig. 4.42b) will arrive at P appreciably out-of-
phase with each other and will therefore tend to cancel. In other 
words, there will be large angles between the little phasors; 
placed tip-to-tail they’ll spiral around, producing only a tiny net 
contribution. Keep in mind that we’ve just drawn three ray 
paths—the argument would be better made with millions of 
them in each group.

We can conclude that energy will effectively propagate along 
the ray from S to P that satisfies Fermat’s Principle. And this is 
true whether we’re talking about interfering electromagnetic 
waves or photon probability amplitudes (p. 148).

We can expect that this same logic holds for all propagation 
processes,* such as, for example, reflection from a plane mirror 
(Fig. 4.35). There, spherical waves leaving S sweep across the 
entire mirror, and yet an observer at P sees a well-defined point 
source and not a great blotch of light covering the whole sur-
face. Only rays for which ui ≈ ur (as with group-I in Fig. 4.43) 
have a stationary OPL; the associated wavelets will arrive at P 
nearly in-phase and reinforce each other. All other rays (e.g., 

group-II in Fig. 4.43) will make negligible contributions to the 
energy reaching P. 

Stationary Paths

To see that the OPL for a ray need not always be a minimum, 
examine Fig. 4.44, which depicts a segment of a hollow three-
dimensional ellipsoidal mirror. If the source S and the observer 
P are at the foci of the ellipsoid, then by definition the length 
SQP will be constant, regardless of where on the perimeter Q 
happens to be. It is also a geometrical property of the ellipse 
that ui ≈ ur for any location of Q. All optical paths from S to P 
via a reflection are therefore precisely equal. None is a mini-
mum, and the OPL is clearly stationary with respect to varia-
tions. Rays leaving S and striking the mirror will arrive at the 
focus P. From another viewpoint we can say that radiant energy 
emitted by S will be scattered by electrons in the mirrored sur-
face such that the wavelets will substantially reinforce each 
other only at P, where they have traveled the same distance and 
have the same phase. In any case, if a plane mirror was tangent 
to the ellipse at Q, the exact same path SQP traversed by a ray 
would then be a relative minimum. That was shown in relation 
to Fig. 4.35.

At the other extreme, if the mirrored surface conformed  
to a curve lying within the ellipse, like the dashed one shown 
in Fig. 4.44c, that same ray along SQP would now negotiate a 
relative maximum OPL. To see that, examine Fig. 4.44c 

P
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S P

(a)

(b)
Group-II

Group-I

Figure 4.42  (a) Light can presumably take any number of paths from S 
to P, but it apparently takes only the one that corresponds to a stationary 
OPL. All other routes effectively cancel out. (b) For example, if some light 
takes each of the three upper paths in the diagram, it arrives at P with 
three very different phases and interferes more or less destructively.
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Figure 4.43  Rays reflecting off a plane mirror. Only those in group-I for 
which the OPL is stationary will correspond to waves that arrive at point P 
more or less in-phase. There phasors will add along an almost straight line, 
producing a substantial resultant wave amplitude (going from the tail of 1 
to the tip of 3). The phasors for group-II have large phase-angle differences 
and so when added they essentially spiral around, producing a very small 
resultant wave amplitude (going from the tail of 1 to the tip of 3). Of 
course, we should really be drawing millions of very tiny phasors in each 
group and not just three relatively large ones.

*We’ll come back to these ideas when we consider QED in this chapter and the 
Fresnel zone plate in Chapter 10.
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Figure 4.44  Reflection off an ellipsoidal surface. Observe the  
reflection of waves using a frying pan filled with water. Even though  
these are usually circular, it is well worth playing with. (PSSC College Physics,  

D. C. Heath & Co., 1968.)

wherein for every point B there is a corresponding point C. We 
know that

SQ + PQ = SB + PB

since both Q and B are on the ellipse. But SB 7 SC and 
PB 7 PC and so

SQ + PQ 7 SC + PC

and that’s true wherever C is, other than at Q. Hence SQ + PQ 
is a maximum for the curve within the ellipse. This is the case 
even though other unused paths (where ui Z ur) would actually 
be shorter (i.e., apart from inadmissible curved paths). Thus in 
all cases the rays travel a stationary OPL in accord with the re-
formulated Fermat’s Principle. Note that since the principle 
speaks only about the path and not the  direction along it, a ray 
going from P to S will trace the same route as one from S to P. 
This is the very useful Principle of Reversibility.

Fermat’s achievement stimulated a great deal of effort to 
 supersede Newton’s laws of mechanics with a similar  variational 
formulation. The work of many men, notably Pierre de 
 Maupertuis (1698–1759) and Leonhard Euler, finally led to the 
mechanics of Joseph Louis Lagrange (1736–1813) and hence to 
the Principle of Least Action, formulated by William Rowan 
Hamilton (1805–1865). The striking similarity between the 
principles of Fermat and Hamilton played an important part in 
Schrödinger’s development of Quantum Mechanics. In 1942 
Richard Phillips Feynman (1918–1988) showed that Quantum 
Mechanics can be fashioned in an alternative way using a varia-
tional approach. The continuing evolution of variational prin-
ciples brings us back to Optics via the modern formalism of 
Quantum Optics.

Fermat’s Principle is not so much a computational device as 
it is a concise way of thinking about the propagation of light. It 
is a statement about the grand scheme of things without any 
concern for the contributing mechanisms, and as such it will 
yield insights under a myriad of circumstances.

4.6 The electromagnetic approach

Thus far, we have studied reflection and refraction from the 
perspectives of Scattering Theory, the Theorem of Malus and 
Dupin, and Fermat’s Principle. Yet another and even more  
powerful approach is provided by Electromagnetic Theory. 
 Unlike the previous techniques, which say nothing about the 
incident, reflected, and transmitted radiant flux densities (i.e., 
Ii, Ir, It, respectively), Electromagnetic Theory treats these within 
the framework of a far more complete description.

4.6.1 Waves at an Interface

Suppose that the incident monochromatic lightwave is planar, 
so that it has the form

 E$i = E$0i exp [i(k$i · r$ - vit)] (4.11)

or, more simply,

 E$i = E$0i cos (k$i · r$ - vit) (4.12)
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122 Chapter 4 The Propagation of Light

where the surfaces of constant phase are those for which 
k$ · r$ = constant. Assume that E$0i is constant in time; that is, the 
wave is linearly or plane polarized. We’ll find in Chapter 8 that 
any form of light can be represented by two orthogonal linearly 
polarized waves, so that this doesn’t actually represent a restric-
tion. Note that just as the origin in time, t = 0, is arbitrary, so 
too is the origin O in space, where r$ = 0. Thus, making no as-
sumptions about their directions, frequencies, wavelengths, 
phases, or amplitudes, we can write the reflected and transmit-
ted waves as

 E$r = E$0r cos (k$r · r$ - vrt + er) (4.13)

and E$t = E$0t cos (k$t · r$ - vtt + et) (4.14)

Here er and et are phase constants relative to E$i and are 
 introduced because the position of the origin is not unique. 
 Figure 4.45 depicts the waves in the vicinity of the planar 
 interface between two homogeneous lossless dielectric media 
of indices ni and nt.

The laws of Electromagnetic Theory (Section 3.1) lead to cer-
tain requirements that must be met by the fields, and they are re-
ferred to as the boundary conditions. Specifically, one of these is 
that the component of the electric field E$ that is tangent to the 
interface must be continuous across it. To see how this comes 
about consider Fig. 4.46, which  depicts the interface between two 
different dielectrics. An  electromagnetic wave impinges from 
above on the interface, and the arrows represent either the inci-
dent and transmitted E$-fields or the corresponding B$-fields. For 
the moment we’ll  focus on the E$-fields. We draw a narrow closed 
(dashed) path C that runs parallel to the interface inside both me-
dia. Faraday’s Induction Law [Eq. (3.5)] tells us that if we add  
up (via a line integral) the components of E$ parallel to the path 
elements dO

S
, each one times dO

S
, over the whole path C, the result 

(a voltage difference) will equal the time rate-of-change of the 
magnetic flux through the area bounded by C. But if we make  
the dashed loop very narrow there will be no flux through C, and 
the contribution to the line integral (moving right) along the top 

of the loop must cancel the contribution along the bottom (mov-
ing left). That way the net voltage drop around C will be zero. If 
the tangential components of E$i and E$t in the immediate vicinity 
of the interface are equal (e.g., both pointing to the right), be-
cause the paths reverse direction above and below the interface, 
the integral around C will indeed go to zero. In other words, the 
total tangential component of  E$  on one side of the surface must 
equal that on the other.

Since ûn is the unit vector normal to the interface, regardless 
of the direction of the electric field within the wavefront, the 
cross-product of it with ûn will be perpendicular to ûn and 
therefore tangent to the interface. Hence

 ûn : E$i + ûn : E$r = ûn : E$t (4.15)

or
ûn : E$0i cos (k$i · r$ - vit)

+ ûn : E$0r cos (k$r · r$ - vrt + er)

 = ûn : E$0t cos (k$t · r$ - vtt + et)  (4.16)

This relationship must obtain at any instant in time and at any 
point on the interface (y = b). Consequently, E$i, E$r, and E$t 
must have precisely the same functional dependence on the 
variables t and r, which means that

 (k$i · r$ - vit) 0y =  b = (k$r · r$ - vrt + er) 0y =  b

 = (k$t · r$ - vtt + et) 0y =  b (4.17)

With this as the case, the cosines in Eq. (4.16) cancel, leaving 
an expression independent of t and r, as indeed it must be. Inas-
much as this has to be true for all values of time, the coefficients 
of t must be equal, to wit

 vi = vr = vt (4.18)

Recall that the electrons within the media are undergoing (linear) 
forced vibrations at the frequency of the incident wave. Whatever 
light is scattered has that same frequency. Furthermore,

 (k$i · r$) 0y =  b = (k$r · r$ + er) 0y =  b = (k$t · r$ + et) 0y =  b (4.19)

wherein r$ terminates on the interface. The values of er and et 
correspond to a given position of O, and thus they allow the 
relation to be valid regardless of that location. (For example, the 
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Figure 4.45  Plane waves incident on the boundary between two homo-
geneous, isotropic, lossless dielectric media.
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origin might be chosen such that r$ was perpendicular to k$i but 
not to k$r or k$t.) From the first two terms we obtain

 [(k$i - k$r) · r$]y =  b = er (4.20)

Recalling Eq. (2.43), this expression simply says that the end-
point of r$ sweeps out a plane (which is of course the interface) 
perpendicular to the vector (k$i - k$r). To phrase it slightly differ-
ently, (k$i - k$r) is parallel to ûn. Notice, however, that since the 
incident and reflected waves are in the same medium, ki = kr. 
From the fact that (k$i - k$r) has no component in the plane of the 
interface, that is, ûn : (k$i - k$r) = 0, we conclude that

ki sin ui = kr sin ur

Hence we have the Law of Reflection; that is,

ui = ur

Furthermore, since (k$i - k$r) is parallel to ûn all three vectors, k$i , 
k$r , and ûn , are in the same plane, the plane-of-incidence. Again, 
from Eq. (4.19) 

 [(k$i - k$t) · r$]y =  b = et (4.21)

and therefore (k$i - k$t) is also normal to the interface. Thus k$i, 
k$r, k$t, and ûn are all coplanar. As before, the tangential compo-
nents of k$i and k$t must be equal, and consequently

 ki sin ui = kt sin ut (4.22)

But because vi = vt, we can multiply both sides by c>vi to get

ni sin ui = nt sin ut

which is Snell’s Law. Finally, if we had chosen the origin O to 
be in the interface, it is evident from Eqs. (4.20) and (4.21) that 
er and et would both have been zero. That arrangement, though 
not as instructive, is certainly simpler, and we’ll use it from 
here on.

4.6.2 The Fresnel equations

We have just found the relationship that exists among the  phases 
of E$i( r$, t), E$r( r$, t), and E$t(r$, t) at the boundary. There is still an 
interdependence shared by the amplitudes E$0i, E$0r, and E$0t, 
which can now be evaluated. To that end, suppose that a plane 
monochromatic wave is incident on the planar surface separat-
ing two isotropic media. Whatever the polarization of the wave, 
we shall resolve its E$- and B$-fields into components parallel 
and perpendicular to the plane-of-incidence and treat these con-
stituents separately.

Case 1:  E$  perpendicular to the plane-of-incidence. Assume 
that E$  is perpendicular to the plane-of-incidence and that B$  is 

parallel to it (Fig. 4.47). Recall that E = vB, so that

 k̂ : E$ = vB$  (4.23)

and k̂ · E$ = 0 (4.24)

(i.e., E$, B$, and the unit propagation vector k̂ form a right-handed 
system). Again, making use of the continuity of the tangential 
components of the E$-field, we have at the boundary at any time 
and any point

 E$0i + E$0r = E$0t (4.25)

where the cosines cancel. Realize that the field vectors as shown 
really ought to be envisioned at y = 0 (i.e., at the surface), from 
which they have been displaced for the sake of clarity. Note too 
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Figure 4.47  An incoming wave whose e$-field is normal to the plane-of-
incidence. The fields shown are those at the interface; they have been dis-
placed so the vectors could be drawn without confusion.
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124 Chapter 4 The Propagation of Light

that although E$r and E$t must be normal to the plane-of- 
incidence by symmetry, we are guessing that they point outward 
at the interface when E$i does. The directions of the B$-fields 
then follow from Eq. (4.23).

We will need to invoke another of the boundary conditions 
in order to get one more equation. The presence of material 
 substances that become electrically polarized by the wave has 
a definite effect on the field configuration. Thus, although the 
tangential component of E$  (i.e., tangent to the interface) is 
 continuous across the boundary, its normal component is not. 
Instead, the normal component of the product PE$  is the same 
on either side of the interface. Similarly, the normal compo-
nent of B$  is continuous, as is the tangential component of 
m-1B$ . To  illustrate that, return to Fig. 4.46 and Ampère’s Law 
[Eq. (3.13)], where this time the arrows stand for the B$-fields. 
Because the permeability may be different in the two media, 
divide both sides of the equation by m. Letting the dashed loop 
become  vanishingly narrow, the area A bounded by C disap-
pears and the right side of Eq. (3.13) vanishes. That means that 
if we add up (via a line integral) the components of B$>m paral-
lel to the path elements dO

S
—each one times dO

S
—over the 

whole path C, the result must be zero. Hence the net value of 
B$>m immediately above the  interface must equal the net value 
 immediately  beneath the  interface. Here the magnetic effect of 
the two media appears via their permeabilities mi and mt. This 
boundary  condition will be the simplest to use, particularly 
as  applied to reflection from the surface of a conductor.* 
Thus  the continuity of the tangential component of B$>m 
 requires that

 -  
Bi

mi
 cos ui +

Br

mi
 cos ur = -  

Bt

mt
 cos ut (4.26)

When the tangential component of the B-field points in the 
negative x-direction, as it does for the incident wave, it is en-
tered with a minus sign. The left and right sides of the equa-
tion are the total magnitudes of B$>m parallel to the interface 
in the incident and transmitting media, respectively. The 
 positive direction is that of increasing x, so that the scalar 
components of B$i and B$t appear with minus signs. From  
Eq. (4.23) we have

 Bi = Ei>vi (4.27)

 Br = Er>vr (4.28)

and Bt = Et>vt (4.29)

*In keeping with our intent to use only the e$- and b$-fields, at least in the early 
part of this exposition, we have avoided the usual statements in terms of H$, 
where

 H$ = m-1b$ [A1.14]

Since vi = vr and ui = ur, Eq. (4.26) can be written as

 
1

mivi
 (Ei - Er) cos ui =

1
mtvt

 Et cos ut (4.30)

Making use of Eqs. (4.12), (4.13), and (4.14) and remembering 
that the cosines therein equal one another at y = 0, we obtain

 
ni

mi
 (E0i - E0r) cos ui =

nt

mt
 E0t cos ut (4.31)

Combined with Eq. (4.25), this yields

 aE0r

E0i
b
#

=

ni

mi
 cos ui -

nt

mt
 cos ut

ni

mi
 cos ui +

nt

mt
 cos ut

 (4.32)

and aE0t

E0i
b
#

=
2 

ni

mi
 cos ui

ni

mi
 cos ui +

nt

mt
 cos ut

 (4.33)

The # subscript serves as a reminder that we are dealing with the 
case in which E$ is perpendicular to the plane-of-incidence. These 
two expressions, which are completely general statements apply-
ing to any linear, isotropic, homogeneous media, are two of the 
Fresnel Equations. Most often one deals with dielectrics for 
which mi ≈ mt ≈ m0; consequently, the common form of these 
equations is simply

 r# K aE0r

E0i
b
#

=
ni cos ui - nt cos ut

ni cos ui + nt cos ut

 (4.34)

and

 t# K aE0t

E0i
b
#

=
2ni cos ui

ni cos ui + nt cos ut
 (4.35)

Here r# denotes the amplitude reflection coefficient, and t# is 
the amplitude transmission coefficient.

Case 2: E$  parallel to the plane-of-incidence. A similar pair 
of equations can be derived when the incoming E$-field lies in 
the plane-of-incidence, as shown in Fig. 4.48. Continuity of 
the tangential components of E$  on either side of the boundary 
leads to

 E0i cos ui - E0r cos ur = E0t cos ut (4.36)

In much the same way as before, continuity of the tangential 
components of B$>m yields

 
1

mivi
 E0i +

1
mrvr

 E0r =
1

mtvt
 E0t (4.37)
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Using the fact that mi = mr and ui = ur, we can combine these 
formulas to obtain two more of the Fresnel Equations:

 ri K aE0r

E0i
b

i

=

nt

mt
 cos ui -

ni

mi
 cos ut

ni

mi
 cos ut +

nt

mt
 cos ui

 (4.38)

and

 ti = aE0t

E0i
b

i

=
2 

ni

mi
 cos ui

ni

mi
 cos ut +

nt

mt
 cos ui

 (4.39)

When both media forming the interface are dielectrics that are 
essentially “nonmagnetic” (p. 76), the amplitude coefficients 
become

 ri =
nt cos ui - ni cos ut

ni cos ut + nt cos ui
 (4.40)

and ti =
2ni cos ui

ni cos ut + nt cos ui
 (4.41)

One further notational simplification can be made using Snell’s 
Law, whereupon the Fresnel Equations for dielectric media  
become (Problem 4.43)

 r# = -  
sin (ui - ut)

sin (ui + ut)
 (4.42)

 ri = +  
tan (ui - ut)

tan (ui + ut)
 (4.43)

 t# = +  
2 sin ut cos ui

sin (ui + ut)
 (4.44)

 ti = +  
2 sin ut cos ui

sin (ui + ut) cos (ui - ut)
 (4.45)

A note of caution must be introduced here. Bear in mind 
that the directions (or more precisely, the phases) of the fields 
in Figs. 4.47 and 4.48 were selected rather arbitrarily. For ex-
ample, in Fig. 4.47 we could have assumed that E$ r pointed in-
ward, whereupon B$ r would have had to be reversed as well. 
Had we done that, the sign of r# would have turned out to be 
positive, leaving the other amplitude coefficients unchanged. 
The signs appearing in Eqs. (4.42) through (4.45), which are 
positive except for the first, correspond to the particular set of 
field directions selected. The minus sign in Eq. (4.42), as we 
will see, just means that we didn’t guess correctly concerning 
E$ r in Fig. 4.47. Nonetheless, be aware that the literature is not 
standardized, and all possible sign variations have been labeled 
the Fresnel Equations. To avoid confusion they must be related 
to the specific field directions from which they were derived.

ur
uiB�i

B�t

k� r

k� t

k� i

y

xz

E�r

E�t

E�i

Inter
fac

eB�r

ui

ut

urk� i x

B�i

E�i
k� r

B�r

E�r

k� t

B�t

E�t

ûn
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Figure 4.48  An incoming wave whose e$-field is in the plane-of- 
incidence.

EXAMPLE 4.4

An electromagnetic wave having an amplitude of 1.0 V>m  
arrives at an angle of 30.0° to the normal in air on a glass plate 
of index 1.60. The wave’s electric field is entirely perpendicular 
to the plane-of-incidence. Determine the amplitude of the re-
flected wave.

SOLUTION
Since (E0r)# = r#(E0i)# = r#(1 V>m) we have to find

 r# = -  
sin (ui - ut)

sin (ui + ut)
 [4.42]

But first we’ll need ut, and so from Snell’s Law

ni sin ui = nt sin ut

sin ut =
ni

nt
 sin ui  

sin ut =
1

1.60
 sin 30.0° = 0.312 5

ut = 18.21°     

M04_HECH6933_05_GE_C04.indd   125 26/08/16   1:10 PM



126 Chapter 4 The Propagation of Light

Hence

r# = -  
sin (30.0° - 18.2°)
sin (30.0° + 18.2°)

= -  
sin 11.8°
sin 48.2°

r# = -  
0.204 5
0.745 5

= -0.274

and so (E0r)# = r#(E0i)# = r#(1.0 V>m)

(E0r)# = -0.27 V>m

4.6.3  Interpretation of the Fresnel equations

This section examines the physical implications of the Fresnel 
Equations. In particular, we are interested in determining the 
fractional amplitudes and flux densities that are reflected and 
refracted. In addition we shall be concerned with any possible 
phase shifts that might be incurred in the process.

amplitude Coefficients

Let’s briefly examine the form of the amplitude coefficients 
over the entire range of ui values. At nearly normal incidence 
(ui ≈ 0) the tangents in Eq. (4.43) are essentially equal to sines, 
in which case

[ri]ui = 0 = [-r#]ui = 0 = c  sin (ui - ut)

 sin (ui + ut)
d
ui = 0

Undyed paper is a mat of thin transparent fibers that have an index of 
refraction (of about 1.56) substantially different from that of the sur-
rounding air. Hence paper scatters appreciable amounts of white light 
and appears bright opaque white—see Eq. (4.46). If we now “wet” the 
paper, coating each fiber with something (e.g., mineral oil, aka baby oil) 
whose index (1.46) is between that of air and the fibers, it will cut the 
amount of back-scattered light and the treated area will become essen-
tially transparent. (E.H.)

A glass rod and a wooden rod 
immersed in benzene. Since the 
index of refraction of benzene is 
very nearly that of glass, the rod 
on the left seems to vanish in 
the liquid. (E.H.)

We will come back to the physical significance of the minus 
sign presently. After expanding the sines and using Snell’s Law, 
this expression becomes

 [ri]ui = 0 = [-r#]ui = 0 = cnt cos ui - ni cos ut

nt cos ui + ni cos ut
d
ui = 0

 (4.46)

which follows as well from Eqs. (4.34) and (4.40). In the 
limit, as ui goes to 0, cos ui and cos ut both approach 1, and 
consequently

 [ri]ui = 0 = [-r#]ui = 0 =
nt - ni

nt + ni 
 (4.47)

This equality of the reflection coefficients arises because the 
plane-of-incidence is no longer specified when ut = 0. Thus, for 
example, at an air (ni = 1)–glass (nt = 1.5) interface at nearly 
normal incidence, the amplitude reflection coefficients equal 
±0.2. (See Problem 4.58.)

When nt 7 ni it follows from Snell’s Law that ui 7 ut, and r# 
is negative for all values of ui (Fig. 4.49). In contrast, Eq. (4.43) 
tells us that ri starts out positive at ui = 0 and decreases gradu-
ally until it equals zero when (ui + ut) = 90°, since there tan p>2 
is infinite. The particular value of the incident angle for which 
this occurs is denoted by up and referred to as the polarization 
angle (see Section 8.6.1). Notice that ri S 0 at up, just when the 
phase shifts 180°. That means we won’t see the E$-field do any 
flipping when ui approaches up from either side. As ui increases 
beyond up, ri becomes progressively more negative, reaching  
-1.0 at 90°.

If you place a single sheet of glass, a microscope slide, on this 
page and look straight down into it (ui = 0), the region beneath 
the glass will seem decidedly grayer than the rest of the paper, 
because the slide will reflect at both its interfaces, and the  
light reaching and returning from the paper will be diminished  
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Figure 4.49  The amplitude coefficients of reflection and transmission as 
a function of incident angle. These correspond to external reflection nt 7 ni 
at an air–glass interface (nti = 1.5).

appreciably. Now hold the slide near your eye and again view the 
page through it as you tilt it, increasing ui. The amount of light 
reflected will increase, and it will become more difficult to see 
the page through the glass. When ui ≈ 90° the slide will look 
like a perfect mirror as the reflection coefficients (Fig. 4.49) go 
to -1.0. Even a poor surface (see photo), such as the cover of 
this book, will be mirrorlike at glancing incidence. Hold the 
book horizontally at the level of the middle of your eye and face 
a bright light; you will see the source reflected nicely in the cover. 
This suggests that X-rays could be mirror-reflected at glancing 
incidence (p. 254), and modern X-ray telescopes are based on 
that very fact.

At normal incidence Eqs. (4.35) and (4.41) lead straightfor-
wardly to

 [ti]ui = 0 = [t#]ui = 0 =
2ni

ni + nt
 (4.48)

It will be shown in Problem 4.63 that the expression

 t# + (-r#) = 1 (4.49)

holds for all ui, whereas

 ti + ri = 1 (4.50)

is true only at normal incidence.
The foregoing discussion, for the most part, was restricted to 

the case of external reflection (i.e., nt 7 ni). The opposite situ-
ation of internal reflection, in which the incident medium is the 

more dense (ni 7 nt), is of interest as well. In that instance 
ut 7 ui, and r#, as described by Eq. (4.42), will always be posi-
tive. Figure 4.50 shows that r# increases from its initial value 
[Eq. (4.47)] at ui = 0, reaching +1 at what is called the critical 
angle, uc. Specifically, uc is the special value of the incident an-
gle (p. 133) for which ut = p>2. Likewise, ri starts off nega-
tively [Eq. (4.47)] at ui = 0 and thereafter increases, reaching  
+1 at ui = uc, as is evident from the Fresnel Equation (4.40). 
Again, ri passes through zero at the polarization angle u′p. It is 

At near-glancing incidence the 
walls and floor are mirrorlike—
this despite the fact that the 
surfaces are rather poor reflec-
tors at ui = 0°. (E.H.)
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Figure 4.50  The amplitude coefficients of reflection as a function of  
incident angle. These correspond to internal reflection nt 6 ni at an  
air-glass interface (nti = 1>1.5).
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128 Chapter 4 The Propagation of Light

left for Problem 4.68 to show that the polarization angles u′p and 
up for internal and external reflection at the interface between 
the same media are simply the complements of each other. We 
will return to internal reflection in Section 4.7, where it will be 
shown that r# and ri are complex quantities for ui 7 uc.

Phase Shifts

It should be evident from Eq. (4.42) that r# is negative regard-
less of ui when nt 7 ni. Yet we saw earlier that had we chosen 
[E$r]# in Fig. 4.47 to be in the opposite direction, the first Fres-
nel Equation (4.42) would have changed signs, causing r# to 
become a positive quantity. The sign of r# is associated with the 
relative directions of [E$0i]# and [E$0r]#. Bear in mind that a  
reversal of [E$0r]# is tantamount to introducing a phase shift, 
∆w#, of p radians into [E$r]#. Hence at the boundary [E$i]# and 
[E$r]# will be antiparallel and therefore p out-of-phase with 
each other, as indicated by the negative value of r#. When we 
consider components normal to the plane-of-incidence, there is 
no confusion as to whether two fields are in-phase or p radians 
out-of-phase: if parallel, they’re in-phase; if antiparallel, they’re 
p out-of-phase. In summary, then, the component of the elec-
tric field normal to the plane-of-incidence undergoes a phase 
shift of P radians upon reflection when the incident medium 
has a lower index than the transmitting medium. Similarly, t# 
and ti are always positive and ∆w = 0. Furthermore, when 
ni 7 nt no phase shift in the normal component results on re-
flection, that is, ∆w# = 0 so long as ui 6 uc.

Things are a bit less obvious when we deal with [E$i]i,  
[E$r]i, and [E$t]i. It now becomes necessary to define more ex-
plicitly what is meant by in-phase, since the field vectors are 
coplanar but generally not colinear. The field directions were 
chosen in Figs. 4.47 and 4.48 such that if you looked down any 
one of the propagation vectors toward the direction from which 
the light was coming, E$ , B$ , and k$ would appear to have the same 
relative orientation whether the ray was incident, reflected, or 
transmitted. We can use this as the required condition for two  
E$-fields to be in-phase. Equivalently, but more simply, two fields 
in the incident plane are in-phase if their y-components are 
parallel and are out-of-phase if the components are antiparal-
lel. Notice that when two E$-fields are out-of-phase so too are 
their associated B$-fields and vice versa. With this definition we 
need only look at the vectors normal to the plane-of-incidence, 
whether they be E$  or B$ , to determine the relative phase of the 
accompanying fields in the incident plane. Thus in Fig. 4.51a E$i 
and E$t are in-phase, as are B$i and B$t, whereas E$i and E$r are out-
of-phase, along with B$i and B$r. Similarly, in Fig. 4.51b E$i, E$r, 
and E$t are in-phase, as are B$i, B$r, and B$t.

Now, the amplitude reflection coefficient for the parallel 
component is given by

ri =
nt cos ui - ni cos ut

nt cos ui + ni cos ut

y y

xx

B�i

E�i E�r

k� i B�r

k� r

B�tE�t

k� t

E�i

B�i

k� i

E�t

B�r
k� r

B�t

E�r

k� t

(a) (b)

Figure 4.51  Field orientations and phase shifts.

*Born and Wolf, Principles of Optics, p. 49.

which is positive (∆w
 
i = 0) as long as

nt cos ui - ni cos ut 7 0

that is, if

sin ui cos ui - cos ut sin ut 7 0

or equivalently

  sin (ui - ut) cos (ui + ut) 7 0 (4.51)

This will be the case for ni 6 nt if

 (ui + ut) 6 p>2 (4.52)

and for ni 6 nt when

 (ui + ut) 7 p>2 (4.53)

Thus when ni 6 nt, [E$0r]i and [E$0i]i will be in-phase (∆wi = 0) 
until ui = up and out-of-phase by p radians thereafter. The tran-
sition is not actually discontinuous, since [E$0r]i goes to zero at 
up. In contrast, for internal reflection ri is negative until u′p, 
which means that ∆wi = p. From u′p to uc, r i is positive and 
∆wi = 0. Beyond uc, r i becomes complex, and ∆wi gradually 
increases to p at ui = 90°.

Figure 4.52, which summarizes these conclusions, will be of 
continued use to us. The actual functional form of ∆wi and ∆w# 
for internal reflection in the region where ui 7 uc can be found 
in the literature,* but the curves depicted here will suffice for 
our purposes. Figure 4.52e is a plot of the relative phase shift 
between the parallel and perpendicular components, that is, 
∆wi - ∆w#. It is included here because it will be useful later on 
(e.g., when we consider polarization effects). Finally, the es-
sential features of this discussion are illustrated in Figs. 4.53 
and 4.54. The amplitudes of the reflected vectors are in accord 
with those of Figs. 4.49 and 4.50 (for an air–glass interface), 
and the phase shifts agree with those of Fig. 4.52.

Many of these conclusions can be verified with the sim-
plest experimental equipment, namely, two linear polarizers,  
a piece of glass, and a small source, such as a flashlight or 
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Reflectance and Transmittance

Consider a circular beam of light incident on a surface, as 
shown in Fig. 4.55, such that there is an illuminated spot of 
area A. Recall that the power per unit area crossing a surface in 
vacuum whose normal is parallel to S$, the Poynting vector, is 
given by

 S$ = c2P0E$ : B$  [3.40]

Furthermore, the radiant flux density (W>m2) or irradiance is

 I = 8S9T =
cP0

2
 E2

0 [3.44]

This is the average energy per unit time crossing a unit area nor-
mal to S$ (in isotropic media S$ is parallel to k$). In the case at hand 
(Fig. 4.55), let Ii, Ir, and It be the incident, reflected, and trans-
mitted flux densities, respectively. The cross-sectional areas of 
the incident, reflected, and transmitted beams are, respectively, 
A cos ui, A cos ur, and A cos ut. Accordingly, the incident power is 
IiA cos ui; this is the energy per unit time flowing in the incident 
beam, and it’s therefore the power arriving on the surface over A. 
Similarly, IrA cos ur is the power in the reflected beam, and 
ItA cos ut is the power being transmitted through A. We define the 
reflectance R to be the ratio of the reflected power (or flux) to 
the incident power:

 R K
Ir A cos ur

Ii A cos ui
=

Ir

Ii
 (4.54)

In the same way, the transmittance T is defined as the ratio of 
the transmitted to the incident flux and is given by

 T K
It cos ut

Ii cos ui
 (4.55)

The quotient Ir>Ii equals (vrPrE
2
0r>2)>(viPiE

2
0i>2), and since the 

incident and reflected waves are in the same medium, vr =
vi, Pr = Pi, and

 R = aE0r

E0i
b

2

= r2 (4.56)

In like fashion (assuming mi = mt = m0),

 T =
nt cos ut

ni cos ui
 aE0t

E0i
b

2

= ant cos ut

ni cos ui
b t2 (4.57)

where use was made of the fact that m0Pt = 1>v2
t  and m0vtPt =

nt>c. Notice that at normal incidence, which is a situation of 
great practical interest, ut = ui = 0, and the transmittance [Eq. 
(4.55)], like the reflectance [Eq. (4.54)], is then simply the ratio 
of the appropriate irradiances. Since R = r2, we need not worry 
about the sign of r in any particular formulation, and that makes 
reflectance a convenient notion. Observe that in Eq. (4.57) T is 
not simply equal to t2, for two reasons. First, the ratio of the 
indices of refraction must be there, since the speeds at which 
energy is transported into and out of the interface are different, 
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Figure 4.52  Phase shifts for the parallel and perpendicular components 
of the e$-field corresponding to internal and external reflection.

high-intensity lamp. By placing one polarizer in front of the 
source (at 45° to the plane-of-incidence), you can easily du-
plicate the conditions of Fig. 4.53. For example, when ui = up 
(Fig. 4.53b) no light will pass through the second polarizer if 
its transmission axis is parallel to the plane-of-incidence. In 
comparison, at near-glancing incidence the reflected beam 
will vanish when the axes of the two polarizers are almost 
normal to each other.
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130 Chapter 4 The Propagation of Light

in other words, I ∝ v, from Eq. (3.47). Second, the cross- 
sectional areas of the incident and refracted beams are differ-
ent. The energy flow per unit area is affected accordingly, 
and that manifests itself in the presence of the ratio of the 
cosine terms.

Let’s now write an expression representing the conservation 
of energy for the configuration depicted in Fig. 4.55. In other 
words, the total energy flowing into area A per unit time must 
equal the energy flowing outward from it per unit time:

 Ii A cos ui = Ir A cos ur + It A cos ut (4.58)

When both sides are multiplied by c, this expression becomes

niE
2
0i cos ui = niE

2
0r cos ui + niE

2
0t cos ut

or 1 = aE0r

E0i
b

2

+ ant cos ut

ni cos ui
b aE0t

E0i
b

2

 (4.59)
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Figure 4.53  The reflected  
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vectors could be drawn without 
confusion.
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internal reflection.

But this is simply

 R + T = 1 (4.60)

where there was no absorption.
The electric field is a vector field and, as in the Fresnel 

analysis, we can again think of light as being composed of two 
orthogonal components whose E-fields are either parallel or 
perpendicular to the plane-of-incidence. In fact, for ordinary 
“unpolarized” light, half oscillates parallel to that plane and 
half oscillates perpendicular to it. Thus if the incoming net  
irradiance is, say, 500 W>m2 the amount of light oscillating 

ui

ni

nt

A cos ui A cos ur

A cos ut

ur

(a)

Figure 4.55  Reflection and transmission of an incident beam.

ni
A

nt � ni

ui ur

(b)
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Figure 4.56  Reflectance and transmittance versus incident angle.

Looking down into a puddle (that’s melting snow on the right) we see a 
reflection of the surrounding trees. At normal incidence water reflects about 
2% of the light. As the viewing angle increases—here it’s about  
40°—that percentage increases. (E.H.)

perpendicular to the incident plane is 250 W>m2. It follows 
from Eqs. (4.56) and (4.57) that

 R# = r2
# (4.61)

 Ri = r2
i  (4.62)

 T# = ant cos ut

ni cos ui
b t2

# (4.63)

and Ti = ant cos ut

ni cos ui
b t2

i  (4.64)

which are illustrated in Fig. 4.56. Furthermore, it can be shown 
(Problem 4.73) that

 Ri + Ti = 1 (4.65a)

and R# + T# = 1 (4.65b)

Notice that R# is the fraction of Ii# that is reflected, and  
not the fraction of Ii reflected. Accordingly, both R# and Ri  
can equal 1, and so the total reflectance for natural light is 
given by

 R = 1
2 (Ri + R#) (4.66)

For a rigorous proof of this equation see Section 8.6.1.

EXAMPLE 4.5

Light impinges on a slab of glass in air at the polarization angle 
up. Assume that the net transmittance is known to be 0.86, and 
the incoming light is unpolarized. (a) Determine the percent of 
the incident power that is reflected. (b) If 1000 W comes in, 
how much power is transmitted with its E-field perpendicular to 
the plane-of-incidence?

SOLUTION

(a) We are given that T = 0.86 and that since the beam is unpo-
larized half the light is perpendicular to the plane of incidence 
and half is parallel to it. Hence since both Ti and T#  can be 1.0, 
for unpolarized light

T = 1
2 (Ti + T#)

Here ui = up and so from Fig. 4.56 Ti = 1.0; all the light whose 
electric field is parallel to the plane of incidence is transmitted. 
Hence

T = 1
2 (1 + T#) = 0.86

and for the perpendicular light

T# = 1.72 - 1 = 0.72

Since R# + T# = 1

 R# = 1 - T# = 0.28

and the net reflected fraction is

R = 1
2 (Ri + R#) = 1

2 R#

R = 0.14 = 14%

(b) Given 1000 W incoming, half of that, or 500 W, is perpen-
dicular to the incident plane. Of this 72% is transmitted, since 
T# = 0.72. Hence the power transmitted with its E-field per-
pendicular to the plane-of-incidence is

0.72 * 500 W = 360 W

When ui = 0, the incident plane becomes undefined, and any 
distinction between the parallel and perpendicular components 
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132 Chapter 4 The Propagation of Light

Near-normal reflection off a stack of microscope slides.  
You can see the image of the camera that took the picture. (E.H.)
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Figure 4.57  Reflectance at normal incidence in air (ni = 1.0) at a single 
interface.
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Figure 4.58  Transmittance through a number of surfaces in air (ni = 1.0) 
at normal incidence.

of R and T vanishes. In this case Eqs. (4.61) through (4.64), 
along with (4.47) and (4.48), lead to

 R = Ri = R# = ant - ni

nt + ni
b

2

 (4.67)

and T = Ti = T# =
4nt ni

(nt + ni)
2 (4.68)

Thus 4% of the light incident normally on an air–glass (ng = 1.5) 
interface will be reflected back, whether internally, ni 7 nt, or 
externally, ni 6 nt (Problem 4.70). This will be of concern to 
anyone who is working with a complicated lens system, which 
might have 10 or 20 such air–glass boundaries. Indeed, if you 
look perpendicularly into a stack of about 50 microscope slides 
(cover-glass sliders are much thinner and easier to handle in 
large quantities), most of the light will be reflected. The stack 
will look very much like a mirror (see photo). Roll up a thin 

sheet of clear plastic into a multiturned cylinder and it too will 
look like shiny metal. The many interfaces produce a large num-
ber of closely spaced specular reflections that send much of the 
light back into the incident medium, more or less, as if it had 
undergone a single frequency-independent reflection. A smooth 
gray-metal surface does pretty much the same thing—it has a 
large, frequency-independent specular reflectance—and looks 
shiny (that’s what “shiny” is). If the reflection is diffuse, the 
surface will appear gray or even white if the reflectance is large 
enough.

Figure 4.57 is a plot of the reflectance at a single interface, 
assuming normal incidence for various transmitting media in 
air. Figure 4.58 depicts the corresponding dependence of the 
transmittance at normal incidence on the number of interfaces 
and the index of the medium. Of course, this is why you can’t 
see through a roll of “clear” smooth-surfaced plastic tape, and 
it’s also why the many elements in a periscope must be coated 
with antireflection films (Section 9.9.2).

At near-normal incidence about 4% of the light is reflected back off each air–glass 
interface. Here because it’s a lot brighter outside than inside the building, you 
have no trouble seeing the photographer who is outside looking in. (E.H.)
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EXAMPLE 4.6

Consider a beam of unpolarized light in air arriving at the flat 
surface of a glass sheet (n = 1.50) at the polarization angle up. 
Considering Fig. 4.49 and the E-field oscillating parallel to the 
incident plane, determine Ri and then show by direct computa-
tion that Ti = 1.0. Since ri = 0, why is ti Z 1?

SOLUTION
From Eq. (4.62)

Ri = r i
2  and  ri = 0

hence Ri = 0

and no light is reflected. On the other hand, from Eq. (4.64)

Ti = ant cos ut

ni cos ui
b t i

2

Using Fig. 4.49 and Eq. 4.41 ti = 0.667 at ui = up = 56.3°, and 
since ui + ut = 90.0°, ut = 33.7°, consequently

Ti =
1.5 cos 33.7°
1.0 cos 56.3°

 (0.667)2

Ti = 1.00

All the light is transmitted. Conservation of energy in a lossless 
medium tells us that Ri + Ti = 1; it does not say that ri + ti = 1.

Suppose that we have a source embedded in an optically dense 
medium, and we allow ui to increase gradually, as indicated in 
Fig. 4.59. We know from the preceding section (Fig. 4.50) that ri 
and r# increase with increasing ui, and therefore ti and t# both 
decrease. Moreover ut 7 ui, since

sin ui =
nt

ni
 sin ut

and ni 7 nt, in which case nti 6 1. Thus as ui becomes larger, the 
transmitted ray gradually approaches tangency with the bound-
ary, and as it does more and more of the available energy appears 
in the reflected beam. Finally, when ut = 90°, sin ut = 1 and

 sin uc = nti  (4.69)

As noted earlier, the critical angle is that special value of ui 
for which ut = 90°. The larger ni is, the smaller nti is, and the 
smaller uc is. For incident angles greater than or equal to uc, 
all the incoming energy is reflected back into the incident 
medium in the process known as total internal reflection 
(see photo at top of next page).

It should be stressed that the transition from the conditions 
depicted in Fig. 4.59a to those of 4.59d  takes place without any 
discontinuities. As ui becomes larger, the reflected beam grows 
stronger and stronger while the transmitted beam grows weaker, 
until the latter vanishes and the former carries off all the energy 
at ur = uc. It’s an easy matter to observe the diminution of the 
transmitted beam as ui is made larger. Just place a glass micro-
scope slide on a printed page, this time blocking out any specu-
larly reflected light. At ui ≈ 0, ut is roughly zero, and the page 
as seen through the glass is fairly bright and clear. But if you 
move your head, allowing ut (the angle at which you view the 
interface) to increase, the region of the printed page covered by 
the glass will appear darker and darker, indicating that T has 
indeed been markedly reduced.

The critical angle for our air–glass interface is roughly 42° 
(see Table 4.3). Consequently, a ray incident normally on the 
left face of either of the prisms in Fig. 4.60 will have a ui 7 42° 
and therefore be internally reflected. This is a convenient way 
to reflect nearly 100% of the incident light without having to 

4%
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urui

25%

ni � nt

6%

38%

nt

ni

100%

90°

42° 42° 100%

(a) (b) (c)

(d) (e) (f)

ui = uc ur = uc

ui �uc ur = ui

Figure 4.59  Internal reflection and the critical  
angle. (Educational Services, Inc.)

4.7 Total Internal Reflection

In the previous section it was evident that something rather inter-
esting was happening in the case of internal reflection  
(ni 7 nt) when ui was equal to or greater than uc, the so-called 
critical angle. Let’s now return to that situation for a closer look. 
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134 Chapter 4 The Propagation of Light

TabLe 4.3  Critical angles

nit uc uc nit uc uc
 (degrees) (radians)  (degrees) (radians)

1.30 50.284 9 0.877 6 1.50 41.810 3 0.729 7

1.31 49.761 2 0.868 5 1.51 41.471 8 0.723 8

1.32 49.250 9 0.859 6 1.52 41.139 5 0.718 0

1.33 48.753 5 0.850 9 1.53 40.813 2 0.712 3

1.34 48.268 2 0.842 4 1.54 40.492 7 0.706 7

1.35 47.794 6 0.834 2 1.55 40.177 8 0.701 2

1.36 47.332 1 0.826 1 1.56 39.868 3 0.695 8

1.37 46.880 3 0.818 2 1.57 39.564 2 0.690 5

1.38 46.438 7 0.810 5 1.58 39.265 2 0.685 3

1.39 46.007 0 0.803 0 1.59 38.971 3 0.680 2

1.40 45.584 7 0.795 6 1.60 38.682 2 0.675 1

1.41 45.171 5 0.788 4 1.61 38.397 8 0.670 2

1.42 44.767 0 0.781 3 1.62 38.118 1 0.665 3

1.43 44.370 9 0.774 4 1.63 37.842 8 0.660 5

1.44 43.983 0 0.767 6 1.64 37.571 9 0.655 8

1.45 43.602 8 0.761 0 1.65 37.305 2 0.651 1

1.46 43.230 2 0.754 5 1.66 37.042 7 0.646 5

1.47 42.864 9 0.748 1 1.67 36.784 2 0.642 0

1.48 42.506 6 0.741 9 1.68 36.529 6 0.637 6

1.49 42.155 2 0.735 7 1.69 36.278 9 0.633 2

worry about the deterioration that can occur with metallic sur-
faces (see photo).

Another useful way to view the situation is via Fig. 4.61, 
which shows a simplified representation of scattering off atom-
ic oscillators. We know that the net effect of the presence of the 
homogeneous isotropic media is to alter the speed of the light 
from c to vi and vt, respectively (p. 101). The resultant wave is 

45° 45°

45°
(a)

45°

45°
45°

(b)

Figure 4.60 Total internal reflection.

Figure 4.61  An examination of the transmitted wave in the process of 
total internal reflection from a scattering perspective. Here we keep ui and 
ni constant and in successive parts of the diagram decrease nt, thereby 
increasing vt. The reflected wave (ur = ui) is not drawn.
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the superposition of these wavelets propagating at the appro-
priate speeds. In Fig. 4.61a an incident wave results in the 
emission of wavelets successively from scattering centers A 

Notice that you can’t see the 
two front flames through the 
water along a bright horizontal 
band. That’s due to total inter-
nal reflection. Look at the bot-
tom of a drinking glass through 
its side. Now add a few inches 
of water. What happens? (E.H.)
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The prism behaves like a mirror 
and reflects a portion of the pencil 
(reversing the lettering on it). The 
operating process is total internal 
reflection. (E.H.)

and B. These overlap to form the transmitted wave. The re-
flected wave, which comes back down into the incident medi-
um as usual (ui = ur), is not shown. In a time t the incident 
front travels a distance vit = CB, while the transmitted front 
moves a distance vit = AD 7 CB. Since one wave moves from 
A to E in the same time that the other moves from C to B, and 
since they have the same frequency and period, they must 
change phase by the same amount in the process. Thus the dis-
turbance at point E must be in-phase with that at point B; both 
of these points must be on the same transmitted wavefront (re-
member Section 4.4.2).

It can be seen that the greater vt is in comparison to vi, the 
more tilted the transmitted front will be (i.e., the larger ut will be). 
That much is depicted in Fig. 4.61b, where nti has been taken to 
be smaller by assuming nt to be smaller. The result is a higher 
speed vt, increasing AD and causing a greater transmission an-
gle. In Fig. 4.61c a special case is reached: AD =  AB = vtt, and 
the wavelets will overlap in-phase only along the line of the in-
terface, ut = 90°. From triangle ABC, sin ui = vit>vtt = nt>ni, 
which is Eq. (4.69). For the two given media (i.e., for the par-
ticular value of nti), the direction in which the scattered wavelets 
will add constructively in the transmitting medium is along the 
interface. The resulting disturbance (ut = 90°) is known as a  
surface wave.

4.7.1 The evanescent Wave

Because the frequency of X-rays is higher than the resonance 
frequencies of the atoms of the medium, Eq. (3.70) suggests, 
and experiments confirm, that the index of refraction of X-rays 
is less than 1.0. Thus the wave velocity of X-rays (i.e., the phase 
speed) in matter exceeds its value (c) in vacuum, although it usu-
ally does so by less than 1 part in 10 000, even in the densest sol-
ids. When X-rays traveling in air enter a dense material like glass, 
the beam bends ever so slightly away from the normal rather than 
toward it. With the above discussion of total internal reflection in 
mind, we should expect that X-rays will be totally “externally” 
reflected when, for example, ni = nair and nt = nglass. This is the 
way it’s often spoken of in the literature, but that’s a misnomer; 
since for X-rays nair 7 nglass and therefore ni 7 nt (even though 

glass is physically more dense than air), the process is actually 
still internal reflection. In any event, because nt is less than, but 
very nearly equal to, 1 the index ratio nti ≈ 1 and uc ≈ 90°.

In 1923 A. H. Compton reasoned that even though X-rays 
incident on a sample at ordinary angles are not specularly re-
flected, they should be totally “externally” reflected at glancing 
incidence. He shined 0.128-nm X-rays on a glass plate and got 
a critical angle of about 10 minutes of arc (0.167°) measured 
with respect to the surface. That yielded an index of refraction 
for glass that differed from 1 by -4.2 * 10-6.

We’ll come back to some important practical applications 
of both total internal and total “external” reflection later on  
(p. 201).

If we assume in the case of total internal reflection that there 
is no transmitted wave, it becomes impossible to satisfy the 
boundary conditions using only the incident and reflected 
waves—things are not at all as simple as they might seem. Fur-
thermore, we can reformulate Eqs. (4.34) and (4.40) (Problem 
4.77) such that

 r# =
cos ui - (n2

ti - sin2 ui)
1>2

cos ui + (n2
ti - sin2 ui)

1>2 (4.70)

and ri =
n2

ti cos ui - (n2
ti - sin2 ui)

1>2

n2
ti cos ui + (n2

ti - sin2 ui)
1>2 (4.71)

Since sin uc = nti when ui 7 uc, sin ui 7 nti, and both r# and ri 
become complex quantities. Despite this (Problem 4.78), 
r#r*

# = rir*
i = 1 and R = 1, which means that Ir = Ii and It = 0.  

Thus, although there must be a transmitted wave, it cannot, on 
the average, carry energy across the boundary. We shall not 
perform the complete and rather lengthy computation needed 
to derive expressions for all the reflected and transmitted 
fields, but we can get an appreciation of what’s happening in 
the following way. The wavefunction for the transmitted elec-
tric field is

E$t = E$0t  exp i  (k$t · r$ - vt)

where k$t · r$ = ktxx + ktyy

there being no z-component of k$. But

ktx = kt sin ut

and kty = kt cos ut

as seen in Fig. 4.62. Once again using Snell’s Law,

 kt cos ut = ±kt a1 -
sin2 ui

n2
ti

b
1>2

 (4.72)

or, since we are concerned with the case where sin ui 7 nti,

kty = ± ikt asin2 ui

n2
ti

- 1b
1>2

K ± ib
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and ktx =
kt

nti
 sin ui

Hence

 E$t = E$0te ∓by ei(ktx sin ui>nti -vt) (4.73)

Neglecting the positive exponential, which is physically unten-
able, we have a wave whose amplitude drops off exponentially 
as it penetrates the less dense medium. The disturbance advanc-
es in the x-direction as a surface or evanescent wave. Notice that 
the wavefronts or surfaces of constant phase (parallel to the yz-
plane) are perpendicular to the surfaces of constant amplitude 
(parallel to the xz-plane), and as such the wave is inhomoge-
neous (p. 34). Its amplitude decays rapidly in the y-direction, 
becoming negligible at a distance into the second medium of 
only a few wavelengths.

The quantity b in Eq. (4.73) is the attenuation coefficient 
given by

b =
2pnt

l0
cani

nt
b

2

 sin2 ui - 1d
1>2

The strength of the evanescent E-field drops exponentially from 
its maximum value at the interface (y = 0) to 1>e of that value at 
a distance into the optically less dense medium of y = 1>b = d, 
which is called the penetration depth. Figure 4.63a shows the 
incoming and reflected waves and it’s easy to see that although 
both are moving to the right at the same speed (which is the 
speed of the evanescent wave), there is an upward component 
of the incident wave and an equal downward component of the 
totally reflected wave. Where these overlap there is a so-called 
standing wave (p. 296) set up in the optically more dense inci-
dent medium. We’ll see in Section 7.1, where the mathemati-
cal analysis will be done, that whenever two waves of the 
same frequency traveling in opposite directions exist in the 
same region a stationary energy distribution is established, 
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Figure 4.62  Propagation vectors for internal reflection.
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Figure 4.63  Total internal reflection (a) depicts the incoming and outgoing 
waves. (b) The standing E-field in both media.

which is called a standing wave (even though it isn’t formally 
a wave). The black circles in the drawing correspond to maxi-
ma and the open circles to minima, all of which stay fixed in 
space as the waves rush by. The locations of these antinodes 
and nodes are repeated in the cosinusoidally oscillating graph 
of the standing E-field in the incident medium (Ei) depicted in 
Fig. 4.63b. The situation should remind us of the standing 
sound wave pattern set up in an organ pipe open at one end. 
Notice that the first row of black circles, or maxima, occurs 
somewhat beneath the interface and that’s where the cosine in 
Fig. 4.63b peaks. This happens because there is a phase shift 
between the incident and reflected waves (Fig. 4.52e). The 
magnitude of the standing wave at the boundary (y = 0) 
matches the magnitude of the evanescent wave, which drops 
off from there exponentially.

Increasing the incident angle beyond uc decreases the angle 
between the overlapping planar wavefronts, increases the distance 
between successive nodes in the standing wave pattern, decreases 
the magnitude of the standing wave at the boundary, decreases the 
magnitude of the E-field in the less dense medium, and decreases 
the penetration depth.

If you are still concerned about the conservation of energy,  
a more extensive treatment would have shown that energy  
actually circulates back and forth across the interface, resulting 
on the average in a zero net flow through the boundary into the 
second medium. In other words, energy flows from the incident 
wave to the evanescent wave and back to the reflected wave. Yet 
one puzzling point remains, inasmuch as there is still a bit of 
energy to be accounted for, namely, that associated with the 
evanescent wave that moves along the boundary in the plane-of-
incidence. Since this energy could not have penetrated into the 
less dense medium under the present circumstances (so long as 
ui Ú uc), we must look elsewhere for its source. Under actual 
experimental conditions the incident beam would have a finite 

M04_HECH6933_05_GE_C04.indd   136 26/08/16   1:11 PM



 4.7 Total Internal Reflection 137

*Take a look at the fascinating article by K. H. Drexhage, “Monomolecular layers 
and light,” Sci. Am. 222, 108 (1970).
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Figure 4.64  Under conditions of total internal reflection a beam of light 
experiences what appears to be a lateral shift ∆x.

cross section and therefore would obviously differ from a true 
plane wave. This deviation gives rise (via diffraction) to a slight 
transmission of energy across the interface, which is manifested 
in the evanescent wave.

Incidentally, it is clear from (c) and (d) in Fig. 4.52 that the 
incident and reflected waves (except at ui = 90°) do not differ 
in phase by p and cannot therefore cancel each other. It follows 
from the continuity of the tangential component of E$  that there 
must be an oscillatory field in the less dense medium, with a 
component parallel to the interface having a frequency v (i.e., 
the evanescent wave).

The exponential decay of the surface wave, or boundary 
wave, as it is also called, was confirmed experimentally at opti-
cal frequencies some time ago.*

The Goos–Hänchen Shift

In 1947 Fritz Goos and Hilda Lindberg-Hänchen showed ex-
perimentally that a light beam, which is totally internally re-
flected, undergoes a minute lateral shift from the position 
where the beam strikes the interface. Even though we usually 
draw rays reflecting from the surface, we know that in general 
the reflection of light does not take place precisely at the inter-
face. The process is not the same as a ball bouncing off the 
surface. Instead many layers of atoms (p. 104) contribute to the 
reflected wave. In the case of total internal reflection the in-
coming beam behaves as if it enters the less dense medium re-
flecting off a virtual plane set in at a distance d, the penetration 
depth, from the interface (Fig. 4.64). The resulting lateral dis-
placement ∆x, in the propagation direction of the evanescent 
wave, is called the Goos–Hänchen shift and it’s slightly differ-
ent depending on the polarization of the light, via the Fresnel 
Equations. From the diagram the offset is approximately 
∆x ≈ 2d tan ui and it turns out to be of the order of the wave-
length of the incident light. Thus, though the shift is of little 
concern when we draw ray diagrams it has become a subject of 
considerable interest to many researchers.

Frustrated Total Internal Reflection

Imagine that a beam of light traveling within a block of glass is 
internally reflected at a boundary. Presumably, if you pressed 
another piece of glass against the first, the air–glass interface 
could be made to vanish, and the beam would then propagate 
onward undisturbed. Furthermore, you might expect this transi-
tion from total to no reflection to occur gradually as the air film 
thinned out. In much the same way, if you hold a drinking glass 
or a prism, you can see the ridges of your fingerprints in a region 
that, because of total internal reflection, is otherwise mirrorlike. 
In more general terms, when the evanescent wave extends with 
appreciable amplitude across the rare medium into a nearby re-
gion occupied by a higher-index material, energy may flow 
through the gap in what is known as frustrated total internal 
reflection (FTIR). The evanescent wave, having traversed the 
gap, is still strong enough to drive electrons in the “frustrating” 
medium; they in turn will generate a wave that significantly al-
ters the field configuration, thereby permitting energy to flow.  
Figure 4.65 is a schematic representation of FTIR: the width of 
the lines depicting the wavefronts decreases across the gap as a 
reminder that the amplitude of the field behaves in the same way. 

Total internal reflection on one face of a glass prism.  
(E.H.)

Frustrated total internal reflection on one face of a 
prism. (E.H.)
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138 Chapter 4 The Propagation of Light

The process as a whole is remarkably similar to the quantum-
mechanical phenomenon of barrier penetration or tunneling, 
which has numerous applications in contemporary physics.

One can demonstrate FTIR with the prism arrangement of 
Fig. 4.66 in a manner that is fairly self-evident. Moreover, if the 
hypotenuse faces of both prisms are made planar and parallel, 
they can be positioned so as to transmit and reflect any desired 
fraction of the incident flux density. Devices that perform this 
function are known as beamsplitters. A beamsplitter cube can 
be made rather conveniently by using a thin, low-index trans-
parent film as a precision spacer. Low-loss reflectors whose 
transmittance can be controlled by frustrating internal reflec-
tion are of considerable practical interest. FTIR can also be ob-
served in other regions of the electromagnetic spectrum. Three-
centimeter microwaves are particularly easy to work with, 
inasmuch as the evanescent wave will extend roughly 105 times 
farther than it would at optical frequencies. One can duplicate 
the above optical experiments with solid prisms made of paraf-
fin or hollow ones of acrylic plastic filled with kerosene or mo-
tor oil. Any one of these would have an index of about 1.5 for 
3-cm waves. It then becomes an easy matter to measure the 
dependence of the field amplitude on y.

k� i

k�e

k�
r

k� t

x

y

Glass

Glass
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Figure 4.65  Frustrated total internal reflection.
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Figure 4.66  (a) A beamsplitter utilizing FTIR. (b) A typical modern  
application of FTIR: a conventional beamsplitter arrangement used  
to take photographs through a microscope. (c) Beamsplitter cubes.  
(Melles Griot)

(c)
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The disturbance advances in the y-direction with a speed c>nR, 
precisely as if nR were the more usual index of refraction. As  
the wave progresses into the conductor, its amplitude, 
E$0 exp (-vnIy>c), is exponentially attenuated. Inasmuch as irra-
diance is proportional to the square of the amplitude, we have

 I(y) = I0  

e-ay (4.78)

where I0 = I(0); that is, I0 is the irradiance at y = 0 (the inter-
face), and a K 2vnI>c is called the absorption coefficient or 
(even better) the attenuation coefficient. The flux density will 
drop by a factor of e-1 = 1>2.7 ≈ 1

3 after the wave has propa-
gated a distance y = 1>a, known as the skin or penetration 
depth. For a material to be transparent, the penetration depth 
must be large in comparison to its thickness. The penetration 
depth for metals, however, is exceedingly small. For example, 
copper at ultraviolet wavelengths (l0 ≈ 100 nm) has a minis-
cule penetration depth, about 0.6 nm, while it is still only about 
6 nm in the infrared (l0 ≈ 10 000 nm). This accounts for the 
generally observed opacity of metals, which nonetheless can 
become partly transparent when formed into extremely thin 
films (e.g., in the case of partially silvered two-way mirrors). 
The familiar metallic sheen of conductors corresponds to a high 
reflectance, which exists because the incident wave cannot ef-
fectively penetrate the material. Relatively few electrons in the 
metal “see” the transmitted wave, and therefore, although each 
absorbs strongly, little total energy is dissipated by them. In-
stead, most of the incoming energy reappears as the reflected 
wave. The majority of metals, including the less common ones 
(e.g., sodium, potassium, cesium, vanadium, niobium, gadolin-
ium, holmium, yttrium, scandium, and osmium) have a silvery 
gray appearance like that of aluminum, tin, or steel. They re-
flect almost all the incident light (roughly 85–95%) regardless 
of wavelengths and are therefore essentially colorless.

Equation (4.77) is certainly reminiscent of Eq. (4.73) and 
FTIR. In both cases there is an exponential decay of the ampli-
tude. Moreover, a complete analysis would show that the trans-
mitted waves are not strictly transverse, there being a component 
of the field in the direction of propagation in both instances.

The representation of metal as a continuous medium works 
fairly well in the low-frequency, long-wavelength domain of the 
infrared. Yet we certainly might expect that as the wavelength 
of the incident beam decreased the actual granular nature of 
matter would have to be reckoned with. Indeed, the continuum 
model shows large discrepancies from experimental results  
at optical frequencies. And so we again turn to the classical  
atomistic picture initially formulated by Hendrik Lorentz,  
Paul Karl Ludwig Drude (1863–1906), and others. This simple 
approach will provide qualitative agreement with the experi-
mental data, but the ultimate treatment requires quantum theory.

The Dispersion equation

Envision the conductor as an assemblage of driven, damped os-
cillators. Some correspond to free electrons and will therefore 
have zero restoring force, whereas others are bound to the atom, 

4.8 Optical Properties of Metals

The characteristic feature of conducting media is the presence of a 
number of free electric charges (free in the sense of being unbound, 
i.e., able to circulate within the material). For metals these charges are 
of course electrons, and their motion constitutes a current. The current 
per unit area resulting from the application of a field E$ is related by 
means of Eq. (A1.15) to the conductivity of the medium s. For a di-
electric there are no free or conduction electrons and s = 0, whereas 
for metals s is nonzero and finite. In contrast, an idealized “perfect” 
conductor would have an infinite conductivity. This is equivalent to 
saying that the electrons, driven into oscillation by a harmonic wave, 
would simply follow the field’s alternations. There would be no restor-
ing force, no natural frequencies, and no absorption, only reemission. 
In real metals the conduction electrons undergo collisions with the 
thermally agitated lattice or with imperfections and in so doing irre-
versibly convert electromagnetic energy into joule heat. The absorp-
tion of radiant energy by a material is a function of its conductivity.

Waves in a Metal

If we visualize the medium as continuous, Maxwell’s Equa-
tions lead to

 
02E$
0x2 +

02E$
0y2 +

02E$
0z2 = mP

02E$
0t2 + ms 

0E$
0t

 (4.74)

which is Eq. (A1.21) in Cartesian coordinates. The last term, 
ms 0E$>0t, is a first-order time derivative, like the damping 
force in the oscillator model (p. 81). The time rate-of-change of 
E$  generates a voltage, currents circulate, and since the material 
is resistive, light is converted to thermal energy—ergo absorption. 
This expression can be reduced to the unattenuated wave equa-
tion, if the permittivity is reformulated as a complex quantity. 
This in turn leads to a complex index of refraction, which, as we 
saw earlier (p. 81), is tantamount to absorption. We then need 
only substitute the complex index

 ñ = nR - inI (4.75)

(where the real and imaginary indices nR and nI are both real 
numbers) into the corresponding solution for a nonconducting 
medium. Alternatively, we can utilize the wave equation and 
appropriate boundary conditions to yield a specific solution. In 
either event, it is possible to find a simple sinusoidal plane-
wave solution applicable within the conductor. Such a wave 
propagating in the y-direction is ordinarily written as

E$ = E$0 cos (vt - ky)

or as a function of n,

E$ = E$0 cos v(t - ñy>c)

but here the refractive index must be taken as complex. Writing 
the wave as an exponential and using Eq. (4.75) yields

 E$ = E$0 e(-vnIy>c)eiv(t - nRy>c) (4.76)

or E$ = E$0 e-vnIy>c cos v(t - nRy>c) (4.77)
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particular color, it indicates that the atoms are partaking of selec-
tive absorption by way of the bound electrons, in addition to the 
general absorption characteristic of the free electrons. Recall that 
a medium that is very strongly absorbing at a given frequency 
doesn’t actually absorb much of the incident light at that frequen-
cy but rather selectively reflects it. Gold and copper are reddish 
yellow because nI increases with wavelength, and the larger val-
ues of l are reflected more strongly. Thus, for example, gold 
should be fairly opaque to the longer visible wavelengths. Conse-
quently, under white light, a gold foil less than roughly 10-6 m 
thick will indeed transmit predominantly greenish blue light.

We can get a rough idea of the response of metals to light by 
making a few simplifying assumptions. Accordingly, neglect 
the bound electron contribution and assume that ge is also neg-
ligible for very large v, whereupon

 n2(v) = 1 -
Nq e

2

P0mev
2 (4.80)

The latter assumption is based on the fact that at high frequen-
cies the electrons will undergo a great many oscillations be-
tween each collision. Free electrons and positive ions within a 
metal may be thought of as a plasma whose density oscillates at 
a natural frequency vp, the plasma frequency. This in turn can 
be shown to equal (Nq2

e>P0me)
1>2, and so

 n2(v) = 1 - (vp>v)2 (4.81)

The plasma frequency serves as a critical value below which the 
index is complex and the penetrating wave drops off exponen-
tially [Eq. (4.77)] from the boundary; at frequencies above vp, n 
is real, absorption is small, and the conductor is transparent. In 
the latter circumstance n is less than 1, as it was for dielectrics at 
very high frequencies (v can be greater than c—see p. 82). 
Hence we can expect metals in general to be fairly transparent to 
X-rays. Table 4.4 lists the plasma fre quencies for some of the 
alkali metals that are transparent even to ultraviolet.

The index of refraction for a metal will usually be complex, 
and the impinging wave will suffer absorption in an amount that 
is frequency dependent. For example, the outer visors on the 
Apollo space suits were overlaid with a very thin film of gold 

much like those in the dielectric media of Section 3.5.1. The 
conduction electrons are, however, the predominant contribu-
tors to the optical properties of metals. Recall that the displace-
ment of a vibrating electron was given by

 x(t) =
qe>me

(v2
0 - v2)

 E(t) [3.66]

With no restoring force, v0 = 0, the displacement is opposite in 
sign to the driving force qeE(t) and therefore 180° out-of-phase 
with it. This is unlike the situation for transparent dielectrics, where 
the resonance frequencies are above the visible and the electrons 
oscillate in-phase with the driving force (Fig. 4.67). Free electrons 
oscillating out-of-phase with the incident light will reradiate wave-
lets that tend to cancel the incoming disturbance. The effect, as we 
have already seen, is a rapidly decaying refracted wave.

Assuming that the average field experienced by an elec-
tron moving about within a conductor is just the applied field 
E$(t), we can extend the dispersion equation of a rare medium 
[Eq. (3.72)] to read

n2(v) = 1 +
Nqe

2

P0 me
c ƒe

-v2 + igev
+

ĵ

ƒj

v2
0j - v2 + igjv

d
 (4.79)

The first bracketed term is the contribution from the free elec-
trons, wherein N is the number of atoms per unit volume. Each of 
these has ƒe conduction electrons, which have no natural frequen-
cies. The second term arises from the bound electrons and is 
identical to Eq. (3.72). It should be noted that if a metal has a 
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Figure 4.67  Oscillations of bound and free electrons.

TabLe 4.4  Critical Wavelengths and Frequen cies  
for Some alkali Metals

 lp lp np = c>lp
 (observed) (calculated) (observed)
Metal nm nm Hz

Lithium (Li) 155 155 1.94 * 1015

Sodium (Na) 210 209 1.43 * 1015

Potassium (K) 315 287 0.95 * 1015

Rubidium (Rb) 340 322 0.88 * 1015
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Let’s now compute the reflectance, R = Ir>Ii, for the sim-
plest case of normal incidence on a metal. Taking ni = 1 and 
nt = ñ (i.e., the complex index), we have from Eq. (4.47) that

 R = añ - 1
ñ + 1

b añ - 1
ñ + 1

b
*

 (4.82)

and therefore, since ñ = nR - inI,

 R =
(nR - 1)2 + n2

I

(nR + 1)2 + n2
I
 (4.83)

If the conductivity of the material goes to zero, we have the 
case of a dielectric, whereupon in principle the index is real 
(nI = 0), and the attenuation coefficient, a, is zero. Under those 
circumstances, the index of the transmitting medium nt is nR, 
and the reflectance [Eq. (4.83)] becomes identical with that of 
Eq. (4.67). If instead nI is large while nR is comparatively small, 
R in turn becomes large (Problem 4.95). In the unattainable 
limit where ñ is purely imaginary, 100% of the incident flux 
density would be reflected (R = 1). Notice that it is possible for 
the reflectance of one metal to be greater than that of another 
even though its nI is smaller. For example, at l0 = 589.3 nm the 
parameters associated with solid sodium are roughly nR = 0.04, 
nI = 2.4, and R = 0.9; and those for bulk tin are nR = 1.5, 
nI = 5.3, and R = 0.8; whereas for a gallium single crystal 
nR = 3.7, nI = 5.4, and R = 0.7.

The curves of Ri and R# for oblique incidence shown in  
Fig. 4.68 are somewhat typical of absorbing media. Thus, al-
though R at ui = 0 is about 0.5 for gold, as opposed to nearly 
0.9 for silver in white light, the two metals have reflectances 
that are quite similar in shape, approaching 1.0 at ui = 90°. Just 
as with dielectrics (Fig. 4.56), Ri drops to a minimum at what is 
now called the principal angle-of-incidence, but here that mini-
mum is nonzero. Figure 4.69 illustrates the spectral reflectance 
at normal incidence for a number of evaporated metal films un-
der ideal conditions. Observe that although gold transmits fairly 
well in and below the green region of the spectrum, silver, 
which is highly reflective across the visible, becomes transpar-
ent in the ultraviolet at about 316 nm.

(see photo). The coating reflected about 70% of the incident 
light and was used under bright conditions, such as low and 
forward Sun angles. It was designed to decrease the thermal 
load on the cooling system by strongly reflecting radiant energy 
in the infrared while still transmitting adequately in the visible. 
Inexpensive metal-coated sunglasses, which are quite similar in 
principle, are also available commercially, and they’re well 
worth having just to experiment with.

The ionized upper atmosphere of the Earth contains a distri-
bution of free electrons that behave very much like those con-
fined within a metal. The index of refraction of such a medium 
will be real and less than 1 for frequencies above vp. In July of 
1965 the Mariner IV spacecraft made use of this effect to exam-
ine the ionosphere of the planet Mars, 216 million kilometers 
from Earth.*

If we wish to communicate between two distant terrestrial 
points, we might bounce low-frequency waves off the Earth’s 
ionosphere. To speak to someone on the Moon, however, we 
should use high-frequency signals, to which the ionosphere 
would be transparent.

Reflection from a Metal

Imagine that a plane wave initially in air impinges on a conduct-
ing surface. The transmitted wave advancing at some angle to 
the normal will be inhomogeneous. But if the conductivity of 
the medium is increased, the wavefronts will become aligned 
with the surfaces of constant amplitude, whereupon k$t and ûn 
will approach parallelism. In other words, in a good conductor 
the transmitted wave propagates in a direction normal to the 
interface regardless of ui.

Edwin Aldrin Jr. at Tranquility 
Base on the Moon. The  
photographer, Neil Armstrong, 
is reflected in the gold-coated 
visor. (NASA)

*R. Von Eshelman, Sci. Am. 220, 78 (1969).
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142 Chapter 4 The Propagation of Light

filled with small air bubbles (e.g., shaving cream or beaten egg 
white). Even though we usually think of paper, talcum powder, 
and sugar as each consisting of some sort of opaque white  
substance, it’s an easy matter to dispel that misconception. Cover 
a printed page with a few of these materials (a sheet of white 
paper, some grains of sugar, or talcum) and illuminate it from 
behind. You’ll have little difficulty seeing through them. In the 
case of white paint, one simply suspends colorless transparent 
particles, such as the oxides of zinc, titanium, or lead, in an 
equally transparent vehicle, for example, linseed oil or acrylics. 
Obviously, if the particles and vehicle have the same index of 
refraction, there will not be any reflections at the grain bound-
aries. The particles will simply disappear into the conglomera-
tion, which itself remains clear. In contrast, if the indices are 
markedly different, there will be a good deal of reflection at all 
wavelengths (Problem 4.72), and the paint will appear white 
and opaque [take another look at Eq. (4.67)]. To color paint one 
need only dye the particles so that they absorb all frequencies 
except the desired range.

Carrying the logic in the reverse direction, if we reduce the 
relative index, nti, at the grain or fiber boundaries, the particles 
of material will reflect less, thereby decreasing the overall 
whiteness of the object. Consequently, a wet white tissue will 
have a grayish, more transparent look. Wet talcum powder los-
es its sparkling whiteness, becoming a dull gray, as does wet 
white cloth. In the same way, a piece of dyed fabric soaked in 
a clear liquid (e.g., water, gin, or benzene) will lose its whitish 
haze and become much darker, the colors then being deep and 
rich like those of a still-wet watercolor painting.

A diffusely reflecting surface that absorbs somewhat— 
uniformly across the spectrum—will reflect a bit less than a white 
surface and so appear mat gray. The less it reflects, the darker 
the gray, until it absorbs almost all the light and appears black. 
A surface that reflects perhaps 70% or 80% or more, but does 
so specularly, will appear the familiar shiny gray of a typical 
metal. Metals possess tremendous numbers of free electrons  
(p. 139) that scatter light very effectively, independent of frequen-
cy: they are not bound to the atoms and have no associated reso-
nances. Moreover, the amplitudes of the vibrations are an order 
of magnitude larger than they were for the bound electrons. The 
incident light cannot penetrate into the metal any more than a 
fraction of a wavelength or so before it’s canceled completely. 
There is little or no refracted light; most of the energy is re-
flected out, and only the small remainder is absorbed. Note that 
the primary difference between a gray surface and a mirrored 
surface is one of diffuse versus specular reflection. An artist 
paints a picture of a polished “white” metal, such as silver or 
aluminum, by “reflecting” images of things in the room on top 
of a gray surface.

additive Coloration

When the distribution of energy in a beam of light is not effec-
tively uniform across the spectrum, the light appears colored. 

Phase shifts arising from reflection off a metal occur in both 
components of the field (i.e., parallel and perpendicular to the 
plane-of-incidence). These are generally neither 0 nor p, with a 
notable exception at ui = 90°, where, just as with a dielectric, 
both components shift phase by 180° on reflection.

4.9  Familiar aspects of the Inter action of 
Light and Matter

Let’s now examine some of the phenomena that paint the every-
day world in a marvel of myriad colors.

As we saw earlier (p. 87), light that contains a roughly equal 
amount of every frequency in the visible region of the spectrum 
is perceived as white. A broad source of white light (whether 
natural or artificial) is one for which every point on its surface 
can be imagined as sending out a stream of light of every visible 
frequency. Given that we evolved on this planet, it’s not surpris-
ing that a source appears white when its emission spectrum re-
sembles that of the Sun. Similarly, a reflecting surface that ac-
complishes essentially the same thing will also appear white: a 
highly reflecting, frequency-independent, diffusely scattering 
object will be perceived as white under white light illumination.

Although water is essentially transparent, water vapor ap-
pears white, as does ground glass. The reason is simple enough—
if the grain size is small but larger than the wavelengths involved, 
light will enter each transparent particle, be reflected and re-
fracted, and emerge. There will be no distinction among any of 
the frequency components, so the reflected light reaching the 
observer will be white (p. 87). This is the mechanism account-
able for the whiteness of things like sugar, salt, paper, cloth, 
clouds, talcum powder, snow, and paint, each grain or fiber of 
which is actually transparent.

Similarly, a wadded-up piece of crumpled clear plastic wrap 
will appear whitish, as will an ordinarily transparent material 
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Red light plus blue light is seen as magenta (M), a reddish 
purple; blue light plus green light is seen as cyan (C), a bluish 
green or turquoise; and perhaps most surprising, red light plus 
green light is seen as yellow (Y). The sum of all three primaries 
is white:

R + B + G = W

M + G = W, since R + B = M

C + R = W, since B + G = C

Y + B = W, since R + G = Y

Figure 4.70 depicts typical frequency distributions for what 
would be perceived as red, green, and blue light. These curves 
show the predominant frequency regions, but there can be a 
great deal of variation in the distributions, and they will still 
provoke the responses of red, green, and blue. In the early 1800s 
Thomas Young showed that a broad range of colors could be 
generated by mixing three beams of light, provided their fre-
quencies were widely separated. When three such beams com-
bine to produce white light, they are called primary colors. 
There is no single unique set of these primaries, nor do they 
have to be quasimonochromatic. Since a wide range of colors 
can be created by mixing red (R), green (G), and blue (B), these 
tend to be used most frequently. They are the three components 
(emitted by three phosphors) that generate the whole gamut of 
hues seen on a color television set.

Figure 4.71 summarizes the results when beams of these three 
primaries are overlapped in a number of different combinations: 
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Figure 4.70  Reflection curves for blue, green, and red pigments. These 
are typical, but there is a great deal of possible variation among the colors.

TabLe 4.5  Often-Used Wavelengths of Light,  
UV, and IR

 l (nm) Spectral Line

 334.147 8 ultraviolet mercury line

 365.014 6 ultraviolet mercury line

 404.656 1 violet mercury line

 435.834 3 blue mercury line

 479.991 4 blue cadmium line

 486.132 7 blue hydrogen line

 546.074 0 green mercury line

 587.561 8 yellow helium line

 589.293 8 yellow sodium line 
  (cener of the double line)

 632.8 helium neon laser

 643.846 9 red cadmium line

 656.272 5 red hydrogen line

 676.4 krypton ion laser

 694.3 ruby laser

 706.518 8 red helium line

 768.2 red potassium line

 852.11 infrared cesium line

 1013.98 infrared mercury line

 1054 Nd: glass laser
 1064 Nd: YAG laser

Green

Yellow

White

Blue

Magenta Cyan

Red

Figure 4.71  Three overlapping 
beams of colored light. A color 
television set uses these same 
three primary light sources—
red, green, and blue.
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144 Chapter 4 The Propagation of Light

Subtractive Coloration

The mechanism responsible for the yellowish red hue of gold 
and copper is, in some respects, similar to the process that 
causes the sky to appear blue. Putting it rather succinctly, the 
molecules of air have resonances in the ultraviolet and will be 
driven into larger-amplitude oscillations as the frequency of the 
incident light increases toward the ultraviolet. They effectively 
take energy from and re-emit the blue component of sunlight in 
all directions, transmitting the complementary red end of the 
spectrum with little alteration. This is analogous to the selective 
reflection or scattering of yellow-red light that takes place at the 
surface of a gold film and the concomitant transmission of blue-
green light.

The characteristic colors of most substances have their origin 
in the phenomenon of selective or preferential absorption. For 
example, water has a very faint green-blue tint because of its ab-
sorption of red light. That is, the H2O molecules have a broad 
resonance in the infrared, which extends somewhat into the visi-
ble. The absorption isn’t very strong, so there is no accentuated 
reflection of red light at the surface. Instead it is transmitted and 
gradually absorbed out until at a depth of about 30 m of seawater, 
red is almost completely removed from the sunlight. This same 
process of selective absorption is responsible for the colors of 
brown eyes and butterflies, of birds and bees and cabbages and 
kings. Indeed, the great majority of objects in nature appear to 
have characteristic colors as the result of preferential absorption 
by pigment molecules. In contrast with most atoms and mole-
cules, which have resonances in the ultraviolet and infrared, the 
pigment molecules must obviously have resonances in the visi-
ble. Yet visible photons have energies of roughly 1.6 eV to 3.2 eV, 
which, as you might expect, are on the low side for ordinary elec-
tron excitation and on the high side for excitation via molecular 
vibration. Despite this, there are atoms where the bound elec-
trons form incomplete shells (gold, for example) and variations in 
the configuration of these shells provide a mode for low-energy 
excitation. In addition, there is the large group of organic dye 
molecules, which evidently also have resonances in the visible. 
All such substances, whether natural or synthetic, consist of  

Any two colored light beams that together produce white are 
said to be complementary, and the last three symbolic state-
ments exemplify that situation. Thus

 R + B + G = W

 R + B = W - G = M

 B + G = W - R = C

 R + G = W - B = Y

which means, for example, that a filter that absorbs blue out of 
white light passes yellow.

Because most people have little experience mixing light 
beams it usually comes as a surprise that red and green beams 
are seen as yellow, and that’s true for lots of different reds and 
greens. The color-sensing cones on the retina essentially aver-
age the photon frequencies, and the brain “sees” yellow even 
though there might not be any yellow light present. For exam-
ple, an amount of green at 540 nm plus about three times as 
much red at 640 nm is seen to be identical to yellow at 580 nm. 
And we can’t tell the difference between the pure stuff and the 
blend; a bright yellow rose reflects strongly from above 700 nm 
down to about 540 nm. It gives us red, yellow, and green to 
ponder. Alas, without a spectrometer there is no way to know if 
that yellow shirt you are looking at is reflecting only wave-
lengths in the range from roughly 577 nm to 597 nm or not. 
Still, if you’d like to see some “yellow” photons, those bright 
yellow sodium vapor street lights that are so common nowadays 
are rich in light at 589 nm (see Fig. 4.72).

Suppose we overlap beams of magenta and yellow light:

M + Y = (R + B) + (R + G) = W + R

The result is a combination of red and white, or pink. That rais-
es another point: we say a color is saturated, that it is deep and 
intense, when it does not contain any white light. As Fig. 4.73 
shows, pink is unsaturated red—red superimposed on a back-
ground of white.

Figure 4.72  A portion of the sodium spectrum. For obvious reasons it’s 
called the sodium doublet.
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Figure 4.73  Spectral reflection of a pink pigment.
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blue, the object will appear black. Here the filter colors the light 
yellow by removing blue, and we speak of the process as sub-
tractive coloration, as opposed to additive coloration, which 
results from overlapping beams of light.

In the same way, fibers of a sample of white cloth or paper are 
essentially transparent, but when dyed each fiber behaves as if it 
were a chip of colored glass. The incident light penetrates the 
paper, emerging for the most part as a reflected beam only after 
undergoing numerous reflections and refractions within the 
dyed fibers. The exiting light will be colored to the extent that it 
lacks the frequency component absorbed by the dye. This is pre-
cisely why a leaf appears green, or a banana yellow.

A bottle of ordinary blue ink looks blue in either reflected or 
transmitted light. But if the ink is painted on a glass slide and 
the solvent evaporates, something rather interesting happens. 
The concentrated pigment absorbs so effectively that it prefer-
entially reflects at the resonant frequency, and we are back to 
the idea that a strong absorber (larger nI) is a strong reflector. 
Thus, concentrated blue-green ink reflects red, whereas red-
blue ink reflects green. Try it with a felt marker (overhead pro-
jector pens are best), but you must use reflected light, being 
careful not to inundate the sample with unwanted light from 
below. The most convenient way to accomplish that is to put 
colored ink onto a black surface that isn’t very absorbant. For 
example, smear red ink over a black area on a glossy printed 
page (or better yet, on a black piece of plastic) and it will glow 
green in reflected light. Gentian violet, which you can buy in 
any drugstore, works beautifully. Put some on a glass slide and 
let it dry in a thick coat. Examine both the reflected and trans-
mitted light—they will be complementary.

The whole range of colors (including red, green, and blue) can 
be produced by passing white light through various combinations 

long-chain molecules made up of regularly alternating single and 
double bonds in what is called a conjugated system. This struc-
ture is typified by the carotene molecule C40H56 (Fig. 4.74). The 
carotenoids range in color from yellow to red and are found in 
carrots, tomatoes, daffodils, dandelions, autumn leaves, and peo-
ple. The chlorophylls are another group of familiar natural pig-
ments, but here a portion of the long chain is turned around on 
itself to form a ring. In any event, conjugated systems of this sort 
contain a number of particularly mobile electrons known as pi 
electrons. They are not bound to specific atomic sites but instead 
can range over the relatively large dimensions of the molecular 
chain or ring. In the phraseology of Quantum Mechanics, we say 
that these are long-wavelength, low-frequency, and therefore 
low-energy, electron states. The energy required to raise a pi elec-
tron to an excited state is comparatively low, corresponding to 
that of visible photons. In effect, the molecule can be imagined as 
an oscillator having a resonance frequency in the visible.

The energy levels of an individual atom are precisely de-
fined; that is, the resonances are very sharp. With solids and 
liquids, however, the proximity of the atoms results in a broad-
ening of the energy levels into wide bands. The resonances 
spread over a broad range of frequencies. Consequently, we can 
expect that a dye will not absorb just a narrow portion of the 
spectrum; indeed if it did, it would reflect most frequencies and 
appear nearly white.

Imagine a piece of stained glass with a resonance in the blue 
where it strongly absorbs. If you look through it at a white-light 
source composed of red, green, and blue, the glass will absorb 
blue, passing red and green, which is yellow (Fig. 4.75). The 
glass looks yellow: yellow cloth, paper, dye, paint, and ink all 
selectively absorb blue. If you peer at something that is a pure 
blue through a yellow filter, one that passes yellow and absorbs 

Carotene molecule
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Figure 4.74  The carotene molecule.
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Figure 4.75  Yellow stained glass.
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reflects also, only diffusely. If you still have those red and blue 
inks, mix them, add some green, and you’ll get black.

Color filters work like inks and dyes; they absorb certain fre-
quencies and pass what remains. All filters leak the frequencies 
they are supposed to remove and so the stronger the absorption 
(call it the “thicker” the filter), the purer the color it passes. Figure 
4.77 illustrates overlapping magenta, cyan, and yellow filters and 
the resulting colors that would be transmitted under white light 
illumination. The colors are the same as those reflected from a 
photo printed with overlapping magenta, cyan, and yellow inks. 

Suppose white light impinges on a cyan filter followed by a 
yellow filter, what would be passed? White light can be thought 
of as a combination of red, blue, and green. The cyan filter ab-
sorbs red and passes blue and green. The yellow filter absorbs 
the blue, and together they pass green. Varying the density of 
the filters (the thicknesses) changes the shade of green that re-
sults, just like adding more yellow to blue paint “lightens” the 
green. Again under white light, a thick yellow filter (that re-
moves most of the blue) and a thin magenta filter (that passes 
lots of red and blue and some yellow) will together pass light 
that contains lots of red and a bit of yellow, and looks orange.

In addition to the above processes specifically related to reflec-
tion, refraction, and absorption, there are other color-generating 
mechanisms, which we shall explore later on. For example, scara-
baeid beetles mantle themselves in the brilliant colors produced 
by diffraction gratings on their wing cases, and wavelength- 
dependent interference effects contribute to the color patterns 
seen on oil slicks, mother-of-pearl, soap bubbles, peacocks, and 
hummingbirds.

of magenta, cyan, and yellow filters (Fig. 4.76). These are the 
primary colors of subtractive mixing, the primaries of the paint 
box, although they are often mistakenly spoken of as red, blue, 
and yellow. They are the basic colors of the dyes used to make 
photographs and the inks used to print them. A picture in a maga-
zine is not a source of colored light the way a T.V. screen is. 
White light from a lamp or the sky illuminates the page, different 
wavelengths are absorbed here and there, and what isn’t removed 
is reflected to produce the “colored” optical field corresponding 
to the picture. Ideally, if you mix all the subtractive primaries to-
gether (either by combining paints or by stacking filters), you get 
no color, no light—black. Each removes a region of the spectrum, 
and together they absorb it all.

If the range of frequencies being absorbed spreads across the 
visible, the object will appear black. That is not to say that there 
is no reflection at all—you obviously can see a reflected image 
in a piece of black patent leather, and a rough black surface  
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Figure 4.76  Transmission curves for colored filters.

Figure 4.77  Overlapping magenta, cyan, and yellow filters illuminated 
from the rear with white light.

CyanBlue

Black

Yellow

Red Green

Magenta

EXAMPLE 4.7

Each of five faces of a cube is painted with a single bright col-
or: red, blue, magenta, cyan, and yellow; the last face is white. 
What color, if any, will each face appear when viewed through a 
magenta piece of stained glass? Explain your answers.

Continued
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of amplitude E0irr and E0irt. If the configuration in Fig. 4.78c is 
to be identical with that in Fig. 4.78b, then obviously

 E0itt′ + E0irr = E0i (4.84)

and E0irt + E0itr′ = 0 (4.85)

Hence tt′ = 1 - r2 (4.86)

and r′ = -r (4.87)

the latter two equations being known as the Stokes Relations. 
This discussion calls for a bit more caution than is usually 
granted it. It must be pointed out that the amplitude coefficients 
are functions of the incident angles, and therefore the Stokes 
Relations might better be written as

 t(u1)t′(u2) = 1 - r2(u1) (4.88)

and r′(u2) = -r(u1) (4.89)

where n1 sin u1 = n2 sin u2. The second equation indicates, by vir-
tue of the minus sign, that there is a 180° phase difference  
between the waves internally and externally reflected. It is most 
important to keep in mind that here u1 and u2 are pairs of angles 
that are related by way of Snell’s Law. Note as well that we never 
did say whether n1 was greater or less than n2, so Eqs. (4.88) and 
(4.89) apply in either case. Let’s return for a moment to one of 
the Fresnel Equations:

 r# = -  
sin (ui - ut)

sin (ui + ut)
 [4.42]

If a ray enters from above, as in Fig. 4.78a, and we assume  
n2 7 n1, r# is computed by setting ui = u1 and ut = u2 (external 
reflection), the latter being derived from Snell’s Law. If, on the 
other hand, the wave is incident at that same angle from below 
(in this instance internal reflection), ui = u1 and we again substi-
tute in Eq. (4.42), but here ut is not u2, as before. The values of 
r# for internal and external reflection at the same incident angle 
are obviously different. Now suppose, in this case of internal 

SOLUTION
A magenta filter passes red and blue and eats green. Red will 
stay red. Blue will stay blue. Magenta will stay magenta. Cyan 
will appear blue. Yellow will appear red. And white will appear 
magenta.

4.10  The Stokes Treatment of Reflection 
and Refraction

A rather elegant and novel way of looking at reflection and 
transmission at a boundary was developed by the British physi-
cist Sir George Gabriel Stokes (1819–1903). Suppose that we 
have an incident wave of amplitude E0i impinging on the planar 
interface separating two dielectric media, as in Fig. 4.78a. As we 
saw earlier in this chapter, because r and t are the fractional am-
plitudes reflected and transmitted, respectively (where ni = n1 
and nt = n2), then E0r = rE0i and E0t = tE0i. Again we are re-
minded that Fermat’s Principle led to the Principle of Revers-
ibility, which implies that the situation depicted in Fig. 4.78b, 
where all the ray directions are reversed, must also be physically 
possible. With the one proviso that there be no energy dissipa-
tion (no absorption), a wave’s meanderings must be reversible. 
Equivalently, in the idiom of modern physics one speaks of time-
reversal invariance, that is, if a process occurs, the reverse pro-
cess can also occur. Thus if we take a hypothetical motion pic-
ture of the wave incident on, reflecting from, and transmitting 
through the interface, the behavior depicted when the film is run 
backward must also be physically realizable. Accordingly, ex-
amine Fig. 4.78c, where there are now two incident waves of 
amplitudes E0ir and E0it. A portion of the wave whose amplitude 
is E0it is both reflected and transmitted at the interface. Without 
making any assumptions, let r′ and t′ be the amplitude reflection 
and transmission coefficients, respectively, for a wave incident 
from below (i.e., ni = n2, nt = n1). Consequently, the reflected 
portion is E0itr′, and the transmitted portion is E0itt′. Similarly, 
the incoming wave whose amplitude is E0ir splits into segments 
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Figure 4.78  Reflection and refraction via the Stokes treatment.
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(which are never actually measured) propagate out laterally, 
only to interfere destructively everywhere beyond the beam? If 
so, these wavelets cancel and the energy they transport outward 
is inexplicably returned to the beam, since, in the end, there is 
no net lateral scattering. That’s true no matter how far away P 
is. Moreover, this applies to all interference effects (Chapter 9). 
If two or more electromagnetic waves arrive at point P out-of-
phase and cancel, “What does that mean as far as their energy is 
concerned?” Energy can be redistributed, but it doesn’t cancel 
out. We’ve learned from Quantum Mechanics that at base inter-
ference is one of the most fundamental mysteries in physics.

Remembering Einstein’s admonition that there are no 
spherical wavelets emitted by atoms, perhaps we’re being too 
literal in our interpretation of the classical wave field. After all, 
strictly speaking, the classical electromagnetic wave with its 
continuous distribution of energy does not actually exist. Per-
haps we should think of the wavelets and the overall pattern 
they produce (rather than being a real wave field) as a theo-
retical device that, wonderfully enough, tells us where the light 
will end up. In any event, Maxwell’s Equations provide a 
means of calculating the macroscopic distribution of electro-
magnetic energy in space.

Moving ahead in a semiclassical way, imagine a distribution 
of light given by some function of the off-axis angle u. For ex-
ample, consider the irradiance on a screen placed far beyond a 
slit-shaped aperture (p. 466) such that I(u) = I(0) sinc2 b(u). 
Suppose that instead of observing the pattern by eye a detector 
composed of a diaphragm followed by a photomultiplier tube is 
used. Such a device could be moved around from one point to 
another, and over a constant time interval, it could measure the 
number of photons arriving at each location, N(u). Taking a 
great many such measurements, a spatial distribution of the 
number of photon counts would emerge that would be of the 
very same form as that for the irradiance, namely, N(u) =  
N(0) sinc2 b(u): the number of photons detected is proportional 
to the irradiance. A countable quantity like this lends itself to 
statistical analysis, and we can talk about the probability of de-
tecting a photon at any point on the screen. That is, a probabil-
ity distribution can be constructed, reminiscent of Fig. 3.23. 
Because the space variables (u, x, y, or z) are continuous, it’s 
necessary to introduce a probability density; let it be ℘(u). 
Then ℘(u) du is the probability that a photon will be found in 
the infinitesimal range from u to u + du. In this case ℘(u) =  
℘(0) sinc2b(u).

The square of the net electric field amplitude at every point 
in space corresponds to the irradiance (which can be measured 
directly), and that’s equivalent to the likelihood of finding pho-
tons at any point. Accordingly, let’s tentatively define the 
probability amplitude as that quantity whose absolute value 
squared equals the probability density. Thus the net E0 at P can 
be interpreted as being proportional to a semiclassical proba-
bility amplitude inasmuch as the probability of detecting a 
photon at some point in space depends on the irradiance at 
that location and I ∝ E2

0. This is in accord with Einstein’s  

reflection, that ui = u2. Then ut = u1, the ray directions are the 
reverse of those in the first situation, and Eq. (4.42) yields

r′#(u2) =
sin (u2 - u1)

sin (u2 + u1)

Although it may be unnecessary we once again point out that 
this is just the negative of what was determined for ui = u1 and 
external reflection, that is,

 r′#(u2) = -r#(u1) (4.90)

The use of primed and unprimed symbols to denote the ampli-
tude coefficients should serve as a reminder that we are once 
more dealing with angles related by Snell’s Law. In the same 
way, interchanging ui and ut in Eq. (4.43) leads to

 r′i(u2) = -ri(u1) (4.91)

The 180° phase difference between each pair of components is 
evident in Fig. 4.52, but keep in mind that when ui = up,  
ut = u′p and vice versa (Problem 4.100). Beyond ui = uc there is 
no transmitted wave, Eq. (4.89) is not applicable, and as we 
have seen, the phase difference is no longer 180°.

It is common to conclude that both the parallel and perpen-
dicular components of the externally reflected beam change 
phase by p radians, while the internally reflected beam under-
goes no phase shift at all. This is quite incorrect (compare Figs. 
4.53a and 4.54a).

4.11  Photons, Waves, and Probability

Much of the theoretical grounding of Optics is predicated on 
wave theory. We take for granted both that we understand the 
phenomenon and that it’s “real.” As one example out of the 
many that will be encountered, the process of scattering seems 
to be understandable only in terms of interference; classical 
particles simply do not interfere. When a beam propagates 
through a dense medium, interference in the forward direction 
is constructive, whereas in all other directions it’s almost com-
pletely destructive. Thus nearly all the light energy advances in 
the forward direction. But this raises interesting questions about 
the basic nature of interference and the usual interpretation of 
what’s happening. Interference is a nonlocalized phenomenon; 
it cannot happen at only one single point in space, even though 
we often talk about the interference at a point P. The principle of 
Conservation of Energy makes it clear that if there is construc-
tive interference at one point, the “extra” energy at that location 
must have come from elsewhere. There must therefore be de-
structive interference somewhere else. Interference takes place 
over an extended region of space in a coordinated fashion that 
leaves the total amount of radiant energy unchanged.

Now imagine a light beam traversing a dense medium, as in 
Fig. 4.6. Do real energy-carrying electromagnetic wavelets 
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Feynman’s analysis proceeds from a few general computa-
tional rules, with the ultimate justification being that it works; 
the scheme makes accurate predictions. (1) The probability  
amplitude associated with the occurrence of an event is the 
“sum” of the constituent probability amplitudes corresponding 
to each and every possible way the event can occur. (2) Each 
such constituent probability amplitude is generally expressible 
as a complex quantity. Rather than analytically combining these 
constituent probability amplitudes, we can use the phasor repre-
sentation (p. 31) to approximate the summation and thereby ar-
rive at a resultant probability amplitude. (3) The probability of 
occurrence of the event as a whole is proportional to the abso-
lute square of the resultant probability amplitude.

We can appreciate how all of this comes together by treating 
the reflection pictured in Fig. 4.79; a point source S illuminates 
a mirror, and light is subsequently scattered upward in every 
direction from every point on the mirror. We wish to determine 
the probability of a detector at P, recording the arrival of a pho-
ton. Here the classical perspective, with its familiar wavelet 
model, can be used as an analogue to provide guidance (and 
perhaps a little intellectual comfort, if you still believe in classi-
cal EM waves).

For simplicity, take the mirror to be a narrow strip (which  
is essentially one-dimensional); that doesn’t change things  
conceptually. Divide it into a number of equal-sized lengths 

conception of the light field, which Max Born (who initiated the 
statistical interpretation of Quantum Mechanics) described as a 
Gespensterfeld, or phantom field. In that view the waves of that 
field reveal how the photons distribute in space in the sense that 
the square of the absolute value of the wave amplitude some-
how relates to the probability density of arriving photons. In  
the formal treatment of Quantum Mechanics, the probability 
amplitude is generally a complex quantity whose absolute value 
squared corresponds to the probability density (e.g., the 
Schrödinger wavefunction is a probability amplitude). Thus, 
however reasonable it was to consider E0 as equivalent to a 
semiclassical probability amplitude, that usage cannot be car-
ried over, as is, into quantum theory.

Still, all of this suggests that we might take the scattering 
process, considered in terms of probabilities, as the basis for a 
computational scheme. Each scattered wavelet is then a mea-
sure of the probability amplitude for light taking a particular 
route from one point to another, and the net electric field at P is 
the sum of all the scattered fields arriving via all possible routes. 
A quantum-mechanical methodology analogous to this was de-
vised by Feynman, Schwinger, Tomonaga, and Dyson in the 
course of their development of Quantum Electrodynamics. In 
brief, the final observable outcome of an event is determined by 
the superposition of all the various probability amplitudes as-
sociated with each and every possible way that the event can 
occur. In other words, each “route” along which an event can 
take place, each way it can happen, is given an abstract mathe-
matical representation, a complex probability amplitude. All of 
these then combine—and interfere, as complex quantities are 
wont to do—to produce a net probability amplitude for the 
event to take place.

What follows is a greatly simplified version of that analysis.

4.11.1 QeD

Feynman was rather unequivocal in his stance regarding the na-
ture of light:

I want to emphasize that light comes in this form—particles. 
It is very important to know that light behaves like particles, 
especially for those of you who have gone to school, where you 
were probably told something about light behaving like waves. 
I’m telling you the way it does behave—like particles. (SOURCE: 

R. P. Feynman, QED, Princeton University Press, Princeton, NJ, 1985)

For him “light is made of particles (as Newton originally 
thought)”; it’s a stream of photons whose behavior en masse 
can be determined statistically. For example, if 100 photons are 
incident perpendicularly on a piece of glass in air, on average 4 
will be reflected backward from the first surface they encoun-
ter. Which 4 cannot be known, and in fact how those particular 
4 photons are selected is a mystery. What can be deduced and 
confirmed experimentally is that 4% of the incident light will be 
reflected (p. 126).

S P

Figure 4.79  A schematic representation of reflection. A wave from S 
sweeps down and spreads across the surface of the mirror. Every atom on 
the interface subsequently scatters light back in all upward directions. And 
some of it ultimately arrives at P, having come from every scatterer on the 
surface.
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on to I, the optical path lengths decrease less and less rapidly, 
and each phasor leads the previous one by a smaller angle (set 
by the slope of the curve). In effect, the phasors to the left of I 
rotate counterclockwise from A to I. Since the OPL is a mini-
mum at I, the phasors from that region are large and differ very 
little in phase angle. Going from I to J to K and so on to Q, the 
optical path lengths increase more and more rapidly, and each 
phasor lags the previous one by a larger angle. In effect, the 
phasors to the right of I rotate clockwise from I to Q.

In Fig. 4.80c the resultant amplitude is drawn from the start-
ing tail to the ending tip, and classically it corresponds to the net 
electric field amplitude at P. The irradiance, I, is proportional to 
the square of the net field amplitude, and that, in turn, should be 
a measure of the likelihood of finding a photon when a detector 
is placed at P.

Let’s move beyond the classical ideas of scattered wavelets 
and electric fields (nonetheless being guided by them) and con-
struct a quantum-mechanical treatment. Photons can go from S 
to the mirror to P along each of an innumerable number of dis-
tinct paths. It’s reasonable to assume that each such path makes 
a specific contribution to the end result; an exceedingly long 
route out to the very edge of the mirror and back to P should 
contribute differently than a more direct route. Following Feyn-
man, we associate some (as yet unspecified) complex quantity, 
a constituent quantum-mechanical (QM) probability ampli-
tude, with each possible path. Each such constituent QM prob-
ability amplitude can be represented as a phasor whose angle is 
determined by the total time of flight from S to the mirror to P, 
and whose size is determined by the path length traversed. (Of 
course, this is just what obtained with each phasor in Fig. 4.80c. 
Still there are convincing reasons why the classical E-field can-
not be the QM probability amplitude.) The total QM probability 
amplitude is the sum of all such phasors corresponding to all 
possible paths, and that is analogous to the resultant phasor in 
Fig. 4.80c.

Now relabel Fig. 4.80c so that it represents the quantum-
mechanical formulation. Clearly, most of the length of the re-
sultant QM probability amplitude arises from contributions in 
the immediate vicinity of path S-I-P, where the constituent 
phasors are large and nearly in-phase. Most of the accumu-
lated probability for light to go from S to P via reflection arises 
along, and immediately adjacent to, path S-I-P. The regions at 
the ends of the mirror contribute very little because the phasors 
from those areas form tight spirals at both extremes (Fig. 4.80c). 
Covering the ends of the mirror will have little effect on the 
length of the resultant amplitude and therefore little effect on 
the amount of light reaching P. Keep in mind that this diagram 
is rather crude; instead of 17 routes from S to P, there are  
billions of possible paths, and the phasors on both ends of the 
spiral wind around countless times.

QED predicts that light emitted by a point source S reflects 
out to P from all across the mirror, but that the most likely route 
is S-I-P, in which case ui = ur. With your eye at P looking into 
the mirror, you see one sharp image of S.

(Fig. 4.80a), each of which establishes a possible path to P. (Of 
course, every atom on the surface is a scatterer, and so there are 
a multitude of paths, but the several we have drawn will do.) 
Classically, we know that every route from S to the mirror to P 
corresponds to the path of a scattered wavelet, and that the am-
plitude (E0j) and phase of each such wavelet at P will determine 
the net resultant amplitude, E0. As we saw with Fermat’s Prin-
ciple (p. 117), the optical path length from S to the mirror to P 
establishes the phase of each wavelet arriving at P. Moreover, 
the greater the path length is, the more the light spreads out (via 
the Inverse Square Law) and the smaller is the amplitude of the 
wavelet arriving at P.

Figure 4.80b is a plot of the OPL with its minimum at the 
observed path (S-I-P), for which ui = ur. A large change in 
OPL, as between (S-A-P) and (S-B-P), is accompanied by a 
large phase difference and a correspondingly large rotation of 
the phasors drawn in Fig. 4.80c. Going from A to B to C and so 
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(c)

(a)

Figure 4.80  (a) Feynman’s analysis of the problem of reflection via 
QED. A number of paths from S to the mirror to P. (b) The OPL for  
light going from S to P along the paths depicted in (a). Each path  
has a probability amplitude associated with it. These add to produce  
a net amplitude.
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We are at an important juncture here; classically the momen-
tum of a material particle depends on its speed. When nt 7 ni it 
follows (from Snell’s Law and the above equation) that pt 7 pi, 
and the particles of light must presumably speed up. Indeed, the 
first derivation of the Law of Refraction, published by René 
Descartes (1637), wrongly treated light as a stream of particles 
that sped up as it entered the optically more dense medium (see 
Problem 4.12). By contrast, the first person to measure the 
shortening of the wavelength of light as it entered a more dense 
medium was probably Thomas Young (≈1802).* He rightly 
inferred that the speed of a light beam was thereby actually re-
duced: v 6 c. 

We now know from Quantum Mechanics that the speed of a 
photon is always c and that its momentum depends on its wave-
length and not its speed. Thus

h
li

 sin ui =
h
lt

 sin ut

Multiplying both sides by c>n, we get Snell’s Law.
Do keep in mind that the above analysis is a bit simplistic, 

but it is appealing pedagogically.

4.11.2 Photons and the Laws of Reflection  
 and Refraction

Suppose that light consists of a stream of photons and consider 
one such quantum that strikes the interface between two dielec-
tric media (e.g., air and glass) at an angle ui. That photon is ab-
sorbed by an atom (e.g., in the glass), and an identical photon is 
subsequently transmitted at an angle ut. We know that if this 
were just one out of billions of such quanta in a narrow laser-
beam, it would conform to Snell’s Law. To explore this behav-
ior, let’s examine the dynamics associated with the odyssey of 
our single photon. Recall Eq. (3.54), namely, p = h>l and so its 
vector momentum would be

p$ = Uk$
where k$ is the propagation vector and U K h>2p. Consequently, 
the incident and transmitted momenta are p$i = Uk$i and p$t = Uk$t 
respectively. We assume (without much justification) that while 
the material in the vicinity of the interface affects the compo-
nent of momentum perpendicular to the interface it leaves the 
parallel component unchanged. Indeed, we know experimen-
tally that linear momentum perpendicular to the interface can 
be transferred to a medium from a light beam (Section 3.3.4). 
The statement of conservation of the component of momentum 
parallel to the interface for a single photon takes the form

pi sin ui = pt sin ut *Foucault’s definitive experiments proving the point were done in 1850.

Complete solutions to all problems—except those with an  
asterisk—can be found in the back of the book.

4.1 Work your way through an argument using dimensional analysis 
to establish the l-4 dependence of the percentage of light scattered in 
Rayleigh Scattering. Let E0i and E0s be the incident and scattered am-
plitudes, the latter at a distance r from the scatterer. Assume E0s ∝ E0i 
and E0s ∝ 1>r. Furthermore, plausibly assume that the scattered am-
plitude is proportional to the volume, V, of the scatterer; within limits 
this is reasonable. Determine the units of the constant of proportionality.

4.2* A beam of white light passes through a volume of air. Compare 
the relative amount of Rayleigh scattering for the violet (400 nm), 
green (550 nm), and red (700 nm) components of this light.

4.3* Figure P.4.3 depicts light emerging from a point source. It shows 
three different representations of radiant energy streaming outward. 
Identify each one and discuss its relationship to the others.

PRObLeMS

S

r

Σ

Figure P.4.3 A segment of a spherical wave.
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4.10* Return to Fig. 4.33 and Huygens’s refraction method and prove 
that it leads to Snell’s Law.

4.11 Calculate the angle of transmission for a ray incident in air at 
39° on a slab of glass (ng = 1.7).

4.12* The construction in Fig. P.4.12 corresponds to Descartes’s errone-
ous derivation of the Law of Refraction. Light moves from S to O in the 
same time it travels from O to P. Moreover, its transverse momentum is 
unchanged on traversing the interface. Use all of this to “derive” Snell’s 
Law.

4.4 The equation for a driven damped oscillator is

me x$ + megx# + mev
2
0 x = qeE(t)

(a) Explain the significance of each term.

(b)  Let E = E0 eivt and x = x0 ei(vt - a), where E0 and x0 are real quan-
tities. Substitute into the above expression and show that

x0 =
qeE0

me
 

1

[(v2
0 - v2)2 + g2v2]1>2

(c)  Derive an expression for the phase lag, a, and discuss how a varies 
as v goes from v 6 6  v0 to v = v0 to v 7 7  v0.

4.5 Imagine that we have a nonabsorbing glass plate of index n and 
thickness ∆y, which stands between a source S and an observer P.

(a)  If the unobstructed wave (without the plate present) is Eu =   
E0 exp iv (t - y>c), show that with the plate in place the observer 
sees a wave

Ep = E0 exp iv [t - (n - 1) ∆y>c - y>c]

(b)  Show that if either n ≈ 1 or ∆y is very small, then

Ep = Eu +
v(n - 1) ∆y

c
 Eue-ip>2

  The second term on the right may be envisioned as the field arising 
from the oscillators in the plate.

4.6* A laser beam is incident at an angle of 56° on a small horizontal 
mirror placed on the floor. The reflected beam strikes the opposing 
wall at a height of 150 cm above the floor level. How far horizontally 
is the wall from the mirror?

4.7* An ancient temple has a secret chamber that only opens under 
very specific circumstances. On the appropriate day, sunlight must enter 
through a hole in the wall 3.0 m above the floor. It must strike a polished 
mirror on the floor and reflect to hit a jewel on top of a statue that is 9 m 
tall and 20 m away from the hole in the wall. How far should the mirror 
be placed from the wall?

4.8* Figure P.4.8 shows what’s called a corner mirror. Determine the 
direction of the exiting ray with respect to the incident ray.

Figure P.4.8

ur1

ur2

30°

45°

Mirror-1

Mirror-2

Figure P.4.9

4.13* We can define the deviation angle ud for refraction as the angle 
between the direction of the incident ray and the direction of the trans-
mitted ray. What is the deviation angle for a light beam incident from 
air on a sheet of glass (n = 1.6) at an angle of 50°?

4.14* Figure P.4.14 is a plot of the sine of the angle-of-incidence ver-
sus the sine of the transmission angle measured as light passed from air 
into a more optically dense medium. Discuss the curve. What is the 
significance of the slope of the line? Guess at what the dense medium 
might be.

4.9* A beam of light strikes mirror-1 and then mirror-2 in Fig. P.4.9. 
Determine angles ur1 and ur2.

S A

B
P

O

ui

ut

vi

vt

Figure P.4.12
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Figure P.4.14
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4.31* With the previous problem in mind, return to Eq. (4.19) and 
take the origin of the coordinate system in the plane-of-incidence and 
on the interface (Fig. 4.47). Show that that equation is then equivalent 
to equating the x-components of the various propagation vectors. Show 
that it is also equivalent to the notion of wavefront continuity.

4.32 Making use of the ideas of equal transit times between corre-
sponding points and the orthogonality of rays and wavefronts, derive 
the Law of Reflection and Snell’s Law. The ray diagram of Fig. P.4.32 
should be helpful.

above at a distance of 30 cm? Refer to Table 4.1 for the refractive 
 indices of water and olive oil.

4.30 In Fig. P.4.30 the wavefronts in the incident medium match the 
fronts in the transmitting medium everywhere on the interface—a con-
cept known as wavefront continuity. Write expressions for the number 
of waves per unit length along the interface in terms of ui and li in one 
case and ut and lt in the other. Use these to derive Snell’s Law. Do you 
think Snell’s Law applies to sound waves? Explain.

4.15* Find the maximum value of the deviation angle for a beam of 
light incident on the surface of a sheet of cubic zirconia (n = 2.15).  
(See Problem 4.13.)

4.16* A light ray is incident in water (nw = 1.33) at an angle of 35° on 
an interface with flint glass (ng = 1.6). Compute the transmission angle. 
If a ray is incident on the same interface but from the glass side and if the 
transmission angle needs to be 35°, calculate the angle of incidence.

4.17 An 10.6-μm beam of infrared light is incident at 40° on the sur-
face of germanium which is transparent for those waves and has a re-
fractive index of 4. What is the wavelength of this light beam in germa-
nium? Calculate the transmission angle.

4.18* Monochromatic red light of wavelength 660 nm is incident on a 
sheet of plastic (n = 1.5). Calculate the wavelength of the light in the 
plastic. What color would this wavelength correspond to if observed in 
vacuum?

4.19* A laser beam is incident at 50° on the surface of a material. The 
refracted ray is observed to be transmitted at 30°. What is the refractive 
index of the material?

4.20* A scuba diver shines a beam of light up directly toward the 
water surface (n = 1.33) from below. The beam is incident at the wa-
ter-air interface at 20°. At what angle will it emerge into the air?

4.21 Make a plot of ui versus ut for an air–glass boundary where  
nga = 1.5. Discuss the shape of the curve.

4.22* A laserbeam having a diameter D in air strikes a piece of glass 
(ng) at an angle ui. What is the diameter of the beam in the glass?

4.23*  A narrow beam of white light is incident at 70° on a 5-cm thick 
glass slab. The refractive index of the slab for violet light is 1.531 and 
for red light it’s 1.513. How far apart will the red and violet rays be 
when they emerge from the slab?

4.24* A small fish is swimming 20.0 cm below the surface of the 
water in a fish tank. How far beneath the surface will the fish appear if 
viewed directly from above?

4.25* A piece of amber (n = 1.55) contains a small insect. When 
viewed directly from above, it appears to be 4.0 cm below the amber’s 
surface. How far beneath the surface is the insect?

4.26* A light ray is incident on a parallel slab of plastic (n = 1.51) at 
40°. The transmitted ray travels 30 mm in the plastic slab before 
emerging. Calculate the thickness of the slab.

4.27* Light is incident in air on another transparent medium. Calcu-
late the values of the medium’s refractive index such that the transmis-
sion angle  ut =  ui>2 for a non-zero angle of incidence.

4.28* A ray of light is incident in air at 45°on the surface of a 4-mm-
thick parallel glass pane. If the refractive index of the glass pane is 1.5, 
calculate the lateral displacement of the light ray upon exiting the 
glass. 

4.29* A cooking pot has an inscription on its bottom. Water is poured 
in it to a depth of 5.0 cm. A 1.0-cm thick layer of olive oil is added on 
top. How far away will the inscription appear if viewed directly from 

A

B

C

D

ui

ut

ni

nt

Figure P.4.30

b2a1

a3

a2b1

Figure P.4.32

4.33 Starting with Snell’s Law, prove that the vector refraction equa-
tion has the form

 nt k̂t - ni k̂ = (nt cos ut - ni cos ui) ûn [4.7]
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Figure P.4.38  (E.H.)

4.39* Show that the two rays that enter the system in Fig. P.4.39 par-
allel to each other emerge from it being parallel.

na

na

na

n2

n1

Figure P.4.39

4.40 Discuss the results of Problem 4.38 in the light of Fermat’s 
Principle; that is, how does the relative index n21 affect things? To see 
the lateral displacement, look at a broad source through a thick piece 
of glass ( ≈ 1

4 inch) or a stack (four will do) of microscope slides held 
at an angle. There will be an obvious shift between the region of the 
source seen directly and the region viewed through the glass.

4.41* Examine the three photos in Fig. P. 4.41. Part (a) shows a single 
wide block of Plexiglas; (b) shows two narrow blocks of Plexiglas, 
each half as wide as the first, pressed lightly against one another; and 
(c) shows the same two blocks, this time separated by a thin layer of 
castor oil. Describe what you see looking into the Plexiglas, in each 
photo, in detail. Compare (a) and (c). What can you say about castor oil 
and Plexiglas?

4.34 Derive a vector expression equivalent to the Law of Reflection. 
As before, let the normal go from the incident to the transmitting me-
dium, even though it obviously doesn’t really matter.

4.35 In the case of reflection from a planar surface, use Fermat’s 
Principle to prove that the incident and reflected rays share a common 
plane with the normal ûn, namely, the plane-of-incidence.

4.36* Derive the Law of Reflection, ui = ur, by using the calculus to 
minimize the transit time, as required by Fermat’s Principle.

4.37* According to the mathematician Hermann Schwarz, there is 
one triangle that can be inscribed within an acute triangle such that it 
has a minimal perimeter. Using two planar mirrors, a laserbeam, and 
Fermat’s Principle, explain how you can show that this inscribed tri-
angle has its vertices at the points where the altitudes of the acute tri-
angle intersect its corresponding sides.

4.38 Show analytically that a beam (in a medium of index n1) entering 
a planar transparent plate (of index n2 and thickness d ), as in Fig. P.4.38, 
emerges parallel to its initial direction. Derive an expression for the 
lateral displacement (a) of the beam. Incidentally, the incoming and 
outgoing rays would be parallel even for a stack of plates of different 
material.

4.42 A linearly polarized lightwave moving through air impinges at 
20° on a plate of glass (n = 1.62) such that its electric vector is perpen-
dicular to the plane of incidence. Compute the amplitude reflection 
and transmission coefficients at this interface.

Figure P.4.41 (G. Calzà, T. López-Arias, L.M. Gratton, and S. Oss, reprinted with permission from 

The Physics Teacher 48, 270 (2010). Copyright 2010, American Association of Physics Teachers.)
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4.55* A beam of unpolarized light carries 2000 W/m2 down onto  
an air–plastic interface. It is found that of the light reflected at the  
interface 300 W/m2 is polarized with its E-field perpendicular to the 
plane of incidence and 200 W/m2 parallel to the plane of incidence. 
Determine the net transmittance across the interface.

4.56* Show that energy is conserved in the previous problem.

4.57* The human cornea has a refractive index of 1.376. Determine the 
transmitted irradiance into the cornea if light having an irradiance of  
100 W/m2 moves into the eye from: a) air (n = 1) b) water (nw = 1.33).

4.58* Monochromatic light with an irradiance of 500 W/m2 falls per-
pendicularly from air on a piece of glass and 41 W/m2 is reflected 
back. Determine the type of glass (See Table 4.1).

4.59* Use Eq. (4.42) and the power series expansion of the  
sine function to establish that at near-normal incidence we can  
obtain a better approximation than the one in Problem 4.45, which is  
[-r#]ui ≈ 0 = (n - 1)>(n + 1), namely,

[-r#]ui ≈ 0 = an - 1
n + 1

b a1 +
u2

i

n
b

4.60* Establish that at near-normal incidence the equation

[ri]ui ≈ 0 = an - 1
n + 1

b a1 -
u2

i

n
b

is a good approximation. [Hint: Use the results of the previous prob-
lem, Eq. (4.43), and the power series expansions of the sine and cosine 
functions.]

4.61* Prove that for a vacuum-dielectric interface at glancing inci-
dence r# S -1, as in Fig. 4.49.

4.62* In Fig. 4.49 the curve of r# approaches -1.0 as the angle-of-
incidence approaches 90°. Prove that if a# is the angle the curve makes 
with the vertical at ui = 90°, then

tan a# =
2n2 - 1

2

[Hint: First show that dut>dui = 0.]

4.63 Prove that

 t# + (-r#) = 1 [4.49]

for all ui, first from the boundary conditions and then from the Fresnel 
Equations.

4.64* Verify that

 t# + (-r#) = 1  [4.49]

for ui = 30° at a crown glass–air interface (nti = 1.52).

4.65* Use the Fresnel Equations to prove that light incident at up =  
1
2p - ut results in a reflected beam that is indeed polarized.

4.43 Derive Eqs. (4.42) through (4.45) for r#, r‘, t#, and t ‘.

4.44* A lightwave in air strikes the surface of a piece of sapphire 
(n = 1.77) at 24°. The incident light has component E-field amplitudes 
perpendicular and parallel to the plane-of-incidence of 25 V>m and  
14 V>m, respectively. Determine the corresponding transmitted field 
 amplitudes.

4.45* A laserbeam is incident on the interface between air and some 
dielectric of index n. For small values of ui show that ut = ui>n.  
Use this and Eq. (4.42) to establish that at near-normal incidence  
[-r#]ui ≈ 0 = (n - 1)>(n + 1).

4.46* Prove that at normal incidence on the boundary between two 
dielectrics

[ ti  ]ui =  0 = [t# ]ui =  0 =
2ni

ni + nt

4.47* A nearly monochromatic laserbeam polarized with its electric 
field perpendicular to the plane of incidence impinges normally in air 
on glass (nt = 1.50). Determine the amplitude coefficient of transmis-
sion. Redo the calculation with the beam going perpendicularly from 
glass to air. See the previous problem. 

4.48* Determine the amplitude coefficient of transmission for light 
moving perpendicularly from air-to-ice and from ice-to-air. The refrac-
tive index of ice is 1.31.

4.49* A piece of Plexiglas (n = 1.51) is embedded in a large block of 
ice (n = 1.31). Compute the reflectance and transmittance for light 
moving perpendicularly from the ice into Plexiglas.

4.50* The light from a low-pressure sodium lamp with an irradiance 
of 200 W>m2 falls perpendicularly on a shallow vat of ethanol 
(n = 1.36) from air. Determine the irradiance on the bottom of the vat.

4.51* Using the Fresnel Equations show that

r# =
 cos ui - 2n2

t i - sin2 ui

 cos ui + 2n2
t i - sin2 ui

and 

ri =
n2

t i cos ui - 2n2
t i - sin2 ui

n2
t i cos ui + 2n2

t i - sin2 ui

4.52* Unpolarized light is incident in air on the flat surface of a sheet 
of glass of index 1.60 at an angle of 30.0° to the normal. Determine 
both amplitude coefficients of reflection. What is the significance of 
the signs? Check out the previous problem.

4.53* Considering the previous problem calculate R#, Ri, T#, Ti, and 
the net transmittance T and reflectance R.

4.54* We know that 1000 W/m2 of unpolarized light is incident in air 
on an air–glass interface where nt i = 3/2. If the transmittance for light 
with its E-field perpendicular to the plane of incidence is 0.80, how 
much of that light is reflected?

 Problems 155
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4.66 Show that tan up = nt>ni and calculate the polarization angle for 
external incidence on a plate of crown glass (ng = 1.52) in air.

4.67* Beginning with Eq. (4.38), show that for two dielectric media, 
in general tan up = [Pt(Pt mi - Pi mt)>Pi(Pt mt - Pi mi)]

1>2.

4.68 Show that the polarization angles for internal and external re-
flection at a given interface are complementary, that is, up + u′p = 90°  
(see Problem 4.66).

4.69 It is often useful to work with the azimuthal angle g, which is 
defined as the angle between the plane-of-vibration and the plane-of-
incidence. Thus for linearly polarized light,

 tan gi = [E0i]#>[E0i]i (4.92)

 tan gt = [E0t]#>[E0t]i (4.93)

and tan gr = [E0r]#>[E0r]i (4.94)

Figure P.4.69 is a plot of gr versus ui for internal and external reflec-
tion at an air–glass interface (nga = 1.51), where gi = 45°. Verify a few 
of the points on the curves and in addition show that

  tan gr = -  
cos (ui - ut)

cos (ui + ut)
 tan gi (4.95)

and

 T# =
sin 2ui sin 2ut

sin2(ui + ut)
 (4.99)

4.73* Using the results of Problem 4.72, that is, Eqs. (4.98) and 
(4.99), show that

 Ri + Ti = 1 [4.65]

and R# + T# = 1 [4.66]

4.74 Suppose that we look at a source perpendicularly through a 
stack of N microscope slides. The source seen through even a dozen 
slides will be noticeably darker. Assuming negligible absorption, show 
that the total transmittance of the stack is given by

Tt = (1 - R)2N

and evaluate Tt for three slides in air.

4.75 Making use of the expression

 I(y) = I0e-ay [4.78]

for an absorbing medium, we define a quantity called the unit transmit-
tance T1. At normal incidence, Eq. (4.55), T = It>Ii, and thus when  
y = 1, T1 K I(1)>I0. If the total thickness of the slides in the previous 
problem is d and if they now have a transmittance per unit length T1, 
show that

Tt = (1 - R)2N(T1)d

4.76 Show that at normal incidence on the boundary between two 
dielectrics, as nti S 1, R S 0, and T S 1. Moreover, prove that as  
nti S 1, Ri S 0, R# S 0, Ti S 1, and T# S 1 for all ut. Thus as the 
two media take on more similar indices of refraction, less and less en-
ergy is carried off in the reflected wave. It should be obvious that when 
nti = 1 there will be no interface and no reflection.

4.77* Derive the expressions for r# and ri given by Eqs. (4.70) and (4.71).

4.78 Show that when ui 7 uc at a dielectric interface, ri and r# are 
complex and r#r *# = rir*

i = 1.

4.79* Calculate the critical angle for total internal reflection of light 
moving from sapphire (n = 1.77) into water (n = 1.33).

4.80* Referring back to Problem 4.21, note that as ui increases ut  in-
creases. Prove that the maximum value ut may have is uc.

4.81* What is the critical angle for total internal reflection for dia-
mond in air? What, if anything, does the critical angle have to do with 
the luster of a well-cut diamond?

4.82* A block of an unknown transparent material is examined and 
the critical angle for total internal reflection of a beam of light is cal-
culated to be 43.3°. Using the values provided in Table 4.1, determine 
the unknown material.

4.83* A prism, ABC, is configured such that angle BCA = 90° and 
angle CBA = 45°. What is the minimum value of its index of refraction 
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Figure P.4.69

4.70* Making use of the definitions of the azimuthal angles in Prob-
lem 4.69, show that

 R = Ri  cos2 gi + R#sin2 gi (4.96)

and

 T = Ti  cos2 gi + T#sin2 gi (4.97)

4.71 Make a sketch of R# and Ri for ni = 1.5 and nt = 1 (i.e., internal 
reflection) versus the incident angle.

4.72 Show that

 Ti =
sin 2ui sin 2ut

sin2(ui + ut) cos2(ui - ut)
 (4.98)
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4.91 Figure P.4.91 shows a laserbeam incident on a wet piece of 
filter paper atop a sheet of glass whose index of refraction is to be 
measured—the photograph shows the resulting light pattern. Ex-
plain what is happening and derive an expression for ni in terms of 
R and d.

4.92 Consider the common mirage associated with an inhomoge-
neous distribution of air situated above a warm roadway. Envision the 
bending of the rays as if it were instead a problem in total internal re-
flection. If an observer, at whose head na = 1.000 29, sees an apparent 
wet spot at ui Ú 88.7° down the road, find the index of the air immedi-
ately above the road.

4.93 Figure P.4.93 depicts a glass cube surrounded by four glass 
prisms in very close proximity to its sides. Sketch in the paths that will 
be taken by the two rays shown and discuss a possible application for 
the device.

if, while immersed in air, a beam traversing face AC is to be totally 
internally reflected from face BC?

4.84* A fish looking straight up toward the smooth surface of a pond 
receives a cone of rays and sees a circle of light filled with the images 
of sky and birds and whatever else is up there. This bright circular field 
is surrounded by darkness. Explain what is happening and compute the 
cone angle.

4.85* A block of dense flint glass with an index of 1.66 is covered 
with a layer of olive oil of index 1.47. For light travelling in the glass, 
what is the critical angle at the interface?

4.86 Derive an expression for the speed of the evanescent wave in the 
case of internal reflection. Write it in terms of c, ni, and ui.

4.87 Light having a vacuum wavelength of 600 nm, traveling in a 
glass (ng = 1.50) block, is incident at 45° on a glass–air interface. It is 
then totally internally reflected. Determine the distance into the air at 
which the amplitude of the evanescent wave has dropped to a value of 
1>e of its maximum value at the interface.

4.88* A beam of light from an argon laser (l0 = 500 nm) traveling in 
a glass block (ng = 3/2) is totally internally reflected at the flat air–
glass interface. If the beam strikes the interface at 60.0° to the normal, 
how deep will the light penetrate into the air before its amplitude drops 
to about 36.8% of its value at the interface?

4.89* A diamond (n = 2.417) is covered, on top, by a layer of ben-
zene (n = 1.501). A beam of light travels upward in the diamond and 
strikes the solid-liquid interface. Determine the critical angle at the 
interface.

4.90* A piece of clear sapphire (ns = 1.77) is covered in olive oil 
(noo = 1.47). A beam of light comes up through the solid and strikes 
the solid-liquid interface. What is the critical angle for the total internal 
reflection of the light beam at the interface?

Figure P.4.93
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Figure P.4.91  (S. Reich, The 

Weizmann Institute of Science, Israel)
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Figure P.4.98 (Dr. Gottipaty N. Rao and Brain Capozzi, Adelphi University.)

4.98* The graphs in Fig. P.4.98 are the reflection spectra for several 
roses seen in white light. The flowers were white, yellow, light pink, dark 
pink, blue, orange, and red. Associate each graph with a specific color.
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4.95 Figure P.4.95 is a plot of nI and nR versus l for a common metal. 
Identify the metal by comparing its characteristics with those consid-
ered in the chapter and discuss its optical properties.

4.96* When viewed through a piece of cyan-tinted glass, which of the 
following color combinations can you tell apart as different from each 
other: a) white and yellow; b) blue and magenta; c) green and yellow; 
d) red and green?

4.97* A scarf was made from leftover pieces of colored yarn. The col-
ors used were red, white, cyan, green, magenta, yellow, and blue.  This 
scarf is illuminated through a yellow filter. If you view this scarf through 
magenta-tinted glasses, what colors, if any, are you likely to observe?

4.99 Figure P.4.99 depicts a ray being multiply reflected by a trans-
parent dielectric plate (the amplitudes of the resulting fragments are 
indicated). As in Section 4.10, we use the primed coefficient notation 
because the angles are related by Snell’s Law.

(a) Finish labeling the amplitudes of the last four rays.

(b) Show, using the Fresnel Equations, that

 tit′i = Ti (4.100)

 t#t′# = T# (4.101)

 r2
i = r′2

i = Ri (4.102)

and r2
# = r′2

# = R# (4.103)

Figure P.4.94
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Figure P.4.99

4.100* A wave, linearly polarized in the plane-of-incidence, imping-
es on the interface between two dielectric media. If ni 7 nt and ui = u′p, 
there is no reflected wave, that is, r′i  (u′p) = 0. Using Stokes’s tech-
nique, start from scratch to show that ti(up)t′i(u′p) = 1, ri(up) = 0, and 
ut = up (Problem 4.68). How does this compare with Eq. (4.100)?

4.101 Making use of the Fresnel Equations, show that ti(up)t′i(u′p) = 1, 
as in the previous problem.

4.94 Figure P.4.94 shows a prism-coupler arrangement developed 
at the Bell Telephone Laboratories. Its function is to feed a laser-
beam into a thin (0.000 01-inch) transparent film, which then serves 
as a sort of waveguide. One application is that of thin-film laser-
beam circuitry—a kind of integrated optics. How do you think it 
works?
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35
5.1 Introductory Remarks

The surface of an object that is either self-luminous or exter-
nally illuminated behaves as if it consisted of a very large num-
ber of radiating point sources. Each of these emits spherical 
waves; rays emanate radially in the direction of energy flow, 
that is, in the direction of the Poynting vector. In this case, the 
rays diverge from a given point source S, whereas if the spheri-
cal wave were collapsing to a point, the rays would of course be 
converging. Generally, one deals only with a small portion of a 
wavefront. A point from which a portion of a spherical wave 
diverges, or one toward which the wave segment converges, is 
known as a focus of the bundle of rays.

Figure 5.1 depicts a point source in the vicinity of some ar-
rangement of reflecting and refracting surfaces representing an 
optical system. Of the infinity of rays emanating from point-S, 
generally speaking, only one will pass through an arbitrary 
point in space. Even so, it is possible to arrange for an infinite 
number of rays to arrive at a certain point-P, as in Fig. 5.1. If for 
a cone of rays coming from S there is a corresponding cone of 
rays passing through P, the system is said to be stigmatic for 
these two points. The energy in the cone (apart from some inad-
vertent losses due to reflection, scattering, and absorption) 
reaches P, which is then referred to as a perfect image of S. The 
wave could conceivably arrive to form a finite patch of light, or 
blur spot, about P; it would still be an image of S but no longer 
a perfect one. To say it slightly differently, when you can trace 
a number of rays from S to P, that is, when an appreciable 
amount of radiant energy flows directly from S to P, the energy 
arriving at P corresponds to an image of S.

It follows from the Principle of Reversibility (p. 121) that a 
point source placed at P would be equally well imaged at S, and 
accordingly the two are spoken of as conjugate points. In an 
ideal optical system, every point of a three-dimensional region 
will be perfectly (or stigmatically) imaged in another region, 
the former being the object space, the latter the image space.

Most commonly, the function of an optical device is to col-
lect and reshape a portion of the incident wavefront, often with 
the ultimate purpose of forming an image of an object. Notice 
that inherent in realizable systems is the limitation of being 
unable to collect all the emitted light; a system generally ac-
cepts only a segment of the wavefront. As a result, there will 

always be an apparent deviation from rectilinear propagation 
even in homogeneous media—the waves will be diffracted. 
The attainable degree of perfection of a real imaging optical 
system will be diffraction-limited (there will always be a blur 
spot, p. 488). As the wavelength of the radiant energy decreas-
es in comparison to the physical dimensions of the optical sys-
tem, the effects of diffraction become less significant. In the 
conceptual limit as l0 S 0, rectilinear propagation obtains in 
homogeneous media, and we have the idealized domain of 
Geometrical Optics.* Behavior that is specifically attribut-
able to the wave nature of light (e.g., interference and diffrac-
tion) would no longer be observable. In many situations, the 
great simplicity arising from the approximation of Geometri-
cal Optics more than compensates for its inaccuracies. In 
short, the subject treats the controlled manipulation of wave-
fronts (or rays) by means of the interpositioning of reflecting 
and>or refracting bodies, neglecting any diffraction effects.

5.2 Lenses

The lens is no doubt the most widely used optical device, and 
that’s not even considering the fact that we see the world through 
a pair of them. Human-made lenses date back at least to the 
burning-glasses of antiquity, which, as the name implies, were 
used to start fires long before the advent of matches. In the most 
general terms, a lens is a refracting device (i.e., a discontinuity 
in the prevailing medium) that reconfigures a transmitted 
energy distribution. That much is true whether we are dealing 
with UV, lightwaves, IR, microwaves, radiowaves, or even 
sound waves.

The configuration of a lens is determined by the required 
reshaping of the wavefront it is designed to perform. Point 
sources are basic, and so it is often desirable to convert diverging 
spherical waves into a beam of plane waves. Flashlights, projec-
tors, and searchlights all do this in order to keep the beam from 

Geometrical  
Optics

159

*Physical Optics deals with situations in which the nonzero wavelength  
of light must be reckoned with. Analogously, when the de Broglie wavelength  
of a material object is negligible, we have Classical Mechanics; when it is not,  
we have the domain of Quantum Mechanics.
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160 Chapter 5 Geometrical Optics

the wave slows upon entering the new substance. The central 
area of the wavefront travels more slowly than its outer extrem-
ities, which are still moving quickly through the incident me-
dium. These extremities overtake the midregion, continuously 

spreading out and weakening as it progresses. In just the reverse, 
it’s frequently necessary to collect incoming parallel rays and 
bring them together at a point, thereby focusing the energy, as is 
done with a burning-glass or a telescope lens. Moreover, since 
the light reflected from someone’s face scatters out from billions 
of point sources, a lens that causes each diverging wavelet to 
converge could form an image of that face (Fig. 5.2).

5.2.1 Aspherical Surfaces

To see how a lens works, imagine that we interpose in the path 
of a wave a transparent substance in which the wave’s speed  
is different than it was initially. Figure 5.3a presents a cross-
sectional view of a diverging spherical wave traveling in an in-
cident medium of index ni impinging on the curved interface of 
a transmitting medium of index nt. When nt is greater than ni, 

Figure 5.2  A person’s face, like 
everything else we ordinarily see in 
reflected light, is covered with countless 
atomic scatterers.

(b)

(c)

A D

S
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ni = 1
nt D�

S

(a)

Figure 5.3  A hyperbolic interface between air and glass. (a) The wave-
fronts bend and straighten out. (b) The rays become parallel. (c) The hyper-
bola is such that the optical path from S to A to D is the same no matter 
where A is.
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Figure 5.1  Conjugate foci. (a) A point source  
S sends out spherical waves. A cone of rays enters 
an optical system that inverts the wavefronts, 
causing them to converge on point-P. (b) In cross 
section rays diverge from S, and a portion of them 
converge to P. If nothing stops the light at P, it 
continues on.
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 5.2  Lenses 161

One of the first people to suggest using conic sections as 
surfaces for lenses and mirrors was Johann Kepler (1611), but 
he wasn’t able to go very far with the idea without Snell’s Law. 
Once that relationship was discovered, Descartes (1637), using 
his invention of Analytic Geometry, could develop the theoreti-
cal foundations of the optics of aspherical surfaces. The analy-
sis presented here is in essence a gift from Descartes.

It’s an easy matter now to construct lenses such that both the 
object and image points (or the incident and emerging light) will 
be outside the medium of the lens. In Fig. 5.5a diverging inci-
dent spherical waves are made into plane waves at the first inter-
face via the mechanism of Fig. 5.4a. These plane waves within 
the lens strike the back face perpendicularly and emerge unal-
tered: ui = 0 and ut = 0. Because the rays are reversible, plane 
waves incoming from the right will converge to point-F1, which 
is known as the focal point of the lens. Exposed on its flat face 
to the parallel rays from the Sun, our rather sophisticated lens 
would serve nicely as a burning-glass.

In Fig. 5.5b, the plane waves within the lens are made to 
converge toward the axis by bending at the second interface. 
Both of these lenses are thicker at their midpoints than at their 
edges and are therefore said to be convex (from the Latin con-
vexus, meaning arched). Each lens causes the incoming beam to 
converge somewhat, to bend a bit more toward the central axis; 
therefore, they are referred to as converging lenses.

In contrast, a concave lens (from the Latin concavus, 
meaning hollow—and most easily remembered because it 
contains the word cave) is thinner in the middle than at the 
edges, as is evident in Fig. 5.5c. It causes the rays that enter as 
a parallel bundle to diverge. All such devices that turn rays 
outward away from the central axis (and in so doing add diver-
gence to the beam) are called diverging lenses. In Fig. 5.5c, 
parallel rays enter from the left and, on emerging, seem to di-
verge from F2; still, that point is taken as a focal point. When 
a parallel bundle of rays passes through a converging lens, 
the point to which it converges (or when passing through a 
diverging lens, the point from which it diverges) is a focal 
point of the lens.

If a point source is positioned on the central or optical axis at 
the point-F1 in front of the lens in Fig. 5.5b, rays will converge to 

flattening the wavefront. If the interface is properly configured, 
the spherical wavefront bends into a plane wave. The alternative 
ray representation is shown in Fig. 5.3b; the rays simply bend 
toward the local normal upon entering the more dense medium, 
and if the surface configuration is just right, the rays emerge 
parallel.

To find the required shape of the interface, refer to Fig. 5.3c, 
wherein point-A can lie anywhere on the boundary. One wave-
front is transformed into another, provided the paths along which 
the energy propagates are all “equal,” thereby maintaining the 
phase of the wavefront (p. 32). A little spherical surface of con-
stant phase emitted from S must evolve into a flat surface of 
constant phase at DD′. Whatever path the light takes from S to 
DD′, it must always be the same number of wavelengths long, 
so that the disturbance begins and ends in-phase. Radiant energy 
leaving S as a single wavefront must arrive at the plane  DDD′, 
having traveled for the same amount of time to get there, no 
matter what the actual route taken by any particular ray. In other 
words, F1A>li (the number of wavelengths along the arbitrary 
ray from F1 to A) plus AD>lt (the number of wavelengths along 
the ray from A to D) must be constant regardless of where on the 
interface A happens to be. Now, adding these and multiplying 
by l0, yields

 ni (F1A) + nt (AD) = constant (5.1)

Each term on the left is the length traveled in a medium mul-
tiplied by the index of that medium, and, of course, each repre-
sents the optical path length, OPL, traversed. The optical path 
lengths from S to DD′ are all equal. If Eq. (5.1) is divided by c, 
the first term becomes the time it takes light to travel from S to A 
and the second term, the time from A to D; the right side remains 
constant (not the same constant, but constant). Equation (5.1) is 
equivalent to saying that all paths from S to DD′ must take the 
same amount of time to traverse.

Let’s return to finding the shape of the interface. Divide  
Eq. (5.1) by ni, and it becomes

 F1A + ant

ni
b AD = constant (5.2)

This is the equation of a hyperbola in which the eccentricity 
(e), which measures the bending of the curve, is given by 
(nt>ni) 7 1; that is, e = nti 7 1. The greater the eccentricity, 
the flatter the hyperbola (the larger the difference in the indi-
ces, the less the surface need be curved). When a point source 
is located at the focus F1 and the interface between the two 
media is hyperbolic, plane waves are transmitted into the high-
er index material. It’s left for Problem 5.3 to establish that 
when (nt>ni) 6 1, the interface must be ellipsoidal. In each 
case pictured in Fig. 5.4, the rays either diverge from or con-
verge toward a focal point, F. Furthermore, the rays can be re-
versed so that they travel either way; if a plane wave is incident 
(from the right) on the interface in Fig. 5.4c, it will converge 
(off to the left) at the farthest focus of the ellipsoid.

F

(a) (b)

(c) (d)n1
n2

n1 n2
n1 n2

n1

F

n2

Figure 5.4  (a) and (b) Hyperboloidal and (c) and (d ) ellipsoidal refracting 
surfaces (n2 7 n1) in cross section.
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162 Chapter 5 Geometrical Optics

spherical ones. As such, they’re well suited for strong prescrip-
tions. Furthermore, they minimize the magnification of the 
wearer’s eyes as seen by other people.

A new generation of computer-controlled machines, aspher-
ic generators, is producing elements with tolerances (i.e., de-
partures from the desired surface) of better than 0.5 mm 
(0.000 020 inch). This is still about a factor of 10 away from the 
generally required tolerance of l>4 for quality optics. After 
grinding, aspheres can be polished magnetorheologically. This 
technique, used to figure and finish the surface, magnetically 
controls the direction and pressure applied to the workpiece by 
the abrasive particles during polishing. 

Nowadays aspherics made in plastic and glass can be found in 
all kinds of instruments across the whole range of quality, includ-
ing telescopes, projectors, cameras, and reconnaissance devices.

EXAMPLE 5.1

The accompanying diagram depicts, in cross section, a glass 
lens in air. Explain how it works.

F2F1

SOLUTION 

The first surface encountered by the rays is a portion of an el-
lipse (actually an ellipsoid). Its two foci are located by small 
vertical lines. As in Fig. 5.4c (read right to left), the rays refract 
directly toward the far focus F2 on entering the glass. The sec-
ond surface must be spherical with its center at F2. The rays are 
then all perpendicular to the second surface and pass through it 
without bending.

5.2.2 Refraction at Spherical Surfaces

Consider two pieces of material, one with a concave and the 
other a convex spherical surface, both having the same radius. It 
is a unique property of the sphere that such pieces will fit  
together in intimate contact regardless of their mutual orientation. 
If we take two roughly spherical objects of suitable curvature, 
one a grinding tool and the other a disk of glass, separate them 
with some abrasive, and then randomly move them with respect 
to each other, we can anticipate that any high spots on either 
object will wear away. As they wear, both pieces will gradually 

the conjugate point-F2. A luminous image of the source would 
appear on a screen placed at F2, an image that is therefore said 
to be real. On the other hand, in Fig. 5.5c the point source is at 
infinity, and the rays emerging from the system this time are 
diverging. They appear to come from a point-F2, but no actual 
luminous image would appear on a screen at that location. The 
image here is spoken of as virtual, as is the familiar image gen-
erated by a plane mirror.

Optical elements (lenses and mirrors) of the sort we have 
talked about, with one or both surfaces neither planar nor spher-
ical, are referred to as aspherics. Aspheres come in a variety of 
shapes: conic sections; polynomials; part converging, part di-
verging. Although their operation is easy to understand and they 
perform certain tasks exceedingly well, they are still difficult to 
manufacture with great accuracy. Nonetheless, where the costs 
are justifiable or the required precision is not restrictive or the 
volume produced is large enough, aspherics are being used and 
will surely have an increasingly important role. The first quality 
glass aspheric to be manufactured in great quantities (tens of 
millions) was a lens for the Kodak disk camera (1982). Today 
aspherical lenses are frequently used as an elegant means of 
correcting imaging errors in complicated optical systems. 
Aspherical eyeglass lenses are flatter and lighter than regular 

(c)

(d)

F1

F1

(a)

(b)

F2

F2

Figure 5.5  (a), (b), and (c) Several hyperbolic lenses seen in cross  
section. (d) A selection of aspherical lenses. (Melles Griot)
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 5.2  Lenses 163

Using the law of cosines in triangles SAC and ACP along with 
the fact that cos w = -cos(180° - w), we get

/o = [R2 + (so + R)2 - 2R(so + R) cos w]1>2

and /i = [R2 + (si - R)2 + 2R(si - R) cos w]1>2 

The OPL can be rewritten as

OPL = n1[R2 + (so + R)2 - 2R(so + R) cos w]1>2

 + n2[R2 + (si - R)2 + 2R(si - R) cos w]1>2

All the quantities in the diagram (si, so, R, etc.) are positive 
numbers, and these form the basis of a sign convention that is 
gradually unfolding and to which we shall return time and again 
(see Table 5.1). Inasmuch as the point-A moves at the end of a 
fixed radius (i.e., R 5 constant), w is the position variable, and 
thus setting d(OPL)>dw = 0, via Fermat’s Principle we have

 
n1R(so + R) sin w

2/o
-

n2R(si - R) sin w

2/i
= 0 (5.4)

from which it follows that

 
n1

/o
+

n2

/i
=

1
R

 an2si

/i
-

n1so

/o
b (5.5)

become more spherical (see photo). Such surfaces are com-
monly generated in batches by automatic grinding and polish-
ing machines.

Not surprisingly, the vast majority of quality lenses in use 
today have surfaces that are segments of spheres. Our intent 
here is to establish techniques for using such surfaces to simul-
taneously image a great many object points in light composed 
of a broad range of frequencies. Image errors, known as aber-
rations, will occur, but it is possible with the present technology 
to construct high-quality spherical lens systems whose aberra-
tions are so well controlled that image fidelity is limited only by 
diffraction.

Figure 5.6 depicts a wave from the point source S imping-
ing on a spherical interface of radius R centered at C. The 
point-V is called the vertex of the surface. The length so = SV 
is known as the object distance. The ray SA will be refracted 
at the interface toward the local normal (n2 7 n1) and there-
fore toward the central or optical axis. Assume that at some 
point-P the ray will cross the axis, as will all other rays inci-
dent at the same angle ui (Fig. 5.7). The length si = VP is the 
image distance. Fermat’s Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
respect to the position variable will be zero. For the ray in 
question,

 OPL = n1/o + n2/i (5.3)

Polishing a spherical lens. (Optical Society of America)

R

A

PC
V

S

�o �i

siso

n1 n2

h
w
ut

ur

ui

Figure 5.6  
Refraction at a 
spherical interface. 
Conjugate foci.

S

P

Figure 5.7  Rays incident at the same angle.

TABLE 5.1  Sign Convention for Spherical Refracting 
Surfaces and Thin Lenses* (Light Entering from the Left)

so, ƒo 1 left of V

xo 1 left of Fo

si, ƒi 1 right of V

xi 1 right of Fi

R 1 if C is right of V

yo, yi 1 above optical axis

*This table anticipates the imminent introduction of a few quantities not yet  
spoken of.
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164 Chapter 5 Geometrical Optics

That special object distance is defined as the first focal length 
or the object focal length, so K ƒo, so that

 ƒo =
n1

n2 - n1
 R (5.9)

Point-Fo is known as the first or object focus. Similarly, the 
second or image focus is the axial point-Fi, where the image is 
formed when so = ∞ ; that is,

n1

∞
+

n2

si
=

n2 - n1

R

Defining the second or image focal length ƒi as equal to si in 
this special case (Fig. 5.9), we have

 ƒi =
n2

n2 - n1
 R (5.10)

Recall that an image is virtual when the rays diverge from it 
(Fig. 5.10). Analogously, an object is virtual when the rays 
converge toward it (Fig. 5.11). Observe that the virtual object is 
now on the right-hand side of the vertex, and therefore so will be 
a negative quantity. Moreover, the surface is concave, and its 
radius will also be negative, as required by Eq. (5.9), since ƒo
would be negative. In the same way, the virtual image distance 
appearing to the left of V is negative.

This is the relationship that must hold among the parameters 
for a ray going from S to P by way of refraction at the spheri-
cal interface. Although this expression is exact, it is rather 
complicated. If A is moved to a new location by changing w, 
the new ray will not intercept the optical axis at P. (See Prob-
lem 5.1 concerning the Cartesian oval, which is the interface 
configuration that would bring any ray, regardless of w, to P.) 
The approximations that are used to represent /o and /i, and 
thereby simplify Eq. (5.5), are crucial in all that is to follow. 
Recall that

 cos w = 1 -
w2

2!
+
w4

4!
-
w6

6!
+ g  (5.6)

and sin w = w -
w3

3!
+
w5

5!
-
w7

7!
+ g  (5.7)

If we assume small values of w (i.e., A close to V ), cos w ≈ 1.
Consequently, the expressions for /o and /i yield /o ≈ so, 
/i ≈ si, and to that approximation

 
n1

so
+

n2

si
=

n2 - n1

R
 (5.8)

We could have begun this derivation with Snell’s Law rather 
than Fermat’s Principle (Problem 5.5), in which case small  
values of w would have led to sin w ≈ w and Eq. (5.8) once 
again. This approximation delineates the domain of what is 
called first-order theory; we’ll examine third-order theory 
(sin w ≈ w - w3>3!) in the next chapter. Rays that arrive at 
shallow angles with respect to the optical axis (such that w 
and h are appropriately small) are known as paraxial rays. 
The emerging wavefront segment corresponding to these 
paraxial rays is essentially spherical and will form a “per-
fect” image at its center P located at si. Notice that Eq. (5.8) 
is independent of the location of A over a small area about 
the symmetry axis, namely, the paraxial region. Gauss, in 
1841, was the first to give a systematic exposition of the 
formation of images under the above approximation, and 
the result is variously known as first-order, paraxial, or 
Gaussian Optics. It soon became the basic theoretical tool 
by which lenses would be designed for several decades to 
come. If the optical system is well corrected, an incident 
spherical wave will emerge in a form very closely resem-
bling a spherical wave. Consequently, as the perfection of 
the system increases, it more closely approaches first-order 
theory. Deviations from that of paraxial analysis will pro-
vide a convenient measure of the quality of an actual optical 
device.

If point-Fo in Fig. 5.8 is imaged at infinity (si = ∞), we  
have

n1

so
+

n2

∞
=

n2 - n1

R

Fo

fo

Figure 5.8  Plane waves propagating beyond a spherical interface—the 
object focus.

fi

Fi
C

Figure 5.9  The reshaping of plane into spherical waves at a spherical 
interface—the image focus.
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 5.2  Lenses 165

are far more subtle in appearance (see photo). Most often a lens 
has two or more refracting interfaces, and at least one of these 
is curved. Generally, the nonplanar surfaces are centered on a 
common axis. These surfaces are most frequently spherical seg-
ments and are often coated with thin dielectric films to control 
their transmission properties (see Section 9.9).

A lens that consists of one element (i.e., it has only two re-
fracting surfaces) is a simple lens. The presence of more than 
one element makes it a compound lens. A lens is also classified 
as to whether it is thin or thick—that is, whether or not its thick-
ness is effectively negligible. We will limit ourselves, for the 
most part, to centered systems (for which all surfaces are rota-
tionally symmetric about a common axis) of spherical surfaces. 
Under these restrictions, the simple lens can take the forms 
shown in Fig. 5.12.

Lenses that are variously known as convex, converging, or 
positive are thicker at the center and so tend to decrease the 
radius of curvature of the wavefronts. In other words, the inci-
dent wave converges more as it traverses the lens, assuming, 
of course, that the index of the lens is greater than that of the 

EXAMPLE 5.2

A long horizontal flint-glass (ng = 1.800) cylinder is 20.0 cm in 
diameter and has a convex hemispherical left end ground and pol-
ished onto it. The device is immersed in ethyl alcohol (na = 1.361) 
and a tiny LED is located on the central axis in the liquid 80.0 cm 
to the left of the vertex of the hemisphere. Locate the image of 
the LED. What would happen if the alcohol was replaced by air?

SOLUTION 

Return to Eq. (5.8),

n1

so
+

n2

si
=

n2 - n1

R

Here n1 = 1.361, n2 = 1.800, so = +80.0 cm, and R =
+10.0 cm. We can work the problem in centimeters, where-
upon the equation becomes 

 
1.361
80.0

+
1.800

si
=

1.800 - 1.361
10.0

 
1.800

si
=

0.439
10

-
1.361

80
 1.800 = (0.043 9 - 0.017 01)si

si = 66.9 cm

With the alcohol in place the image is within the glass, 66.9 cm 
to the right of the vertex (si 7 0). Removing the liquid,

1
80.0

+
1.800

si
=

0.800
10.0

and

si = 26.7 cm

The refraction at the interface depends on the ratio (n2>n1) of 
the two indices. The bigger is (n2 - n1), the smaller will be si.

5.2.3 Thin Lenses

Lenses are made in a wide range of forms; for example, there 
are acoustic and microwave lenses. Some of the latter are made 
of glass or wax in easily recognizable shapes, whereas others 

V

Fo

so

C

Figure 5.11  A virtual object point.

VFi C

Figure 5.10  A virtual image point.

A lens for short-wavelength radiowaves. The disks serve to refract  
these waves much as rows of atoms refract light. (Optical Society of America)
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166 Chapter 5 Geometrical Optics

at so1 will appear to meet at P′, a distance, which we now call 
si1, from V1, given by

 
nm

so1
+

nl

si1
=

nl - nm

R1
 (5.11)

media in which it is immersed. Concave, diverging, or negative 
lenses, on the other hand, are thinner at the center and tend  
to advance that portion of the incident wavefront, causing it to  
diverge more than it did prior to entry.

Thin-Lens Equations

Return to the discussion of refraction at a single spherical in-
terface, where the location of the conjugate points-S and -P is  
given by

 
n1

so
+

n2

si
=

n2 - n1

R
 [5.8]

When so is large for a fixed (n2 - n1)>R, si is relatively small. 
The cone of rays from S has a small central angle, the rays do not 
diverge very much, and the refraction at the interface can cause 
them all to converge at P. As so decreases, the ray-cone angle 
increases, the divergence of the rays increases, and si moves 
away from the vertex; that is, both ui and ut increase until finally 
so = ƒo and si = ∞ . At that point, n1>so = (n2 - n1)>R, so that if 
so gets any smaller, si will have to be negative, if Eq. (5.8) is to 
hold. In other words, the image becomes virtual (Fig. 5.13).

Let’s now locate the conjugate points for a lens of index nl
surrounded by a medium of index nm, as in Fig. 5.14, where 
another end has simply been ground onto the piece in Fig. 5.13c. 
This certainly isn’t the most general set of circumstances, but it is 
the most common, and even more cogently, it is the simplest.* 
We know from Eq. (5.8) that the paraxial rays issuing from S  

R1 � 0
R2 � 0

R1 � 0
R2 � 0

CONVEX CONCAVE

Biconvex Biconcave

R1 � 0
R2 � 0

R1 � 0
R2 � 0

Meniscus
convex

Meniscus
concave

R1 � ∞
R2 � 0

R1 � ∞
R2 � 0

Planar convex Planar concave

Figure 5.12  Cross sections of various centered spherical simple lenses. 
The surface on the left is Þ1, since it is encountered first. Its radius is R1. 
(Melles Griot)

PS

(a)

S

(b)

P� S

(c)

Figure 5.13  Refraction at a spherical interface between two transparent 
media shown in cross section.

A lens focusing a beam of light. (L-3 Communications Tinsley Labs Inc.)

*See Jenkins and White, Fundamentals of Optics, p. 57, for a derivation containing 
three different indices.
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Thus, as far as the second surface is concerned, it “sees” rays 
coming toward it from P′, which serves as its object point a 
distance so2 away. Furthermore, the rays arriving at that second 
surface are in the medium of index nl. The object space for the 
second interface that contains P′ therefore has an index nl. Note 
that the rays from P′ to that surface are indeed straight lines. 
Considering the fact that

0 so2 0 = 0 si1 0 + d

since so2 is on the left and therefore positive, so2 = 0 so2 0 , and si1 
is also on the left and therefore negative, -si1 = 0 si1 0 , we  
have

 so2 = -si1 + d (5.12)

At the second surface Eq. (5.8) yields

 
nl

(-si1 + d )
+

nm

si2
=

nm - nl

R2
 (5.13)

Here nl 7 nm and R2 6 0, so that the right-hand side is positive. 
Adding Eqs. (5.11) and (5.13), we have

 
nm

so1
+

nm

si2
= (nl - nm) a 1

R1
-

1
R2

b +
nl d

(si1 - d)si1
 (5.14)

If the lens is thin enough (d S 0), the last term on the right is 
effectively zero. As a further simplification, assume the sur-
rounding medium to be air (i.e., nm ≈ 1). Accordingly, we have 
the very useful Thin-Lens Equation, often referred to as the 
Lensmaker’s Formula:

 
1
so

+
1
si

= (nl - 1) a 1
R1

-
1
R2

b (5.15)

where we let so1 = so and si2 = si. The points-V1 and -V2 tend to 
coalesce as d S 0, so that so and si can be measured from either 
the vertices or the lens center.

Just as in the case of the single spherical surface, if so is 
moved out to infinity, the image distance becomes the focal 
length ƒi, or symbolically,

lim
so S ∞

 si = ƒi

Similarly lim
si S ∞

 so = ƒo

It is evident from Eq. (5.15) that for a thin lens ƒi = ƒo, and 
consequently we drop the subscripts altogether. Thus

 
1
ƒ

= (nl - 1) a 1
R1

-
1
R2

b (5.16)

na nanl

C2 C1

(a)

(b)

S

P

nm

V2

R2
nm

S C2

V1

nl

C1

P� P

d

R1

so1
si1

so2
si2

(c)

Figure 5.14  A spherical lens. (a) Rays in a vertical plane passing through 
a lens. Conjugate foci. (b) Refraction at the interfaces where the lens is 
immersed in air and nm = na. The radius drawn from C1 is normal to the 
first surface, and as the ray enters the lens it bends down toward that  
normal. The radius from C2 is normal to the second surface; and as the  
ray emerges, since nl 7 na, the ray bends down away from that normal.  
(c) The geometry.

and 
1
so

+
1
si

=
1
ƒ

 (5.17)

which is the famous Gaussian Lens Formula (see photo).
As an example of how these expressions might be used, let’s 

compute the focal length in air of a thin planar-convex lens hav-
ing a radius of curvature of 50 mm and an index of 1.5. With 
light entering on the planar surface (R1 = ∞ , R2 = -50),

1
ƒ

= (1.5 - 1) a 1
∞

-
1

-50
b
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168 Chapter 5 Geometrical Optics

Focal Points and Planes

Figure 5.16 summarizes some of the situations described ana-
lytically by Eq. 5.16. Observe that if a lens of index nl is im-
mersed in a medium of index nm,

 
1
ƒ

= (nlm - 1) a 1
R1

-
1
R2

b (5.18)

The focal lengths in (a) and (b) of Fig. 5.16 are equal, because 
the same medium exists on either side of the lens. Since nl 7 nm, 
it follows that nlm 7 1. In both cases R1 7 0 and R2 6 0, so that 
each focal length is positive. We have a real object in (a) and a 
real image in (b). In (c), nl 6 nm, and consequently f is negative. 
In (d) and (e), nlm 7 1 but R1 6 0, whereas R2 7 0, so ƒ is 
again negative, and the object in one case and the image in the 
other are virtual. In (ƒ), nlm 6 1, yielding an ƒ 7 0.

Notice that in each instance it is particularly convenient to 
draw a ray through the center of the lens, which, because it is 
perpendicular to both surfaces, is undeviated. Suppose, instead, 
that an off-axis paraxial ray emerges from the lens parallel to its 
incident direction, as in Fig. 5.17. We maintain that all such rays 

whereas if instead it arrives at the curved surface (R1 = +50, 
R2 = ∞),

1
ƒ

= (1.5 - 1) a 1
+50

-
1
∞
b

and in either case ƒ = 100 mm. If an object is alternately placed 
at distances 600 mm, 200 mm, 150 mm, 100 mm, and 50 mm 
from the lens on either side, we can find the image points from 
Eq. (5.17). First, with so = 600 mm

si =
soƒ

so - ƒ
=

(600)(100)

600 - 100

and si = 120 mm. Similarly, the other image distances are  
200 mm, 300 mm, ∞ , and -100 mm, respectively.

Interestingly enough, when so = ∞ , si = ƒ; as so decreases, 
si increases positively until so = ƒ and si is negative thereafter. 
Figure 5.15 shows this behavior pictorially. The lens is capa-
ble of adding a certain amount of convergence to the rays. As 
the divergence of the incident light increases, the lens is less 
able to pull the rays together and point-P moves farther to the 
right.

You can qualitatively check this out with a simple convex 
lens and a small electric light—the high-intensity variety is 
probably the most convenient. Standing as far as you can 
from the source, project a clear image of it onto a white 
sheet of paper. You should be able to see the lamp quite 
clearly and not just as a blur. That image distance approxi-
mates ƒ. Now move the lens in toward S, adjusting si to pro-
duce a clear image. It will surely increase. As so S ƒ, a clear 
image of the lamp can be projected, but only on an increas-
ingly distant screen. For so 6 ƒ, there will just be a blur 
where the farthest wall intersects the diverging cone of rays—
the image is virtual.

The actual wavefronts of a diverging lightwave partially focused by a  
lens. The photo shows five exposures, each separated by about 100 ps 
(i.e., 100 * 10-12 s), of a spherical pulse 10 ps long as it swept by and 
through a converging lens. The picture was made using a holographic  
technique. (N.H. Abramson)

2F F F 2F

2F F F 2F

2F
F F 2F

2F
F

F 2F

2F F F 2F

2F F F
2F

2F
F F

2F

Figure 5.15  Conjugate object and image points for a thin convex lens.
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will pass through the point defined as the optical center O of 
the lens. To see this, draw two parallel planes, one on each 
side tangent to the lens at any pair of points-A and -B. This can 
easily be done by selecting A and B such that the radii AC1 and 
BC2 are themselves parallel. It is to be shown that the paraxial 
ray traversing AB enters and leaves the lens in the same direc-
tion. It’s evident from the diagram that triangles AOC1 and 
BOC2 are similar, in the geometric sense, and therefore their 
sides are proportional. Hence, 0R1 0(OC2) = 0R2 0(OC1), and 
since the radii are constant, the location of O is constant, inde-
pendent of A and B. As we saw earlier (Problem 4.38 and Fig. 
P.4.38), a ray traversing a medium bounded by parallel planes 
will be displaced laterally but will suffer no angular deviation. 
This displacement is proportional to the thickness, which for a 
thin lens is negligible. Rays passing through O may, accord-
ingly, be drawn as straight lines. It is customary when deal-
ing with thin lenses simply to place O midway between the 
vertices.

Recall that a bundle of parallel paraxial rays incident on a 
spherical refracting surface comes to a focus at a point on the 
optical axis (Fig. 5.10). As shown in Fig. 5.18, this implies that 
several such bundles entering in a narrow cone will be focused on 
a spherical segment s, also centered on C. The undeviated rays 
normal to the surface, and therefore passing through C, locate the 
foci on s. Since the ray cone must indeed be narrow, s can satis-
factorily be represented as a plane normal to the symmetry axis 
and passing through the image focus. It is known as a focal plane. 
In the same way, limiting ourselves to paraxial theory, a lens will 

(a)

Fo Fi

(b)

nm

(d)

Fo Fi

(e)

Fi

(c)

n

n

Fi

(f)

(h)(g)

F

Figure 5.16  Focal lengths for converging and 
diverging lenses.

R1

R2

A O
BC2 C1

Figure 5.17  The optical center of a lens. (E.H.)
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170 Chapter 5 Geometrical Optics

Finite Imagery

Thus far we’ve treated the mathematical abstraction of a single-
point source. Now let’s deal with the fact that a great many such 
points combine to form a continuous finite object (Fig. 5.2). For 
the moment, imagine the object to be a segment of a sphere, so, 
centered on C, as in Fig. 5.21. If so is close to the spherical in-
terface, point-S will have a virtual image P (si 6 0 and there-
fore on the left of V). With S farther away, its image will be real  
(si 7 0 and therefore on the right-hand side). In either case, 
each point on so has a conjugate point on si lying on a straight 
line through C. Within the restrictions of paraxial theory, these 
surfaces can be considered planar. Thus a small planar object 
normal to the optical axis will be imaged into a small planar 
region also normal to that axis. Note that if so is moved out to 
infinity, the cone of rays from each source point will become 
collimated (i.e., parallel), and the image points will lie on the 
focal plane (Fig. 5.19).

By cutting and polishing the right side of the piece depicted 
in Fig. 5.21, we can construct a thin lens. Once again, the image 
(si in Fig. 5.21) formed by the first surface of the lens will serve 
as the object for the second surface, which in turn will generate 
a final image. Suppose then that si in Fig. 5.21a is the object for 

focus all incident parallel bundles of rays* onto a surface called 
the second or back focal plane, as in Fig. 5.19. Here each point 
on s is located by the undeviated ray through O. Similarly, the 
first or front focal plane contains the object focus Fo.

There is another practical observation about lenses that’s 
worth introducing before we move on, and that concerns the re-
lationship between shape and focal length. Return to Eq. (5.16), 
which deals with the physical characteristics of a lens and, for 
simplicity, consider an equiconvex lens for which R1 = -R2 = R. 
The equation then becomes ƒ = R>2(nl - 1) and we see imme-
diately that the smaller the radius of the lens, that is, the squatter 
it is, the shorter will be its focal length. A nearly flat lens will 
have a long focal length, whereas a small sphere (hardly a “thin 
lens”) will have a tiny focal length. Of course, the greater the 
curvature (1>R) of each interface, the greater the bending of the 
rays, as shown in Fig. 5.20. Also keep in mind that ƒ is inversely 
proportional to nl, a fact we’ll come back to later on when deal-
ing with aberrations. If having a flatter lens is desirable, one 
need only increase its index of refraction while increasing R, 
thereby leaving the focal length unchanged.

Fo FiO

f
s

Focal
plane

Figure 5.19  The focal plane of a lens.

f

Figure 5.20  The greater the curvature (1>R), the shorter the focal length.

*Perhaps the earliest literary reference to the focal properties of a lens appears in 
Aristophanes’ play, The Clouds, which dates back to 423 b.c.e. In it Strepsiades 
plots to use a burning-glass to focus the Sun’s rays onto a wax tablet and thereby 
melt out the record of a gambling debt.

s

C

Figure 5.18  Focusing of several ray bundles.

Beams of light brought to a focus by a positive lens. (E.H.)
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the second surface, which is assumed to have a negative radius. 
We already know what will happen—the situation is identical to 
that in Fig. 5.21b with the ray directions reversed. The final im-
age formed by a lens of a small planar object normal to the 
optical axis will itself be a small plane normal to that axis.

The location, size, and orientation of an image produced by 
a lens can be determined, particularly simply, with ray dia-
grams. To find the image of the object in Fig. 5.22, we must 
locate the image point corresponding to each object point. Since 
all rays issuing from a source point in a paraxial cone will arrive 
at the image point, any two such rays will suffice to fix that 
point. Because we know the positions of the focal points, there 
are three rays that are especially easy to apply. The first (ray-1) 
is the undeviated ray through the center of the lens O. The other 
two (ray-2 and ray-3) make use of the fact that a ray passing 
through the focal point will emerge from the lens parallel to the 
central axis and vice versa. As a rule-of-thumb when sketching 
ray diagrams, draw the lens diameter (the vertical extent) 
roughly the size of the focal length. Then put in points on the 
central optical axis at one and two focal lengths, both in front of 
and behind the lens. You can usually locate the image by just 
tracing ray-1 and ray-2 from either the upper or lowermost 
points on the object.

Figure 5.23 shows how any two of these three rays locate the 
image of a point on the object. Incidentally, this technique dates 
back to the work of Robert Smith as long ago as 1738. This 
graphical procedure can be made even simpler by replacing the 
thin lens with a vertical plane perpendicular to the central axis 
passing through its center (Fig. 5.24). Presumably, if we were to 
extend every incoming ray forward a little and every outgoing 
ray backward a bit, each pair would meet on this plane. The 
total deviation of any ray can be envisaged as occurring all at 
once on that plane. This is equivalent to the actual process 
consisting of two separate angular shifts, one at each interface. 

C
V

P

si
so

S

(a)

C

P

S

so

si

(b)

V

Figure 5.21 Finite imagery.

Fo

Fi

Fo

Fi

1

2

3

1

2

3

Figure 5.22  Tracing a few key rays through a positive and negative lens.

(As we’ll see later, this is tantamount to saying that the two 
principal planes of a thin lens coincide.)

In accord with convention, transverse distances above the 
optical axis are taken as positive quantities, and those below the 
axis are given negative numerical values. Therefore in Fig. 5.24 
yo 7 0 and yi 6 0. Here the image is said to be inverted, 
whereas if yi 7 0 when yo 7 0, it is right-side-up or erect.  
Observe that triangles AOFi and P2P1Fi are similar. Ergo

 
yo

0 yi 0 =
ƒ

(si - ƒ)
 (5.19)

In the same way, triangles S2S1O and P2P1O are similar, and

 
yo

0 yi 0 =
so

si
 (5.20)

where all quantities other than yi are positive. Hence

 
so

si
=

ƒ

(si - ƒ)
 (5.21)

and 
1
ƒ

=
1
so

+
1
si
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172 Chapter 5 Geometrical Optics

xi have like signs, which means that the object and image must  
be on opposite sides of their respective focal points. This is a 
good thing for the neophyte to remember when making those hasty 
freehand ray diagrams for which he or she is already infamous.

The ratio of the transverse dimensions of the final image 
formed by any optical system to the corresponding dimension 
of the object is defined as the lateral or transverse magnifica-
tion, MT, that is,

 MT K
yi

yo
 (5.24)

Or from Eq. (5.20)

 MT = -  
si

so
 (5.25)

A positive MT connotes an erect image, while a negative value 
means the image is inverted (see Table 5.2). Bear in mind 
that si and so are both positive for real objects and images. 
Clearly, then, all real images formed by a single thin lens will 
be inverted. The Newtonian expression for the magnification 
follows from Eqs. (5.19) and (5.22) and Fig. 5.24:

 MT = -  
xi

ƒ
= -  

ƒ
xo

 (5.26)

The term magnification is a bit of a misnomer, since the magni-
tude of MT can certainly be less than 1, in which case the image 
is smaller than the object. We have MT = -1 when the object 

which is, of course, the Gaussian Lens Equation [Eq. (5.17)]. 
Furthermore, triangles S2S1Fo and BOFo are similar and

 
ƒ

(so - ƒ)
=

0 yi 0
yo

 (5.22)

Using the distances measured from the focal points and com-
bining this information with Eq. (5.19) leads to

 xo xi = ƒ2 (5.23)

This is the Newtonian form of the lens equation, the first state-
ment of which appeared in Newton’s Opticks in 1704. The signs 
of xo and xi are reckoned with respect to their concomitant foci. 
By convention, xo is taken to be positive left of Fo, whereas xi is 
positive on the right of Fi. It is evident from Eq. (5.23) that xo and 

f f

so si

A

O

B

Fo Fi

S2

S1 yi

P2

2

1

3

P1

xo xi

yo

Figure 5.24  Object and image location for a thin lens.

(a)

2

1

3

OFo Fi

Figure 5.23  (a) A real object and a posi-
tive lens. (b) A real object and a negative 
lens. (c) A real image projected on the 
viewing screen of a 35-mm camera, much 
as the eye projects its image on the reti-
na. Here a prism has been removed so 
you can see the image directly. (E.H.)  
(d) The minified, right-side-up, virtual 
image formed by a negative lens. (E.H.)

(c) (d)

(b)

2

1

3

OFi Fo

M05_HECH6933_05_GE_C05.indd   172 26/08/16   1:32 PM



 5.2  Lenses 173

 
1
si

+
1

70.0
=

1
30.86

 
1
si

=
1

30.86
-

1
70.0

= 0.018 12

and si = 55.19 = 55.2 cm 

The image is between ƒ and 2ƒ on the right of the lens. Note 
that si 7 0, which means the image is real. 
(b) The magnification follows from

MT = -  
si

so
= -  

55.19
70.0

= -0.788

and the image is inverted (MT 6 0) and minified (MT 6 1). 
(c) Draw the lens and mark out two focal lengths

f

30.9

2f

70.0
2f

on each side. Place the object to the left of the lens beyond 2ƒ.
The image falls between ƒ and 2ƒ.

We are now in a position to understand the entire range of 
behavior of a single convex or concave lens. To that end, sup-
pose that a distant point source sends out a cone of light that is 
intercepted by a positive lens (Fig. 5.25). If the source is at 
infinity (i.e., so far away that it might just as well be infinity), 

and image distances are positive and equal, and that happens 
[Eq. (5.17)] only when so = si = 2ƒ. This turns out to be the 
configuration in which the object and image are as close togeth-
er as they can possibly get (i.e., a distance 4ƒ apart; see Problem 
5.15). Table 5.3 summarizes a number of image configurations 
resulting from the juxtaposition of a thin lens and a real object.

EXAMPLE 5.3

A biconvex (also called a double convex) thin spherical lens 
has radii of 100 cm and 20.0 cm. The lens is made of glass 
with an index of 1.54 and is immersed in air. (a) If an object 
is placed 70.0 cm in front of the 100-cm surface, locate the 
resulting image and describe it in detail. (b) Determine the 
transverse magnification of the image. (c) Draw a ray diagram.

SOLUTION 

(a) We don’t have the focal length, but we do know all the 
physical parameters, so Eq. (5.16) comes to mind:

1
ƒ

= (nl - 1) a 1
R1

-
1
R2

b

Leaving everything in centimeters 

 
1
ƒ

= (1.54 - 1) a 1
100

-
1

-20.0
b

 
1
ƒ

= (0.54) a 1
100

+
1

20.0
b

 
1
ƒ

= (0.54) 
6

100

ƒ = 30.86 cm = 30.9 cm

Now we can find the image. Since so = 70.0 cm, that’s greater 
than 2ƒ—hence, even before we calculate si, we know that the 
image will be real, inverted, located between ƒ and 2ƒ, and 
minified. To find si, having ƒ we use Gauss’s Equation:

 
1
si

+
1
so

=
1
ƒ

TABLE 5.2  Meanings Associated with the Signs of 
Various Thin Lens and Spherical Interface Parameters

Quantity Sign

 1 2

so Real object Virtual object

si Real image Virtual image

ƒ Converging lens Diverging lens

yo Erect object Inverted object

yi Erect image Inverted image

MT Erect image Inverted image

TABLE 5.3  Images of Real Objects Formed by  
Thin Lenses

Convex

Object Image
Location Type Location Orientation Relative Size

∞ 7 so 7 2ƒ Real ƒ 6 si 6 2ƒ Inverted Minified

so = 2ƒ Real si = 2f  Inverted Same size

ƒ 6 so 6 2ƒ Real ∞ 7 si 7 2ƒ Inverted Magnified

so = ƒ  ± ∞

so 6 ƒ Virtual 0 si 0 7 so Erect Magnified

Concave

Object Image

Location Type Location Orientation Relative Size

Anywhere Virtual 0 si 0 6 0 ƒ 0 , Erect Minified

  so 7 0 si 0
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174 Chapter 5 Geometrical Optics

corresponds to the film projector where the crucial feature is 
that the image is real and enlarged. To compensate for the  
image being inverted, the film is simply put in upside-down.

When the object arrives at a distance from the lens of pre-
cisely one focal length, the image has, in effect, moved off to 
infinity. (There is no image; the emerging rays are parallel.) 

With the object closer in than one focal length, the image 
(virtual, right-side-up, and enlarged MT 7 1) reappears. This is 
the configuration of the magnifying glass. It’s useful to remem-
ber that the ray entering the lens parallel to the central axis 
fixes the height of the real image (Fig. 5.27). Because that ray 
diverges from the central axis, the size of the image increases 
rapidly as the object approaches F.

EXAMPLE 5.4

Both surfaces of an equiconvex thin spherical lens have the 
same curvature. A 2.0-cm-tall bug is on the central axis 100 cm 
from the front face of the lens. The image of the bug formed on 
a wall is 4.0 cm tall. Given that the glass of the lens has an index 
of 1.50, find the radii of curvature of the surfaces.

SOLUTION 

We have yo = 2.0 cm, so = 100 cm, R1 = R2, 0 yi 0 = 4.0 cm, and 
nl = 1.50. We also know that the image is real, so it must be in-
verted and therefore yi = -4.0 cm—that’s crucial! To find the 
radii we’ll need Eq. (5.16) and the focal length. We can compute 
ƒ if we first determine si. Hence, knowing MT,

MT =
yi

yo
= -  

si

so
=

-4.0
2.0

= -2.0

 si = 2.0so = 200 cm

rays coming from it entering the lens are essentially parallel 
(Fig. 5.25a) and will be brought together at the focal point Fi. 
If the source point-S1 is closer (Fig. 5.25b), but still fairly far 
away, the cone of rays entering the lens is narrow, and the rays 
come in at shallow angles to the surface of the lens. Because 
the rays do not diverge greatly, the lens bends each one into 
convergence, and they arrive at point-P1. As the source moves 
closer, the entering rays diverge more, and the resulting image 
point moves farther to the right. Finally, when the source point 
is at Fo, the rays are diverging so strongly that the lens can no 
longer bring them into convergence, and they emerge parallel 
to the central axis. Moving the source point closer results in 
rays that diverge so much on entering the lens that they still 
diverge on leaving. The image point is now virtual—there are 
no real images of objects that are at or closer in than ƒ. 

Figure 5.26 illustrates the behavior pictorially. As the object 
approaches the lens, the real image moves away from it. 
When the object is very far away, the image (real, inverted, and 
minified MT 6 1) is just to the right of the focal plane. As the 
object approaches the lens, the image (still real, inverted, and 
minified MT 6 1) moves away from the focal plane, to the right, 
getting larger and larger. With the object between infinity and 
2ƒ we have the arrangement for cameras and eyeballs, both of 
which require a minified, real image. By the way, it’s the brain 
that flips the image so that you see things right-side-up.

When the object is at two focal lengths, the image (real and 
inverted) is now life size, that is, MT = 1. This is the usual con-
figuration of the photocopy machine. 

As the object comes closer to the lens (between 2ƒ and ƒ), 
the image (real, inverted, and enlarged MT 7 1) rapidly moves 
to the right and continues to increase in size. This configuration 

S1 S4 P3FoS2 S3 Fi P1 P2

Fi

S

(a)

(b)

Figure 5.25  (a) The waves from a distant object flatten out as they expand, and the radii get  
larger and larger. Viewed from far away the rays from any point are essentially parallel, and the  
lens causes them to converge at Fi. (b) As a point source moves closer, the rays diverge more  
and the image point moves out away from the lens. The emerging rays no longer converge once  
the object reaches the focal point; nearer in still, they diverge.

Continued
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Using the Gaussian Lens Formula

 
1
ƒ

=
1
so

+
1
si

=
1

100
+

1
200

 ƒ =
200
3

= 66.67 cm

The Lensmaker’s Formula will give us R:

1
ƒ

= (1.50 - 1) a1
R

-
1

-R
b =

1
2

 
2
R

and ƒ = R = 67 cm 

Note that the transformation from object to image space is 
not linear; all of the object space from 2ƒ out to infinity, on the 
left of the lens, is compressed in the image space between ƒ and 
2ƒ, on the right of the lens. Figure 5.27 suggests that the image 
space is distorted, in the sense that advancing the object uni-
formly toward the lens has the effect of changing the image 
differently along and transverse to the central axis. The axial 
image intervals increase much more rapidly than the corre-
sponding successive changes in the height of the image. This 
relative “flattening” of distant-object space is easily observable 
using a telescope (i.e., a long focal-length lens). You’ve proba-
bly seen the effect in a motion picture shot through a telephoto 
lens. Always staying far away, the hero vigorously runs a great 
distance toward the camera, but psychologically he seems to 
make no progress because his perceived size increases very lit-
tle despite all his effort.

When an object is closer to a convex lens than one focal 
length (Fig. 5.26d) the resulting image is virtual, upright, and 
magnified. As listed in Table 5.3 the image is farther to the left 
of the lens than is the object. We can see what’s happening with 
that virtual image in Fig. 5.28, where several objects, all of the 
same size, are located between the focal point-Fo and the vertex 
V . A number-2 ray parallel to the central axis marks the tops  
of all of the objects; it refracts through point-Fi and that ray, 

(a)

(b)

(c)

(d)

Figure 5.26  The image-forming behavior of a thin positive lens.

ffff

F
F

Figure 5.27  The number-2 
ray entering the lens parallel 
to the central axis limits the 
image height.
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176 Chapter 5 Geometrical Optics

Virtual Objects

We’ll soon be studying combinations of lenses, but before we 
do we should consider a situation that often arises when there 
are several lenses in sequence. It is then possible for the rays to 
converge down upon a lens, as in Fig. 5.31a. Here the rays are 
symmetrically distributed about the central axis and all of them 
are heading toward the object focus Fo. As a result the rays exit 
the lens parallel to the central axis and the image is at infinity, 
which just means there isn’t one. Because the rays converge 
toward the point-Fo it is customary to say that it corresponds to 
a virtual point object. The same is true of point-Fo in Fig. 5.31b, 
where ray-1 passing through the center of the lens makes a 
small angle with the axis. The rays all converge toward Fo on 
the focal plane and we again have a virtual point object. All of 
the rays leave the lens parallel to ray-1. That’s an important fact 
to remember and we’ll make use of it later.

projected backward, fixes the heights of each image. Notice that 
as the objects approach the lens the images shrink, although the 
magnification is still greater than 1. When the object is smack 
up against the lens the image is life-sized.

Longitudinal Magnification

Presumably, the image of a three-dimensional object will itself 
occupy a three-dimensional region of space. The optical system 
can apparently affect both the transverse and longitudinal di-
mensions of the image. The longitudinal magnification, ML,
which relates to the axial direction, is defined as

 ML K
dxi

dxo
 (5.27)

This is the ratio of an infinitesimal axial length in the region of 
the image to the corresponding length in the region of the ob-
ject. Differentiating Eq. (5.23) leads to

 ML = -  
ƒ2

x2
o

= - M2
T (5.28)

for a thin lens in a single medium (Fig. 5.29). Evidently, 
ML 6 0, which implies that a positive dxo corresponds to a neg-
ative dxi and vice versa. In other words, a finger pointing toward 
the lens is imaged pointing away from it (Fig. 5.30).

Form the image of a window on a sheet of paper, using a 
simple convex lens. Assuming a lovely arboreal scene, image 
the distant trees on the screen. Now move the paper away from 
the lens, so that it intersects a different region of the image 
space. The trees will fade while the nearby window itself comes 
into view.

f

Fo V Fi

Figure 5.28  The formation of virual images by a positive lens. The closer 
the object comes to the lens, the closer the image approaches the lens.

Figure 5.29  The transverse magnification is different from the longitudinal 
magnification.

O

Figure 5.30  Image orientation for a thin lens.

Fo

Fo

(a)

Ray-1

Ray-1

(b)

Figure 5.31  Virtual point objects for a negative lens (a) on and (b) off 
axis. When rays converge to the object, the object is virtual. That often 
happens in multi-lens systems.
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to the lens (Fig. 5.34). All of the rays don’t actually make it to 
the object and it is again (so 6 0) virtual. Now when the rays 
are refracted by the lens they arrive at the image; the rays con-
verge on the image, which is to the right of the lens (si 7 0) 
and therefore real. The object is virtual (so * 0) and the image 
is real (si + 0).

Focal-Plane Ray Tracing

Until now we’ve done well by simply tracing our three favorite 
rays, but there is another ray-tracing scheme that’s well worth 
knowing. It’s predicated on the fact that points on the focal 
plane of a lens are always associated with parallel columns  
of rays. Consequently, imagine an arbitrary ray incident on a 
positive lens (Fig. 5.35a). The ray crosses the first focal plane 
(reexamine Fig. 5.19) at point-A, but so far we haven’t tried to 
pictorially determine where it goes after it refracts at point-B. 
Still, we do know that all rays from point-A must emerge from 
the lens parallel to one another. Moreover, we know that a ray 

Things get a little more complicated for an extended object 
as in Fig. 5.32. Three converging rays enter the positive lens 
heading for the top of what will be the “object”—of course, 
nothing other than ray-1 exists at that location; the actual bug is 
presumably somewhere off to the left. The rays, which, before 
entering the lens, are directed toward the head of the object bug 
(far right, so 6 0), are refracted by the lens and actually con-
verge at the head of an upright, minified, real image of the bug. 
Notice that the object is located beyond one focal length from 
the lens. The lens adds convergence to the rays, which then 
converge to the image, which is closer to the lens but still on 
its right side. The object is virtual (so * 0) and the image is 
real (si + 0). One could place a screen at si and an image 
would appear on it. Incidentally, when both object and image 
appear on the same side of a lens, one of them must be real and 
the other virtual.

A somewhat similar situation exists in Fig. 5.33, where three 
rays again head toward the top of the “object” before entering 
what is this time a negative lens. That object bug being to the 
right of the lens (so 6 0) is virtual. The rays pass through the 
lens, diverge, and seem to come from the inverted, minified, 
virtual image on the left of the lens. That is, an observer on the 
right looking left into the lens would pick up the three rays and 
projecting them back to the left would see the inverted bug  
image. The object is virtual (so * 0) and the image is virtual  
(si * 0).

Notice that the virtual object in Fig. 5.33 appears beyond  
one focal length from the lens. If the three rays approach at 
greater angles they could converge toward an object that is closer 

FF O

Ray-2

Ray-1

Ray-3

si � 0

so � 0

Figure 5.32  A virtual object (far right) and its real, upright image (just to 
the right of the lens). This can happen in a multi-lens system.

F
F

O

Ray-2

Ray-1

Ray-3
si � 0

so � 0

Figure 5.33  A virtual object (on the right) and its virtual, inverted image 
(on the left). This kind of situation can arise in a multi-lens system.

Figure 5.34  A virtual object (just to the right of the lens) and its real 
enlarged, upright image (far right). This can happen in a multi-lens system 
that causes the rays to initially converge.

FF O

Ray-2

Ray-1

Ray-3

so � 0

si � 0

Figure 5.35  Focal-plane ray tracing. Reexamine Fig. 5.31b.

F
C

F O

A
B

(a)

F
F

O

A

B

(b)
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178 Chapter 5 Geometrical Optics

from A to the center of the lens, O, goes straight through. So the 
refracted ray starting at B must be parallel to the ray from A to 
O and hence crosses the axis at C. 

Let’s try the method for the negative lens in Fig. 5.35b. An 
arbitrary downward ray strikes the lens at point-B. That ray is 
heading toward point-A on the second focal plane of the nega-
tive lens a little above point-F. Now draw a line from O to A and 
extend it somewhat. A ray along that line would pass through A 
and keep on going. Moreover, all rays initially heading toward A 
(reexamine Fig. 5.31) must refract at the lens and emerge paral-
lel to one another and to the line from O to A. This means that the 
ray we are concerned with refracts at B and gaining divergence 
heads up and away such that it is parallel to the line from O to A.

As we’ll see presently this technique will allow us to quickly 
trace an arbitrary ray through a series of lenses.

Thin-Lens Combinations

Our purpose here is not to become proficient in the intricacies 
of modern lens design, but rather to gain the familiarity neces-
sary to utilize, and adapt, those lens systems already available 
commercially.

In constructing a new optical system, one generally begins by 
sketching out a rough arrangement using the quickest approxi-
mate calculations. Refinements are then added as the designer 

goes on to the prodigious and more exact ray-tracing techniques. 
Nowadays these computations are carried out by computers. 
Even so, the simple thin-lens concept provides a highly useful 
basis for preliminary calculations in a broad range of situations.

No lens is actually a thin lens in the strict sense of having a 
thickness that approaches zero. Yet many simple lenses, for all 
practical purposes, function in a fashion equivalent to that of a 
thin lens (i.e., one that is thin in comparison to its diameter). 
Almost all spectacle lenses (which, by the way, have been used 
at least since the thirteenth century) are in this category. When 
the radii of curvature are large and the lens diameter is small, 
the thickness will usually be small as well. A lens of this sort 
would generally have a large focal length, compared with which 
the thickness would be quite small; many early telescope objec-
tives fit that description perfectly.

We’ll now derive expressions for parameters associated with 
thin-lens combinations. The approach will be fairly simple, 
leaving the more elaborate traditional treatment for those tena-
cious enough to pursue the matter into the next chapter.

Consider two thin positive lenses L1 and L2 separated by a 
distance d, which is smaller than either focal length, as in  
Fig. 5.36. The resulting image can be located graphically as fol-
lows. Overlooking L2 for a moment, construct the image formed 
exclusively by L1 using rays-2 and -3. As usual, these pass 
through the lens object and image foci, Fo1 and Fi1, respectively. 
The object is in a normal plane, so that two rays determine the 

S1

L1 L2

Fo1

P1�

1 4

2

3

f1

(a)

d

Fo2 Fi1

f2
so2

so1 si1

(b)

S1

L1 L2

Fo1

3

4

Fo2 Fi1 Fi2

si2

P1

O1 O2

O1 O2

Fi2

Figure 5.36  Two thin lenses  
separated by a distance smaller than 
either focal length.
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top of the image, and a perpendicular to the optical axis finds its 
bottom. Ray-4 is then constructed running backward from P′1
through O2. Insertion of L2 has no effect on ray-4, whereas ray-3 
is refracted through the image focus Fi2 of L2. The intersection 
of rays-4 and -3 fixes the image, which in this particular case is 
real, minified, and inverted. When the two lenses are close to-
gether, as they are here, the presence of L2 essentially adds con-
vergence (ƒ2 7 0) or divergence (ƒ2 6 0) to the bundle of rays 
emerging from L1; see Fig. 5.37.

A similar pair of lenses is illustrated in Fig. 5.38, in which 
the separation has been increased. Once again rays-2 and -3 
through Fi1 and Fo1 fix the position of the intermediate image 
generated by L1 alone. As before, ray-4 is drawn backward 
from O2 to P′1 to S1. The intersection of rays-3 and -4, as the 
former is refracted through Fi2, locates the final image. This 
time it is real and erect. Notice that if the focal length of L2 is 
increased with all else constant, the size of the image increases 
as well.

Analytically, looking only at L1 in Fig. 5.36,

 
1
si1

=
1
ƒ1

-
1

so1
 (5.29)

or si1 =
so1ƒ1

so1 - ƒ1
 (5.30)

This is positive, and the intermediate image (at P′1) is to the 
right of L1, when so1 7 ƒ1 and ƒ1 7 0. Now considering the 
second lens L2 with its object at P′1

 so2 = d - si1 (5.31)

L1

L1

L1 L2

L2

f1

(a)

(b)

(c)

+

+

Figure 5.37  (a) The effect of placing a second lens, L2, within the focal 
length of a positive lens, L1. (b) When L2 is positive, its presence adds con-
vergence to the ray bundle. (c) When L2 is negative, it adds divergence to 
the ray bundle.

2

4

3 O1

Fo1

S1

P1

P1�

L1

Fi1 Fo2 Fi2

O2

L2

si1

f1
so1 d

f2

so2

si2

Figure 5.38  Two thin lenses separated by a distance greater than the sum of their focal lengths. Because  
the intermediate image is real, you could start with point-P1′ and treat it as if it were a real object point for L2.  
Thus a ray from P1′ through Fo2 would arrive at P1.

and if d 7 si1, the object for L2 is real (as in Fig. 5.38), whereas 
if d 6 si1, it is virtual (so2 6 0, as in Fig. 5.36). In the former 
instance the rays approaching L2 are diverging from P′1, where-
as in the latter they are converging toward it. As drawn in  
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of its image by calculating the effect of each lens. (b) Compute 
the magnification. (c) Describe the image.

SOLUTION 

(a) The first lens forms an intermediate image at si1, where

 
1
ƒ1

=
1

so1
+

1
si1

 
1

40.0
=

1
120

+
1
si1

 
1
si1

=
1

40.0
-

1
120

=
2

120
 si1 = 60.0 cm

That’s 30.0 cm to the right of the negative lens. Hence 
so2 = -30.0 cm and

 
1
ƒ2

=
1

so2
+

1
si2

 
1

-  40.0
=

1
-30.0

+
1
si2

 si2 = +120 cm

The image is formed 120 cm to the right of the negative lens. 
(b) The magnification is

MT = MT1 MT 2 = a-  
si1

so1
b a-  

si2

so2
b

MT = a-  
60.0
120

b a-  
120
-30

b = -2.0

(c) The image is real, because si2 7 0; inverted, because MT 6 0; 
and magnified. We could check MT using Eq. (5.34) 

 MT =
40(120)

30(120 - 40) - 120(40)
=

40(120)

-40(60)

 MT = -2.0

and si2 using Eq. (5.33)

 si2 =
(-40.0)(30.0) - (-40.0)(120)(40.0)/(120 - 40.0)

30.0 - (-40.0) - 120(40.0)>(120 - 40.0)

 si2 =
-1200 + 40.0(60.0)

70.0 - 60.0
=

1200
10

= 120 cm

The two positive lenses, L1 and L2, in Fig. 5.39 have a long 
and a short focal length and are separated by a distance greater 
than the sum of both. The real, inverted, minified intermediate 
image is located by the intersection of rays-1, -2, and -3, 
which go on to intersect the first focal plane of the second lens 
at points-A1, -A2, and -A3 and then intersect L2 at B1, B2,  
and B3. The question at hand is, how are those rays refracted 
by L2? In other words, how do we locate point-P? Since the 

Fig. 5.36a, the intermediate image formed by L1 is the virtual 
object for L2. Furthermore, for L2

 
1
si2

=
1
ƒ2

-
1

so2
 

or si2 =
so2ƒ2

so2 - ƒ2
 

Using Eq. (5.31), we obtain

 si2 =
(d - si1)ƒ2

(d - si1 - ƒ2)
 (5.32)

In this same way we could compute the response of any number 
of thin lenses. It will often be convenient to have a single expres-
sion, at least when dealing with only two lenses, so substituting 
for si1 from Eq. (5.29),

 si2 =
ƒ2d - ƒ2so1ƒ1>(so1 - ƒ1)

d - ƒ2 - so1ƒ1>(so1 - ƒ1)
 (5.33)

Here so1 and si2 are the object and image distances, respectively, 
of the compound lens. As an example, let’s compute the image 
distance associated with an object placed 50.0 cm from the first 
of two positive lenses. These in turn are separated by 20.0 cm 
and have focal lengths of 30.0 cm and 50.0 cm, respectively. By 
direct substitution

si2 =
50(20) - 50(50)(30)>(50 - 30)

20 - 50 - 50(30)>(50 - 30)
= 26.2 cm

and the image is real. Inasmuch as L2 “magnifies” the interme-
diate image formed by L1, the total transverse magnification of 
the compound lens is the product of the individual magnifica-
tions, that is,

MT = MT1MT  2

It is left as Problem 5.45 to show that

 MT =
ƒ1si2

d(so1 - ƒ1) - so1ƒ1
 (5.34)

In the above example

MT =
30(26.2)

20(50 - 30) - 50(30)
= -0.72

and just as we should have guessed from Fig. 5.36, the image is 
minified and inverted.

EXAMPLE 5.5

A thin biconvex lens having a focal length of +40.0 cm is 
located 30.0 cm in front (i.e., to the left) of a thin biconcave 
lens of focal length -40.0 cm. If a small object is situated 120 
cm to the left of the positive lens (a) determine the location  
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intermediate image is real we could just introduce two new 
convenient rays, but instead let’s use the focal-plane ray trac-
ing method.

Draw a line from A2 to O. The refracted ray starting at B2 
must be parallel to this line—draw it. Now draw a line from A1 
to O. The refracted ray starting at B1 must be parallel to this 
line—draw it. Where these two lines cross locates point-P and 
the final image, which is real and upright.

As another example of the method, consider the ray parallel 
to the central axis impinging on the positive lens L1 in Fig. 5.40 
and trace it through the system. The ray intersects the first focal 
plane of L1 at A1. It refracts and heads toward focal point-F1,but 
it’s also parallel to the line from A1 to O1. Thus the ray bends 
and goes from B1 to B2 and we extend it as a dashed line until it 
intersects the second focal plane of the negative lens L2 at A2. 
Draw the dashed line back from A2 to O2 such that the ray from 
B2 to B3 is parallel to that line. This ray intersects the first focal 
plane of L3 at A3 and impinges on L3 at B3. To determine the 
final bend as the ray leaves L3 draw a line from O3 back to A3. 
The last ray emerges parallel to the O3-to-A3 line.

Figure 5.39  Using the focal-plane ray tracing technique.

Ray-2

Ray-3

Ray-1

F1

L1

F1 F2

F2

P

O

L2

A1

A3
B3

B1

B2

A2

Figure 5.40  Tracing a ray through a system of three lenses using the 
focal-plane technique.

F2

F3

A3

A2F1 O1

A1

1st L1 2nd L2

1st L3

L1 L3L2

O2

B1

B2

O3

B3

F1

Back and Front Focal Lengths

The distance from the last surface of an optical system to the 
second focal point of that system as a whole is known as the 
back focal length, or b.f.l. Similarly, the distance from the ver-
tex of the first surface to the first or object focus is the front 
local length, or f.f.l. Consequently, if we let si2 S ∞ , so2  
approaches ƒ2, which combined with Eq. (5.31) tells us that  
si1 S d - ƒ2. Hence from Eq. (5.29)

1
so1

`
si2 = ∞

=
1
ƒ1

-
1

(d - ƒ2)
=

d - (ƒ1 + ƒ2)

ƒ1(d - ƒ2)

But this special value of so1 is the f.f.l.:

 f.f.l. =
ƒ1(d - ƒ2)

d - (ƒ1 + ƒ2)
 (5.35)

In the same way, letting so1 S ∞  in Eq. (5.33), (so1 - ƒ1) S so1,
and since si2 is then the b.f.l., we have

 b.f.l. =
ƒ2(d - ƒ1)

d - (ƒ1 + ƒ2)
 (5.36)

To see how this works numerically, let’s find both the b.f.l. and 
f.f.l. for the thin-lens system in Fig. 5.41a, where ƒ1 = -30 cm 
and ƒ2 = +20 cm. Then

b.f.l. =
20[10 - (-30)]

10 - (-30 + 20)
= 40 cm

and similarly f.f.l. = 15 cm. Incidentally, notice that if d =   
ƒ1 + ƒ2, plane waves entering the compound lens from either 
side will emerge as plane waves (Problem 5.49), as in telescopic 
systems.

M05_HECH6933_05_GE_C05.indd   181 09/09/16   1:11 PM



182 Chapter 5 Geometrical Optics

Observe that if d S 0, that is, the lenses are brought into 
contact, as in the case of some achromatic doublets,

 b.f.l. = f.f.l =
ƒ2ƒ1

ƒ2 + ƒ1
 (5.37)

For two thin lenses in contact the resultant thin lens has an  
effective focal length, ƒ, such that

 
1
ƒ

=
1
ƒ1

+
1
ƒ2

 (5.38)

This implies that if there are N such lenses in contact,

 
1
ƒ

=
1
ƒ1

+
1
ƒ2

+ g+  
1
ƒN

   (5.39)

Many of these conclusions can be verified, at least qualita-
tively, with a few simple lenses. Figure 5.36 is easy to duplicate, 
and the procedure should be self-evident, whereas Fig. 5.38  
requires a bit more care. First, determine the focal lengths of the 
two lenses by imaging a distant source. Then hold one of the 
lenses (L2) at a fixed distance slightly greater than its focal 
length from the plane of observation (i.e., a piece of white pa-
per). Now comes the maneuver that requires some effort if you 
don’t have an optical bench. Move the second lens (L1) toward 
the source, keeping it reasonably centered. Without any at-
tempts to block out light entering L2 directly, you will probably 
see a blurred image of your hand holding L1. Position the lenses 
so that the region on the screen corresponding to L1 is as bright 
as possible. The scene spread across L1 (i.e., its image within 
the image) will become clear and erect, as in Fig. 5.38.

QED and the Lens

One excellent reason for deriving the basic equations of this 
chapter from Fermat’s Principle is that it keeps us thinking in 
terms of optical path lengths, and that naturally leads to the 

10 cm

(a)

(b)

b.f.l.

L1 L2

Figure 5.41  (a) A positive and negative thin-lens combination, (b) photo (E.H.)

Feynman treatment of Quantum Electrodynamics. Keep in 
mind that many physicists consider their theories to be noth-
ing more than the conceptual machinery for calculating the 
results of observations. And no matter how sophisticated a 
theory is, it must be in agreement with even the most “ordi-
nary” observation. Thus to see how the operation of a lens fits 
into the QED worldview, return to Fig. 4.80 and the mirror for 
a brief review.

Light goes from point S to the mirror to point P along a 
tremendous number of possible routes. Classically, we note 
that the OPLs are different as, therefore, are the traversal times. 
In QED, each path has an associated probability amplitude 
(which has a phase angle proportional to the traversal time). 
When these are all summed, the most effective contribution to 
the overall probability of light arriving at P is seen to come 
from the paths immediately adjacent to the one that has the 
minimum OPL.

For a lens (Fig. 5.42) the situation is very different. We can 
again approximate things by dividing the device into a man-
ageable number of segments with a possible light path, and 
therefore a tiny probability amplitude, corresponding to each 
one. Of course, there should be a lot more than 17 paths, so 
think of each of these as representing a cluster of billions of 
neighboring trajectories—the logic doesn’t change. Each path 
has a little probability-amplitude phasor associated with it. Be-
cause the lens was designed specifically to make all the OPLs 
equal, a plot of OPL (or equivalently the transit times) against 
distance across the breadth of the lens is a straight line. Conse-
quently, a photon takes the same time to traverse any one path; 
all the phasors (each assumed to be the same size) have the 
same phase angle. Thus, they all contribute equally to the like-
lihood of a photon arriving at P. Putting the phasors tip-to-tail 
results in a very large net amplitude, which when squared 
yields a very high probability of light reaching P via the lens. 
In the language of QED, a lens focuses light, by causing all 
the constituent probability amplitudes to have the same phase 
angle.

For other points in the plane containing P that are close to 
the optical axis, the phase angles will differ proportionately. 
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limits the breadth of the beam of light coming from an axial 
object point as it passes through the system. The adjustable 
leaf diaphragm that is usually located behind the first few  
elements of a compound camera lens is just such an aperture 
stop. Evidently, it determines the light-gathering capability of 
the lens as a whole. As shown in Fig. 5.43, highly oblique 
rays can still enter a system of this sort. Usually, however, they 
are deliberately restricted in order to control the quality of the  
image. 

The element limiting the size or angular breadth of the object 
that can be imaged by the system is called the field stop, or 
F.S.—it determines the field of view of the instrument. In a 
camera, the edge of the film or CCD sensor bounds the image 
plane and serves as the field stop. Thus, while the aperture stop 
controls the number of rays from an object point reaching the 
conjugate image point (Fig. 5.43), it is the field stop that will or 
will not obstruct those rays in toto. Neither the region above the 
top nor the region below the bottom of the object in Fig. 5.43 
passes the field stop. Opening the circular aperture stop would 
cause the system to accept a larger energy cone and in so doing 
increase the irradiance at each image point. In contrast, opening 
the field stop would allow the regions beyond the extremities of 
the object, which were previously blocked, to be imaged.

5.3.2 Entrance and Exit Pupils

Another concept, useful in determining whether or not a given 
ray will traverse the entire optical system, is the pupil. This is 
simply an image of the aperture stop. The entrance pupil of a 
system is the image of the aperture stop as seen from an axial 
point on the object looking through those elements preceding 
the stop. If there are no lenses between the object and the A.S., 
the latter itself serves as the entrance pupil. To illustrate the point, 
examine Fig. 5.44, which is a lens with a rear aperture stop. 
Imagine your eye on the axis to the left of the lens in the object 
space looking to the right through the lens at the aperture stop. 
The image you see, whether real or virtual, is the entrance  

The phasors placed tip-to-tail will gradually spiral, and the net 
probability amplitude will initially diminish quickly, but not 
discontinuously so. Notice that the probability distribution is 
not a single infinitesimally narrow spike; the light cannot be 
focused to a point. The phasors for off-axis points cannot all at 
once add to zero; what happens, happens gradually and contin-
uously. The resulting circularly symmetric probability distribu-
tion, I(r) , is known as the Airy pattern (p. 490).

5.3 Stops

5.3.1 Aperture and Field Stops

The intrinsically finite nature of all lenses demands that they 
collect only a fraction of the energy emitted by a point source. 
The physical limitation presented by the periphery of a simple 
lens therefore determines which rays shall enter the system to 
form an image. In that respect, the unobstructed or clear diam-
eter of the lens functions as an aperture into which energy 
flows. Any element, be it the rim of a lens or a separate dia-
phragm, that determines the amount of light reaching the image 
is known as the aperture stop (abbreviated A.S.). The aperture 
stop of an optical system is the particular physical entity that 
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Figure 5.42  Feynman’s analysis of the thin lens via QED. (a) A number 
of possible paths from S to P. (b) The OPL for light along each path.  
(c) The corresponding probability-amplitude phasors all adding in-phase.

A.S. F.S.

Figure 5.43  Aperture stop and field stop.
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184 Chapter 5 Geometrical Optics

through the aperture stop and emerge as a converging cone 
that passes through the exit pupil. Keep in mind that different 
objects located along the axis may correspond to different 
aperture stops and pupils; one has to be careful about this.

To use a telescope or a monocular as a camera lens, you 
might attach an external front aperture stop to control the 
amount of incoming light for exposure purposes. Figure 5.45 
represents a similar arrangement in which the entrance and exit 
pupil locations should be self-evident. If the lens was shorter 
and the object moved closer, rays could pass under the top edge 
of the stop diaphragm. The top of the lens would then limit the 
cone of rays and the lens itself would become the aperture stop. 
On the other hand, moving the object to the left would leave the 
aperture stop and pupils unchanged. 

The last two diagrams include a ray labeled the chief ray. It 
is defined to be any ray from an off-axis object point that passes 
through the center of the aperture stop. The chief ray enters the 
optical system along a line directed toward the midpoint of the 
entrance pupil, Enp, and leaves the system along a line passing 
through the center of the exit pupil, Exp. The chief ray, associ-
ated with a conical bundle of rays from a point on the object, 
effectively behaves as the central ray of the bundle and is repre-
sentative of it. Chief rays are of particular importance when the 
aberrations of a lens design are being corrected.

Figure 5.46 depicts a somewhat more involved arrangement. 
The two rays shown are those that are usually traced through an 
optical system. One is the chief ray from a point on the periphery 
of the object that is to be accommodated by the system. The oth-
er is called a marginal ray, since it goes from the axial object 
point to the rim or margin of the entrance pupil (or aperture stop).

In a situation where it is not clear which element is the ac-
tual aperture stop, each component of the system must be im-
aged by the elements to its left. The image that subtends the 
smallest angle at the axial object point is the entrance pupil. 
The element whose image is the entrance pupil is then the aper-
ture stop of the system for that object point. Problem 5.46 deals 
with just this kind of calculation.

EXAMPLE 5.6

A positive lens having a diameter of 140 mm and a focal length 
of 0.10 m is 8.0 cm in front of an opaque screen containing a 
central hole 40 mm in diameter. An axial object point-S is 20 cm 
in front of the lens. Image each element through the elements 
to its left and determine which element subtends the smallest 
angle at S. That will be the entrance pupil—determine its loca-
tion and size. The object conjugate to the entrance pupil is the 
aperture stop—identify it.

SOLUTION 

There are no elements to the left of the lens L, so it is essentially 
the image of itself. To find the image of the 40-mm hole as seen 
looking into L from the image space, we have to imagine a point 

pupil. Because it is closer to the lens than one focal length, the 
image of the aperture stop in L is virtual (see Table 5.3) and 
magnified. It can be located by sending a few rays out from the 
edges of the A.S. in the usual way. In contrast, the exit pupil  
is the image of the A.S. as seen from an axial point on the im-
age looking through the interposed lenses, if there are any. In 
Fig. 5.44 there are no such lenses, so the aperture stop itself 
serves as the exit pupil. Considering Fig. 5.45, imagine your 
eye in the image space on the axis looking left through the lens 
at the aperture stop. The image you see is the exit pupil.

Notice that all of this just means that the cone of light actu-
ally entering the optical system is determined by the entrance 
pupil, whereas the cone leaving it is controlled by the exit pupil. 
No rays from the source point proceeding outside of either cone 
will make it to the image plane. The pupils and the aperture 
stop are conjugates; when there is no vignetting (see below) 
any diverging cone of rays entering the entrance pupil will pass 

A.S.

Exit
pupil

Chief ray Exp Enp

ΣiL

Entrance
pupil

Figure 5.44  Entrance pupil and exit pupil.

A.S.

Exit
pupil

Chief ray

Exp Enp

Σi

Entrance
pupil

Figure 5.45  A front aperture stop. Continued
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where 5 * 40 mm = 200 mm. Now locate the image of S; 
call it P.

1
10

=
1
20

+
1
si

si = +  20 cm

P is 20 cm to the right of L. The element that limits the cone of 
rays arriving at P is the hole in the screen, not the lens. Angle 
b 6 a—hence the hole is the aperture stop and its image is the 
entrance pupil.

Notice how the cone of rays, in Fig. 5.47, that can reach 
the image plane becomes narrower as the object point moves 
off-axis. The effective aperture stop, which for the axial 
bundle of rays was the rim of L1 , has been markedly re-
duced for the off-axis bundle. The result is a gradual fading 
out of the image at points near its periphery, a process 
known as vignetting.

The locations and sizes of the pupils of an optical system are 
of considerable practical importance. In visual instruments,  
the observer’s eye is positioned at the center of the exit pupil. 
The pupil of the eye itself will vary from 2 mm to about 8 mm, 
depending on the general illumination level. Thus a telescope or 
binocular designed primarily for evening use might have an exit 
pupil of at least 8 mm. (You may have heard the term night 
glasses—they were quite popular on roofs during the Second 
World War.) In contrast, a daylight version will suffice with an 
exit pupil of 3 or 4 mm. The larger the exit pupil, the easier it is 

source on the axis at the center of the hole sending light to the left 
toward the lens. That means modifying all of the appropriate signs 
in the equation

1
f

=
1
so

+
1
si

Here ƒ = +10 cm and with so = +8.0 cm 

1
10

=
1

8.0
+

1
si

si = -  40 cm. This tells us that the image is on the same side of 
L as the object, that is, on the right. The image of the aperture 
is virtual, since so 6 f.

20 cm 8.0
40.0 cm

Aperture
stop

S

F

L

F

P
a

b

Entrance
pupil

200 mm

The size of the image of the hole is obtained from

MT = -  
si

so
= -  

-40
8.0

= 5

A.S.

Exit
pupil

Chief ray

Marginal ray

Exp Enp

Entrance
pupil

Figure 5.46  Pupils and stops for  
a three-lens system.
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Entrance
pupil

F1
F2

L1
L2

F1F2

The entrance pupil is to the right and virtual. The exit pupil 
is the image of the aperture stop seen by an observer in the 
image space. The exit pupil falls to the left of the aperture 
stop and is also virtual.

Exit pupil

F1
F2

L1
L2

F1F2

5.3.3 Relative Aperture and ƒ-Number

Suppose we collect the light from an extended source and form 
an image of it using a lens (or mirror). The amount of energy 
gathered by the lens (or mirror) from some small region of a 
distant source will be directly proportional to the area of the 
lens or, more generally, to the area of the entrance pupil. A large 
clear aperture will intersect a large cone of rays. Obviously, if 
the source was a laser with a very narrow beam, this would not 
necessarily be true. If we neglect losses due to reflection, ab-
sorption, and so forth, the incoming energy will be spread 
across a corresponding region of the image (Fig. 5.48). The en-
ergy per unit area per unit time (i.e., the flux density or irradi-
ance) will be inversely proportional to the image area.

to align your eye properly with the instrument. In most optical 
devices which the eye looks into, the exit pupil is real and lo-
cated roughly 12 mm behind the last surface. Obviously, a tele-
scopic sight for a high-powered rifle should have a large exit 
pupil located far enough behind the scope so as to avoid injury 
from recoil.

EXAMPLE 5.7

Consider the thin-lens system shown in the accompanying figure 
where the object is at focal point-F1 and there is an internal 
diaphragm. Locate the aperture stop and the entrance and exit 
pupils. Identify the maginal ray.

F1

F2

L1
L2

F1F2

SOLUTION 

Draw a cone of rays originating at F1 and passing through the 
system.

Marginal ray

Marginal ray

Aperture stop

F1
F1 F2

L1
L2

F2

The diaphragm is the aperture stop, since it limits the beam. 
Now, to locate the entrance pupil find the image of the aperture 
stop seen by an observer at the object looking to the right.

Effective
aperture

stop

L2L1

Figure 5.47  Vignetting.

M05_HECH6933_05_GE_C05.indd   186 26/08/16   1:33 PM



 5.3 Stops 187

Diaphragm

Shutter

Film or CCD

Lens

Figure 5.48  A large-format camera usually consists of a lens, followed 
by an adjustable diaphragm, a shutter that can rapidly open and close, and 
a sheet of film on which the image is formed.

The entrance pupil area, if circular, varies as the square of its 
radius and is therefore proportional to the square of its diameter 
D. Furthermore, the image area will vary as the square of its 
lateral dimension, which in turn [Eqs. (5.24) and (5.26)] is pro-
portional to ƒ2. (Keep in mind that we are talking about an ex-
tended object rather than a point source. In the latter case, the 
image would be confined to a very small area independent of ƒ.) 
Thus the flux density at the image plane varies as (D>ƒ)2. The 
ratio D>ƒ is known as the relative aperture, and its inverse is the 
focal ratio, or ƒ-number, often written ƒ>#, that is,

 ƒ># K
ƒ

D
 (5.40)

where ƒ># should be understood as a single symbol. For  
example, a lens with a 25-mm aperture and a 50-mm focal 
length has an ƒ-number of 2, which is usually designated ƒ>2. 
Figure 5.49 illustrates the point by showing a thin lens behind a 
variable iris diaphragm operating at either ƒ>2 or ƒ>4. A smaller 
ƒ-number clearly permits more light to reach the image plane.

Camera lenses are usually specified by their focal lengths 
and largest possible apertures; for example, you might see “50 
mm, ƒ>1.4” on the barrel of a lens. Since the photographic ex-
posure time is proportional to the square of the f-number, the 
latter is sometimes spoken of as the speed of the lens. An ƒ>1.4 
lens is said to be twice as fast as an ƒ>2 lens. Usually, lens dia-
phragms have f-number markings of 1, 1.4, 2, 2.8, 4, 5.6, 8, 11, 
16, 22, and so on. The largest relative aperture in this case cor-
responds to ƒ>1, and that’s a fast lens—ƒ>2 is more typical. 
Each consecutive diaphragm setting increases the f-number by 
a multiplicative factor of 22 (numerically rounded off). This 
corresponds to a decrease in relative aperture by a multiplica-
tive factor of 1>22 and therefore a decrease in flux density by 
one half. Thus, the same amount of light will reach the film 
whether the camera is set for ƒ>1.4 at 1>500th of a second,  ƒ>2 
at 1>250th of a second, or ƒ>2.8 at 1>125th of a second.

The largest refracting telescope in the world, located at the Yer-
kes Observatory of the University of Chicago, has a 40-inch diam-
eter lens with a focal length of 63 feet and therefore an f-number 

5.6 84

(b)

2.8 11 16f-number   

2 3 5 10 m
1.4 2 2.8 4 5.6 8 11 16f-number scale

Distance scale
oo

Figure 5.49  (a) Stopping down a lens to change the ƒ-number. (b) A 
camera lens showing possible settings of the variable diaphragm usually 
located within the lens.

f�2

(a)

f�4

of 18.9. The entrance pupil and focal length of a mirror will, in 
exactly the same way, determine its f-number. Accordingly, the 
200-inch diameter mirror of the Mount Palomar telescope, with a 
prime focal length of 666 inches, has an f-number of 3.33.

EXAMPLE 5.8

A 5.0-cm-diameter positive thin lens has a focal length of 50.0 
mm. At a distance of 5.0 mm to the right of the lens, centered 
on the axis, is an opaque screen having a 4.0-mm-diameter hole 
that acts as the aperture stop. Determine the ƒ-number of the 
set-up.

SOLUTION 

First, we need the diameter D of the entrance pupil. That’s the 
size of the image of the aperture stop. Hence with light entering 
the lens from the right

1
f

=
1
so

+
1
si

where f = +  50.0 mm, so = +  5.0 mm, and so 6 f:

1
50.0

-
1

5.0
=

1
si Continued
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188 Chapter 5 Geometrical Optics

A new generation of lightweight precision mirrors continues 
to be developed for use in large-scale orbiting telescopes; the 
technology is by no means static.

5.4.1 Planar Mirrors

As with all mirror configurations, those that are planar can be 
either front- or back-surfaced. The latter type are most com-
monly found in everyday use because they allow the metallic 
reflecting layer to be completely protected behind glass. In con-
trast, the majority of mirrors designed for more critical techni-
cal usage are front-surfaced (Fig. 5.50).

From Section 4.3.1, it’s an easy matter to determine the 
image characteristics of a planar mirror. Examining the point 
source and mirror arrangement of Fig. 5.50, we can quickly 
show that 0 so 0 = 0 si 0 ; that is, the image P and object S are 

and si = -  5.56 mm. Therefore

MT = -  
-  5.56

5.0
= 1.11

and

D = MT (4.0 mm) = 4.44 mm

Hence

ƒ># =
ƒ

D
=

50.0
4.44

= 11.3

5.4 Mirrors

Mirror systems are increasingly being used, particularly in the  
X-ray, ultraviolet, and infrared regions of the spectrum. Although 
it is relatively simple to construct a reflecting device that will 
perform satisfactorily across a broad-frequency band, the same 
cannot be said of refracting systems. For example, a silicon or 
germanium lens designed for the infrared will be completely 
opaque in the visible (see photo on p. 84). As we will see later 
(p. 269), mirrors have other attributes that also contribute to 
their usefulness.

A mirror might simply be a piece of black glass or a finely 
polished metal surface. In the past, mirrors were usually made 
by coating glass with silver, which was chosen because of its high 
efficiency in the UV and IR (see Fig. 4.69). Vacuum-evaporated 
coatings of aluminum on highly polished substrates have be-
come the accepted standard for quality mirrors. Protective coat-
ings of silicon monoxide or magnesium fluoride are often lay-
ered over the aluminum as well. In special applications (e.g., in 
lasers), where even the small losses due to metal surfaces can-
not be tolerated, mirrors formed of multi-layered dielectric 
films (see Section 9.9) are indispensable.

A selection of various kinds of mirrors. (Perkins Precision Developments of Longmont, 

Colorado) Figure 5.50  A planar mirror. (a) Reflection of waves. (b) Reflection of rays.

(a)

(b)

PS
V

Aur

ui

so si
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equidistant from the surface. To wit, ui = ur , from the Law  
of Reflection; ui + ur is the exterior angle of triangle SPA  
and is therefore equal to the sum of the alternate interior  
angles, ∡VSA + ∡VPA. But ∡VSA = ui, and therefore 
∡VSA = ∡VPA. This makes triangles VAS and VPA congru-
ent, in which case 0 so 0 = 0 si 0 .

We are now faced with the problem of determining a sign 
convention for mirrors. Whatever we choose, and you should 
certainly realize that there is a choice, we need only be faithful 
unto it for all to be well. One obvious dilemma with respect to 
the convention for lenses is that now the virtual image is to the 
right of the interface. The observer sees P to be positioned 
behind the mirror because the eye (or camera) cannot perceive 
the actual reflection; it merely interpolates the rays backward 
along straight lines. The rays from P in Fig. 5.51 are diverging, 
and no light can be cast on a screen located at P—the image is 
certainly virtual. Clearly, it is a matter of taste whether si should 
be defined as positive or negative in this instance. Since we 
rather like the idea of virtual object and image distances being 
negative, we define so and si as negative when they lie to the 
right of the vertex V. This will have the added benefit of yield-
ing a mirror formula identical to the Gaussian Lens Equation 
[Eq. (5.17)]. Evidently, the same definition of the transverse 
magnification [Eq. (5.24)] holds, where now, as before, 
MT = +1 indicates a life-size, erect image.

Each point of the extended object in Fig. 5.51, a perpendicu-
lar distance si from the mirror, is imaged that same distance be-
hind the mirror. In this way, the entire image is built up point by 
point. This is considerably different from the way a lens  
locates an image. The object in Fig. 5.30 was a left hand, and the 
image formed by the lens was also a left hand. To be sure, it 
might have been distorted (ML Z MT), but it was still a left hand. 
The only evident change was a 1808 rotation about the optical 
axis—an effect known as reversion. Contrarily, the mirror image 

of the left hand, determined by dropping perpendiculars from 
each point, is a right hand (Fig. 5.52). Such an image is some-
times said to be perverted. In deference to the more usual lay 
connotation of the word, its use in optics is happily waning. The 
process that converts a right-handed coordinate system in the 
object space into a left-handed one in the image space is known 
as inversion. Systems with more than one planar mirror can be 
used to produce either an odd or even number of inversions.  
In the latter case a right-handed (r-h) object will generate a right-
handed image (Fig. 5.53), whereas in the former instance, the 
image will be left-handed (l-h).

Figure 5.51  (a) The image of an extended object in a planar mirror. (b) Images in a planar mirror.

(a) (b)

Figure 5.52  Mirror images—inversion.
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190 Chapter 5 Geometrical Optics

EXAMPLE 5.9 

As shown in the accompanying figure, an eye chart 40 cm tall 
by 20 cm wide is positioned above a patient’s head. What is the 
smallest mirror that will allow the entire chart to be seen?

40 cm

Chart Mirror Image
C E

D

A

B

G

F

Figure 5.53  Inversions via reflection.

(a)

l-h

l-h

Image

Image

Object

Object

r-h

(b)

l-h

l-h

r-h

r-h

r-h

SOLUTION 

Distance DB equals GB = BF and so GF = 2GB. Trangles 
GBA and GFE are similar—hence 40 cm = 2AB. The mirror 
should be at least 20 cm tall by 10 cm wide.

Moving Mirrors

A number of practical devices utilize rotating planar mirror  
systems—for example, choppers, beam deflectors, image ro-
tators, and scanners. Mirrors are frequently used to amplify 
and measure the slight rotations of certain laboratory appara-
tus (galvanometers, torsion pendulums, current balances, etc.). 
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As Fig. 5.54 shows, if the mirror rotates through an angle  
a, the reflected beam or image will move through an angle  
of 2a. 

The ability to rapidly redirect a beam of light is an inher-
ent virtue of planar mirrors that has been utilized for centu-
ries; the traditional single-lens reflex camera (see photo) is 
just one application that comes to mind. Today micromirrors 
(see photo), small enough to pass through the eye of a needle, 
have become part of the flourishing MOEMS (Micro-Opto-
ElectroMechanical Systems) or Optical MEMS technology. 
The telecommunications network that delivers worldwide 
telephone, fax, and Internet services is undergoing a quiet 
microphotonic revolution as it sheds its electronic elements 
and moves toward becoming entirely optical. Electronic 
switches are expensive, bulky, and, by optic standards, unac-
ceptably slow. Accordingly, the crucial component needed 
for that transition is the optical switch. Micromirrors that 
can tilt side-to-side and top-to-bottom in a matter of milli-
seconds are presently one of the most promising approaches 
(see p. 214). 

It’s often proclaimed that flat mirrors can form only virtual 
images, but that isn’t quite true. Imagine such a mirror and  
remove a tiny plug from it so it now has a pinhole through it. 
That hole, as if in a pinhole camera, will produce “real” im-
ages on a distant screen behind the aperture. Now consider the 
tiny mirrored plug; it must produce “real” images in front of 
its reflecting surface. Because ui = ur, this tiny mirror creates 
the same ray configuration in front of it as the hole does be-
hind it. It produces “real” images in the sense that they can be 
projected, but they’re not really “real” in the sense that the 
narrow bundles of rays are not converging, so it’s a matter of 
semantics.

2ui

ui

ui

2ui + 2a

a

a

Figure 5.54  Rotation of a mirror and the concomitant angular displace-
ment of a beam.

A classic single-lens reflex film camera. Light from the lens hits the mirror 
and goes up to the prism and out to the eye. When the shutter is released 
the mirror pops up, the light goes directly to the film, and then the mirror 
pops back down. (E.H.)

This tiny tiltable mirror (which is so small it can fit through the eye  
of a needle) is used to steer light beams in one of today’s most important 
telecommunications devices. (Used with permission of Alcatel-Lucent USA Inc.)
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192 Chapter 5 Geometrical Optics

Equation (5.41) will therefore be satisfied for a surface for 
which A1F = A1D1 and A2F = A2D2 or, more generally, one for 
which AF = AD for any point-A on the mirror. In general, 
AF = e(AD), where e is the eccentricity of a conic section.  
Earlier (Section 5.2.1) the figure studied was a hyperbola for 
which e = nti 7 1. In Problem 5.3 the figure is an ellipse and  
e = nti 6 1. Here the second medium is identical to the first,  
nt = ni, and e = nti = 1; in other words, the surface is a parabo-
loid with F as its focus and Σ as its directrix. The rays could 
equally well be reversed (i.e., a point source at the focus of a 
paraboloid would result in the emission of plane waves from the 
system). 

Paraboloidals are used in a great variety of applications 
from flashlight and automobile headlight reflectors to giant  
radiotelescope antennas (see photo), from microwave horns 
and acoustical dishes to optical telescope mirrors and Moon-
based communications antennas. The convex paraboloidal 
mirror is also possible but is far less widely in use. Applying 
what we already know, it should be evident from Fig. 5.56 
that an incident parallel bundle of rays will form a virtual im-
age at F when the mirror is convex and a real image when it’s 
concave.

There are other aspherical mirrors of interest, namely,  
the ellipsoid (e 6 1) and hyperboloid (e 7 1). Both produce 
perfect imagery between a pair of conjugate axial points  

5.4.2 Aspherical Mirrors

Curved mirrors that form images very much like those of 
lenses or curved refracting surfaces have been known since 
the time of the ancient Greeks. Euclid, who is presumed to 
have authored the book titled Catoptrics, discusses in it both 
concave and convex mirrors.* Fortunately, the conceptual ba-
sis for designing such mirrors was developed earlier when we 
studied Fermat’s Principle as applied to imagery in refracting 
systems. Accordingly, let’s determine the configuration a 
mirror must have if an incident plane wave is to be re-formed 
upon reflection into a converging spherical wave (Fig. 5.55). 
Because the plane wave is ultimately to converge on point-F, 
the optical path lengths for all rays must be equal; accord-
ingly, for arbitrary points-A1 and -A2

 OPL = W1A1 + A1F = W2A2 + A2F (5.41)

Since the plane Σ is parallel to the incident wavefronts,

 W1A1 + A1D1 = W2A2 + A2D2 (5.42)

*Dioptrics denotes the optics of refracting elements, whereas catoptrics denotes 
the optics of reflecting surfaces.

A large paraboloidal radio antenna at the Goldstone Deep Space 
Communications Complex. (NASA)

Figure 5.56  Real and virtual images for a paraboloidal mirror.

F

Figure 5.55   
A paraboloidal mirror.(a) (b) (c)

F

W1

n = 1

Σ
W2

A1

A2

D1

D2
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A variety of aspherical mirrors are readily available commer-
cially. In fact, one can purchase off-axis elements, in addition  
to the more common centered systems. Thus in Fig. 5.58 the 
focused beam can be further processed without obstructing the 
mirror. Incidentally, this geometry also obtains in large micro-
wave horn antennas.

5.4.3 Spherical Mirrors

Precise aspheric surfaces are considerably more difficult to 
fabricate than are spherical ones, and, not surprisingly, they’re 
considerably more expensive. Accordingly, we again turn to 
the spherical configuration to determine the circumstances un-
der which it might perform adequately.

The Paraxial Region

The well-known equation for the circular cross section of a 
sphere (Fig. 5.59a) is

 y2 + (x - R)2 = R2 (5.43)

where the center C is shifted from the origin O by one radius R. 
After writing this as

y2 - 2Rx + x2 = 0

we can solve for x:

 x = R ± (R2 - y2)1>2 (5.44)

Let’s just concern ourselves with values of x less than R; that 
is, we’ll study a hemisphere, open on the right, corresponding 

corresponding to their two foci (Fig. 5.57). As we’ll see 
presently, the Cassegrain and Gregorian telescope configura-
tions utilize convex secondary mirrors that are hyperboloidal 
and ellipsoidal, respectively. Like many new instruments, 
the primary mirror of the Hubble Space Telescope is hyper-
boloidal (see photo).

(a) Convex hyperbolic (b) Convex elliptical

(c) Concave hyperbolic (d) Concave elliptical

Figure 5.57  Hyperbolic and elliptical mirrors.

The 2.4-m-diameter hyperboloidal primary mirror of the Hubble Space 
Telescope. (NASA)

Figure 5.58  Off-axis mirror elements.
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to the minus sign in Eq. (5.44). After expansion in a binomial 
series, x takes the form

 x =
y2

2R
+

1y4

222!R3 +
1 · 3y6

233!R5 + g  (5.45)

This expression becomes quite meaningful as soon as we real-
ize that the standard equation for a parabola with its vertex at 
the origin and its focus a distance ƒ to the right (Fig. 5.59b) is 
simply

 y2 = 4ƒx (5.46)

By comparing these two formulas, we see that if 4ƒ = 2R (i.e., 
if ƒ = R>2), the first contribution in the series can be thought of 
as parabolic, and the remaining terms represent the deviation. If 
that deviation is ∆x, then

∆  x =
y4

8R3 +
y6

16R5 + g

Evidently, this difference will be appreciable only when y 
is relatively large (Fig. 5.59c) in comparison to R. In the 
paraxial region, that is, in the immediate vicinity of the 
central axis, these two configurations will be essentially 
indistinguishable. 

We can get a feel for ∆x by considering an amateur telescope 
mirror, for something like the Newtonian reflector in Fig. 5.122b. 
A convenient tube length would result when the focal length 
was around 56 inches or so. A nice-sized scope would have an 
8-inch-diameter mirror, in which case the ƒ-number would be 
ƒ>D = 7. At the edge of such a mirror (y = 4 in.) , the horizon-
tal difference (∆ x) between the paraboloid and the sphere (Fig. 
5.59) would be a mere 23 millionths of an inch, the former be-
ing flatter than the latter. Closer in toward the center (y = 2 in.) 
∆ x drops to just a few millionths of an inch. 

If we stay within the paraxial theory of spherical mirrors as 
a first approximation, the conclusions drawn from our study 
of the stigmatic imagery of paraboloids are again applicable. 
In actual use, however, y will not be so limited, and aberrations 

will appear. Moreover, aspherical surfaces produce perfect 
images only for pairs of axial points—they too will suffer 
aberrations.

The Mirror Formula

The paraxial equation that relates conjugate object and image 
points to the physical parameters of a spherical mirror can be 
derived with the help of Fig. 5.60. To that end, observe that 
since ui = ur , the ∡SAP is bisected by CA , which therefore di-
vides the side SP of triangle SAP into segments proportional to 
the remaining two sides; that is,

 
SC

SA
=

CP

PA
 (5.47)

Furthermore,

SC = so - 0R 0   and  CP = 0R 0 - si

where so and si are on the left and therefore positive. Using 
the same sign convention as we did with refraction, R will be 
negative because C is to the left of V  (i.e., the surface is con-
cave). Thus 0R 0 = -R and

SC = so + R  and  CP = -(si + R)

In the paraxial region SA ≈ so , PA ≈ si , and Eq. (5.47) becomes

so + R
so

= -  
si + R

si

or 
1
so

+
1
si

= -  
2
R

 (5.48)

which is the Mirror Formula. It’s equally applicable to con-
cave (R 6 0) and convex (R 7 0) mirrors. The primary or object 
focus is again defined by

lim
si S ∞

 so = ƒo

Figure 5.59  Comparison of 
spherical and paraboloidal  
mirrors.
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and the secondary or image focus corresponds to

lim
so S ∞

 si = ƒi

Consequently, from Eq. (5.48)

1
ƒo

+
1
∞

=
1
∞

+
1
ƒi

= -  
2
R

to wit,

 ƒo = ƒi = -  
R
2

 (5.49)

as can be seen in Fig. 5.59c. Dropping the subscripts on the 
focal lengths yields

 
1
so

+
1
si

=
1
ƒ

 (5.50)

Observe that ƒ will be positive for concave mirrors (R 6 0) 
and negative for convex mirrors (R 7 0). In the latter in-
stance, the image is formed behind the mirror and is virtual 
(Fig. 5.61).

Finite Imagery

The remaining mirror properties are so similar to those of 
lenses and spherical refracting surfaces that we need only 
mention them briefly, without repeating the entire logical de-
velopment of each item. Within the restrictions of paraxial 
theory, any parallel off-axis bundle of rays will be focused to 
a point on the focal plane passing through F normal to the 
optical axis. Likewise, a finite planar object perpendicular to 
the optical axis will be imaged (to a first approximation) in a 
plane similarly oriented; each object point will have a corre-
sponding image point in that plane. This is certainly true for a 
plane mirror, but it only approximates the case for other con-
figurations.

If a spherical mirror is used in a restricted fashion, the re-
flected waves arising from each object point will closely ap-
proximate spherical waves. Under such circumstances, good 
finite images of extended objects can be formed.

Just as each image point produced by a thin lens lies along a 
straight line through the optical center O, each image point for 
a spherical mirror will lie on a ray passing through both the 
center of curvature C and the object point (Fig. 5.62). As with 
the thin lens (Fig. 5.23), the process for graphically locating the 
image is straightforward (Fig. 5.63). The top of the image is 
fixed at the intersection of two rays, one initially parallel to the 
axis and passing through F after reflection, and the other going 

Figure 5.60  A concave spherical mirror. Conjugate foci.

PS

P F V

A

S C

f
si

so

R

ui
ur

A convex spherical mirror forming a virtual, right-side-up, minified image. 
See if you can locate the image of the author holding the camera that took 
this picture. (E.H.)
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CF FC

Figure 5.61  Focusing of rays via a spherical mirror. (E.H.)

CF

Ray-1

Ray-2

Ray-3

Ray-4
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C F
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Ray-2

Ray-3

Ray-4

V

Figure 5.62  Four easy rays to draw. Ray-1 heads toward C and reflects back 
along itself. Ray-2 comes in parallel to the central axis and reflects toward  
(or away from) F. Ray-3 passes through (or heads toward) F and reflects off 
parallel to the axis. Ray-4 strikes point V and reflects such that ui = ur.

straight through C (Fig. 5.64). The ray from any off-axis object 
point to the vertex forms equal angles with the central axis on 
reflection and is therefore particularly convenient to construct. 
So too is the ray that first passes through the focus and after 
reflection emerges parallel to the axis.

Notice that triangles S1S2V  and P1P2V  in Fig. 5.63a are sim-
ilar, and hence their sides are proportional. Taking yi to be neg-
ative, as we did before, since it’s below the axis, yi>yo = -si>so, 
which is equal to MT. This is the transverse magnification, just 
as it was for the lens [Eq. (5.25)].

The only equation that contains information about the 
structure of the optical element (n, R, etc.) is that for ƒ, and so, 
understandably, it differs for the thin lens [Eq. (5.16)] and 
spherical mirror [Eq. (5.49)]. The other functional expressions 
that relate so , si , and ƒ or yo , yi , and MT are, however, pre-
cisely the same. The only alteration in the previous sign con-
vention appears in Table 5.4, where si on the left of V is now 
taken as positive. The striking similarity between the proper-
ties of a concave mirror and a convex lens on one hand and a 
convex mirror and a concave lens on the other is quite evident 
from a comparison of Tables 5.3 and 5.5, which are identical 
in all respects.
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Figure 5.63  Finite imagery with spherical mirrors.

Figure 5.64  (a) Reflection from a concave mirror. (b) Reflection from a 
convex mirror.

C
F
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F C
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TABLE 5.5  Images of Real Objects Formed by  
Spherical Mirrors

Concave

Object Image

Location Type Location Orientation Relative Size

∞ 7 so 7 2ƒ Real ƒ 6 si 6 2ƒ Inverted Minified

so = 2ƒ Real si = 2f  Inverted Same size

ƒ 6 so 6 2ƒ Real ∞ 7 si 7 2ƒ Inverted Magnified

so = ƒ  ± ∞

so 6 ƒ Virtual 0 si 0 7 so Erect Magnified

Convex

Object Image

Location Type Location Orientation Relative Size

Anywhere Virtual 0 si 0 6 0 ƒ 0 , Erect Minified

  so 7 0 si 0

TABLE 5.4  Sign Convention for Spherical Mirrors

Quantity Sign

 +  −
so Left of V, real object Right of V, virtual object

si Left of V, real image Right of V, virtual image

ƒ Concave mirror Convex mirror

R C right of V, convex C left of V, concave

yo Above axis, erect object Below axis, inverted object

yi Above axis, erect image Below axis, inverted image

The properties summarized in Table 5.5 and depicted in  
Fig. 5.65 can easily be verified empirically. If you don’t have a 
spherical mirror at hand, a fairly crude but functional one can be 
made by carefully shaping aluminum foil over a spherical form, 
such as the end of a lightbulb (in that particular case R and 
therefore ƒ will be small). A rather nice qualitative experiment 
involves examining the image of some small object formed by 
a short-focal-length concave mirror. As you move it toward the 
mirror from beyond a distance of 2ƒ = R, the image will gradu-
ally increase, until at so = 2ƒ it will appear inverted and life-
size. Bringing it closer will cause the image to increase even 
more, until it fills the entire mirror with an unrecognizable blur. 
As so becomes smaller, the now erect, magnified image will 
continue to decrease until the object finally rests on the mirror, 
where the image is again life-size. If you are not moved by  
all of this to jump up and make a mirror, you might try examin-
ing the image formed by a shiny spoon—either side will be  
interesting.
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(a)

(b)

(c)

(d)

f
2 f

Figure 5.65  The image-forming behavior of a concave 
spherical mirror.

EXAMPLE 5.10

A small frog is sitting on the central axis 35.0 cm in front of 
a concave spherical mirror having a focal length of 20.0 cm. 
Locate the image and describe it completely. What is the trans-
verse magnification of the image?

SOLUTION 

From Eq. (5.50)

 
1
so

+
1
si

=
1
ƒ

 
1

35.0
+

1
si

=
1

20.0

 
1
si

=
1

20.0
-

1
35.0

= 0.021 43

 si = 46.67 cm or 46.7 cm

The image is real, inverted, and magnified. Notice that si is 
positive, which means the image is real.

MT = -  
si

so
= -  

46.67 cm
35.0 cm

= -  1.3

The minus sign means the image is inverted. Alternatively,

MT = -  
ƒ
xo

= -  
20
15

= -  
4
3

= -1.3
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Figure 5.66  Geometry of a dispersing prism.

The giant virtual image of the photographer, who is standing closer than 
one focal length from a multi-element telescope mirror in Tucson, Arizona. 
He’s wearing a hat and has his right hand raised. (Joseph Shaw)

5.5 Prisms

Prisms play many different roles in Optics; there are prism 
combinations that serve as beamsplitters (p. 138), polarizing 
devices (see Section 8.4.3), and interferometers. Despite this 
diversity, the vast majority of applications make use of only 
one of two main prism functions. First, a prism can serve as a 
dispersive device, as it does in a variety of spectrum analyzers 
(Fig. 5.66). As such it is capable of separating, to some extent, 
the constituent frequency components in a polychromatic light 
beam. Recall that the term dispersion was introduced earlier  
(p. 78) in connection with the frequency dependence of the 
index of refraction, n(v), for dielectrics. In fact, the prism pro-
vides a highly useful means of measuring n(v) over a wide 
range of frequencies and for a variety of materials (including 
gases and liquids).

Its second and more common function is to effect a change 
in the orientation of an image or in the direction of propagation 
of a beam. Prisms are incorporated into many optical instru-
ments, often simply to fold the system into a confined space. 
There are inversion prisms, reversion prisms, and prisms that 
deviate a beam without inversion or reversion—and all of this 
without dispersion.

5.5.1 Dispersing Prisms

Prisms come in many sizes and shapes and perform a variety  
of functions (see photo). Let’s first consider the group known  
as dispersing prisms. Typically, a ray entering a dispersing 
prism, as in Fig. 5.66, will emerge having been deflected  
from its original direction by an angle d known as the angular A selection of various prisms. (Perkins Precision Developments)

deviation. At the first refraction the ray is deviated through an 
angle (ui1 - ut1) , and at the second refraction it is further de-
flected through (ut2 - ui2). The total deviation is then

d = (ui1 - ut1) + (ut2 - ui2)

Since the polygon ABCD contains two right angles, ∡BCD 
must be the supplement of the apex angle a. As the exterior 
angle to triangle BCD, a is also the sum of the alternate interior 
angles, that is,

 a = ut1 + ui2 (5.51)

Thus

 d = ui1 + ut2 - a (5.52)

We would like to write d as a function of both the angle-of-
incidence for the ray (i.e., ui1) and the prism angle a; these pre-
sumably would be known. If the prism index is n and it’s  
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setting dd>dui1 = 0, but a more indirect route will certainly be 
simpler. Differentiating Eq. (5.52) and setting it equal to zero 
yields

dd
dui1

= 1 +
dut2

dui1
= 0

or dut2>dui1 = -1. Taking the derivative of Snell’s Law at each 
interface, we get

cos ui1 dui1 = n cos ut1 dut1

and  cos ut2 dut2 = n cos ui2 dui2 

Note as well, on differentiating Eq. (5.51), that dut1 = -dui2, 
since da = 0. Dividing the last two equations and substituting 
for the derivatives leads to

cos ui1

cos ut2
=

cos ut1

cos ui2

Making use of Snell’s Law once again, we can rewrite this as

1 - sin2 ui1

1 - sin2 ut2
=

n2 - sin2 ui1

n2 - sin2 ut2

The value of ui1 for which this is true is the one for which  
dd>dui1 = 0. Inasmuch as n Z 1, it follows that

ui1 = ut2

and therefore

ut1 = ui2

This means that the ray for which the deviation is a minimum 
traverses the prism symmetrically, that is, parallel to its base. 
Incidentally, there is a lovely argument for why ui1 must equal 
ut2, which is neither as mathematical nor as tedious as the one 
we have evolved. In brief, suppose a ray undergoes a minimum 
deviation and ui1 Z ut2. Then if we reverse the ray, it will retrace 
the same path, so d must be unchanged (i.e., d = dm). But this 
implies that there are two different incident angles for which the 
deviation is a minimum, and this we know is not true—ergo  
ui1 = ut2.

In the case when d = dm, it follows from Eqs. (5.51) and 
(5.52) that ui1 = (dm + a)>2 and ut1 = a>2, whereupon Snell’s 
Law at the first interface leads to

 n =
sin [(dm + a)>2]

sin a>2  (5.54)

This equation forms the basis of one of the most accurate tech-
niques for determining the refractive index of a transparent sub-
stance. Effectively, one fashions a prism out of the material in 
question, and then, measuring a and dm(l), n(l) is computed 
employing Eq. (5.54) at each wavelength of interest. Hollow 

immersed in air (na ≈ 1), it follows from Snell’s Law that

ut2 = sin-1 (n sin ui2) = sin-1 [n sin (a - ut1)]

Upon expanding this expression, replacing cos ut1 by  
(1 - sin2ut1)1>2, and using Snell’s Law we have

ut2 = sin-1 [(sin a) (n2 - sin2 ui1)1>2 - sin ui1 cos a]

The deviation is then

d = ui1 + sin-1 [(sin a) (n2 - sin2 ui1)1>2

 - sin ui1 cos a] - a (5.53)

Apparently, d increases with n, which is itself a function of fre-
quency, so we might designate the deviation as d(n) or d(l). For 
most transparent dielectrics of practical concern, n(l) decreases 
as the wavelength increases across the visible [refer back to  
Fig. 3.41 for a plot of n(l) versus l for various glasses]. Clearly, 
then, d(l) will be less for red light than it is for blue.

Missionary reports from Asia in the early 1600s indicated 
that prisms were well known and highly valued in China because 
of their ability to generate color. A number of scientists of the 
era, particularly Marci, Grimaldi, and Boyle, had made some 
observations using prisms, but it remained for the great Sir Isaac 
Newton to perform the first definitive studies of dispersion. On 
February 6, 1672, Newton presented a classic paper to the Royal 
Society titled “A New Theory about Light and Colours.’’ He had 
concluded that white light consisted of a mixture of various col-
ors and that the process of refraction was color-dependent.

Returning to Eq. (5.53), it’s evident that the deviation suf-
fered by a monochromatic beam on traversing a given prism 
(i.e., n and a are fixed) is a function only of the incident angle 
at the first face, ui1. A plot of the results of Eq. (5.53) as applied 
to a typical glass prism is shown in Fig. 5.67. The smallest value 
of d is known as the minimum deviation, dm, and it is of par-
ticular interest for practical reasons. The value of dm can be 
determined analytically by differentiating Eq. (5.53) and then 

50

45

40

dm

d
 (

de
gr

ee
s)

ui1 (degrees)

35
30 40 50 60 70 80 90

n = 1.5
a = 60°

Figure 5.67  Deviation versus incident angle.
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will now undergo a minimum deviation, which is again 90°— 
hence the name constant deviation. With a prism of this sort, 
one can conveniently set up the light source and viewing sys-
tem at a fixed angle (here 90°), and then simply rotate the 
prism to look at a particular wavelength. The device can be 
calibrated so that the prism-rotating dial reads directly in 
wavelength.

5.5.2 Reflecting Prisms

We now examine reflecting prisms, in which dispersion is not 
desirable. In this case, the beam is introduced in such a way 
that at least one internal reflection takes place, for the specific 
purpose of changing either the direction of propagation or the 
orientation of the image, or both.

Let’s first establish that it is actually possible to have such an 
internal reflection without dispersion. Is d independent of l? 
The prism in Fig. 5.70 is assumed to have as its profile an isos-
celes triangle—this happens to be a rather common configura-
tion in any event. The ray refracted at the first interface is later 
reflected from face FG. As we saw earlier (Section 4.7), this 
will occur when the internal incident angle is greater than the 
critical angle uc, defined by

 sin uc = nti [4.69]

For a glass–air interface, this requires that ui be greater than 
roughly 42°. To avoid any difficulties at smaller angles, let’s 
further suppose that the base of our hypothetical prism is sil-
vered as well—certain prisms do in fact require silvered faces. 
The angle of deviation between the incoming and outgoing 
rays is

 d = 180° - ∡BED (5.55)

From the polygon ABED it follows that

a + ∡ ADE + ∡BED + ∡ABE = 360°

Moreover, at the two refracting surfaces

∡ABE = 90° + ui1

and ∡ADE = 90° + ut2 

Substituting for ∡BED in Eq. (5.55) leads to

 d = ui1 + ut2 + a (5.56)

Since the ray at point-C has equal angles-of-incidence and  
reflection, ∡BCF = ∡DCG. Thus, because the prism is isos-
celes, ∡BFC = ∡DGC, and triangles FBC and DGC are simi-
lar. It follows that ∡FBC = ∡CDG, and therefore ut1 = ui2. 
From Snell’s Law we know that this is equivalent to ui1 = ut2, 
whereupon the deviation becomes

 d = 2ui1 + a (5.57)

prisms whose sides are fabricated of plane-parallel glass can be 
filled with liquids or gases under high pressure; the glass plates 
will not result in any deviation of their own.

Figures 5.68 and 5.69 show two examples of constant-
deviation dispersing prisms, which are important primarily 
in spectroscopy. The Pellin–Broca prism is probably the most 
common of the group. Albeit a single block of glass, it can be 
envisaged as consisting of two 30°–60°–90° prisms and one 
45°–45°–90° prism. Suppose that in the position shown a sin-
gle monochromatic ray of wavelength l traverses the compo-
nent prism DAE symmetrically, thereafter to be reflected at 
45° from face AB. The ray will then traverse prism CDB sym-
metrically, having experienced a total deviation of 90°. The 
ray can be thought of as having passed through an ordinary 
60° prism (DAE combined with CDB) at minimum deviation. 
All other wavelengths present in the beam will emerge at 
other angles. If the prism is now rotated slightly about an 
axis normal to the paper, the incoming beam will have a new 
incident angle. A different wavelength component, say l2, 

C

A

D

B
d = 90°

30°

30°

60°

60°

45°

45°

Figure 5.68  The Pellin–Broca prism.

d = 60

30° 60°

60°
120°

60°
60°

30°

30°

Figure 5.69  The Abbe prism.
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202 Chapter 5 Geometrical Optics

The Porro prism (Fig. 5.72) is physically the same as the 
right-angle prism but is used in a different orientation. After two 
reflections, the beam is deviated by 180°. Thus, if it enters 
right-handed, it leaves right-handed.

The Dove prism (Fig. 5.73) is a truncated version (to reduce 
size and weight) of the right-angle prism, used almost exclu-
sively in collimated light. It has the interesting property  
(Problem 5.92) of rotating the image twice as fast as it is itself 
rotated about the longitudinal axis.

The Amici prism (Fig. 5.74) is essentially a truncated right-
angle prism with a roof section added on to the hypotenuse 
face. In its most common use, it has the effect of splitting the 
image down the middle and interchanging the right and left 
portions.* These prisms are expensive, because the 90° roof 

which is certainly independent of both l and n. The reflection 
will occur without any color preferences, and the prism is said 
to be achromatic. Unfolding the prism, that is, drawing its im-
age in the reflecting surface FG, as in Fig. 5.70b, we see that it 
is equivalent in a sense to a parallelepiped or thick planar plate. 
The image of the incident ray emerges parallel to itself, regard-
less of wavelength.

A few of the many widely used reflecting prisms are shown 
in the next several figures. These are often made from BSC-2 or 
C-1 glass (see Table 6.2). For the most part, the illustrations are 
self-explanatory, so the descriptive commentary will be brief.

The right-angle prism (Fig. 5.71) deviates rays normal to 
the incident face by 90°. Notice that the top and bottom of the 
image have been interchanged; that is, the arrow has been 
flipped over, but the right and left sides have not. It is therefore 
an inversion system with the top face acting like a plane mirror. 
(To see this, imagine that the arrow and lollypop are vectors and 
take their cross-product. The resultant, arrow 3 lollypop, was 
initially in the propagation direction but is reversed by the prism.)

r-h

l-h

Figure 5.71  The right-angle 
prism.

r-h

r-h

Figure 5.72  The Porro 
prism.

*You can see how it actually works by placing two plane mirrors at right angles 
and looking directly into the combination. If you wink your right eye, the image 
will wink its right eye. Incidentally, if your eyes are equally strong, you will see two 
seams (images of the line where the mirrors meet), one running down the middle 
of each eye, with your nose presumably between them. If one eye is stronger, 
there will be only one seam, down the middle of that eye. If you close it, the seam 
will jump over to the other eye. This must be tried to be appreciated.

a

a

d

D
B

F

(b)(a)
E

C G

A

ut2

ui1

ui2

ut1

Figure 5.70  Geometry of a reflecting prism.
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angle must be held to roughly 3 or 4 seconds of arc, or a trou-
blesome double image will result. They are often used in simple 
telescope systems to correct for the reversion introduced by the 
lenses.

The rhomboid prism (Fig. 5.75) displaces the line-of-sight 
without producing any angular deviation or changes in the ori-
entation of the image.

The penta prism (Fig. 5.76) will deviate the beam by 90° 
without affecting the orientation of the image. Note that two of 
its surfaces must be silvered. These prisms are often used as end 
reflectors in small range finders.

The Leman–Springer prism (Fig. 5.77) also has a 90° roof. 
Here the line-of-sight is displaced without being deviated, but 
the emerging image is right-handed and rotated through 180°. 
The prism can therefore serve to erect images in telescope sys-
tems, such as gun sights and the like.

l-h

r-h

Figure 5.73  The Dove prism.

r-h

r-h

Figure 5.74  The Amici prism.

r-h

r-h

(a) (b)

Figure 5.75  The rhomboid prism and its mirror equivalent.

45°

(a) (b) Figure 5.76  The penta prism and its mirror equivalent.
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reduce weight and size. Since there are four reflections, the 
exiting image will be right-handed. A small slot is often cut 
in the hypotenuse face to obstruct rays that are internally 
reflected at glancing angles. Finding these slots after dis-
mantling the family’s binoculars is often an inexplicable 
surprise.

5.6 Fiberoptics

The concept of channeling light within a long, narrow dielec-
tric (via total internal reflection) has been around for quite a 
while. John Tyndall (1870) showed that light could be contained 
within and guided along a thin stream of water. Soon after that, 
glass “light pipes” and, later, threads of fused quartz were used 
to further demonstrate the effect. But it wasn’t until the early 
1950s that serious work was done to transport images along 
bundles of short glass fibers.

After the advent of the laser (1960), there was an immediate 
appreciation of the potential benefits of sending information 
from one place to another using light, as opposed to electric 
currents or even microwaves. At those high optical frequencies 
(of the order of 1015 Hz), one hundred thousand times more 
information can be carried than with microwaves. Theoretically, 
that’s the equivalent of sending tens of millions of television 
programs all at once on a beam of light. It wasn’t long (1966) 
before the possibility of coupling lasers with fiberoptics for 
long-distance communications was pointed out. Thus began a 
tremendous technological transformation that’s still roaring 
along today.

In 1970 researchers at the Corning Glass Works produced  
a silica fiber with a signal-power transmission of better than 1% 
over a distance of 1 km (i.e., an attenuation of 20 dB>km), 
which was comparable to existing copper electrical systems. 
During the next two decades, the transmission rose to about 
96% over 1 km (i.e., an attenuation of only 0.16 dB>km).

Because of its low-loss transmission, high-information- 
carrying capacity, small size and weight, immunity to electro-
magnetic interference, unparalleled signal security, and the 
abundant availability of the required raw materials (i.e., ordinary 
sand), ultrapure glass fibers have become the premier communi-
cations medium.

As long as the diameter of these fibers is large compared 
with the wavelength of the radiant energy, the inherent wave 
nature of the propagation is of little importance, and the pro-
cess obeys the familiar laws of Geometrical Optics. On the 
other hand, if the diameter is of the order of l, the transmis-
sion closely resembles the manner in which microwaves  
advance along waveguides. Some of the propagation modes 
are evident in the photomicrographic end views of fibers 
shown in Fig. 5.79. Here the wave nature of light must be 
reckoned with, and this behavior resides in the domain of 
Physical Optics. Although optical waveguides, particularly of 

Many more reflecting prisms perform specific functions. For 
example, if one cuts a cube so that the piece removed has three 
mutually perpendicular faces, it is called a corner-cube prism. 
It has the property of being retrodirective; that is, it will reflect 
all incoming rays back along their original directions. One hun-
dred of these prisms are sitting in an 18-inch square array  
240 000 miles from here, having been placed on the Moon  
during the Apollo 11 flight.*

The most common erecting system consists of two Porro 
prisms, as illustrated in Fig. 5.78. These are relatively easy 
to manufacture and are shown here with rounded corners to 

r-h

r-h

Figure 5.78  The double Porro prism.

r-h

60°

30°

r-h

Figure 5.77  The Leman–Springer prism.

*J. E. Foller and E. J. Wampler, “The Lunar Laser Reflector,” Sci. Am., March 1970, 
p. 38.
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The number of reflections Nr is then given by

Nr =
/

D>sin ut
± 1

or Nr =
L sin ui

D(n2
ƒ - sin2 ui)

1>2 ± 1 (5.58)

rounded off to the nearest whole number. The ±1, which de-
pends on where the ray strikes the end face, is of no signifi-
cance when Nr is large, as it is in practice. Thus, if D is 50 mm 
(i.e., 50 microns where 1 mm = 10-6 m = 39.37 * 10-6 in.), 
which is about 2 * 10-3 in. (a hair from the head of a human is 
roughly 50 mm in diameter), and if nƒ = 1.6 and ui = 30°, N 
turns out to be approximately 2000 reflections per foot. Fibers 
are available in diameters as small as 2 mm or so but are sel-
dom used in sizes much less than about 10 mm. Extremely thin 
glass (or plastic) filaments are quite flexible and can even be 
woven into fabric.

The smooth surface of a single fiber must be kept clean (of 
moisture, dust, oil, etc.), if there is to be no leakage of light (via 
frustrated total internal reflection). Similarly, if large numbers 
of fibers are packed in close proximity, light may leak from one 
fiber to another in what is known as cross-talk. For these rea-
sons, it is customary to enshroud each fiber in a transparent 
sheath of lower index called a cladding. This layer need only be 
thick enough to provide the desired isolation, but for other rea-
sons it generally occupies about one tenth of the cross-sectional 
area. Although references in the literature to simple light pipes 
go back 100 years, the modern era of fiberoptics began with the 
introduction of clad fibers in 1953.

Typically, a fiber core might have an index (nƒ) of 1.62, and 
the cladding an index (nc) of 1.52, although a range of values is 
available. A clad fiber is shown in Fig. 5.81. Notice that there is 
a maximum value umax of ui, for which the internal ray will 
impinge at the critical angle, uc. Rays incident on the face at 

the thin-film variety, are of increasing interest, this discus-
sion will be limited to the case of relatively large-diameter 
fibers, those about the thickness of a human hair.

Consider the straight glass cylinder of Fig. 5.80 surrounded 
by an incident medium of index ni—let it be air, ni = na. Light 
striking its walls from within will be totally internally reflected, 
provided that the incident angle at each reflection is greater 
than uc = sin-1 na>nƒ, where nƒ is the index of the cylinder or 
fiber. As we will show, a meridional ray (i.e., one that is copla-
nar with the central or optical axis) might undergo several thou-
sand reflections per foot as it bounces back and forth along a 
fiber, until it emerges at the far end (see photo). If the fiber has 
a diameter D and a length L, the path length / traversed by the 
ray will be

/ = L>cos ut

or from Snell’s Law

/ = nƒL(n2
ƒ - sin2 ui)

-1>2

Figure 5.79  Optical waveguide mode patterns seen in the end faces of 
small-diameter fibers. (Narinder S. Kapany, AMP Fellow)

ut

±ui

ui

nf

ni = na

L

Figure 5.80  Rays reflected within a dielectric cylinder. Light emerging from the ends of a loose bundle of glass fibers. (E.H.)
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EXAMPLE 5.11

A fiber has a core index of 1.499 and a cladding index of 1.479. 
When surrounded by air what will be its (a) acceptance angle, 
(b) numerical aperture, and (c) the critical angle at the core–
cladding interface?

SOLUTION 

(b) From Eq. (5.61)

 NA = (n2
f - n2

c)1>2 = (1.4992 - 1.4792)1>2

NA = 0.244

which is a typical value.

(c) Since  sin umax =
1
ni

 NA = NA 

umax = sin-1(0.244) = 14.1°

Hence 2umax = 28.2° 

(a) The critical angle follows from

sin uc =
nt

ni
=

nc

nf
=

1.479
1.499

Notice that sin uc must be equal to or less than 1.

uc = sin-1 0.986 6

uc = 80.6°

Bundles of free fibers whose ends are bound together (e.g., 
with epoxy), ground, and polished form flexible lightguides. If 
no attempt is made to align the fibers in an ordered array, they 
form an incoherent bundle. This unfortunate use of the term 
incoherent (which should not be confused with coherence theory) 
just means, for example, that the first fiber in the top row at the 
entrance face may have its terminus anywhere in the bundle at 
the exit face. These flexible light carriers are, for that reason, 
relatively easy to make and inexpensive. Their primary function 
is simply to conduct light from one region to another. Conversely, 
when the fibers are carefully arranged so that their terminations 
occupy the same relative positions in both of the bound ends of 
the bundle, it is said to be coherent. Such an arrangement is 
capable of transmitting images and is consequently known as a 
flexible image carrier.

Coherent bundles are frequently fashioned by winding fibers 
on a drum to make ribbons, which are then carefully layered. 
When one end of such a device is placed face down flat on an il-
luminated surface, a point-by-point image of whatever is beneath 
it will appear at the other end (see photo). These bundles can be 
tipped off with a small lens, so that they need not be in contact 
with the object under examination. Nowadays it is common to 
use fiberoptic instruments to poke into all sorts of unlikely places, 

angles greater than umax will strike the interior wall at angles 
less than uc. They will be only partially reflected at each such 
encounter with the core–cladding interface and will quickly 
leak out of the fiber. Accordingly, umax, which is known as the 
acceptance angle, defines the half-angle of the acceptance cone 
of the fiber. To determine it, start with

sin uc = nc>nƒ = sin (90° - ut)

Thus nc>nƒ = cos ut 

or nc>nƒ = (1 - sin2 ut)
1>2 

Making use of Snell’s Law and rearranging terms, we have

 sin umax =
1
ni

 (n2
ƒ - n2

c)1>2 (5.59)

The quantity ni sin umax is defined as the numerical aperture, 
or NA. Its square is a measure of the light-gathering power of 
the system. The term originates in microscopy, where the equiv-
alent expression describes the corresponding capabilities of the 
objective lens. The acceptance angle (2umax) corresponds to 
the vertex angle of the largest cone of rays that can enter the 
core of the fiber. It should clearly relate to the speed of the 
system, and, in fact,

 ƒ># =
1

2(NA)
 (5.60)

Thus for a fiber

 NA = (n2
ƒ - n2

c)1>2 (5.61)

The left-hand side of Eq. (5.59) cannot exceed 1, and in air  
(na = 1.000 28 ≈ 1) that means that the largest value of NA is 
1. In this case, the half-angle umax equals 90°, and the fiber to-
tally internally reflects all light entering its face (Problem 5.93).  
Fibers with a wide variety of numerical apertures, from about 
0.2 up to and including 1.0, are commercially obtainable. 

ut

ui = umax

uc

nf

nc

ni

Figure 5.81  Rays in a clad optical fiber.
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other to match the detector. Incidentally, a naturally occurring 
fibrous crystal known as ulexite, when polished, responds sur-
prisingly like a fiberoptic mosaic. (Hobby shops often sell it for 
use in making jewelry.)

If you have never seen the kind of light conduction we’ve 
been talking about, try looking down the edges of a stack of 
microscope slides. Even better are the much thinner (0.18-mm) 
cover-glass slides (see photo).

Today fiberoptics has three very different applications: it is 
used for the direct (short-distance) transmission of images and 
illumination, it provides a variety of remarkable waveguides 
used in telecommunications, and it serves as the core of a new 
family of sensors. Transmitting images over distances of a few 
meters with coherent bundles, however beautiful and however 
useful, is a rather unsophisticated business that doesn’t start to 
utilize the full potential inherent in fiberoptics. The application 

from nuclear reactor cores and jet engines to stomachs and repro-
ductive organs. When a device is used to examine internal body 
cavities, it’s called an endoscope. This category includes bron-
choscopes, colonoscopes, gastroscopes, and so forth, all of which 
are generally less than about 200 cm in length. Similar industrial 
instruments are usually two or three times as long and often con-
tain from 5000 to 50 000 fibers, depending on the required image 
resolution and the overall diameter that can be accommodated. 
An additional incoherent bundle incorporated into the device 
usually supplies the illumination.

Not all fiberoptic arrays are made flexible; for example, 
fused, rigid, coherent fiber faceplates, or mosaics, are used to 
replace homogeneous low-resolution sheet glass on cathode-ray 
tubes, vidicons, image intensifiers, and other devices. Mosaics 
consisting of literally millions of fibers with their claddings 
fused together have mechanical properties almost identical to 
those of homogeneous glass. Similarly, a sheet of fused tapered 
fibers can either magnify or minify an image, depending on 
whether the light enters the smaller or larger end of the fiber. 
The compound eye of an insect such as the housefly is effec-
tively a bundle of tapered fiberoptical filaments. The rods and 
cones that make up the human retina may also channel light 
through total internal reflection. Another common application 
of mosaics involving imaging is the field flattener. If the image 
formed by a lens system resides on a curved surface, it is often 
desirable to reshape it into a plane, for example, to match a film 
plate. A mosaic can be ground and polished on one of its end 
surfaces to correspond to the contour of the image and on the 

A coherent bundle of 10-mm glass fibers transmitting an image even 
though knotted and sharply bent. (American ACMI Div., American Hospital Supply Corp.)

A stack of cover-glass slides held together by a rubber band serves as a 
coherent lightguide. (E.H.)

An X-ray showing a colonoscope being used to examine a patient for  
cancer of the colon. (Pearson Education, Inc.)
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fibers—see Fig. 5.82c). It has regenerators or repeaters (to 
boost the signal strength) every 50 km (30 mi) or more. This 
feature is tremendously important in long-distance communi-
cations. Ordinary wire systems require repeaters roughly every 
kilometer; electrical coaxial networks extend that range to about 
2 to 6 km; even radio transmissions through the atmosphere 
need regeneration every 30 to 50 km. The repeaters used until the 
mid-1990s were electro-optical hybrids that converted the 
weakened optical signal into an electrical one, amplified it, and 
then, using semiconductor lasers, reintroduced it into the fiber.

A major determining factor in the spacing of repeaters is the 
power loss due to attenuation of the signal as it propagates down 
the line. The decibel (dB) is the customary unit used to designate 
the ratio of two power levels, and as such it can provide a con-
venient indication of the power-out (Po) with respect to the 
power-in (Pi). The number of dB = -10 log10(Po>Pi), and hence 
a ratio of 1:10 is 10 dB, 1:100 is 20 dB, 1:1000 is 30 dB, and so 
on. The attenuation (a) is usually specified in decibels per kilo-
meter (dB>km) of fiber length (L). Thus -aL>10 = log10(Po>Pi), 
and if we raise 10 to the power of both sides,

 Po>Pi = 10-aL>10 (5.62)

As a rule, reamplification of the signal is necessary when the 
power has dropped by a factor of about 10-5. Commercial opti-
cal glass, the kind of material available for fibers in the mid-
1960s, has an attenuation of about 1000 dB>km. Light, after 
being transmitted 1 km through the stuff, would drop in power 
by a factor of 10-100, and regenerators would be needed every 
50 m (which is little better than communicating with a string 
and two tin cans). By 1970 a was down to about 20 dB>km  
for fused silica (quartz, SiO2), and it was reduced to as little as 
0.16 dB>km in 1982. This tremendous decrease in attenuation 
was achieved mostly by removing impurities (especially the 
ions of iron, nickel, and copper) and reducing contamination by 
OH groups, largely accomplished by scrupulously eliminating 
any traces of water in the glass (p. 82). Today the purest fibers 
can carry signals up to 80 km before needing reamplification.

By the beginning of the twenty-first century, two major ad-
vances had already begun to dramatically increase the data 
handling capacity of long-distance fiberoptic cables. The first 
innovation was the introduction of erbium-doped fiber ampli-
fiers (EDFAs). These are single-mode fibers that have ions of 
the rare-earth element erbium infused into their cores at levels 
of 100 to 1000 ppm. Having a good conversion efficiency, 
they’re typically pumped at 980 nm (for the highest level of 
inversion) or 1480 nm (for the highest quantum efficiency) by 
diode lasers putting out around 200 mW. The resulting excited 
erbium atoms reradiate, via stimulated emission induced by 
photons from the faded signal, and thereby reenergize the flow 
of data. This happens along the entire length of the amplifier, 
and it can boost the power (usually held to milliwatt levels) of 
a wide range of frequencies simultaneously. Fiberoptic ampli-
fiers eliminated the bottleneck caused by the previous genera-
tion of electronic hybrid repeaters. 

of lightguides to telecommunications is rapidly replacing cop-
per wires and electricity as the primary information pathway. 

Worldwide, in the first few decades after 1970 well over  
100 million kilometers of fibers were installed. It’s been 
estimated that today, every day, enough fiberoptic cable is in-
stalled to circle the Earth several times. In a different vein, fi-
beroptic sensors—devices that measure pressure, sound, tem-
perature, voltage, current, liquid levels, electric and magnetic 
fields, rotations, and so forth—have become the latest manifes-
tation of the versatility of fibers.

5.6.1 Fiberoptic Communications Technology

The high frequencies of light allow for an incredible data-handling 
capacity. For example, with sophisticated transmitting techniques, 
a pair of copper telephone wires can be made to carry about two 
dozen simultaneous conversations. That should be compared 
with a single, ongoing, simple television transmission, which is 
equivalent to about 1300 simultaneous telephone conversations, 
and that, in turn, is roughly the equal of sending some 2500 type-
written pages each second. Clearly, at present it’s quite impracti-
cal to attempt to send television over copper telephone lines. Yet 
by the mid-1980s it was already possible to transmit in excess of 
12 000 simultaneous conversations over a single pair of fibers—
that’s more than nine television channels. Each such fiber has a 
line rate of about 400 million bits of information per second (400 
Mb>s), or 6000 voice circuits. Fibers of this sort (with repeaters 
spaced every 40 km or so) formed the world’s intercity long-haul 
telecommunications grids. In the early 1990s researchers used 
solitons—carefully shaped pulses that travel without chang-
ing—to attain transmission rates of around 4 Gb>s. This is the 
equivalent of 70 simultaneous color TV channels sent more than 
a million kilometers.

The first fiberoptic transatlantic cable TAT-8 was designed, 
using some clever data-handling techniques, to carry 40 000 
conversations at once over just two pairs of glass fibers. TAT-1, 
a copper cable installed in 1956, could carry a mere 51 conver-
sations, and the last of the bulky copper versions, TAT-7 (1983), 
can handle only about 8000. The TAT-8, which began operations 
in 1988, functions at 296 Mb>s (using single-mode 1300-nm 

A remarkably detailed view as seen through a fiberoptic colonoscope. (E.H.)
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which energy can propagate down the core (Fig. 5.83). This 
then is a multimode fiber, wherein each mode corresponds to 
a slightly different transit time. A fiber is an optical waveguide, 
and the precise manner in which “light” propagates along that 
sort of channel can be quite complicated (Fig. 5.79). The various 
patterns of propagation or modes can be studied theoretically 
using Maxwell’s Equations. A highly useful parameter that 
comes out of such an analysis is the V-number:

 V@number =
pD NA

l0
 (5.63)

where D is the diameter of the core and l0 is the vacuum wave-
length of the transmitted radiant energy. For a stepped-index 
fiber the detailed theoretical analysis shows that as the V-number 
increases beyond a value of 2.405 the number of modes (Nm) 
increases rapidly, and once there are several present

 Nm ≈ 1
2 (V@number)2 (5.64)

Increasing the fiber’s core diameter, or its index of refraction, 
increases the number of modes. By contrast, increasing the 
cladding index or the wavelength decreases the number of 
modes the fiber will support. In a stepped-index fiber most of 
the energy will be confined to the core but there will be penetra-
tion into the cladding where evanescent waves will travel.

Another parameter that comes up frequently is the fractional 
refractive index difference, (nƒ - nc)>nƒ. This quantity, the 
square root of which is proportional to the numerical aperture, 
is V  1 when the core (or fiber) index (nƒ) is close to the clad-
ding index (nc). That condition is known as the weakly guiding 
approximation whereupon the waveguide analysis simplifies 
considerably. Under that approximation a set of linearly polar-
ized (LP) modes that are symmetric about the central axis can 
exist in the fiber. The simplest mode is LP01, where the sub-
scripts relate to the number of nodes (regions of zero irradiance) 
in the beam. Here the 0 subscript means that there are no azi-
muthal or angular nodes in the beam’s cross section. The 1 sub-
script tells us that there is a single radial node marking the outer 
boundary of the beam. The simplest irradiance distribution is 
bell-shaped with the peak on the central axis. 

The second innovation was the application of a new data- 
handling technique called dense wavelength division multi-
plexing (DWDM). The word “multiplexing” means the use of 
a single pathway to simultaneously transmit several signals 
that nonetheless retain their individuality. At the present it’s 
not hard to send upwards of 160 optical channels carrying dif-
ferent signals, all transmitted at the same time over the same 
fiber at different frequencies. And it won’t be long before 
1000 channels per fiber is commonplace. Typically, each 
channel has a data rate of 10 Gb>s or more, and these are each 
spaced by 50 to 100 GHz. Every major telecommunications 
carrier is already using DWDM. The latest transatlantic cables 
contain four fiber pairs, each capable of carrying 48 DWDM 
channels and each of these flows data at a rate of 10 Gb>s. 
That’s a net capacity of 4 * 48 * 10 Gb>s or 1.9 Tb>s. Com-
mercial links operating at 40 Gb>s per channel are already in 
service.

Figure 5.82 depicts the three major fiber configurations 
used in communications today. In (a) the core is relatively 
wide, and the indices of core and cladding are both constant 
throughout. This is the so-called stepped-index fiber, with a 
homogeneous core of roughly 50 to 200 mm and cladding typi-
cally 20 mm thick. The oldest of the three types, the stepped-
index fiber was widely used in first-generation systems (1975–
1980). The comparatively large central core makes it rugged 
and easily infused with light, as well as easily terminated and 
coupled. It’s the least expensive but also the least effective of 
the lot, and for long-range applications, it has some serious 
drawbacks.

Depending on the launch angle into the fiber, there can be 
hundreds, even thousands, of different ray paths or modes by 

n

(a)
n

n

(c)

(b)

Figure 5.82  The three major fiberoptic configurations and their index 
profiles. (a) Multimode stepped-index fiber. (b) Multimode graded-index 
fiber. (c) Single-mode stepped-index fiber.
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Figure 5.83  Intermodal dispersion in a stepped-index multimode fiber.
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time of travel is just the axial length L divided by the speed of 
light in the fiber:

 tmin =
L
vƒ

=
L

c>nƒ
=

Lnƒ

c
 (5.65)

The nonaxial route (/), given by / = L>cos ut, is longest when 
the ray is incident at the critical angle, whereupon nc>nƒ = cos ut. 
Combining these two, we get / = Lnƒ>nc, and so

 t max =
/
vƒ

=
Lnƒ>nc

c>nƒ
=

Ln2
ƒ

cnc
 (5.66)

Thus it follows that, subtracting Eq. (5.65) from Eq. (5.66), 

 ∆t =
Lnƒ

c
 anƒ

nc
- 1b (5.67)

As an example, suppose nƒ = 1.500 and nc = 1.489. The delay, 
∆t>L, then turns out to be 37 ns>km. In other words, a sharp 
pulse of light entering the system will be spread out in time 
some 37 ns for each kilometer of fiber traversed. Moreover, 
traveling at a speed vƒ = c>nƒ = 2.0 * 108 m>s, it will spread 
in space over a length of 7.4 m>km. To make sure that the trans-
mitted signal will still be easily readable, we might require that 
the spatial (or temporal) separation be at least twice the spread-
out width (Fig. 5.85). Now imagine the line to be 1.0 km long. 

When the V-number exceeds 2.405, which is the first zero of 
the zeroth-order Bessel function solution for a cylindrical wave-
guide, the next mode, LP11, can exist in the fiber along with the 
LP01 mode. When the V-number exceeds 3.832, which is the 
first zero of the first-order Bessel function solution, two more 
modes, LP02 and LP21, can be sustained, and so on. A short-haul 
multimode telecom fiber might have D = 100 mm and NA 5 
0.30, whereupon operating at 633 nm, its V-number is 148 and 
the number of modes it supports is Nm = 11 * 103. 

The quantity of energy transported in each mode depends 
on the launch conditions. The angular spread (or NA) of the 
input beam can be greater than the spread that can be accepted 
by the fiber (i.e., greater than the NA of the fiber). Moreover, 
the diameter of the input beam can be greater than the diameter 
of the core. In that case some of the signal light cannot enter 
the fiber, which is then said to be overfilled. When the oppo-
site condition applies and the fiber can accept more light than 
it is receiving, it is said to be underfilled. That usually means 
a narrow cone of rays enters the fiber and only low-order 
modes are sustained. On the other hand, overfilling results in 
higher attenuation because rays entering more steeply reflect 
off the core–cladding interface more frequently and undergo 
increased losses via evanescent waves spreading out into the 
cladding.

In a multimode fiber higher-angle rays travel longer paths; 
reflecting from side to side, they take longer to get to the end of 
the fiber than do rays moving along the axis. This is loosely 
spoken of as intermodal dispersion (or often just modal  
dispersion), even though it has nothing to do with a frequency-
dependent index of refraction. Information to be transmitted is 
usually digitized in some coded fashion and then sent along the 
fibers as a flood of millions of pulses or bits per second. The 
different transit times have the undesirable effect of changing 
the shape of the pulses of light that represent the signal. What 
started as a sharp rectangular pulse can smear out, after travel-
ing a few kilometers within the fiber, into an unrecognizable 
blur (Fig. 5.84).

The total time delay between the arrival of the axial ray and 
the slowest ray, the one traveling the longest distance, is ∆t =
t max - t min. Here, referring back to Fig. 5.81, the minimum 

Figure 5.84  Rectangular pulses of light smeared out by increasing 
amounts of dispersion. Note how the closely spaced pulses degrade more 
quickly.

7.4 m
(37 ns)

1.0 km

7.4 m
14.8 m

14.8 m

Figure 5.85  The spreading of an input signal due to intermodal dispersion.
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dispersion of only around 2 ns>km. They are intermediate in 
price and have been widely used in medium-distance intercity 
applications.

Multimode fibers with core diameters of 50 mm or more are 
often fed by light-emitting diodes (LEDs). These are compara-
tively inexpensive and are commonly used over relatively short 
spans at low transmission rates. The problem with them is that 
they emit a fairly broad range of frequencies. As a result, ordi-
nary material or spectral dispersion, the fact that the fiber index 
is a function of frequency, becomes a limiting factor. That dif-
ficulty is essentially avoided by using spectrally pure laser-
beams. Alternatively, the fibers can be operated at wavelengths 
near 1.3 mm, where silica glass (see Figs. 3.40 and 3.41) has 
little dispersion.

The last, and best, solution to the problem of intermodal 
dispersion is to make the core so narrow (less than 10 mm) 
that it will provide only one mode wherein the rays travel par-
allel to the central axis (Fig. 5.82c). Such single-mode fibers 
of ultrapure glass (both stepped-index and the newer graded-
index) provide the best performance. 

A single-mode fiber is designed to allow only the funda-
mental mode at a particular wavelength to propagate along its 
core. This can be achieved in the case of a stepped-index fiber 
by adjusting the V-number to be less than 2.405 (the corre-
sponding V-number for a parabolic graded-index fiber is 3.40 
and for one with a nearly triangular index profile it’s 4.17). 
That’s accomplished by making the fiber’s diameter quite 
small (typically 9 mm) while reducing the difference between 
the indices of the core and cladding, thereby causing the nu-
merical aperture to be small as well. There will then be a 
wavelength that is the smallest possible one in which only the 
fundamental mode will be sustained; using any shorter wave-
length will increase the V-number and result in multimode 
propagation. This is the so-called cut-off wavelength lc, which 
follows from Eq. (5.63) for a stepped-index fiber:

 lc =
pD NA
2.405

 (5.68)

As we have seen, the irradiance distribution across a single-
mode fiber has a bell shape, peaking at the central axis and 
actually extending beyond the core well into the cladding. In 
other words, the diameter of the mode field (twice the distance 
from the central axis to where the irradiance has dropped by a 
factor of 1>e2 = 0.135) is somewhere between 10% and 15% 
larger than the core diameter. The emerging spot of light is 
therefore larger than the core. Because the cladding carries a 
portion of the radiant energy, any light extending beyond the 
limits of the cladding itself is lost. Accordingly, the cladding on 
a stepped-index single-mode fiber is usually 10 times thicker 
than the core diameter. Such a fiber might have an 8.2@mm 
core, and a mode-field diameter of 9.2 mm at a wavelength of 
1310 nm; that would increase to perhaps 10.4 mm at 1550 nm. 
Single-mode fibers, typically having core diameters of only 
2 mm to 9 mm (around 10 wavelengths), essentially eliminate 

In that case, the output pulses are 7.4 m wide on emerging from 
the fiber and so must be separated by 14.8 m. This means that 
the input pulses must be at least 14.8 m apart; they must be 
separated in time by 74 ns and so cannot come any faster than 
one every 74 ns, which is a rate of 13.5 million pulses per 
second. In this way the intermodal dispersion (which is typi-
cally 15 to 30 ns>km) limits the frequency of the input signal, 
thereby dictating the rate at which information can be fed 
through the system. Stepped-index multimode fibers are used 
for low-speed, short-distance lines.

These large-core fibers are used mainly in image transmis-
sion and illumination bundles. They’re also useful for carrying 
high-power laserbeams where the energy is distributed over a 
larger volume, thereby avoiding damage to the fiber.

EXAMPLE 5.12

A stepped-index multimode fiber has a core radius of 40 mm 
and a numerical aperture of 0.19. Given that it operates at a vac-
uum wavelength of 1300 nm, determine the number of modes 
it supports.

SOLUTION 

From the definition

V@number =
pD NA
l 0

and the number of modes is

Nm = 1
2 (V@number)2

Thus

V@number =
p 2(40 * 10-6 m) 0.19

1300 * 10-9 m

V@number = 36.73

and so

Nm ≈ 1
2 36.732 ≈ 674.6

There will be approximately 674 modes.

The problem of delay differences can be reduced as much as 
a hundredfold by gradually varying the refractive index of the 
core, decreasing it radially outward to the cladding (Fig. 5.82b). 
Instead of following sharp zigzag paths, the rays then smoothly 
spiral around the central axis. Because the index is higher along 
the center, rays taking shorter paths are slowed down by propor-
tionately greater amounts, and rays spiraling around near the 
cladding move more swiftly over longer paths. The result is that 
all the rays tend to stay more or less together in these multi-
mode graded-index fibers. Typically, a graded-index fiber has 
a core diameter of about 20 mm to 90 mm and an intermodal 
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212 Chapter 5 Geometrical Optics

been lowered by the addition of fluorine. That index-depressed 
region is itself surrounded by a sheath of pure silica creating a 
second interface. 

Holey / Microstructured Fibers

In the 1990s a very promising fiber type came into existence, 
and it was soon known (jokingly at first) as holey or, more in-
clusively, as microstructured fiber. Today these devices come 
in two distinct configurations that differ in operation and appli-
cation: the photonic-crystal hollow-core bandgap fiber and the 
photonic-crystal solid-core fiber. These two categories are basi-
cally distinguished by whether the light-carrying fiber core is 
hollow or solid.

A crystal is an ordered array of atoms that because of its 
periodicity can scatter waves—whether they are quantum me-
chanical electron waves or traditional electromagnetic waves—
producing interesting, highly useful effects. Guided by that un-
derstanding we should be able to scale things up and construct 
macroscopic periodic arrays of different dielectrics that will 
similarly scatter long-wavelength EM waves in a controllable 
fashion. That much has already been accomplished and re-
searchers are now working to produce man-made structures, 
“crystals” (which look nothing like natural crystals), that will 
operate in the visible region of the spectrum. All such inhomo-
geneous more-or-less periodic dielectric constructions are 
known as photonic crystals. 

In an 1887 paper titled “The Propagation of Waves Through 
a Medium Endowed with a Periodic Structure,” Lord Rayleigh 
showed that in a laminated medium, waves of the right wave-
length would be completely reflected backward toward whence 
they came. It would be as if they encountered a kind of forbid-
den band across which they could not pass. We now know that 
when electron waves move through the periodic structure of a 
semiconductor crystal they partially scatter off each encountered 
atomic layer. If the de Broglie electron wavelength happens to 
match the regular atomic-layer spacing, wavelets reflected 
backward combine constructively, resulting in complete reflec-
tion of the electron waves and the extinction of the transmitted 
beam. This sort of conceptual obstruction is known as an energy 
bandgap. In other words, electron waves in a crystal can be 
imagined separated into energy bands by gaps wherein propa-
gation is forbidden. In a solid at low temperature, electrons have 
low energies and occupy the so-called valence band. In semi-
conductors and insulators a bandgap separates the valence band 
from the conduction band, which is above it in energy. Only 
electrons that gain enough energy to traverse the bandgap can 
enter the conduction band and move about freely.

Analogous bandgaps can exist for electromagnetic waves 
propagating in macroscopic periodic dielectric composites (i.e., 
photonic crystals). We can fabricate dielectric structures that 
will suppress the transmission of EM waves within a certain 
frequency range known as a photonic bandgap. In this chapter 
we are primarily concerned with fibers and the propagation of 

intermodal dispersion. Although they are relatively expensive 
and require laser sources, these fibers operated at 1.55 mm (where 
the attenuation is about 0.2 dB>km, not far from the ideal silica 
value of 0.1 dB>km) are today’s premier long-haul lightguides. A 
pair of such fibers may someday connect your home to a vast 
network of communications and computer facilities, making the 
era of the copper wire seem charmingly primitive.

EXAMPLE 5.13

A stepped-index single-mode fiber has indices of 1.446 and 1.467. 
It is to be used at a wavelength of 1.300 mm. Determine the max-
imum core diameter. Compare the diameter to the wavelength.

SOLUTION 

The condition for single-mode propagation is 

V@number =
pD
l0

 (n2
f - n2

c)1>2 … 2.405

pD
1300 nm

 (1.4672 - 1.4462)1>2 … 2.405

pD (0.061 17)1>2 … 3.126 5 * 10-6 

pD … 1.264

and D … 4.02 mm 

The diameter is 4.0 mm, while the wavelength is 1.3 mm—quite 
comparable.

Pure fused silica (silica dioxide, SiO2) is the mainstay of 
high-quality ultra-low-loss telecom fibers. Nowadays dopants 
are added to the silica to alter its characteristics as needed.  
Germanium dioxide (GeO2) in tiny amounts raises the index of 
refraction, as does phosphorus pentoxide (P2O5). On the other 
hand, fluorine (F) lowers the index, as does boron trioxide 
(B2O3). Today the single-mode stepped-index fiber shown in 
Fig. 5.82c, sometimes called a matched cladding fiber, would 
likely be fabricated using a pure silica cladding surrounding a 
silica core that was infused with germanium dioxide to increase 
its refractive index a fraction of a percent (usually 60.5%).  
Figure 5.86 shows a similar design known as a depressed clad-
ding fiber. It has a fused silica core lightly doped with germa-
nium dioxide, surrounded by a silica cladding whose index has 

Figure 5.86  A depressed-cladding fiber. 
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wavelength, lc [Eq. (5.68)]. That is, there is no minimum wave-
length such that shorter waves can establish the transmission of 
a second, or higher, mode. This occurs because the average in-
dex of the cladding increases as the frequency of the “light” 
increases. Endless single-mode operation happens because the 
refractive index step between the core and cladding decreases 
with a decrease in wavelength. That decreases the numerical 
aperture and hence it proportionately decreases the cut-off 
wavelength.

Although the periodic microstructural variation of the di-
electric constant of a solid-core photonic crystal fiber scatters 
light internally in a complex fashion, its overall operation can 
be considered more simply as a process of modified total inter-
nal reflection. Here the cladding has an average refractive in-
dex, which is effectively lowered from that of the silica medium, 
and therefore the core, by the presence of the lattice of holes. 

One of the most important features of solid-core holey fibers 
arises from our ability to engineer useful dispersion characteristics 
that are very different from those of the constituent transparent 

light along their lengths. Therefore consider a silica fiber (see 
photo) containing a regular array of tiny-diameter cylindrical 
holes running parallel to its central axis along its entire length, 
forming an elongated two-dimensional bandgap structure. 
These tiny holes are clustered about a central hole that is usu-
ally somewhat larger than the others. This is a hollow-core 
photonic-bandgap fiber. 

Looking down the fiber’s axis the surrounding cladding, 
which is an alternating glass–air–glass–air periodic dielectric 
array, scatters radiant energy, producing a bandgap that obstructs 
the forward propagation of a specific range of frequencies. The 
idea is to engineer the cladding to have a bandgap in the fre-
quency range of interest and thereby trap that “light” within the 
fiber. The cladding blocks all wavelengths other than a narrow 
band, essentially restraining the beam to propagate down the 
hollow air-filled core, which might be around only 15 mm in 
diameter. The core is a kind of “defect” in the photonic crystal 
lattice, and as much as 99.5% of the “light” could be funneled 
into it. Put another way, if a photonic bandgap is created in the 
visible region of the spectrum the crystal would clearly be use-
less for conveying light. Introducing a “defect,” the core (be it 
filled or hollow) breaks the symmetry. The core then functions 
as a waveguide for those frequencies expelled from the clad-
ding. All other wavelengths that might enter the hollow core 
quickly leak out because the cladding, albeit full of holes, none-
theless has a higher average index than air. Such a fiber could be 
constructed to channel a beam with a bandwidth of perhaps 200 nm 
at around 1550 nm along the open core.

Because it has a hollow air-filled central channel, a photonic-
crystal fiber can carry more energy than a conventional solid 
glass telecom fiber. And that means a potentially far greater  
information-carrying capacity, perhaps as much as 100 times 
greater. An ordinary stepped-index high-purity glass fiber ab-
sorbs and scatters light to some extent, attenuating signals trans-
mitted over great distances. Moreover, because of dispersion in 
the glass the signal pulses spread out, broadening as they propa-
gate, blurring into one another, and thereby limiting the range 
over which high-density data can be successfully transmitted. 
By contrast, in an air-core photonic crystal fiber both absorp-
tion and dispersion are essentially negligible. Another problem-
atic effect arises when “light” travels very far through a medium 
like glass that is slightly nonlinear. No such issue arises when 
“light” propagates in the air of the hollow core.

Now imagine a photonic-crystal fiber with a small solid 
core—that is, one again composed of a narrow glass cylinder 
penetrated by a regular array of closely spaced tiny-diameter 
holes parallel to the axis, running the entire length of the fiber. 
However, this time the central core is glass (see photo). The first 
successful fiber of this sort appeared in early 1996, and it had 
the remarkable property of supporting only the single funda-
mental mode for all wavelengths. The beehive-like cladding 
allowed all of the higher-order modes to leak out. In other 
words, solid-core photonic-crystal fibers can be fabricated that 
are “endlessly” single modal inasmuch as they lack a cut-off 

A hollow-core photonic bandgap fiber. (Tim Birks, University of Bath)

A solid-core endless single-mode photonic crystal fiber. 
(Tim Birks, University of Bath)

M05_HECH6933_05_GE_C05.indd   213 26/08/16   1:33 PM



214 Chapter 5 Geometrical Optics

solid from which they are made. Today complex structures of dif-
ferently sized and shaped holes in various patterns (both symmet-
ric and asymmetric) are being utilized in special photonic-crystal 
fiber designs. Given their endless single-mode capability, large 
mode-field diameter, low bending loss, and ease of dispersion tun-
ing, solid-core holey fibers have tremendous promise for broad-
band transmission.

Holey fibers are usually constructed by first assembling a 
stack of several hundred silica rods and thin-walled hollow 
tubes, forming a bundle perhaps a meter long and 2 to 4 cm in 
diameter, called a preform. The preform is heated to ≈180° C 
and drawn down to a diameter of 2 to 4 mm. The resulting glass 
shaft is then placed into a sleeve, which is a silica tube, and the 
entire assembly is again heated and drawn down to a diameter 
of about 125 mm. Final lengths of a few kilometers are typical.

The Optical Switch

Wandering through the Internet requires rapidly channeling 
vast amounts of data from one fiberoptic route to another. At the 
end of the twentieth century, this was accomplished at network 
hubs where pulses of light were converted into electrical signals 
that could subsequently be switched around electronically. 
Only then were the packets of data converted back into pulses 
of light to continue the journey. Unfortunately, electronic 
switches are bulky, expensive, and relatively slow—not up to 
the task of meeting future demands. Until very recently, there 
was little hope that this so-called electronic bottleneck would 
soon be alleviated. But things changed dramatically at the turn 
of the new millennium with the introduction of several photonic 
switching systems. 

Figure 5.87 depicts an all-optical switch utilizing MOEMS 
(Micro-OptoElectroMechanical Systems) technology (p. 191).  
The end faces of hundreds of incoming and outgoing fibers 
are capped with tiny lenses at the top of the assembly. A down-
ward pulse of photons enters, hits a micromirror (only 0.5 mm 
in diameter) whose orientation is electronically controlled, 
“bounces off” a large reflector, strikes another controllable mi-
cromirror, and emerges into a designated output fiber, all read-
justable in a matter of milliseconds. MOEMS switches have 
already been deployed into the network to control data traffic. 
Eventually, optical switches will support the petabit-per-second, 
Pb/s (that’s American quadrillion, 1015) telecommunications 
system that’s not far off in the future. Beyond that is the all-
optical worldwide Telephone-TV-Internet purring along at rates 
as yet unimagined.

Capillary Optics

Fiberoptics works by having radiant energy (of a relatively low 
frequency, namely, light or IR) totally internally reflect off a 
high-index>low-index interface within a narrow solid waveguide. 
Similarly, high-frequency EM-radiation (especially X-rays) 

Figure 5.87  (a) An optical switch that uses tiny steerable mirrors to redi-
rect pulses of light. (Used with permission of Alcatel-Lucent USA Inc.) (b) The array of 
tiltable mirrors. (Used with permission of Alcatel-Lucent USA Inc.)

Single-mode
optical �ber
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Figure 5.88  Multiple grazing-incidence reflections of X-rays within a  
hollow glass fiber.

can also be totally internally reflected (p. 133) off an air–glass 
interface (rather than a glass–air interface). The critical angle, 
measured up from the surface, is typically only about 0.2° for 
10 keV (≈0.12 nm) X-rays. Figure 5.88 shows how a beam 
follows the curve of a hollow capillary tube via multiple grazing-
incidence reflection at the internal air–glass interface. Bending 
the path of X-rays is otherwise a daunting business.

A single glass thread with a diameter of 300 to 600 mm can 
be fabricated so that it contains thousands of fine capillary chan-
nels each from 3 to 50 mm in diameter (see photo). Thousands of 
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such multichannel threads (Fig. 5.89) are then used together  
to conveniently focus or collimate X-ray beams in a way never 
before possible.

5.7 Optical Systems

We have developed paraxial theory to a point where it is pos-
sible to appreciate the principles underlying the majority of 
practical optical systems. To be sure, the subtleties involved in 
controlling aberrations are extremely important and still be-
yond this discussion. Even so, one could build, for example, a 
telescope (admittedly not a very good one, but a telescope 
nonetheless) using the conclusions already drawn from first-
order theory.

What better starting point for a discussion of optical instru-
ments than the most common of all—the eye?

A scanning electron micrograph of a single multichannel thread containing 
hundreds of hollow capillaries. (X-Ray Optical Systems, Inc. Albany, New York)

5.7.1 Eyes

For our purposes, three main groupings of eyes can readily be 
distinguished: those that gather radiant energy and form images 
via a single-centered lens system, those that utilize a multifac-
eted arrangement of tiny lenses (feeding into channels resem-
bling optical fibers), and the most rudimentary, those that sim-
ply function with a small lensless hole (p. 228). In addition to 
light-sensing eyes, the rattlesnake has infrared pinhole “eyes” 
called pits, which might be included in this last group.

Visual lens systems of the first type have evolved indepen-
dently and remarkably similarly in at least three distinct kinds 
of organisms. Some of the more advanced mollusks (e.g., the oc-
topus), certain spiders (e.g., the avicularia), and the vertebrates, 
ourselves included, possess eyes that each form a single con-
tinuous real image on a light-sensitive screen or retina. By com-
parison, the multifaceted compound eye (Fig. 5.90) developed 
independently among arthropods, the creatures with articulated 
bodies and limbs (e.g., insects and crayfish). It produces a mo-
saic sensory image composed of many small-field-of-view spot 
contributions, one from each tiny segment of the eye (as if one 
were looking at the world through a tightly packed bundle of 
exceedingly fine tubes). Like a television picture made up of 
different-intensity dots, the compound eye divides and digitizes 
the scene being viewed. There is no real image formed on a 
retinal screen; the synthesis takes place electrically in the ner-
vous system. The horsefly has about 7000 such segments, and 
the predatory dragonfly, an especially fast flyer, gets a better 
view with 30 000, as compared with some ants that manage 
with only about 50. The more facets, the more image dots, and 
the better the resolution, the sharper the composite picture. This 
may well be the oldest of eye types: trilobites, the little sea crea-
tures of 500 million years ago had well-developed compound 
eyes. Remarkably, however different the optics, the chemistry 
of the image-sensing mechanisms in all Earth animals is quite 
similar.

Structure of the Human Eye

The human eye can be thought of as a positive double-lens ar-
rangement that casts a real image on a light-sensitive surface. 
That notion, in a rudimentary form, was apparently proposed by 
Kepler (1604), who wrote, “Vision, I say, occurs when the im-
age of the . . . external world . . . is projected onto the . . . con-
cave retina.” This insight gained wide acceptance only after a 
lovely experiment was performed in 1625 by the German Jesuit 
Christopher Scheiner (and independently, about five years later, 
by Descartes). Scheiner removed the coating on the back of an 
animal’s eyeball and, peering through the nearly transparent 
retina from behind, was able to see a minified, inverted image 
of the scene beyond the eye. Although it resembles a simple 
camera (p. 187), the seeing system (eye, optic nerve, and visual 
cortex) functions much more like a closed-circuit computerized 
television unit.

(a)

(b)

Figure 5.89  A bundle of multicapillary threads used to (a) focus or  
(b) collimate the X-rays from a point source.
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Cairo, who described the eye as partitioned into three regions that 
were watery, crystalline, and glassy, respectively. The lens, which 
has both the size and shape of a small bean (9 mm in diameter and 
4 mm thick), is a complex layered fibrous mass surrounded by an 
elastic membrane. In structure it is somewhat like a transparent 
onion, formed of roughly 22 000 very fine layers. It has some re-
markable characteristics that distinguish it from man-made lenses, 
in addition to the fact that it continues to grow in size. Because of 
its laminar structure, rays traversing it will follow paths made up of 
minute, discontinuous segments. The lens as a whole is quite pli-
able, albeit less so with age. Moreover, its index of refraction rang-
es from about 1.406 at the inner core to approximately 1.386 at the 
less dense cortex, and as such it represents a gradient-index or 
GRIN system (p. 284). The crystalline lens provides the needed 
fine-focusing mechanism through changes in its shape; that is, it 
has a variable focal length—a feature we’ll come back to presently.

The refracting components of the eye, the cornea and crystal-
line lens, can be treated as forming an effective double-element 
lens with an object focus of about 15.6 mm in front of the ante-
rior surface of the cornea and an image focus of about 24.3 mm 
behind it on the retina. To simplify things a little, we can take 
the combined lens to have an optical center 17.1 mm in front of 
the retina, which falls just at the rear edge of the crystalline lens.

Behind the lens is another chamber filled with a transparent 
gelatinous substance made of collagen (a protein polymer) and 
hyaluronic acid (a protein concentrate). Known as the vitreous 
humor (nvh ≈ 1.337), this thick gel gives support to the eyeball. 
As an aside, it should be noted that the vitreous humor contains 
microscopic particles of cellular debris floating freely about. 
You can easily see their shadows, outlined with diffraction 

(a) (b)
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Figure 5.90  (a) The compound eye made up of many ommatidia. (b) An ommatidium, the little  
individual eye that each “sees” a small region in a particular direction. The corneal lens and crystalline 
cone channel the light into the sensing structure, the clear, rod-shaped rhabdom. Each of these is  
surrounded by retinal cells that lead via nerve fibers to the brain. A flower seen through both a human 
eye and a compound eye. (Source: Ackerman & Ellis, Biophysical Science, 2nd Ed., © 1979, p. 31, Person Education.)

The eye (Fig. 5.91) is an almost spherical (24 mm long by 
about 22 mm across) jellylike mass contained within a tough 
flexible shell, the sclera. Except for the front portion, or cornea, 
which is transparent, the sclera is white and opaque. Bulging 
out from the body of the sphere, the cornea’s curved surface 
(which is slightly flattened, thereby cutting down on spherical 
aberration) serves as the first and strongest convex element of the 
lens system. Indeed, most of the bending imparted to a bundle of 
rays takes place at the air–cornea interface. Incidentally, one of 
the reasons you can’t see very well under water (nW ≈ 1.33) is 
that its index is too close to that of the cornea (nC ≈ 1.376) to 
allow for adequate refraction.

Light emerging from the cornea passes through a chamber 
filled with a clear watery fluid called the aqueous humor  
(nah ≈ 1.336). It nourishes the anterior portion of the eye. A ray 
that is strongly refracted toward the optical axis at the air–cornea 
interface will be only slightly redirected at the cornea–aqueous 
humor interface because of the similarity of their indices. Im-
mersed in the aqueous is a diaphragm known as the iris, which 
serves as the aperture stop controlling the amount of light entering 
the eye through the hole, or pupil. It is the iris (from the Greek 
word for rainbow) that gives the eye its characteristic blue, brown, 
gray, green, or hazel color. Made up of circular and radial muscles, 
the iris can expand or contract the pupil over a range from about 2 
mm in bright light to roughly 8 mm in darkness. In addition to this 
function, it is also linked to the focusing response and will con-
tract to increase image sharpness when doing close work.

Immediately behind the iris is the crystalline lens. The name, 
which is somewhat misleading, dates back to about 1000 c.e. and 
the work of Abu Ali al-Hasan ibn al-Haytham, alias Alhazen of 
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light, as is the coat of black paint on the inside of a camera. A 
thin layer (about 0.5 mm to 0.1 mm thick) of light receptor cells 
covers much of the inner surface of the choroid—this is the 
retina (from the Latin rete, meaning net). The focused beam of 
light is absorbed via electrochemical reactions in this pinkish 
multilayered structure.

The human eye contains two kinds of photoreceptor cells: 
rods and cones (see photo). Roughly 125 million of them are 
intermingled nonuniformly over most of the retina. The ensem-
ble of rods (each about 0.002 mm in diameter) in some respects 
has the characteristics of a high-speed, black-and-white film 
(such as Tri-X). It is exceedingly sensitive, performing in light 
too dim for the cones to respond to; yet it is unable to distinguish 
color, and the images it relays are not well defined. In contrast, 
the ensemble of 6 or 7 million cones (each about 0.006 mm in 
diameter) can be imagined as a separate, but overlapping, low-
speed color film. It performs in bright light, giving detailed col-
ored views, but it is fairly insensitive at low light levels.

fringes, within your own eye by squinting at a light source or 
looking at the sky through a pinhole—strange little amoebalike 
objects (muscae volitantes) will float across the field of view. 
Incidentally, a marked increase in one’s perception of these 
floaters may be indicative of retinal detachment. While you’re 
at it, squint at the source again (a broad diffuse fluorescent light 
works well). Closing your lids almost completely, you’ll actu-
ally be able to see the near circular periphery of your own pupil, 
beyond which the glare of light will disappear into blackness. If 
you don’t believe it, block and then unblock some of the light; 
the glare circle will visibly expand and contract, respectively. 
You are seeing the shadow cast by the iris from the inside! See-
ing internal objects like this is known as entoptic perception.

Within the tough sclerotic wall is an inner shell, the choroid. 
It is a dark layer, well supplied with blood vessels and richly 
pigmented with melanin. The choroid is the absorber of stray 
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Figure 5.91  The human eye.

An electron micrograph of the retina of a salamander (Necturus maculosus). 
Two visual cones appear in the foreground and several rods behind them.  
(E. R. Lewis, Y. Y. Zeevi, and F. S. Werblin, Brain Research 15, 559 [1969].)

A high-resolution image of a living human retina. Each bright spot is a single 
cone photoreceptor about 4.9 mm in diameter. (Austin Roorda and David R. Williams, 

University of Rochester, NY)
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in position behind the iris by ligaments that are connected to 
a circular yoke composed of the ciliary muscles. Ordinarily, 
these muscles are relaxed, and in that state they pull outward 
radially on the network of fine fibers holding the rim of the 
lens. This draws the pliable lens into a fairly flat configura-
tion, increasing its radii, which in turn increases its focal 
length [Eq. (5.16)]. With the muscles completely relaxed, the 
light from an object at infinity will be focused on the retina 
(Fig. 5.93). As the object moves closer to the eye, the ciliary 
muscles contract, relieving the external tension on the periph-
ery of the lens, which then bulges slightly under its own elas-
tic forces. In so doing, the focal length decreases such that si 
is kept constant. As the object comes still closer, the yoke of 
ciliary muscles becomes more tensely contracted, the circular 
region they encompass gets still smaller, and the lens surfaces 
take on even smaller radii. The closest point on which the eye 
can focus is known as the near point. In a normal eye it 
might be about 7 cm for a teenager, 12 cm or so for a young 
adult, roughly 28 to 40 cm in the middle-aged, and about 100 
cm by 60 years of age. Visual instruments are designed with 
this in mind, so that the eye need not strain unnecessarily. 
Clearly, the eye cannot focus on two different objects at once. 
This will be made obvious if, while looking through a piece 
of glass, you try to focus on it and the scene beyond at the 
same time.

Mammals generally accommodate by varying the lens cur-
vature, but there are other means. Fish move only the lens itself 
toward or away from the retina, just as the camera lens is 
moved to focus. Some mollusks accomplish the same thing by 
contracting or expanding the whole eye, thus altering the rela-
tive distance between lens and retina. For birds of prey, which 

The normal wavelength range of human vision is roughly 
390 nm to 780 nm (Table 3.4). However, studies have extended 
these limits down to about 310 nm in the ultraviolet and up to 
roughly 1050 nm in the infrared. Indeed, people have reported 
“seeing” X-radiation. The limitation on ultraviolet transmission 
in the eye is set by the crystalline lens, which absorbs in the UV. 
People who have had a lens removed surgically have greatly 
improved UV sensitivity.

The area of exit of the optic nerve from the eye contains no 
receptors and is insensitive to light; accordingly, it is known as 
the blind spot (see Fig. 5.92). The optic nerve spreads out over 
the back of the interior of the eye in the form of the retina.

Just about at the center of the retina is a small depression 
from 2.5 to 3 mm in diameter known as the yellow spot, or mac-
ula. It is composed of more than twice as many cones as rods. 
There is a tiny rod-free region about 0.3 mm in diameter at the 
center of the macula called the fovea centralis. (In comparison, 
the image of the full Moon on the retina is about 0.2 mm in di-
ameter—Problem 5.101.) Here the cones are thinner (with diam-
eters of 0.003 0 mm to 0.001 5 mm) and more densely packed 
than anywhere else in the retina. Since the fovea provides the 
sharpest and most detailed information, the eyeball is continu-
ously moving, so that light coming from the area on the object of 
primary interest falls on this region. An image is constantly shift-
ed across different receptor cells by these normal eye move-
ments. If such movements did not occur and the image was kept 
stationary on a given set of photoreceptors, it would actually 
tend to fade out. Without the fovea the eye would lose 90 to 95% 
of its capability, retaining only peripheral vision.

Another fact that indicates the complexity of the sensing sys-
tem is that the rods are multiply connected to nerve fibers, and 
a single such fiber can be activated by any one of about a hun-
dred rods. By contrast, cones in the fovea are individually con-
nected to nerve fibers. The actual perception of a scene is con-
structed by the eye–brain system in a continuous analysis of the 
time-varying retinal image. Just think how little trouble the 
blind spot causes, even with one eye closed.

Between the nerve-fiber layer of the retina and the humor is 
a network of large retinal blood vessels, which can be observed 
entoptically. One way is to close your eye and place a bright 
small source against the lid. You’ll “see” a pattern of shadows 
(Purkinje figures) cast by the blood vessels on the sensitive 
retinal layer.

Accommodation

The fine focusing, or accommodation, of the human eye is a 
function performed by the crystalline lens. The lens is suspended 

Relaxed
muscle(a)

Contracted
muscle

Accomodation

(b)

Figure 5.93  Accommodation—changes in the lens configuration.

1 2×

Figure 5.92  To verify the existence of the blind spot, close one eye and, 
at a distance of about 10 inches, look directly at the X—the 2 will disap-
pear. Moving closer will cause the 2 to reappear while the 1 vanishes.
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must keep a rapidly moving object in constant focus over a wide 
range of distances as a matter of survival, the accommodation 
mechanism is quite different. They accommodate by greatly 
changing the curvature of the cornea.

5.7.2 Eyeglasses

Spectacles were probably invented some time in the late thir-
teenth century, possibly in Italy. A Florentine manuscript of the 
period (1299), which no longer exists, spoke of “spectacles re-
cently invented for the convenience of old men whose sight has 
begun to fail.” These were biconvex lenses, little more than 
variations on the handheld magnifying or reading glasses, and 
polished gemstones were no doubt employed as lorgnettes long 
before that. Roger Bacon (ca. 1267) wrote about negative 
lenses rather early on, but it was almost another two hundred 
years before Nicholas Cusa first discussed their use in eye-
glasses and a hundred years more before such glasses ceased to 
be a novelty, in the late 1500s. Amusingly, it was considered 
improper to wear spectacles in public even as late as the eigh-
teenth century, and we see few users in the paintings up until 
that time. In 1804 Wollaston, recognizing that traditional 
(fairly flat, biconvex, and concave) eyeglasses provided good 
vision only while one looked through their centers, patented a 
new, deeply curved lens. This was the forerunner of modern-
day meniscus (from the Greek meniskos, the diminutive for 

moon, i.e., crescent) lenses, which allow the turning eyeball to 
see through them from center to margin without significant 
distortion.

It is customary and quite convenient in physiological optics 
to speak about the dioptric power, �, of a lens, which is sim-
ply the reciprocal of the focal length. When f is in meters, the 
unit of power is the inverse meter, or diopter, symbolized by  
D: 1 m-1 = 1 D. For example, if a converging lens has a focal 
length of +1 m, its power is +1 D; with a focal length of -2 m 
(a diverging lens), � = -1

2 D; for ƒ = +10 cm, � = 10 D. 
Since a thin lens of index nl in air has a focal length given by

 
1
ƒ

= (nl - 1) a 1
R1

-
1
R2

b [5.16]

its power is

 � = (nl - 1) a 1
R1

-
1
R2

b (5.69)

You can get a sense of the direction in which we are moving by 
considering, in rather loose terms, that each surface of a lens 
bends the incoming rays—the more bending, the stronger the 
surface. A convex lens that strongly bends the rays at both sur-
faces has a short focal length and a large dioptric power. We 
already know that the focal length for two thin lenses in contact 
is given by

 
1
ƒ

=
1
ƒ1

+
1
ƒ2

 [5.38]

This means that the combined power is the sum of the individ-
ual powers, that is,

� = �1 + �2

Thus a convex lens with �1 = +10 D in contact with a negative 
lens of �2 = -10 D results in � = 0; the combination behaves 
like a parallel sheet of glass. Furthermore, we can imagine a 
lens, for example, a double convex lens, as being composed of 
two planar-convex lenses in intimate contact, back to back. The 
power of each of these follows from Eq. (5.69); thus for the first 
planar-convex lens (R2 = ∞),

 �1 =
(nl - 1)

R1
 (5.70)

and for the second,

 �2 =
(nl - 1)

-R2
 (5.71)

These expressions may be equally well defined as giving the 
powers of the respective surfaces of the initial double convex 
lens. In other words, the power of any thin lens is equal to the sum 
of the powers of its surfaces. Because R2 for a convex lens is a 
negative number, both �1 and �2 will be positive in that case. 
The power of a surface, defined in this way, is not generally the 

The earliest known picture (ca. 1352) of someone wearing eyeglasses. This is 
a portrait of Cardinal Ugo di Provenza, who died in 1262, painted by Tomasso 
da Modena. (Cardinal Ugo of Provenza (1351), Tomaso da Modena. Fresco in the Capitol Room 

in the Church of San Nicolò, Treviso. Photo from collection of author.)
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will diverge the rays a bit. Resist the temptation to suppose that 
we are merely reducing the power of the system. In point of 
fact, the power of the lens–eye combination is most often made 
to equal that of the unaided eye. If you are wearing glasses to 
correct myopia, take them off; the world gets blurry, but it 
doesn’t change size. Try casting a real image on a piece of paper 
using your glasses—it can’t be done.

Example 5.14

Suppose an eye has a far point of 2 m. All would be well if a 
spectacle lens appeared to bring more distant objects in closer 
than 2 m. If the virtual image of an object at infinity is formed 
by a concave lens at 2 m, the eye will see the object clearly with 
an unaccommodated lens. Find the needed focal length. 

SOLUTION

Using the thin-lens approximation (eyeglasses are generally 
thin to reduce weight and bulk), we have

 
1
ƒ

=
1
so

+
1
si

=
1
∞

+
1

-2
 [5.17]

and ƒ = -2 m while � = -1
2 D.

reciprocal of its focal length, although it is when immersed in 
air. Relating this terminology to the commonly used model for 
the human eye, we note that the power of the crystalline lens 
surrounded by air is about +19 D. The cornea provides roughly 
+43 of the total +58.6 D of the intact unaccommodated eye.

A normal eye, despite the connotation of the word, is not as 
common as one might expect. By the term normal, or its syn-
onym emmetropic, we mean an eye that is capable of focusing 
parallel rays on the retina while in a relaxed condition—that is, 
one whose second focal point lies on the retina. For the unac-
commodated eye, we define the object point whose image lies 
on the retina to be the far point. Thus for the normal eye the 
most distant point that can be brought to a focus on the retina, 
the far point, is located at infinity (which for all practical pur-
poses is anywhere beyond about 5 m). In contrast, when the 
focal point does not lie on the retina, the eye is ametropic (e.g., 
it suffers hyperopia, myopia, or astigmatism). This can arise 
either because of abnormal changes in the refracting mecha-
nism (cornea, lens, etc.) or because of alterations in the length 
of the eyeball that change the distance between the lens and the 
retina. The latter is by far the more common cause. Just to put 
things in proper perspective, note that about 25% of young 
adults require ±0.5 D or less of eyeglass correction, and per-
haps as many as 65% need only ±1.0 D or less.

Nearsightedness—Negative Lenses

Myopia is the condition in which parallel rays are brought to 
focus in front of the retina; the power of the lens system as con-
figured is too large for the anterior-posterior axial length of the 
eye. Images of distant objects fall in front of the retina, the far 
point is closer in than infinity, and all points beyond it will ap-
pear blurred. This is why myopia is often called nearsighted-
ness; an eye with this defect sees nearby objects clearly  
(Fig. 5.94). To correct the condition, or at least its symptoms, 
we place an additional lens in front of the eye such that the 
combined spectacle–eye lens system has its focal point on the 
retina. Since the myopic eye can clearly see objects closer than 
the far point, the spectacle lens must cast relatively nearby im-
ages of distant objects. Hence we introduce a negative lens that 

When the normally clear lens in the eye 
becomes cloudy, the condition is referred to 
as a cataract. The resulting haziness can  
have a devastating effect on vision. In 
extreme cases the crystalline lens is usually 
surgically removed. A small convex plastic 
lens (an intraocular lens implant) is then 
inserted in the eye to enhance its conver-
gence. (The photo shows an enlarged image 
of this type of converging spherical lens; it’s 
actually only about 6 mm in diameter.) Its  
use has all but eliminated the need for the 
thick “cataract eyeglasses” that were once 
required after surgery. (E.H.)

Nearsighted Eye

Object at ∞

Object at ∞

Distant object

Far point

Nearby object

(a)

(b)

(c)

(d)

(e)

No accommodation

Accommodation

Figure 5.94  Correction of the nearsighted eye.
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where ƒ = b.f.l. Inverting Eq. (5.72), setting it equal to Eq. (5.73), 
and simplifying, we obtain the result 1>ƒc = 1>(ƒl - d), inde-
pendent of the eye itself. In terms of power,

 �c =
�l

1 - �l d
 (5.74)

A spectacle lens of power �l a distance d from the eye-lens 
has an effective power the same as that of a contact lens of 
power �c. Notice that since d is measured in meters and thus is 
quite small, unless �l is large, as it often is, �c ≈ �l. Usually, 
the point on your nose where you choose to rest your eyeglasses 
has little effect, but that’s certainly not always the case; an 
improper value of d has resulted in many a headache.

It is common, though not universal, to say that a person 
whose vision is corrected by a contact lens of power -6 D is a 
6 D myope.

EXAMPLE 5.15

Describe the spectacle lenses that would correct the vision of a 
6 D myope. The person wants to wear the lenses 12 mm from 
each eye.

SOLUTION 

A 6 D myope has too much convergence and needs -6 D 
contact lenses. Using Eq. (5.74) the power of the spectacle lenses 
can be calculated from

�c =
�l

1 - �ld

where �c - �c�ld = �l

 �c = �l(1 + �cd)

�l =
�c

1 + �cd
=

-6
1 + (-6)(0.012)

and �l = -6.47 D 

Farsightedness—Positive Lenses

Hyperopia (or hypermetropia) is the defect that causes the sec-
ond focal point of the unaccommodated eye to lie behind the 
retina (Fig. 5.96). Farsightedness, as you might have guessed 
it would be called, is often due to a shortening of the anteropos-
terior axis of the eye—the lens is too close to the retina. To in-
crease the bending of the rays, a positive spectacle lens is placed 
in front of the eye. The hyperopic eye can and must accommo-
date to see distant objects distinctly, but it will be at its limit to 
do so for a near point, which is much farther away than it would 
be normally (this we take as 254 mm, or just 25 cm). It will 
consequently be unable to see nearby objects clearly. A con-
verging corrective lens with positive power will effectively 
move a close object out beyond the near point where the eye has 

The far point

fl

Figure 5.95  The far-point distance equals the focal length of the  
correction lens.

Notice in the above example that the far-point distance, mea-
sured from the correction lens, equals its focal length (Fig. 5.95). 
The eye views the right-side-up virtual images of all objects 
formed by the correction lens, and those images are located be-
tween its far and near points. Incidentally, the near point also 
moves away a little, which is why myopes often prefer to re-
move their spectacles when threading needles or reading small 
print; they can then bring the material closer to the eye, thereby 
increasing the magnification.

The calculation we have just performed overlooks the sepa-
ration between the correction lens and the eye—in effect, it 
applies to contact lenses more than to spectacles. The separation 
is usually made equal to the distance of the first focal point of 
the eye (≈16 mm) from the cornea, so that no magnification of 
the image over that of the unaided eye occurs. Many people 
have unequal eyes, yet both yield the same magnification. A 
change in MT for one and not the other would be a disaster. 
Placing the correcting lens at the eye’s first focal point avoids 
the problem completely, regardless of the power of that lens 
[take a look at Eq. (6.8)]. To see this, just draw a ray from the 
top of some object through that focal point. The ray will enter 
the eye and traverse it parallel to the optic axis, thus establish-
ing the height of the image. Yet, since this ray is unaffected by 
the presence of the spectacle lens, whose center is at the focal 
point, the image’s location may change on insertion of such a 
lens, but its height and therefore MT will not [see Eq. (5.24)].

The question now becomes: What is the equivalent power of 
a spectacle lens at some distance d from the eye (i.e., equivalent 
to that of a contact lens with a focal length ƒc that equals the 
far-point distance)? It will do for our purposes to approximate 
the eye by a single lens and take d from that eye-lens to the 
spectacle as roughly equal to the cornea–eyeglass distance, 
around 16 mm. Given that the focal length of the correction lens 
is ƒl and the focal length of the eye is ƒe, the combination has a 
focal length provided by Eq. (5.36), that is,

 b.f.l. =
fe(d - fl)

d - (ƒl + ƒe)
 (5.72)

This is the distance from the eye-lens to the retina. Similarly, 
the equivalent contact lens combined with the eye-lens has a 
focal length given by Eq. (5.38):

 
1
ƒ

=
1
ƒc

+
1
ƒe

 (5.73)
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222 Chapter 5 Geometrical Optics

retina) is once again the far point, and it’s a distance ƒl behind 
the lens. The hyperope can comfortably “see” the far point, and 
any lens located anywhere in front of the eye that has an appro-
priate focal length will serve that purpose.

Very gentle finger pressure on the lids above and below the 
cornea will temporarily distort it, changing your vision from 
blurred to clear and vice versa.

Astigmatism—Anamorphic Lenses

Perhaps the most common eye defect is astigmatism. It arises 
from an uneven curvature of the cornea. In other words, the 
cornea is asymmetric. Suppose we pass two meridional planes 
(one containing the optical axis) through the eye such that the 
(curvature or) power is maximal on one and minimal on the 
other. If these planes are perpendicular, the astigmatism is 
regular and correctable; if not, it is irregular and not easily 
corrected. Regular astigmatism can take different forms; the 
eye can be emmetropic, myopic, or hyperopic in various combi-
nations and degrees on the two perpendicular meridional planes. 
Thus, as a simple example, the columns of a checkerboard 
might be well focused, while the rows are blurred due to myo-
pia or hyperopia. Obviously, these meridional planes need not 
be horizontal and vertical (Fig. 5.98).

The great astronomer Sir George B. Airy used a concave 
sphero-cylindrical lens to ameliorate his own myopic astigma-
tism in 1825. This was probably the first time astigmatism had 
been corrected. But it was not until the publication in 1862 of a 
treatise on cylindrical lenses and astigmatism by the Dutchman 
Franciscus Cornelius Donders (1818–1889) that ophthalmolo-
gists were moved to adopt the method on a large scale.

Any optical system that has a different value of MT or � in 
two principal meridians is said to be anamorphic. Thus, for 
example, if we rebuilt the system depicted in Fig. 5.41, this time 

adequate acuity; that is, it will form a distant virtual image, 
which the eye can then see clearly. 

Example 5.16

Suppose that a hyperopic eye has a near point of 125 cm. Find 
the needed corrective lens. 

SOLUTION

For an object at +25 cm to have its image at si = -125 cm so 
that it can be seen as if through a normal eye, the focal length 
must be

1
ƒ

=
1

(-1.25)
+

1
0.25

=
1

0.31

or ƒ = 0.31 m and � = +3.2 D. This is in accord with Table 
5.3, where so 6 ƒ. These spectacles will cast real images—try it 
if you’re hyperopic.

As shown in Fig. 5.97, the correcting lens allows the relaxed 
eye to view objects at infinity. In effect, it creates an image on 
its focal “plane” (passing through F), which then serves as a 
virtual object for the eye. The point (whose image lies on the 

Object at ∞

Near-point

25 cm

Distant object

Nearby object

Farsighted Eye

(a)

(b)

(c)

(d)

(e)

Figure 5.96  Correction of the farsighted eye.

The far point

fl

F F

Figure 5.97  Again the far-point distance equals the focal length of the 
correction lens.

Figure 5.98  A test for astigmatism of 
the eye. View this figure through one 
unaided eye. If one set of lines appears 
bolder than the others, you have astig-
matism. Hold the figure close to your 
eye; move it away slowly and note 
which set of lines comes into focus 
first. If two sets seem to be equally 
clear, rotate the figure until only one  
set is in focus. If all sets are clear you 
don’t have astigmatism.
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is compacted onto the regular film format. When shown 
through a special lens, the distorted picture spreads out again. 
On occasion a television station will show short excerpts 
without the special lens—you may have seen the weirdly 
elongated result.

5.7.3 The Magnifying Glass

An observer can cause an object to appear larger, for the purpose 
of examining it in detail, by simply bringing it closer to her eye. 
As the object is brought nearer and nearer, its retinal image in-
creases, remaining in focus until the crystalline lens can no lon-
ger provide adequate accommodation. Should the object come 
closer than this near point, the image will blur (Fig. 5.101). A 
single positive lens can be used, in effect to add refractive power 
to the eye, so that the object can be brought still closer and yet be 
in focus. The lens so used is referred to variously as a magnify-
ing glass, a simple magnifier, or a simple microscope. In any 
event, its function is to provide an image of a nearby object that 
is larger than the image seen by the unaided eye (Fig. 5.102). 
Devices of this sort have been around for a long time. In fact, a 
quartz convex lens (ƒ ≈ 10 cm), which may have served as a 

using cylindrical lenses (Fig. 5.99), the image would be dis-
torted, having been magnified in only one plane. This is just the 
sort of distortion needed to correct for astigmatism when a 
defect exists in only one meridian. An appropriate planar cylin-
drical spectacle lens, either positive or negative, would restore 
essentially normal vision. When both perpendicular meridians 
require correction, the lens may be sphero-cylindrical or even 
toric as in Fig. 5.100.

Just as an aside, we note that anamorphic lenses are used 
in other areas, as, for example, in the making of wide-screen 
motion pictures, where an extra-large horizontal field of view 

Figure 5.100  Toric surfaces.

Figure 5.101  Images in relation to the near point.

Near point

Figure 5.99  (a) An anamorphic system. (b) Cylindrical lenses  
(Melles Griot)

(a)

(b)
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Inasmuch as the image distance is negative, si = -(L - /), and

 MP =
do

L
 [1 + �(L - /)] (5.76)

� of course being the power of the magnifier (1>ƒ). There are 
three situations of particular interest: (1) When / = ƒ the mag-
nifying power equals do�. (2) When / is effectively zero,

[MP]/ =  0 = do a1
L

+ �b

In that case the largest value of MP corresponds to the smallest 
value of L, which, if vision is to be clear, must equal do. Thus

 [MP]/ =  0 = do� + 1 (5.77)
 L =  do

magnifier, was unearthed in 1885 among the ruins of the palace 
of King Sennacherib (705–681 b.c.e.) of Assyria.

Evidently, it would be desirable for the lens to form a magni-
fied, erect image. Furthermore, the rays entering the normal eye 
should not be converging. Table 5.3 (p. 173) immediately sug-
gests placing the object within the focal length (i.e., so 6 ƒ). The 
result is shown in Fig. 5.102. Because of the relatively tiny size 
of the eye’s pupil, it will almost certainly always be the aperture 
stop, and as in Fig. 5.44 (p. 184), it will also be the exit pupil.

The magnifying power, MP, or equivalently, the angular 
magnification, MA, of a visual instrument is defined as the ratio 
of the size of the retinal image as seen through the instrument 
over the size of the retinal image as seen by the unaided eye at 
normal viewing distance. The latter is generally taken as the 
distance to the near point, do. The ratio of angles aa and au 
(which are made by chief rays from the top of the object in the 
instance of the aided and unaided eye, respectively) is equiva-
lent to MP, that is,

 MP =
aa

au
 (5.75)

Keeping in mind that we are restricted to the paraxial region, 
tan aa = yi>L ≈ aa and tan au = yo>do ≈ au, so

MP =
yi do

yoL

wherein yi and yo are above the axis and positive. If we make do 
and L positive quantities, MP will be positive, which is quite 
reasonable. When we use Eqs. (5.24) and (5.25) for MT along 
with the Gaussian Lens Formula, the expression becomes

MP = -  
si do

soL
= a1 -

si

ƒ
b 

do

L

Figure 5.102  (a) An unaided view of an object. (b) The aided view 
through a magnifying glass. (c) A positive lens used as a magnifying 
glass. The object is less than one focal length from the lens.

do
Near
point

Entrance
pupil

A.S.
Exit pupil

(a)

au

aa

(b)

L

f
�si

yo

yi

yo

so

F

(c)

A positive lens used as a magnifying glass. (E.H.)
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marble (any small sphere of glass qualifies) will also greatly mag-
nify—but not without a good deal of distortion.

The relative refractive index of a lens and the medium in 
which it is immersed, nlm, is wavelength dependent. But since 
the focal length of a simple lens varies with nlm(l), this means 
that ƒ is a function of wavelength, and the constituent colors of 
white light will focus at different points in space. The resultant 
defect is known as chromatic aberration. In order that the im-
age be free of this coloration, positive and negative lenses made 
of different glasses are combined to form achromates (see Section 
6.3.2). Achromatic, cemented, doublet, and triplet lenses are 
comparatively expensive and are usually found in small, highly 
corrected, high-power magnifiers.

5.7.4 Eyepieces

The eyepiece, or ocular, is a visual optical instrument. Funda-
mentally a magnifier, it views not an actual object but the inter-
mediate image of that object as formed by a preceding lens sys-
tem. In effect, the eye looks into the ocular, and the ocular looks 
into the optical system—be it a spotting scope, compound mi-
croscope, telescope, or binocular. A single lens could serve the 
purpose, but poorly. If the retinal image is to be more satisfac-
tory, the ocular cannot have extensive aberrations. The eyepiece 
of a special instrument, however, might be designed as part of 
the complete system, so that its lenses can be utilized in the 
overall scheme to balance out aberrations. Even so, standard 
eyepieces are used interchangeably on most telescopes and 
compound microscopes. Moreover, eyepieces are quite difficult 
to design, and the usual, and perhaps most fruitful, approach is 
to incorporate or slightly modify one of the existing designs.

The ocular must provide a virtual image (of the intermediate 
image), most often located at or near infinity, so that it can be 
comfortably viewed by a normal, relaxed eye. Furthermore, it 
must position the center of the exit pupil or eye point at which 
the observer’s eye is placed at some convenient location, prefer-
ably at least 10 mm or so from the last surface. As before, ocular 
magnification is the product do�, or as it is often written, 
MP = (250 mm)>ƒ.

The Huygens ocular, which dates back over 250 years, is 
still in wide use today (Fig. 5.104), particularly in micro scopy. 

Taking do = 0.25 m for the standard observer, we have

 [MP]/ =  0 = 0.25� + 1 (5.78)
 L =  do

As L increases, MP decreases, and similarly as / increases, MP 
decreases. If the eye is very far from the lens, the retinal image 
will indeed be small. (3) This last is perhaps the most common 
situation. Here we position the object at the focal point (so = ƒ), 
in which case the virtual image is at infinity (L = ∞). Thus 
from Eq. (5.76)

 [MP]L =  ∞ = do� (5.79)

for all practical values of /. Because the rays are parallel, the eye 
views the scene in a relaxed, unaccommodated configuration, a 
highly desirable feature. Notice that MT = -si>so approaches 
infinity as so S ƒ, whereas in marked contrast, MA merely  
decreases by 1 under the same circumstances.

A magnifier with a power of 10 D has a focal length (1>�) of  
0.1 m and a MP equal to 2.5 when L = ∞ . This is conventionally 
denoted as 2.5* , which means that the retinal image is 2.5 times 
larger with the object at the focal length of the lens than it would be 
were the object at the near point of the unaided eye (where the larg-
est clear image is possible). The simplest single-lens magnifiers are 
limited by aberrations to roughly 2*  or 3* . A large field of view 
generally implies a large lens; for practical reasons, this usually dic-
tates a fairly small curvature of the surfaces. The radii are large, as 
is ƒ, and therefore MP is small. The reading glass, the kind Sherlock 
Holmes made famous, is a typical example. The watchmaker’s eye 
loupe is frequently a single-element lens, also of about 2*  or 3* . 
Figure 5.103 shows a few more complicated magnifiers designed to 
operate in the range from roughly 10*  to 20* . The double lens is 
quite common in a number of configurations. Although not particu-
larly good, they perform satisfactorily, for example, in high-pow-
ered loupes. The Coddington is essentially a sphere with a slot cut 
in it to allow an aperture smaller than the pupil of the eye. A clear 

Figure 5.103  Magnifiers.

Doublet
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Figure 5.104  The Huygens eyepiece.
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226 Chapter 5 Geometrical Optics

common wide-field (roughly ±30°) eyepiece. It is well cor-
rected for all aberrations and comparatively expensive.*

Although there are many other eyepieces, including variable-
power zoom devices and ones with aspherical surfaces, those 
discussed here are representative. They are the devices you will 
ordinarily find on telescopes and microscopes and on long lists 
in the commercial catalogs.

5.7.5 The Compound Microscope

The compound microscope goes a step beyond the simple mag-
nifier by providing higher angular magnification (greater than 
about 30* ) of nearby objects. Its invention, which may have 
occurred as early as 1590, is generally attributed to a Dutch 

The lens adjacent to the eye is known as the eye-lens, and the 
first lens in the ocular is the field-lens. The distance from the 
eye-lens to the eye point is known as the eye relief, and for the 
Huygens ocular, it’s only an uncomfortable 3 mm or so. Notice 
that this ocular requires the incoming rays to be converging so 
as to form a virtual object for the eye-lens. Clearly, then, the 
Huygens eyepiece cannot be used as an ordinary magnifier.  
Its contemporary appeal rests in its low purchase price (see 
Section 6.3.2). Another old standby is the Ramsden eyepiece  
(Fig. 5.105). This time the principal focus is in front of the 
field-lens, so the intermediate image will appear there in easy 
access. This is where you would place a reticle (or reticule), 
which might contain a set of cross hairs, precision scales, or 
angularly divided circular grids. (When these are formed on a 
transparent plate, they are often called graticules.) Since the 
reticle and intermediate image are in the same plane, both will 
be in focus at the same time. The roughly 12-mm eye relief is an 
advantage over the previous ocular. The Ramsden is relatively 
popular and fairly inexpensive (see Problem 6.2). The Kellner 
eyepiece represents a definite increase in image quality, although 
eye relief is between that of the previous two devices. The Kell-
ner is essentially an achromatized Ramsden (Fig. 5.106). It is 
most commonly used in moderately wide-field telescopic in-
struments. The orthoscopic eyepiece (Fig. 5.107) has a wide 
field, high magnification, and long eye relief (≈20 mm). The 
symmetric (Plössl) eyepiece (Fig. 5.108) has characteristics 
similar to those of the orthoscopic ocular but is generally some-
what superior to it. The Erfle (Fig. 5.109) is probably the most 

Figure 5.105  The Ramsden eyepiece.

Field-lens Eye-lens

Exit
pupil

Field
stop

Figure 5.106  The Kellner eyepiece.

Exit
pupil

Field
stop

Figure 5.107  The orthoscopic eyepiece.

F.S. Exit pupil

Figure 5.108  The symmetric (Plössl) eyepiece.

F.S. Exit pupil

*Detailed designs of these and other oculars can be found in the Military 
Standardization Handbook—Optical Design, MIL-HDBK-141.

Figure 5.109  The Erfle eyepiece.

F.S. Exit pupil
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barrel of the device. Rays diverging from each point of this im-
age will emerge from the eye-lens (which in this simple case is 
the eyepiece itself) parallel to each other, as noted in the previous 
section. The ocular magnifies the intermediate image still further. 
Thus the magnifying power of the entire system is the product of 
the transverse linear magnification of the objective, MTo, and the 
angular magnification of the eyepiece, MAe, that is,

 MP = MToMAe (5.80)

The objective magnifies the object and brings it up in the form 
of a real image, where it can be examined as if through a mag-
nifying glass.

Recall that MT = -xi>ƒ, Eq. (5.26). With this in mind most, 
but not all, manufacturers design their microscopes such that 
the distance (corresponding to xi) from the second focus of the 
objective to the first focus of the eyepiece is standardized at 
160 mm. This distance, known as the tube length, is denoted 
by L in the figure. (Some authors define tube length as the  
image distance of the objective.) Hence, with the final image 
at infinity [Eq. (5.79)] and the standard near point taken as 
254 mm (10 inches),

 MP = a-  
160
ƒo

b a254
ƒe

b (5.81)

Here the focal lengths are in millimeters, and the image is  
inverted (MP 6 0). Accordingly, the barrel of an objective 
with a focal length ƒo of, say, 32 mm will be engraved with the 
marking 5*  (or *5), indicating a power of 5. Combined with 
a 10*  eyepiece (ƒe = 1 inch), the microscope MP would then 
be 50* .

To maintain the distance relationships among the objective, 
field stop, and ocular, while a focused intermediate image of the 
object is positioned in the first focal plane of the eyepiece, all 
three elements are moved as a single unit.

The objective itself functions as the aperture stop and en-
trance pupil. Its image, formed by the eyepiece, is the exit pupil 
into which the eye is positioned. The field stop, which limits the 
extent of the largest object that can be viewed, is fabricated as 
part of the ocular. The image of the field stop formed by the 
optical elements following it is called the exit window, and the 
image formed by the optical elements preceding it is the en-
trance window. The cone angle subtended at the center of the 
exit pupil by the periphery of the exit window is said to be the 
angular field of view in image space.

A modern microscope objective can be roughly classified as 
one of three different kinds. It might be designed to work best 
with the object positioned below a cover glass, with no cover 
glass (metallurgical instruments), or with the object immersed 
in a liquid that is in contact with the objective. In some cases, 
the distinction is not critical, and the objective may be used with 
or without a cover glass. Four representative objectives are 
shown in Fig. 5.111 (see Section 6.3.1). In addition, the ordi-
nary low-power (about 5* ) cemented doublet achromate is 

spectacle maker, Zacharias Janssen of Middleburg. Galileo runs 
a close second, having announced his invention of a compound 
microscope in 1610. A simple version, which is closer to these 
earliest devices than it is to a modern laboratory microscope, is 
depicted in Fig. 5.110. 

The lens system, here a singlet, closest to the object is referred 
to as the objective. It forms a real, inverted, magnified image of 
the object. This image resides in space on the plane of the field 
stop of the eyepiece and has to be small enough to fit inside the 

Figure 5.110  A rudimentary compound microscope. The objective forms 
a real image of a nearby object. The eyepiece, functioning like a magnifying 
glass, enlarges this intermediate image. The final virtual image can be big-
ger than the barrel of the device, since it needn’t fit inside. With parallel 
rays entering the eye it can remain comfortably relaxed.
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228 Chapter 5 Geometrical Optics

much of the emitted light as possible using a short-focal-length 
objective (so the magnification will be large) that is held close 
to the object. This produces a real image, which is further mag-
nified by an eyepiece functioning as a magnifying glass.

5.7.6 The Camera

The prototype of the modern photographic camera* was a de-
vice known as the camera obscura, the earliest form of which 
was simply a dark room with a small hole in one wall. Light 
entering the hole cast an inverted image of the sunlit outside 
scene on an inside screen. The principle was known to Aristotle, 
and his observations were preserved by Arab scholars through-
out Europe’s long Dark Ages. Alhazen utilized it to examine 
solar eclipses indirectly over eight hundred years ago. The note-
books of Leonardo da Vinci contain several descriptions of the 
obscura, but the first detailed treatment appears in Magia natu-
ralis (Natural Magic) by Giovanni della Porta. He recommend-
ed it as a drawing aid, a function to which it was soon quite 
popularly put. Johannes Kepler, the renowned astronomer, had 
a portable tent version, which he used while surveying in Austria. 
By the latter part of the 1600s, the small hand-held camera  
obscura was commonplace. Note that the eye of the nautilus, a 
little cuttlefish, is literally an open pinhole obscura that simply 
fills with seawater on immersion.

By replacing the viewing screen with a photosensitive sur-
face, such as a film plate, the obscura becomes a camera in the 
modern sense of the word. The first permanent photograph was 
made in 1826 by Joseph Nicéphore Niépce (1765–1833), who 
used a box camera with a small convex lens, a sensitized pewter 
plate, and roughly an eight-hour exposure.

The lensless pinhole camera (Fig. 5.112) is by far the least 
complicated device for the purpose, yet it has several endearing 
and, indeed, remarkable virtues. It can form a well-defined, 
practically undistorted image of objects across an extremely 
wide angular field (due to great depth of focus) and over a large 
range of distances (great depth of field). If initially the entrance 
pupil is very large, no image results. As it is decreased in diam-
eter, the image forms and grows sharper. After a point, further 
reduction in the hole size causes the image to blur again, and 
one quickly finds that the aperture size for maximum sharpness 
is proportional to its distance from the image plane. (A hole 
with a 0.5-mm diameter at 0.25 m from the film plate is conve-
nient and works well.) There is no focusing of the rays at all, so 
no defects in that mechanism are responsible for the drop-off in 
clarity. The problem is actually one of diffraction, as we shall 
see later on (Section 10.2.5). In most practical situations, the 
pinhole camera’s one overriding drawback is that it is insuffer-
ably slow (roughly ƒ>500). This means that exposure times will 
generally be far too long, even with the most sensitive films. 

quite common. Relatively inexpensive medium-power (10*  or 
20* ) achromatic objectives, because of their short focal lengths, 
can conveniently be used when expanding and spatially filter-
ing laserbeams.

There is one other characteristic quantity of importance that 
must be mentioned here, even if only briefly. The brightness of 
the image is, in part, dependent on the amount of light gath-
ered in by the objective. The ƒ-number is a useful parameter 
for describing this quantity, particularly when the object is a 
distant one (see Section 5.3.3). However, for an instrument 
working at finite conjugates (si and so both finite), the numeri-
cal aperture, NA, is more appropriate (see Section 5.6). In the 
present instance

 NA = ni sin umax (5.82)

where ni is the refractive index of the immersing medium (air, 
oil, water, etc.) adjacent to the objective lens, and umax is the 
half-angle of the maximum cone of light picked up by that lens 
(Fig. 5.111b). In other words, umax is the angle made by a mar-
ginal ray with the axis. The numerical aperture is usually the 
second number etched in the barrel of the objective. It ranges 
from about 0.07 for low-power objectives to 1.4 or so for high-
power (100* ) ones. Of course, if the object is in the air, the 
numerical aperture cannot be greater than 1.0. Incidentally, 
Ernst Abbe (1840–1905), while working in the Carl Zeiss mi-
croscope workshop, introduced the concept of the numerical 
aperture. It was he who recognized that the minimum transverse 
distance between two object points that can be resolved in the 
image, that is, the resolving power, varied directly as l and in-
versely as the NA.

In summary, then, the microscope is a device for enlarging 
the image of a tiny nearby object. It does this by capturing as 

Figure 5.111  Microscope objectives: (a) Lister objective, 10* ,  
NA = 0.25, ƒ = 16 mm (two cemented achromates). (b) Amici objective, 
from 20* , NA = 0.5, ƒ = 8 mm to 40* , NA = 0.8, ƒ = 4 mm.  
(c) Oil-immersion objective, 100* , NA = 1.3, ƒ = 1.6 mm (see  
Figure 6.18). (d) Apochromatic objective, 55* , NA = 0.95, ƒ = 3.2  
(contains two fluorite lenses).

umax

(a) (b) (c) (d)

*See W. H. Price, “The Photographic Lens,” Sci. Am. 72 (August 1976).
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the shutter release is pressed, the diaphragm closes down to a 
preset value, the mirror swings up out of the way, and the focal-
plane shutter opens, exposing the film. The shutter then closes, 
the diaphragm opens fully, and the mirror drops back in place. 
Nowadays SLR systems have any one of a number of built-in 
light-meter arrangements, which are automatically coupled to 
the diaphragm and shutter, but those components are excluded 
from the diagram for the sake of simplicity.

The obvious exception is a stationary subject, such as a building 
(see photo), for which the pinhole camera excels.

Figure 5.113 depicts the essential components of a popular 
and representative modern camera—the single-lens reflex, or 
SLR. Light traversing the first few elements of the lens then 
passes through an iris diaphragm, used in part to control the 
exposure time or, equivalently, the ƒ-number; it is in effect a 
variable-aperture stop. On emerging from the lens, light strikes 
a movable mirror tilted at 45°, then goes up through the focus-
ing screen to the penta prism and out the finder eyepiece. When 

Figure 5.112  The pinhole camera. Note the variation in image clarity as 
the hole diameter decreases. (Dr. N. Joel, UNESCO)

2 mm 1 mm

0.6 mm 0.35 mm

0.15 mm 0.07 mm

Photograph taken with a pinhole camera (Science Building, Adelphi 
University). Hole diameter 0.5 mm, film plane distance 24 cm, A.S.A. 
3000, shutter speed 0.25 s. Note depth of field. (E.H.)

Figure 5.113  A traditional single-lens reflex film camera.
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Many contemporary photographic objectives are variations 
of well-known successful forms. Figure 5.115 illustrates the 
general configuration of several important lenses, roughly pro-
gressing from wide angle to telephoto. Particular specifications 
are not given, because variations are numerous. The Aviogon and 
Zeiss Orthometer are wide-angle lenses, whereas the Tessar and 
Biotar are often standard lenses. The Cooke triplet, described in 
1893 by H. Dennis Taylor of Cooke and Sons, is still being made 
(note the similarity with the Tessar). It contains the smallest 
number of elements by which all seven third-order aberrations 
can essentially be made to vanish. Even earlier (ca. 1840), Josef 
Max Petzval designed what was then a rapid (portrait) lens for 
Voightländer and Son. Its modern offshoots are myriad.

5.7.7 The Telescope

It is not at all clear who actually invented the telescope. In 
point of fact, it was probably invented and reinvented many 
times. Recall that by the seventeenth century spectacle lenses 
had been in use in Europe for about three hundred years. Dur-
ing that long span of time, the fortuitous juxtapositioning of 
two appropriate lenses to form a telescope seems almost inevi-
table. In any event, it is most likely that a Dutch optician, pos-
sibly even the ubiquitous Zacharias Janssen of microscope 
fame, first constructed a telescope and in addition had inklings 
of the value of what he was peering into. The earliest indisput-
able evidence of the discovery, however, dates to October 2, 
1608, when Hans Lippershey petitioned the States-General of 
Holland for a patent on a device for seeing at a distance (which 
is what teleskopos means in Greek). As you might have 
guessed, its military possibilities were immediately recog-
nized. His patent was therefore not granted; instead the gov-
ernment purchased the rights to the instrument, and he received 
a commission to continue research. Galileo heard of this work, 
and by 1609 he had fashioned a telescope of his own, using two 
lenses and an organ pipe as a tube. It was not long before he 
had constructed a number of greatly improved instruments and 
was astounding the world with the astronomical discoveries for 
which he is famous.

Refracting Telescopes

A simple astronomical telescope is shown in Fig. 5.116. Unlike 
the compound microscope, which it closely resembles, its 
primary function is to enlarge the retinal image of a distant  
object. In the illustration, the object is at a finite far distance 
from the objective, so that the real intermediate image is 
formed just beyond its second focal point. This image will be 
the object for the next lens system, that is, the ocular. It follows 
from Table 5.3 (p. 173) that if the eyepiece is to form a virtual 
magnified final image (within the range of normal accommoda-
tion), the object distance must be less than or equal to the focal 
length, ƒe. In practice, the position of the intermediate image is 

To focus the camera, the entire lens is moved toward or 
away from the film plane or electronic sensor. Since its focal 
length is fixed, as so varies, so too must si. The angular field of 
view can loosely be thought of as relating to the fraction of the 
scene included in the photograph. It is furthermore required 
that the entire photograph surface correspond to a region of 
satisfactory image quality. More precisely, the angle subtended 
at the lens, by a circle encompassing the film or CCD sensor 
area, is the angular field of view w (Fig. 5.114). As a rough but 
reasonable approximation of a common arrangement, take the 
diagonal distance across the film to equal the focal length. 
Thus w>2 ≈ tan-1 12; that is, w ≈ 53°. If the object comes in 
from infinity, si must increase. The lens is then backed away 
from the film plate or CCD to keep the image in focus, and the 
field of view, as recorded on the film whose periphery is the 
field stop, decreases. A standard SLR lens has a focal length 
in the range of about 50 to 58 mm and a field of view of 40° to 
50°. With the film size kept constant, a reduction of ƒ results in 
a wider field angle. Accordingly, wide-angle SLR lenses range 
from ƒ ≈ 40 mm down to about 6 mm, and w goes from about 
50° to a remarkable 220° (the latter being a special-purpose 
lens wherein distortion is unavoidable). The telephoto has a 
long focal length, roughly 80 mm or more. Consequently, its 
field of view drops off rapidly, until it is only a few degrees at 
ƒ ≈ 1000 mm.

The standard photographic objective must have a large rela-
tive aperture, 1>(ƒ>#), to keep exposure times short. Moreover, 
the image is required to be flat and undistorted, and the lens 
should have a wide angular field of view as well. The evolution 
of a modern lens still begins with a creative insight that leads to 
a promising new form. In the past, these were laboriously per-
fected relying on intuition, experience, and, of course, trial and 
error with a succession of developmental lenses. Today, for the 
most part, the computer serves this function without the need of 
numerous prototypes.

Film

f

w

Figure 5.114  Angular field of view when focused at infinity.
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Figure 5.115  Camera lenses.

Wild Aviogon (a)

Zeiss Orthometer (b)

Tessar (c)

Petzval (f)

Magnar Telephoto (g)

Cooke (Taylor) triplet (e)

Double Gauss (Biotar) (d)

fixed, and only the eyepiece is moved to focus the instrument. 
Notice that the final image is inverted, but as long as the scope 
is used for astronomical observations, this is of little conse-
quence, especially since most work is photographic.

At great object distances the incident rays are effectively  
parallel—the intermediate image resides at the second focus of 
the objective. Usually, the eyepiece is located so that its first  
focus overlaps the second focus of the objective, in which case 
rays diverging from a point on the intermediate image will leave 
the ocular parallel to each other. A normal viewing eye can then 
focus the rays in a relaxed configuration. If the eye is near-
sighted or farsighted, the ocular can be moved in or out so that 
the rays diverge or converge a bit to compensate. (If you are 

astigmatic, you’ll have to keep your glasses on when using 
ordinary visual instruments.) We saw earlier (Section 5.2.3) that 
both the back and front focal lengths of a thin-lens combination 
go to infinity when the two lenses are separated by a distance d 
equal to the sum of their focal lengths (Fig. 5.117). The astro-
nomical telescope in this configuration of infinite conjugates is 
said to be afocal, that is, without a focal length. As a side note, 
if you shine a collimated (parallel rays, i.e., plane waves) nar-
row laserbeam into the back end of a scope focused at infinity, 
it will emerge still collimated but with an increased cross sec-
tion. It is often desirable to have a broad, quasimonochromatic, 
plane-wave beam, and specific devices of this sort are now 
available commercially.
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232 Chapter 5 Geometrical Optics

center of the telescope’s exit pupil. In that case, the primary 
line-of-sight will always correspond to a chief ray through the 
center of the exit pupil, however the eye moves.

Suppose that the margin of the visible object subtends a half-
angle of a at the objective (Fig. 5.118). This is essentially the 
same as the angle au, which would be subtended at the unaided 
eye. As in previous sections, the angular magnification is

 MP =
aa

au
 [5.75]

Here au and aa are measures of the field of view in object and 
image space, respectively. The first is the half-angle of the 
actual cone of rays collected, and the second relates to the 
apparent cone of rays. If a ray arrives at the objective with a 
negative slope, it will enter the eye with a positive slope and 
vice versa. To make the sign of MP positive for erect images, 
and therefore consistent with previous usage (Fig. 5.102),  

The periphery of the objective is the aperture stop, and it 
encompasses the entrance pupil as well, there being no lenses to 
the left of it. If the telescope is trained directly on some distant 
galaxy, the visual axis of the eye will presumably be colinear 
with the central axis of the scope. The entrance pupil of the eye 
should then coincide in space with the exit pupil of the scope. 
However, the eye is not immobile. It will move about scanning 
the entire field of view, which quite often contains many points 
of interest. In effect, the eye examines different regions of the 
field by rotating so that rays from a particular area fall on the 
fovea centralis. The direction established by the chief ray 
through the center of the entrance pupil to the fovea centralis is 
the primary line-of-sight. The axial point, fixed in reference to 
the head, through which the primary line-of-sight always pass-
es, regardless of the orientation of the eyeball, is called the 
sighting intersect. When it is desirable to have the eye survey-
ing the field, the sighting intersect should be positioned at the 

Figure 5.116  Keplerian astronomical telescope (accommodating eye). The final 
image is virtual, enlarged, and inverted.
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well-corrected telescopic instruments generally have multi-element 
objectives, usually doublets or triplets.

EXAMPLE 5.17

A small Keplerian telescope, operating at infinite conjugates, is 
composed of two thin positive lenses separated by 105 cm. In 
that configuration it provides an angular magnification of 20. 
The viewer then pulls the eyepiece out 5.0 cm in order to clearly 
see a nearby object with a relaxed eye. How far away is this 
object?

SOLUTION 

(a) With infinite conjugates

d = ƒo + ƒe = 1.05 m

and since the image is inverted

-20 = -  
ƒo

ƒe

therefore

20ƒe + ƒe = 1.05

ƒe = 0.05 m and fo = 1.00 m

Since the eye is relaxed, si = ∞  and the intermediate image is 
formed at the focal point of the eyepiece. That point is now 
105 cm behind the objective. For the objective si = 1.05 m, 
ƒo = 1.00 m and

1
so

+
1
si

=
1
f

1
so

+
1

1.05
=

1
1.00

The object is located at so = 21 m in front of the objective.

To be useful when the orientation of the object is of impor-
tance, a scope must contain an additional erecting system; such 
an arrangement is known as a terrestrial telescope. A single 

either au or aa must be taken to be negative—we choose  
the former because the ray has a negative slope. Observe  
that the ray passing through the first focus of the objective 
passes through the second focus of the eyepiece; that is, Fo1 
and Fe2 are conjugate points. In the paraxial approximation 
a ≈ au ≈ tan au and aa ≈  tan aa. The image fills the region 
of the field stop, and half its extent equals the distance 
BC = DE. Thus, from triangles Fo1BC and Fe2DE, the ratio of 
the tangents yields

 MP = -  
ƒo

ƒe
 (5.83)

It’s not surprising, then, that early refracting telescopes had 
fairly flat objectives (long focal lengths), and therefore very long 
tubes. The famous telescope of Johannes Hevelius (1611–1687) 
was 50 m long. There’s an additional benefit to having a long-
focal-length objective: the flatter the lens, the less spherical and 
chromatic aberration it will suffer.

Another convenient expression for the MP comes from con-
sidering the transverse magnification of the ocular. Inasmuch as 
the exit pupil is the image of the objective (Fig. 5.118), we have

MTe = -  
ƒe

xo
= -  

ƒe

ƒo

Furthermore, if Do is the diameter of the objective and Dep is the 
diameter of its image, the exit pupil, then MTe = Dep>Do. These 
two expressions for MTe compared with Eq. (5.83) yield

 MP =
Do

Dep
 (5.84)

The diameter of the cylinder of light entering the telescope 
is compressed down to the diameter of the cylinder leaving 
the eyepiece by a factor equal to the magnification of the 
instrument—that much is evident from the geometry of the 
region between the lenses in Fig. 5.117.

Here Dep is actually a negative quantity, since the image is 
inverted. It is an easy matter to build a simple refracting scope 
by holding a lens with a long focal length in front of one with a 
short focal length and making sure that d = ƒo + ƒe. But again, 

Figure 5.118  Ray angles for a telescope.
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observe the emerging sharp disk of light, using a piece of paper 
as a screen. Determine the eye relief while you’re at it.

By the way, as long as d = ƒo + ƒe, the scope will be afocal, 
even if the eyepiece is negative (i.e., ƒe 6 0). The telescope 
built by Galileo (Fig. 5.121) had just such a negative lens as an 
eyepiece and therefore formed an erect image [ƒe 6 0 and 
MP 7 0 in Eq. (5.83)]. A parallel bundle of rays from a distant 
object enters the objective lens (L1), and on leaving converges 
toward a point on its focal plane, a distance fo away. That point 
(P) is located by ray-1 drawn through the center of L1, parallel 
to the rest of the bundle. Because the two lenses share a focal 
point at the far right, P also lies on the focal plane of L2. Now 
construct ray-2 passing through the center of L2 going on to P. 
Ray-1, ray-2, ray-3, and ray-4 all converge on L2 heading to-
ward P, which is a virtual object point for that lens. As we have 
already seen in Fig. 5.31b, ray-2 passing through the center of 
L2 determines the direction the rest of the rays will take on leav-
ing L2; they all emerge parallel to one another. The rays enter-
ing the telescope are coming downward, as are the emerging 
rays. A person viewing the exiting light would see a magnified 
upright virtual image located essentially at infinity. With the 
same size focal lengths the Galilean scope has the same magni-
fying power (MP = -ƒo>ƒe) as the astronomical telescope, al-
though since ƒe is negative, MP is now positive (the image is 
upright).

The lens arrangement depicted in Fig. 5.121a can also pro-
duce virtual images that are erect, and real images that are  
inverted. To see that, examine ray-5, which passes through the 
front focal point of L1 and leaves that lens parallel to the central 
axis. It emerges from L2 parallel to the rest of the exiting rays, 
although it appears to have come from the front focal point of L2. 
Note that the inverted intermediate image created by L1 will not 
change if we reposition L2 along the axis. Consequently, when 
the negative lens is slid slightly to the left (Fig. 5.121c), ray-2 
and ray-5 extended backward intersect to form a magnified up-
right virtual image to the left of L2; the final image of the in-
verted intermediate image is again inverted and so ends up 
erect. With the eyepiece on a Galilean telescope positioned like 
this, the viewer’s eye would have to accommodate. Alternatively,  
if L2 is shifted a little to the right, closer to the stationary inter-
mediate image, ray-5 will not change its direction as it leaves 
L2, but ray-2, which passes through P, will come out steeper 

erecting lens or lens system is usually located between the ocu-
lar and objective, with the result that the image is right-side-up. 
Figure 5.119 shows one with a cemented doublet objective and 
a Kellner eyepiece. It will obviously have to have a long draw 
tube, the picturesque kind that comes to mind when you think 
of wooden ships and cannonballs.

For that reason, binoculars (binocular telescopes) generally 
utilize erecting prisms, which accomplish the same thing in less 
space and also increase the separation of the objectives, thereby 
enhancing the stereoscopic effect. Most often these are double 
Porro prisms, as in Fig. 5.120. (Notice the involved modified 
Erfle eyepiece, the wide field stop, and the achromatic doublet 
objective.) Binoculars customarily bear several numerical mark-
ings, for example, 6 * 30, 7 * 50, or 20 * 50. The initial num-
ber is the magnification, here 6 * , 7 * , or 20 * . The second 
number is the entrance-pupil diameter or, equivalently, the clear 
aperture of the objective, expressed in millimeters. It follows 
from Eq. (5.84) that the exit-pupil diameter will be the second 
number divided by the first, or in this case 5, 7.1, and 2.5, all in 
millimeters. You can hold the instrument away from your eye 
and see the bright circular exit pupil surrounded by blackness. 
To measure it, focus the device at infinity, point it at the sky, and 

Figure 5.119  A terrestrial telescope. 
The image is upright and the viewer’s 
eye is able to be relaxed.

Exit
pupil

Objective Erecting
system

Ocular

Figure 5.120  A binocular.
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expander (Fig. 9.13) because it has no internal focal points where 
a high-power beam would otherwise ionize the surrounding air.

Reflecting Telescopes

Put rather simply, a telescope should allow us to see things 
clearly that are far away, and often extremely faint. We need to 
be able to resolve fine details, that is, to distinguish separate 
features that are small and close together, such as the two stars 
in a binary system. A spy satellite that can spot people walking 
around is highly desirable, but one that will identify their mili-
tary service from the markings on their uniforms is even better. 
The measure of that ability is the resolution, and it increases 
with the diameter (D) of the aperture admitting light into the 
system. All other things being equal (under ideal seeing condi-
tions), a large-diameter telescope will have better resolution 
than a small-diameter telescope. There’s another even more 
compelling reason to increase the size of the aperture: to im-
prove the light-gathering power. A telescope with a large ap-
erture will be able to collect more light and see fainter, more 
distant objects than an otherwise identical but smaller one.

The difficulties inherent in making large lenses are under-
scored by the fact that the largest refracting instrument is the 
40-inch Yerkes telescope in Williams Bay, Wisconsin, whereas 
the reflector on Mount Palomar in southwestern California is 
200 inches in diameter. The problems are evident; a lens must 
be transparent and free of internal flaws such as bubbles. A 
front-surfaced mirror obviously need not be; indeed, it need not 
even be transparent. A lens can be supported only by its rim and 
may sag under its own weight; a mirror can be supported by its 
rim and back as well. Furthermore, since there is no refraction 
and therefore no effect on the focal length due to the wave-
length dependence of the index, mirrors suffer no chromatic 
aberration. For these and other reasons (e.g., their frequency 
response), reflectors predominate in large telescopes.

Invented by the Scotsman James Gregory (1638–1675) in 
1661, the reflecting telescope was first successfully constructed 
by Newton in 1668 and only became an important research tool 
in the hands of William Herschel a century later. Figure 5.122 
depicts a number of reflector arrangements, each having a 
concave paraboloidal primary mirror. The venerable 200-inch 
Hale telescope is so large that a little enclosure, where an  
observer can sit, is positioned at the prime focus (Fig. 5.122a). 
In the Newtonian version (Fig. 5.122b) a plane mirror or prism 
brings the beam out at right angles to the axis of the scope, 
where it can be photographed, viewed, spectrally analyzed, or 
photoelectrically processed. In the classical Gregorian arrange-
ment (Fig. 5.122c), which is not particularly popular, a concave 
ellipsoidal secondary mirror reinverts the image, returning the 
beam through a hole in the primary. The classical Cassegrain 
system (Fig. 5.122d) utilizes a convex hyperboloidal second-
ary mirror to increase the effective focal length (refer back to 
Fig. 5.57, p. 193). It functions as if the primary mirror had the 
same aperture but a larger focal length or radius of curvature.

and the two will converge to form a real inverted image to the 
right of L2.

As a telescope, the system has a narrow field of view and is 
now mainly of historical and pedagogical interest, although one 
can still purchase two such scopes mounted side by side to form 
a Galilean field glass. It is useful, however, as a laserbeam  

Figure 5.121  The Galilean telescope. Galileo’s first scope had a planar-
convex objective (5.6 cm in diameter, ƒ = 1.7 m, R 5 93.5 cm) and a  
planar-concave eyepiece, both of which he ground himself. It was 3* ,  
in contrast to his last scope, which was 32* . (E.H.)
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Incidentally, if we put a liquid such as mercury in a shallow 
horizontal basin and continuously rotate it about a vertical axis 
at a constant rate v, the equilibrium configuration of the surface 
will be parabolic. The elevation (z) above the lowest point in the 
liquid at any location on the surface is given by 

 z =
v2r2

2g
 (5.85)

Large (upwards of 3 meters in diameter), robust, diffraction 
limited, liquid mirrors have been produced. The main advantage 
of a liquid telescope mirror over a glass one is that it’s very 
much less expensive. The main disadvantage is that it can only 
look straight up (see photo).

Aplanatic Reflectors

An optical system that has negligible amounts of both spherical 
aberration (p. 267) and coma is called an aplanat, and there are 
aplanatic versions of both the Cassegrain and the Gregorian 
scopes. The Ritchey-Chrétien telescope is an aplanatic Casseg-
rain having a hyperboloidal primary and secondary. In recent 
times, this configuration has become the leading choice for 
devices with apertures of 2 m or more. Perhaps the best known 
example of its kind is the 2.4-m Hubble Space Telescope 
(HST), pictured in Fig. 5.123. Only telescopes in space (i.e., 
above the absorbing atmosphere) can work efficiently in the 
ultraviolet—which, for example, is where one would like to ex-
amine hot young stars. With its updated charge-coupled-device 
(CCD) arrays, the HST could “see” from about 1 mm in the IR 
to 121.6 nm in the UV. This complements ground-based tele-
scopes that can provide diffraction-limited imaging in the 
wavelength range greater than 10 mm. (Incidentally, CCDs 
have a sensitivity about 50 times greater than otherwise compa-
rable photographic film; the era of dropping film packs out of 
spy satellites is long over.)

With little or no coma, the field of view of the Ritchey- 
Chrétien is limited by astigmatism. Thus an ƒ>10 instrument will 
have an acceptable angular field radius of about 18 arcminutes, 
twice that of an equivalent paraboloidal telescope. In comparison 
to the aplanatic Gregorian, the Ritchey-Chrétien has a smaller 
secondary and therefore blocks less light, and is substantially 
shorter in length; both features make it much more desirable.

The simple single-mirror paraboloidal telescope (Fig. 5.122a) 
was designed to function with rays entering along its optical 
axis. But there will always be objects of interest elsewhere in 
the field of view other than at its direct center. When a parallel 
bundle of off-axis rays are reflected by a paraboloid, they do not 
all meet at the same point. The image of a distant off-axis point 
(e.g., a star) is an off-axis asymmetric blur caused by the com-
bined aberrations of coma (p. 271) and astigmatism (p. 274). 
This blurring becomes unacceptable rather quickly as the object 
moves off-axis; that’s especially true for the contribution due 
to coma, and it ends up limiting the acceptable field of view to 
something quite narrow. Even for a slow ƒ>10 system, the 
angular radius of the acceptable field of view is only about  
9 arcminutes off-axis, and it drops to a mere 1.4 arcminutes at 
ƒ>4. The classical two-mirror telescopes (Figs. 5.122b, c, and d) 
are similarly severely limited in their fields of view by coma.

Figure 5.122  Reflecting telescopes.

Prime focus   (a)

Gregorian   (c)

Cassegrain   (d)

Newtonian   (b)

The rotating 3-meter-diameter Liquid Mirror 
Telescope in New Mexico is used by NASA 
to detect chunks of low-Earth-orbit space 
debris as small as 5 cm. (NASA)
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Figure 5.123  The Hubble Space Telescope. The spacecraft 
is 13 m (43 ft) long (about 16 ft from the primary to the  
secondary) and has a mass of 11 600 kg. It’s in a 599-km  
by 591-km orbit with a period of 96 minutes. The primary 
mirror of the HST is pictured on p. 193.
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Because an instrument can collect only a portion of the inci-
dent wavefront to be re-formed into an image, there will  
always be diffraction: the light will deviate from straight-line 
propagation and spread out somewhat in the image plane. When 
an optical system with a circular aperture receives plane waves, 
rather than there being an image “point” (whatever that means), 

the light actually spreads out into a tiny circular spot (called an 
Airy disk, containing about 84% of the energy) surrounded by 
very faint rings. The radius of the Airy disk determines the over-
lapping of neighboring images and therefore the resolution. 
That’s why an imaging system that is as perfect as possible is 
referred to as diffraction limited.
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based optical telescope arrays are destined to contribute signifi-
cantly to the way we see the Universe.

Catadioptric Telescopes

A combination of reflecting (catoptric) and refracting (dioptric) 
elements is called a catadioptric system. The best known of 
these, although not the first, is the classic Schmidt optical sys-
tem. We must treat it here, even if only briefly, because it repre-
sents an important approach to the design of large-aperture, ex-
tended-field reflecting systems. As seen in Fig. 5.125, bundles 
of parallel rays reflecting off a spherical mirror will form im-
ages, let’s say of a field of stars, on a spherical image surface, 
the latter being a curved film plate in practice. The only prob-
lem with such a scheme is that although it is free of other aber-
rations (astigmatism and coma, see Section 6.3.1), we know 
that rays reflected from the outer regions of the mirror will not 
arrive at the same focus as those from the paraxial region. In 
other words, the mirror is a sphere, not a paraboloid, and it suf-
fers spherical aberration (Fig. 5.125b). If this could be cor-
rected, the system (in theory at least) would be capable of per-
fect imagery over a wide field of view. Since there is no one 
central axis, there are, in effect, no off-axis points. Recall that 
the paraboloid forms perfect images only at axial points, the 
image deteriorating rapidly off axis.

One evening in 1929, while sailing on the Indian Ocean  
(returning from an eclipse expedition to the Philippines),  
Bernhard Voldemar Schmidt (1879–1935) showed a colleague 
a sketch of a system he had designed to cope with the spherical 
aberration of a spherical mirror. He would use a thin glass 
corrector plate on whose surface would be ground a very shal-
low toroidal curve (Fig. 5.125c). Light rays traversing the outer 
regions would be deviated by just the amount needed to be 

For a perfect instrument, the ideal theoretical angular resolu-
tion is given by Eq. (10.59), namely, the radius of the Airy disk, 
1.22l>D radians. Here D is the diameter of the instrument in 
the same units as l. Another way to present the angular resolu-
tion is in arcseconds, in which case it equals 2.52 * 105 l>D. 
Because of atmospheric distortions, ground-based telescopes, 
regardless of their size, seldom have angular resolutions better 
than about 1 arcsecond. That is, the images of two stars sepa-
rated by an angle of less than 1 arcsecond blend into an undeci-
pherable blur. By comparison, the HST, high above the atmo-
sphere, for which D = 2.4 m, has a diffraction-limited angular 
resolution at l = 500 * 10-9 m, of about 0.05 arcsecond.

Among the world’s largest telescopes are the twin Keck apla-
natic Cassegrains. Separated by 85 m, these two great telescopes 
are perched atop the extinct volcano Mauna Kea in Hawaii, at an 
altitude of 13 600 feet. Each has a 10-m hyperboloidal primary 
composed of 36 hexagonal elements. These are deeply curved so 
that the ƒ>1.75 system has a focal length of only 17.5 m.  
This is indicative of the new generation of large telescopes that 
tend to have fast mirrors (less than ƒ>2) with relatively small fo-
cal lengths. Short telescopes are more economical to build and 
house, and are more stable and accurately steered.

One of the largest single optical telescopes in the world is the 
Gran Telescopio Canarias (GTC) located in the Canary Islands. 
Similar to, but slightly larger than, either Keck scope, its hyper-
boloidal primary is composed of 36 independently movable hex-
agonal segments. With a total area of 75.7 m2 it’s equivalent to a 
circular mirror 10.4 m in diameter. The GTC achieved first light 
in 2007 but it’s not likely to hold the “largest” title for long. A 
new generation of terrestrial megascopes, truly gigantic tele-
scopes, is in the works. Among the biggest of them are the 25-m 
Giant Magellan Telescope (GMT), the Thirty Meter Telescope, 
and the 42-m European Extremely Large Telescope. To these 
behemoths must be added the James Webb Space Telescope, a 
6.5-m device (working primarily in the IR) that NASA will orbit 
in space (2018) about a million miles from Earth.

As a representative of these powerful new eyes on the Universe, 
let’s consider the GMT. The Giant Magellan Telescope, which is 
scheduled for completion around 2017, consists of seven 8.4-m 
(28-ft) honeycomb monolithic borosilicate mirrors (Fig. 5.124). 
All seven mirrors (one central and six off-axis) are ground to 
form one continuous slightly ellipsoidal optical surface. It has a 
collecting area equivalent to that of a 21.9-m-diameter aperture. 
Because its primary mirrors form one smooth surface its resolv-
ing power is that of a 24.5-m (80-ft) aperture capable of produc-
ing images 10 times sharper than the Hubble Space Telescope. 
With a focal length of 18 m the primary’s focal ratio is ƒ>0.7. The 
aplanatic Gregorian design calls for a secondary mirror system 
consisting of seven individual thin adaptive concave segments. 
The combined primary-secondary effective focal length is 203 m 
at ƒ>8.0.

The technology now exists for interferometrically combin-
ing the images from several separate optical telescopes, thereby 
tremendously increasing the overall effective aperture. Ground-

Figure 5.124  A drawing of the Giant Magellan Telescope. Notice the size 
of the person on the left of the base. (National Academy of the Sciences)
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Major advances in the design of catadioptric instrumentation 
have occurred since the introduction of the original Schmidt 
system. There are now catadioptric satellite and missile tracking 
instruments, meteor cameras, compact commercial telescopes, 
telephoto objectives, and missile-homing guidance systems.  
Innumerable variations on the theme exist; some replace the 
correcting plate with concentric meniscus lens arrangements 
(Bouwers–Maksutov), and others use solid thick mirrors. One 
highly successful approach utilizes a triplet aspheric lens array 
(Baker).

5.8 Wavefront Shaping

This chapter has been about reshaping wavefronts in one way or 
another, but the changes introduced by traditional lenses and 
mirrors are global, affecting the whole processed portion of the 
wavefront in more-or-less the same way. By contrast, for the 
first time it is now possible to take an incoming wavefront and 
reconfigure every portion of it differently to fit specific needs.

Consider a plane wave passing either through some inho-
mogeneous medium of index n(r) or through a medium of 
nonuniform thickness—a piece of shower-door glass will do 
(Fig. 5.126a). The wavefronts are essentially held back in 
proportion to the OPL and distort accordingly. When, for ex-
ample, such a wrinkled wave reflects from an ordinary planar 
mirror, it goes off reversed in direction but otherwise unchanged 
(Fig. 5.126b). The leading and trailing wavefront regions remain 
leading and trailing, with only the direction of propagation 
reversed; the wavefront remains distorted. The scene beyond a 
crinkled-glass shower door is equally blurred whether you look 
at it directly or in a mirror.

sharply focused on the image sphere. The corrector must over-
come one defect without introducing appreciable amounts of 
other aberrations. This first system was built in 1930, and in 
1949 the famous 48-inch Schmidt telescope of the Palomar 
Observatory was completed. It is a fast (ƒ>2.5), wide-field  
device, ideal for surveying the night sky. A single photograph 
could encompass a region the size of the bowl of the Big  
Dipper—this compared with roughly 400 photographs by the 
200-inch reflector to cover the same area.

Figure 5.125  The Schmidt optical system.
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information to reconfigure the lightwave, bringing it back to a 
pristine condition as if it had never traversed the swirling tumult 
of the atmosphere (Fig. 5.127).

Driven by thermal energy from the Sun, the Earth’s atmo-
sphere is a shifting sea of turbulent air. Variations in density are 
accompanied by variations in the index of refraction and there-
fore in optical path length. Wavefronts streaming down from a 
point on a distant star arrive at the atmosphere almost precisely as 
plane waves (with a wavelength in the mid-visible of about 0.5 mm). 
As they sweep through the 100 miles or so of shifting air, path 
length differences of a few micrometers are introduced, and the 
wavefronts distort into a bumpy undulated surface. What reaches 
ground level is a succession of broadly wrinkled wavefronts 
shaped much like what you would get if you spread 10-cm tiles 
down on a floor that had first been randomly strewn with tiny 
tough beetles, that is, contiguous tiles, slightly tilted every which 
way. The turbulence changes unpredictably on a time scale of 
milliseconds, and the progression of wavefronts traversing it is 
continuously bent and buckled anew (as if the beetles were aim-
lessly walking around under the tiles, lifting and shifting them).

If a more sophisticated mirror could be devised that could 
reshape the reflected wavefronts, we might be able to get rid 
of undesirable distortions that are unavoidably introduced in a 
variety of situations. This section explores two different state-
of-the-art techniques for accomplishing just that.

5.8.1 Adaptive Optics

One of the most significant breakthroughs in telescope technol-
ogy to occur in recent times is called adaptive optics, and it has 
provided a way to deal with the daunting problem of atmo-
spheric distortion. As Newton put it, “If the Theory of making 
Telescopes could at length be fully brought into Practice, yet 
there would be certain Bounds beyond which telescopes could 
not perform. For the Air through which we look upon the Stars, 
is in perpetual Tremor; as may be seen by the tremulous Motion 
of Shadows cast from high Towers, and by the twinkling of the 
fix’d Stars.” Adaptive optics is a methodology used to control 
that “perpetual Tremor”—first by measuring the turbulence-
induced distortions of the incident light, and then by using that 

Figure 5.127  An adaptive-optics system. The dis-
torted wavefront Σ1 is analyzed and reconfigured. 
The corrected planar wavefront is sent on to the 
scientific instruments.
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parameter, and it’s almost universally represented by r0; this 
is an unfortunate choice of symbol, since this is not a radius. 
Pronounced “r naught,” it corresponds to the size of the region 
over which the incoming wavefront can be taken to be essen-
tially planar. On those rare occasions when r0 exceeds 30 cm, 
a very distant star will be “perfectly” imaged as an Airy disk. 
As the turbulence increases, r0 decreases; moreover, as the 
wavelength increases, r0 increases: r0 ∝ l1.2. It follows that the 
angular resolution of a large ground-based telescope is actually 
1.22l>r0 and since r0 is rarely better than 20 cm, the most pow-
erful Earth-bound instrument has little more resolution than a 
humble 6-inch telescope!

When there’s a wind above a telescope, it, in effect, blows 
the isoplanatic regions past the aperture. A 5-m>s breeze will 
carry an r0 = 10-cm isoplanatic region past in 20 ms. To moni-
tor and ultimately respond to such atmospheric changes, an 
electro-optical-mechanical control system should operate 10 
or 20 times faster, sampling the data at upwards of 1000 times 
per second.

Figure 5.127 is a schematic drawing of a typical astronomi-
cal adaptive optics system. In this simple arrangement, the tele-
scope is pointed at a star that will serve both as the object of 
attention and as a beacon for correcting distortions. Before any-
thing clever is done, the large beam from the primary mirror is 
reduced to several centimeters in diameter so that it can be 
handled more conveniently. In the process, each isoplanatic 
region at the primary becomes focused down to a correspond-
ingly small region in the reduced beam.

The first step is to analyze the distorted wavefront, Σ1, trans-
mitted by the telescope and now present in miniature in the re-
duced beam. This is done with a wavefront sensor, of which 
there are several types. The one considered here is a Hartmann 
sensor (Fig. 5.128), which consists of a compact array of thou-
sands of independent detectors tightly grouped side-by-side. 
Light incident on the sensor first encounters a sheet of closely 
packed tiny identical lenslets, at whose focal plane there is a CCD 
array (Fig. 5.128a). The device is located in the beam in such a 
way that a lenslet is about the size of an isoplanatic region. Each 

The tile imagery, however weird, is useful because in 1966 
David L. Fried showed that the optical results of atmospheric 
turbulence could be modeled in a fairly simple way. In effect 
(because the speed of light is so great), one can assume that at any 
moment the atmosphere behaved as if it were compressed into a 
horizontal array of small, contiguous, wedge-shaped refracting 
regions or stable cells. At any given ground site, the local portion 
of a stellar wavefront is composed of many randomly tilted, 
small, fairly flat areas (each analogous to a single tile). In some-
one’s backyard, these areas are typically about 10 cm across, al-
though under the very best conditions (e.g., on a astronomical 
mountaintop) they might reach as much as 20 or occasionally  
30 cm “when the seeing is good.” Over each such isoplanatic  
region, the wavefront is fairly smooth and has little curvature: the 
difference between leading bumps and trailing depressions is 
about l>17, and it’s a rule-of-thumb that if wave distortions are 
less than l>10 the image quality will be very good. The more 
turbulence there is, the smaller the stable cells are, and the small-
er are the corresponding isoplanatic regions of the wavefront.

The effect of turbulence on the image formed by a telescope, 
one trained on a star, depends strongly on the size of its aperture. 
If the instrument has an aperture of only a few centimeters, the 
small admitted portion of a wavefront (having traversed only a 
part of a stable cell) will likely be quite flat. Turbulence will 
primarily alter the tilt of that otherwise planar incoming wave-
front section. This means that a sharp Airy image can momen-
tarily be formed via that section, but the Airy-image spot will 
wander around as the atmosphere changes and each successive 
planar wavefront section arrives at a different angle (our myth-
ical beetles keep moving). By contrast, for a large-diameter 
telescope, several meters across, the large admitted wavefront 
section is a mosaic of many flat, tilted regions. The image is 
then a simultaneous superposition of numerous shifting Airy 
spots, and the result is a shimmering blur. Clearly, increasing the 
aperture will collect more light, but it will not proportionately 
improve the resolution.

The critical aperture size at which blurring becomes appre-
ciable is a measure of the turbulence. It’s called the Fried  

When looking through the atmosphere with a telescope the probability of experiencing a moment  
of clear viewing decreases exponentially with aperture diameter. Using a moderate-size objective  
(≈12-inch) in ordinary seeing conditions the odds are 1 in 100. This sequence of photos of a star  
taken at 1>60-second intervals shows how the image “twinkles.” The rightmost picture was taken at  
an instant of very good seeing. With a diffraction-limited instrument the image should resemble the  
Airy disk pattern (p. 490) of a central bright spot surrounded by faint concentric rings.  
(Ron Dantowitz, Museum of Science, Boston)
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Because many objects of interest to astronomers—planets, 
galaxies, nebulae, and so on—are imaged as extended bodies, 
using these as an adaptive-optics beacon is precluded. Still, if you 
wish to examine a galaxy, you could use a nearby star as a bea-
con. Unfortunately, however, there will frequently not be any 
stars in the vicinity that are bright enough for the purpose. One 
way to get around this limitation is to use a laserbeam to create an 
artificial guide star (see photo). This has successfully been done 
in two different ways. In one, a laser pulse, focused at altitudes in 
the range from around 10 to 40 km, is projected up through the 
telescope. A portion of that light is backscattered downward from 
air molecules via Rayleigh Scattering. Alternatively, there is a 
layer of sodium atoms (probably deposited by meteors) at an al-
titude of 92 km, well above most of the atmospheric turbulence. 
A laser tuned to 589 nm can excite the sodium, thereby producing 
a small bright yellow beacon anywhere in the sky.

The results (see photo) have been so encouraging* that 
most of the world’s existing major telescopes are using adap-
tive optics and all new terrestrial observatories certainly will 
in the future.

lenslet then forms a minute image of the star on a cluster of four 
CCD pixel elements grouped around its optical axis. If the overall 
wavefront were perfectly flat, that is, if every isoplanatic region 
had zero tilt and all were parallel, each lenslet would produce an 
Airy-image spot at a null position between its own four pixel ele-
ments (Fig. 5.128b). But when any isoplanatic region is tilted, the 
corresponding image spot shifts and the four CCD elements re-
cord an unbalanced signal that indicates the exact displacement 
(Fig. 5.128c). The output from all of these minute detectors is 
computer analyzed, Σ1 is theoretically reconstructed, and the 
corrections necessary to flatten the wavefront are calculated.

If an overall tilt of the wavefront is detected, a signal is sent 
to the fast-steering flat mirror, which initially receives the light 
from the primary, and that tilt is counteracted. The now untilt-
ed, but still wrinkled, wavefront heads toward a “rubber mir-
ror,” a flexible reflector that can rapidly and precisely be de-
formed. It might, for example, be composed of a thin faceplate 
reflector mounted on hundreds of actuators that rapidly push 
and pull it into the desired shape. Driven by signals from the 
computer, the mirror is bent into an inverse configuration to 
that of the wavefront. In effect, wavefront bumps impinge on 
matching mirror depressions, and vice versa. The result is to 
reflect a beam of distortion-free wavefronts, Σ2, that corre-
spond to the condition of the starlight before it entered the at-
mosphere. A small fraction of the radiant energy goes back 
into the sensor-computer-mirror control loop to continuously 
maintain the correction process, while the remainder travels on 
to the scientific instruments.

Figure 5.128  The Hartmann wavefront  
sensor. (a) Lenslets focus light down to a 
CCD array. Each square cluster of four  
CCD elements forms a detector. (b) When the 
incident wave is planar, Airy-image spots 
form at null points at the centers of each 
four-element detector. (c) When the wave-
front is distorted, Airy-image spots are  
shifted from the null positions. 

Distorted
wavefronts Lenslets

CCD array CCD array CCD array
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The creation of a laser guide star at the Phillips Laboratory, Kirtland  
Air Force Base, New Mexico. (Phillips Laboratory, Department of the US Air Force)

*See L. A. Thompson, “Adaptive Optics in Astronomy,” Phys. Today 47, 24 (1994); 
J. W. Hardy, “Adaptive Optics,” Sci. Am. 60 (June 1994); R. Q. Fugate and W. J. 
Wild, “Untwinkling the Stars—Part I,” Sky & Telescope 24 (May 1994); W. J. Wild 
and R. Q. Fugate, “Untwinkling the Stars—Part II,” Sky & Telescope 20 (June 
1994).

A 1-second exposure of 53j Ursa Major using a 1.5-m telescope at the 
Phillips Laboratory. (a) The ordinary uncompensated image is undecipher-
able. (b) Using adaptive optics, the image is improved dramatically. (Phillips 

Laboratory, Department of the US Air Force)
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That’s a rather impractical approach, especially if you can’t 
anticipate the shape of the wavefront or if it changes from  
moment to moment.

Fortunately, in 1972 a team of Russian scientists discovered 
a method for producing phase conjugation for any incident 
wavefront using Brillouin Scattering. They directed an intense 
beam of laser light into a tube containing high-pressure methane 
gas. At power levels of about a million watts, pressure-density 
variations occur, and the medium becomes a remarkable kind  
of mirror, reflecting back almost all the incoming light. What 
surprised the investigators was that the beam scattered back out 
of the gas was phase conjugated. The medium, in this case the 
methane, adjusts itself to the presence of the electromagnetic 
field in just such a way as to turn the backscattered wave inside-
out, so that regions that were originally leading were now trail-
ing. Today there are several means to the same end, all using 
media that produce nonlinear optical effects. There are myriad 
potential applications, from tracking satellites to improving las-
erbeam quality.*

As an example of the kinds of things that can be done, 
consider the following: If a beam that has been distorted by 
passing through an inhomogeneous medium (Fig. 5.126) is 
reflected from an ordinary mirror and made to retraverse that 
medium, the beam will become even more distorted. By con-
trast, if the same thing is done using a phase-conjugating 
mirror, on passing back through the distorting medium for a 
second time the beam will be restored to its pristine condi-
tion. Figure 5.130 illustrates the technique, and Fig. 5.131 
shows the results of an actual experiment. The image of a  
cat was impressed on a collimated argon-ion laserbeam 
(l = 514.5 nm) by simply passing the beam through a photo-
graphic transparency of the cat. As a reference standard, the 
image-carrying wave was sent, via a beamsplitter, to an ordinary 

5.8.2 Phase Conjugation

Another important new technology for reshaping wavefronts is 
known as phase conjugation; here the wave is turned inside-
out during a special kind of reflection.

Imagine a stream of plane waves traveling to the right in the 
positive z-direction impinging perpendicularly on an ordinary flat 
mirror. The incident wave is expressible as Ei = E0 cos (kz - vt), 
or in complex form as  E ˜ i = E0 e

i(kz -vt) = E0 eikze-ivt = E ˜(z)e-ivt

, where the space and time parts have been separated. For this sim-
ple geometry, the reflected waves ride right back over the incident 
waves; they are identical except for the direction of propagation. 
The reflected wave is given by Er = E0 cos (-kz - vt), or 
E ˜r = E0 e-ikze-ivt = E*(z)e-ivt. Changing the sign of the space 
part of the phase changes the direction of the wave, and the same 
thing is accomplished by taking the complex conjugate in the  
exponential formulation. For this reason, the reflected wave is 
also called a phase-conjugated wave or just a conjugate wave. 
A situation of this sort is characterized by the fact that we could, 
in principle, take a motion picture of it, which when shown for-
wards or backwards, would be indistinguishable. Consequently, 
a phase-conjugated wave is said to be time reversed. For 
monochromatic waves, changing the sign of the time part (i.e., 
time reversal) is equivalent to reversing the direction of propaga-
tion:  cos [kz - v(- t)] =  cos (kz + vt) =  cos (-kz - vt).

A very simple, phase-conjugated reflection occurs when 
there is a point source at the center of curvature of a concave 
spherical mirror. The waves flow, expanding out to the mirror, 
and on reflection, contract back on themselves to the source 
point. Presumably, a conventional reflecting surface could be 
made to exactly match any particular wavefront and thereby 
reflect a conjugate for that specific incoming wave (Fig. 5.129). 

*See D. M. Pepper, “Applications of Optical Phase Conjugation,” Sci. Am. 
74 (January 1986) and V. V. Shkunov and B. Ya. Zel’dovich, “Optical Phase 
Conjugation,” Sci. Am. 54 (December 1985).

Figure 5.129  The operation of a rather limited phase-conjugating mirror. 
It only works for the incoming wavefronts shown in (a).

Phase-conjugating
ordinary mirror

Incident wavefronts

(a)

Re�ected wavefronts

(b)

Figure 5.130  When the distorted wave in Fig. 5.126 is reflected by  
a phase-conjugating mirror, it’s turned inside-out, or conjugated. Compare it 
to the conventionally reflected wave in Fig. 5.126b. On traversing the inho-
mogeneous medium a second time, regions of the wavefront that are now 
leading will be held back, and vice versa. The wave that emerges after a 
round-trip will be identical to the one that originally entered (Fig. 5.126a).

Corrected wave Phase-conjugated
re�ected wave

Distorting medium

Phase-conjugating
mirror
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244 Chapter 5 Geometrical Optics

from the mirror was unrecognizable (Fig. 5.131b). Finally, 
the conventional mirror was removed and replaced by a phase 
conjugator. Even though the wave again passed twice through 
the distorter, the image was restored to its original clarity 
(Fig. 5.131c).

5.9 Gravitational Lensing

Among the most remarkable discoveries of the twentieth  
century—one that sprang directly from Einstein’s General 
Theory of Relativity (1915)—was that matter gives rise to, or 
better yet corresponds to, a curvature of space-time. From  
either perspective, where there is a large concentration of mass 
there will be an appreciable curvature of the local space-time. 
Relativity theory conceptually conjoins space and time, and 
gravity affects both. This means that a lightbeam traversing 
such a warped region will follow a curved path, bending inward 
toward the mass concentration. In other words, gravity alters 
the velocity of light—direction and speed. That shouldn’t be 
altogether surprising, since it slows time itself.

Up until now we’ve assumed that light in space propagates 
in straight lines at the fixed speed c. That understanding is in 
accord with Special Relativity, and it’s true enough for any 
Earthbound experiment we might perform. But it’s not true on 
the vast scale of stars and galaxies and black holes. Under the 
influence of a tremendous amount of mass, the gravitational 
potential (ΦG) in the immediate surroundings can be immense. 
Light propagating through this kind of region behaves as if it 
were traversing an inhomogeneous medium having a position-
dependent index of refraction, nG(r$), greater than 1. For that 
reason, and because the resulting effects are similar to those 
that can easily be produced by aspherical lenses, the phenome-
non is called gravitational lensing. More fundamentally, the 
deviation of light from rectilinear propagation is the purview of 
diffraction, and the effect might better be called gravitational 
diffraction.

The geometry of the situation is straightforward: we need an 
observer (e.g., someone with a telescope on Earth), a distant 
source of electromagnetic radiation (e.g., a quasar or a galaxy) 
that serves as the object being viewed, and a lensing mass (e.g., 
a quasar, galaxy, group of galaxies, or black hole) somewhere 
between the two, located on the source-observer axis. 

A region of curved space-time functions much like a crude 
GRIN lens (Fig. 6.42) where the index of refraction drops off 
with distance from the central axis, just as ΦG drops off. An 
even more rudimentary modeling approach would be to just 
match the index profile with a corresponding aspherical thick-
ness profile. The lens in Fig. 5.132 might then correspond to a 
nice symmetric galaxy, whereas a much more centrally pointed 
version would represent a black hole. When an off-axis galaxy 
lenses an object far behind it, the image can be distorted into 
several arcs (Fig. 5.133). More accurately, the phenomenon can 
be represented via waves passing through a distorting medium 

mirror, where it was reflected back through the beamsplitter 
and onto a ground-glass screen so it could be photographed 
(Fig. 5.131a). Next, a phase distorter (e.g., a piece of shower-
door glass) was introduced between the beamsplitter and the 
mirror so that the wave traversed it twice. The image returned 

Figure 5.131  Using phase conjugation to remove distortion. (a) Image of 
a cat reflected from a mirror—no introduced distortion. (b) The same cat 
wave after twice traversing an inhomogeneous medium. (c) After passing 
through the inhomogeneous medium, the wave was phase conjugated and 
returned through the medium a second time. Most of the image distortion 
vanished. (Jack Feinberg, University of Southern California School of Medicine)

(a)

(b)

(c)
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 5.9 Gravitational Lensing 245

(like those in Fig. 5.126a) using Huygens’s Principle (p. 115). 
As we’ll see later when we study diffraction (Fig. 10.7d ), that 
approach establishes that there will always be an odd number of 
miraged images, including a central undiffracted one. Figure 5.134 
shows how a cluster of lensing galaxies images a single distant 
galaxy as a shower of arcs more or less concentric with the clus-
ter’s center-of-mass.

Figure 5.132  An aspherical lens 
used to simulate the effects of  
gravitational lensing by a large  
massive object like a galaxy.

Figure 5.133  An asphere, like that in Fig. 5.132, used to simulate  
gravitational lensing by a galaxy.

(a) (b) (c) (d)

A photo of the first complete 
Einstein Ring ever observed, 
taken by the Hubble Space 
Telescope in 1998. It resulted 
from the near perfect align-
ment of the Earth and two 
galaxies, one behind the 
other (see Fig. 5.133c). 
(NASA)

Cluster

 of

   galaxies L
ine of sight

Earth

Milky Way

Light bent

by gravity

Galaxy

Normal path of light

Figure 5.134  Gravitational lensing by a cluster of galaxies.

The galaxy cluster Abell 2218 is so massive and compact that light passing 
through it is deflected by the enormous gravitation field. The process magni-
fies, brightens, and distorts the images of galaxies that lie far behind it. The 
numerous arcs in the picture are the contorted images of galaxies 5 to 10 
times farther away than the lensing cluster. (NASA)

Einstein, who began thinking about gravitational lensing as 
early as 1912, suggested that in the unlikely event the alignment 
was near perfect, with all three participants precisely on axis 
(Fig. 5.133c), the image would be smeared out into a ring. In 
1998 the Hubble Space Telescope photographed a complete 
Einstein Ring for the first time (see photo).
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246 Chapter 5 Geometrical Optics

Complete solutions to all problems—except those with an  
asterisk—can be found in the back of the book.

5.1 The shape of the interface pictured in Fig. P.5.1 is known as a 
Cartesian oval after René Descartes, who studied it in the 1600s. It’s 
the perfect configuration to carry any ray from S to the interface to P. 
Prove that the defining equation is

/o n1 + /i n2 = constant

Show that this is equivalent to

n1(x2 + y2)1>2 + n2[y2 + (so + si - x2)]1>2 = constant

where x and y are the coordinates of point A.

Problems

5.7* Imagine a hemispherical interface, with a radius of curvature of 
radius 5.00 cm, separating two media: air on the left, water on the 
right. A 3.00-cm-tall toad is on the central axis, in air, facing the con-
vex interface and 30.0 cm from its vertex. Where in the water will it be 
imaged? How big will it appear to a fish in the water? Use the results 
of the previous problem, even though our frog is pushing the paraxial 
approximation.

5.8 Locate the image of a small object placed 1.5 m from the surface 
of a spherical fish-tank filled with water (n = 1.33). The diameter of 
the tank is 30 cm.

5.9* A 3-cm-tall candle-flame is 50 cm in front of a convex spherical 
mirror with a radius of the curvature of 80 cm. Locate the image and 
describe it fully (real/virtual, size, erect/inverted). Draw the ray diagram.

5.10* A thin biconvex lens made of heavy flint glass (n = 1.89) has a 
focal length in air of 15 cm. The radius of curvature of the first surface 
is twice the second surface’s radii. Calculate their values.

S P

A

y

xn1 n2
si

�i
�o

so

V

Figure P.5.1

F1 F2

n2

n1

Σ

D
A

Figure P.5.3

5.4 Diagrammatically construct an ellipto-spheric negative lens, 
showing rays and wavefronts as they pass through the lens. Do the 
same for an oval-spheric positive lens.

5.5* Making use of Fig. P.5.5, Snell’s Law, and the fact that in the 
paraxial region a = h>so, w ≈ h>R, and b ≈ h>si, derive Eq. (5.8).

5.2 Construct a Cartesian oval such that the conjugate points will be 
separated by 11 cm when the object is 5 cm from the vertex. If n1 = 1 
and n2 = 3

2, draw several points on the required surface.

5.3* Use Fig. P.5.3 to show that if a point source is placed at the 
focus F1 of the ellipsoid, plane waves will emerge from the far side. 
Remember that the defining requirement for an ellipse is that the net 
distance from one focus to the curve and back to the other focus is 
constant.

C

R
h

n2

so si

n1

u1

u2

a bw

Figure P.5.5

5.6* Show that, in the paraxial domain, the magnification produced 
by a single spherical interface between two continuous media, as 
shown in Fig. P.5.6, is given by

MT = -  
n1si

n2so

Use the small-angle approximation for Snell’s Law and approximate 
the angles by their tangents.

n1

so si

n2

C

yo

yi

ui
ut

Figure P.5.6
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5.11* Going back to Section 5.2.3, prove that for a thin lens immersed 
in a medium of index nm 

1
f

=
(nl - nm)

nm
 a 1

R1
-

1
R2

b

That done, imagine a double-concave air lens surrounded by water; 
determine if it’s converging or diverging.

5.12* What is the image distance for an object placed 25 cm from  
a thin concave meniscus lens, made of flint glass (n = 1.66), having 
radii of curvature 140 cm and 115 cm, respectively? 

5.13 A biconcave lens (n = 1.5) has radii 10 cm and 50 cm, respec-
tively, and an axial thickness of 5 cm. A 2-cm tall object is placed  
10 cm from the first vertex. Locate the image of the object and describe 
it. Compare your finding with the thin-lens formula.

5.14* A photographic camera has a lens with a focal length of 35 mm. 
A 1.75-m tall person stands 5.0 m in front of the camera. How far be-
hind the lens should the image detector (CCD chip or film) be? How 
tall is the image? 

5.15 You have a candle, a thin positive lens of focal length 20 cm, and 
a white screen. Calculate the shortest distance between the candle and 
the screen such that, using the lens, a real image is projected on the 
screen.

5.16 A toy 5 cm tall is placed in front of a positive thin lens with a 
focal length of 20 cm. Using both the Gaussian and Newtonian formu-
las, describe the image of the toy if the distance between it and the lens 
is: a) 10 cm, b) 30 cm, and c) 50 cm.

5.17 Make a rough graph of the Gaussian Lens Equation; that is, plot 
si versus so, using unit intervals of ƒ along each axis. (Get both seg-
ments of the curve.)

5.18* A parallel bundle of rays from a very distant point source is 
incident on a thin negative lens having a focal length of -50.0 cm. The 
rays make an angle of 6.0° with the optical axis of the lens. Locate the 
image of the source.

5.19* The flame of a candle is on the axis at 40 cm to the right from 
a thin lens. A virtual image is formed 20 cm from the lens. Determine 
the lens type and its focal length. If the original flame is 2 cm tall, what 
is the size of its image? Where is the image located?

5.20 A toy car is placed 60 cm in front of a thin negative lens. An im-
age is formed 20 cm from the lens. Draw the scenario and calculate the 
focal length of the lens.

5.21* A firefly is present 20 cm in front of a thin positive lens. The 
real image of the firefly is three times its size. Calculate the image’s 
position and the lens’ focal length. Repeat the above exercise if the 
image formed was virtual.

5.22* Compute the focal length of a thin plano-convex lens made of 
sapphire (n 5 1.77) having a radius of curvature of 40 cm. Locate and 
describe the image of an object standing 80 cm from the lens.

5.23 Determine the focal length of a planar-convex lens made of 
glass (n = 1.6) and a radius of curvature of 25 cm. What is its optical 
power?

5.24* A double-concave lens has a focal length of 200 cm in air.  It 
has equal radii of curvature and is made of glass of index 1.7. Deter-
mine the radii of curvature of its surfaces. What would happen to the 
radii if n was reduced to 1.5?

5.25* An object initially at 10 m moves to a distance of 50 cm in front 
of a lens. In the process, its image distance doubles. Determine the  
focal length of the lens.

5.26* Determine the focal length in air of a thin biconcave lens hav-
ing equal radii of curvature of 12.5 cm and an index of 1.5. What will 
happen to the focal length of this lens we submerge it in carbon disul-
fide (n = 1.628)?

5.27* A point source of light S is on the central axis of a thin positive 
lens a distance l1 from the lens and a real image of S appears at a dis-
tance l2 from the lens. Where will the image be located relative to the 
lens if we move the light source to a distance l2 from the lens?

5.28* A thin positive lens is placed 50 cm from an object and a clear, 
real image of that object appears on a screen 150 cm behind the lens. 
Which new location can the lens be moved to so that a real image ap-
pears on the screen again? Compare the two images.

5.29* With the previous two problems in mind, imagine a self- 
luminous object on the central axis of a thin positive lens. The object is 
a distance d from the screen on which the image appears. Now suppose 
the lens is moved toward the object to a new location, whereupon the 
image on the screen is N times larger than it was originally. Show that 
the lens has a focal length given by

f =
2Nd

11 + 2N22

5.30* A thin lens is placed 20 cm from a light source so that a clear 
image is formed on a screen 100 cm from the light source. What kind 
of lens is used here? Compute its focal length.

5.31 The horse in Fig. 5.29 is 2.25 m tall, and it stands with its face 
15.0 m from the plane of the thin lens whose focal length is 3.00 m.

(a) Determine the location of the image of the equine nose.

(b)  Describe the image in detail—type, orientation, and magnification.

(c) How tall is the image?

(d)  If the horse’s tail is 17.5 m from the lens, how long, nose-to-tail, is 
the image of the beast?

5.32* A glowing figurine 5 cm tall is standing 15 cm in front of a thin 
convex lens whose focal length is 20 cm. Locate and describe the 
image of the figurine. Can you project it on a screen?

5.33* A 6-cm butterfly has to be projected onto a screen positioned 
1.20 m away so that its image is 30 cm in size. This has to be achieved 
with a thin planar-convex lens made out of glass (n = 1.6). Calculate 
the radius of curvature of this lens.

 Problems 247
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248 Chapter 5 Geometrical Optics

5.42* A convenient way to measure the focal length of a positive lens 
is by placing a light source a certain distance L from a screen and then 
placing the lens in between them and finding the two positions at 
which the lens forms clear images of the source onto the screen. The 
distance between these two positions is d and is more convenient to 
measure than any distance to or from the vertices or the optical center 
of the lens. What is the limit of focal lengths you can measure with this 
setup given a fixed distance L? Derive the formula for the focal length.

5.43* Two positive lenses with focal lengths of 0.30 m and 0.50 m are 
separated by a distance of 0.20 m. A small butterfly rests on the central 
axis 0.50 m in front of the first lens. Locate the resulting image with 
respect to the second lens.

5.44 In the process of constructing a doublet, an equiconvex thin 
lens L1 is positioned in intimate contact with a thin negative lens, L2, 
such that the combination has a focal length of 50 cm in air. If their 
indices are 1.50 and 1.55, respectively, and if the focal length of L2 is 
-50 cm, determine all the radii of curvature.

5.45 Verify Eq. (5.34), which gives MT for a combination of two thin 
lenses.

5.46* A blade of grass standing 10.0 mm tall is 150 mm in front of a 
thin positive lens having a 100 mm focal length; 250 mm behind that first 
lens is a thin negative lens with a focal length of -75.0 mm. (a) Show 
that the first lens forms an image 300 mm behind it. (b) Describe that 
image. (c) What’s its magnification? (d) Prove that the final image 
formed by both lenses is located 150 mm behind the negative lens. 
(e) What is the total magnification of the combination?

5.47 Compute the image location and magnification of an object  
30 cm from the front doublet of the thin-lens combination in  
Fig. P.5.47. Do the calculation by finding the effect of each lens sepa-
rately. Make a sketch of appropriate rays.

5.34* A biconvex thin lens located 127 cm from a screen projects 
onto it an image 5.80 times the size of the luminous object. Determine 
the focal length of the lens.

5.35* We wish to project an image of a frog on a screen. The image 
is to be twice life-size. If a thin convex-planar lens has a radius of cur-
vature of 100 cm and is made of glass (ng = 1.50), and if it is used to 
create the image, how far from the screen must we position the frog? 
Draw a ray diagram.

5.36* Consider a planar-convex lens made of glass (n = 1.6), in air. A 
very distant object is moved within 120 cm of the lens. The resulting 
image moves about twice the original distance from the lens. What is 
the radius of curvature of the curved part of the lens?

5.37* A thin, straight piece of wire 4.00 mm long is located in a plane 
perpendicular to the optical axis and 60.0 cm in front of a thin lens. The 
sharp image of the wire formed on a screen is 2.00 mm long. What is 
the focal length of the lens? When the screen is moved farther from the 
lens by 10.0 mm, the image blurs to a width of 0.80 mm. What is the 
diameter of the lens? [Hint: Image a source point on the axis.]

5.38 A thin positive glass lens (ng = 1.6) in air has a focal length of 
20 cm. The lens is placed under water (nw = 4

3) 80 cm in front of a 
small fish. Locate and describe the image of the fish.

5.39 Consider a homemade television projection system that uses a 
large positive lens to cast the image of the TV screen onto a wall. The 
projected picture is enlarged three times, and although dim, it’s nice 
and clear. If the lens has a focal length of 60 cm, what should be the 
distance between the screen and the wall? Why use a large lens? How 
should we mount the set with respect to the lens?

5.40 Write an expression for the focal length (ƒw) of a thin lens  
immersed in water (nw = 4

3) in terms of its focal length when it’s in  
air (ƒa).

5.41* Observe the three vectors A$ , B$, and C$  in Fig. P.5.41, each of 
which has a length of 0.10ƒ where ƒ is the focal length of the thin 
positive lens. The plane formed by A$  and B$ is at a distance of 1.10ƒ 
from the lens. Describe the image of each vector.

B�

y

z

C�A�

x

Figure P.5.41

5.48* Two thin lenses having focal lengths of +15.0 cm and -15.0 cm 
are positioned 60.0 cm apart. A page of print is held 25.0 cm in front 
of the positive lens. Describe, in detail, the image of the print (i.e.,  
insofar as it’s paraxial).

10 cm

f1 = +30 cm f2 = –20 cm

Figure P.5.47
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5.56* A thin convex lens L is positioned midway between two dia-
phragms: D1, 4.0 cm to its left, and D2, 4.0 cm to its right. The lens has 
a diameter of 12 cm and a focal length of 12 cm. The holes in D1 and 
D2 have diameters of 12 cm and 8.0 cm, respectively. An axial object 
point is 20 cm to the left of D1. (a) What is the image of D1 in the 
object space (i.e., as imaged by any lens to its left with light traveling 
left)? (b) What is the image of L in the object space? (c) What is the 
image of D2 in the object space? Give the size and location of that 
aperture’s image. (d) Locate the entrance pupil and the aperture stop.

5.57 Make a sketch roughly locating the aperture stop and entrance 
and exit pupils for the lens in Fig. P.5.57.

5.49* Draw a ray diagram for the combination of two positive lenses 
wherein their separation equals the sum of their respective focal lengths. 
Do the same thing for the case in which one of the lenses is negative.

5.50* Two positive lenses are to be used as a laserbeam expander. An 
axial 1.0-mm-diameter beam enters a short focal length positive lens, 
which is followed by a somewhat longer focal length positive lens 
from which it emerges with a diameter of 8.0 mm. Given that the first 
lens has a 50.0 mm focal length, determine the focal length of the 
second lens and the separation between the lenses. Draw a diagram.

5.51 Redraw the ray diagram for a compound microscope (Fig. 5.110), 
but this time treat the intermediate image as if it were a real object. 
This approach should be a bit simpler.

5.52* Consider a thin positive lens L1, and using a ray diagram, show 
that if a second lens L2 is placed at the focal point of L1, the magnifica-
tion does not change. That’s a good reason to wear eyeglasses, whose 
lenses are different, at the correct distance from the eye.

5.53* Figures P.5.53a and P.5.53b are taken from an introductory 
physics book. What’s wrong with them?

5.54* Galileo’s best telescope had an eyepiece of -40 mm focal 
length, along with a biconvex objective about 30 mm in diameter. That 
objective formed real intermediate images of stars roughly 120 cm 
down the tube. Determine the magnification of that instrument and the 
focal ratio (ƒ># ) of its objective.

5.55 Consider the case of two positive thin lenses, L1 and L2, sepa-
rated by 5 cm. Their diameters are 6 and 4 cm, respectively, and their 
focal lengths are ƒ1 = 9 cm and ƒ2 = 3 cm. If a diaphragm with a hole 
1 cm in diameter is located between them, 2 cm from L2, find (a) the 
aperture stop and (b) the locations and sizes of the pupils for an axial 
point, S, 12 cm in front of (to the left of) L1.

f

H
L1 L2

F1 F

Figure P.5.53a

L1 L2

F1 F2

2

4

0
I1F1� F2�

Figure P.5.53b

Fo1 Fo2 Fi1 Fi2

Figure P.5.57

Fo1 Fi2

Figure P.5.58

5.58 Make a sketch roughly locating the aperture stop and entrance 
and exit pupils for the lens in Fig. P.5.58, assuming the object point to 
be beyond (to the left of) Fo1.

 Problems 249

M05_HECH6933_05_GE_C05.indd   249 26/08/16   1:34 PM
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5.63 Manet’s painting A Bar at the Folies Bergères (Fig. P.5.63) 
shows a girl standing in front of a large planar mirror. Reflected in it is 
her back and a man in evening dress with whom she appears to be 
talking. It would seem that Manet’s intent was to give the uncanny 
feeling that the viewer is standing where that gentleman must be. From 
the laws of Geometrical Optics, what’s wrong?

5.59* A refracting astronomical telescope has an objective lens 50 mm 
in diameter. Given that the instrument has a magnification of 10* , 
determine the diameter of the eye-beam (the cylinder of light imping-
ing on the eye). Under conditions of darkness the acclimated human 
eye has a pupil diameter of about 8 mm.

5.60 Figure P.5.60 shows a lens system, an object, and the appropri-
ate pupils. Diagrammatically locate the image.

5.61 Draw a ray diagram locating the images of a point source as 
formed by a pair of mirrors at 90° (Fig. P.5.61a). Now create a ray dia-
gram locating the images of the arrow shown in Fig. P.5.61b.

Fo1S Fi2Fi1Fo2 OO

L1

L2

Exit pupil

Entrance pupil

A.S.

Figure P.5.60

5.62 Examine Velásquez’s painting of Venus and Cupid (Fig. P.5.62). 
Is Venus looking at herself in the mirror? Explain.

S

Figure P.5.61 (a) (b)

Figure P.5.62  The Toilet of Venus by Diego Rodriguez de Silva y 
Velásquez. (Courtesy of the Trustees, The National Gallery, London.)

Figure P.5.63  A Bar at the Folies Bergeres by Édouard Manet.  
(Bar at the Folies-Bergere (1882), Edouard Manet. Oil on canvas. Courtauld Institute Galleries/Lutz 

Braun/Art Resource, New York.)

5.64 Show that Eq. (5.48) for a spherical surface is equally applicable 
to a plane mirror.

5.65* A little boy stands 3 m from a large flat mirror. He sees his 
mother 7 m in front of him. Where is the mother actually located?

5.66* Figure P.5.66 was taken from an optics textbook by S. Parkinson 
published in 1884. It depicts two “parallel plane mirrors” between 
which, at Q, is a “luminous point.” Explain what’s happening in detail. 
What is the relationship of Q1 and Q2? Of Q2 and Q3?
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5.71 Locate the image of a paperclip 100 cm away from a convex 
spherical mirror having a radius of curvature of 80 cm.

5.72* The visor of a helmet is highly reflective and can be considered 
as a part of a sphere of radius of 20 cm. Describe the image you will 
see if you stand 2 m from the helmet.

5.73* A thin positive lens, having a focal length of 120 cm, is posi-
tioned 80 cm from a large planar mirror. A pet rat sits on the primary 
axis 250 cm from the lens. Locate all the images of the rat. 

5.74 The image of a red rose is formed by a concave spherical mirror 
on a screen 100 cm away. If the rose is 25 cm from the mirror, deter-
mine its radius of curvature.

5.75 From the image configuration determine the shape of the mirror 
hanging on the back wall in van Eyck’s painting of John Arnolfini and 
His Wife (Fig. P.5.75).

5.76* A 3-cm-tall candle flame is 50 cm in front of a concave spher-
ical mirror with a radius of curvature of 80 cm. Locate the image and 
describe it fully (real/virtual, size, erect/inverted). Draw the ray dia-
gram.

5.77* There are several varieties of retro-reflector that are commer-
cially available; one type is composed of transparent spheres, the 
backs of which are silvered. Light is refracted at the front surface, 
focused onto the rear surface, and there reflected back out in the  
direction it came. Determine the necessary index of refraction of the 
spheres. Assume the incident light is collimated.

5.67* Suppose the two mirrors (A and B) in the previous problem are 
25 cm apart and a small candle is placed in between them such that you 
cannot see it. You see the images at Q1 and Q3, and they seem to be 10 
cm apart. Where is the candle located?

5.68* A coin of diameter DC is 300 cm in front of a parallel wall on 
which is hung a circular flat mirror of diameter DM. A person stands 
900 cm from the wall. Show that DM = 3

4 DC is the smallest-diameter 
mirror in which the observer can just see the reflected edge of the coin 
(i.e., the image of the coin just fills the mirror).

5.69* Consider Example 5.9 on p. 190. Assume the person sits so that 
his eyes are 1.2 m from the floor and a 40 cm tall mirror is located so 
that its bottom edge is 1.4 m from the floor. Locate the upper and lower 
edge of the visibility zone within which the eye chart needs to be placed.

5.70* A small planar mirror is attached to a thin vertical wire so that 
the mirror is parallel to a wall 1.0 m away. A horizontal scale is mounted 
flat on the wall opposite the mirror, whose center is directly opposite 
the zero mark on the scale. A horizontal laserbeam reflects off the 
mirror and hits the scale at 5.0 cm left of zero. The mirror is then  
rotated through an angle a and the beam-scale spot of light moves left 
an additional 15.0 cm. Find a.

Figure P.5.66

Figure P.5.75  Detail of John Arnolfini and His Wife (1434) by Jan van Eyck. (Portrait of Giovanni Arnolfini and his Wife (Detail) 

(1434), Jan van Eyck. Oil on oak, 82.2 x 60 cm. The National Gallery, London/Art Resource, New York.)
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252 Chapter 5 Geometrical Optics

5.88* A spherical mirror is placed 30 cm from an object. It produces 
an erect image twice the size of the object. What kind of mirror has 
been used? Determine its radius of curvature.

5.89 Describe the image that would result for a 5-cm-tall object 
placed 50 cm from a spherical concave mirror having a radius of cur-
vature of 60 cm.

5.90* A thin positive lens of focal length ƒL is positioned very close 
to and in front of a front-silvered concave spherical mirror of radius 
RM. Write an expression approximating the effective focal length of the 
combination in terms of ƒL and RM.

5.91* Parallel rays along the central axis enter a biconcave lens, both 
of whose radii of curvature are equal. Some of the light is reflected 
from the first surface, and the remainder passes through the lens. Show 
that, if the index of refraction of the lens (which is surrounded by air) 
is 2.00, the reflected image will fall at the same point as the image 
formed by the lens.

5.92 Referring to the Dove prism in Fig. 5.73, rotate it through 90° 
about an axis along the ray direction. Sketch the new configuration and 
determine the angle through which the image is rotated.

5.93 Determine the numerical aperture of a single clad optical fiber, 
given that the core has an index of 1.62 and the clad 1.52. When im-
mersed in air, what is its maximum acceptance angle? What would 
happen to a ray incident at, say, 45°?

5.94* A stepped-index multimode glass fiber has indices of 1.481 and 
1.461. Its core diameter is 100 mm. Determine the fiber’s acceptance 
angle when immersed in air.

5.95 Given a fused silica fiber with an attenuation of 0.2 dB>km, how 
far can a signal travel along it before the power level drops by half?

5.96* An optical fiber has a core thickness of 2 mm with a refractive 
index of 1.48 and a cladding with a refractive index of 1.45. What is the 
cut-off wavelength above which this fiber works as a single-mode fiber?

5.97* A stepped-index single-mode fiber has a diameter of 8.0 mm 
and a numerical aperture of 0.13. Find its cut-off frequency below 
which the fiber operates in single mode.

5.78* Design an eye for a robot using a concave spherical mirror such 
that the image of an object 1.0 m tall and 10 m away fills its 1.0-cm-
square photosensitive detector (which is movable for focusing purposes). 
Where should this detector be located with respect to the mirror? What 
should be the focal length of the mirror? Draw a ray diagram.

5.79* An LED 0.60 cm tall is on the central axis 30.0 cm in front of 
a convex spherical mirror. If the radius of curvature of the mirror is 
12.0 cm determine the location of the image, describe it, and draw a 
ray diagram. How big is the image?

5.80 Design a little dentist’s mirror to be fixed at the end of a shaft for 
use in the mouth of some happy soul. The requirements are (1) that the 
image be erect as seen by the dentist and (2) that when held 1.5 cm 
from a tooth the mirror produces an image twice life-size.

5.81 An object is located at a distance so from a spherical mirror of 
radius R. Show that the resulting image will be magnified by an amount

MT =
R

2so + R

5.82* A device used to measure the radius of curvature of the cornea 
of the eye is called a keratometer. This is useful information when fit-
ting contact lenses. In effect, an illuminated object is placed a known 
distance from the eye, and the image reflected off the cornea is  
observed. The instrument allows the operator to measure the size of 
that virtual image. If the magnification is found to be 0.037*  when the 
object distance is set at 100 mm, what is the radius of curvature?

5.83* Considering the operation of a spherical mirror, prove that the 
locations of the object and image are given by

so = ƒ(MT - 1)>MT  and si = -ƒ(MT - 1)

5.84 A man whose face is 25 cm away looks into the bowl of a soup-
spoon and sees his image reflected with a magnification of -0.064. 
Determine the radius of curvature of the spoon.

5.85* In an amusement park a large upright convex spherical mirror 
is facing a plane mirror 10.0 m away. A girl 1.0 m tall standing midway 
between the two sees herself twice as tall in the plane mirror as in the 
spherical one. In other words, the angle subtended at the observer by 
the image in the plane mirror is twice the angle subtended by the image 
in the spherical mirror. What is the focal length of the latter?

5.86* A homemade telephoto “lens” (Fig. P.5.86) consists of two 
spherical mirrors. The radius of curvature is 2.0 m for the primary (the 
big mirror) and 60 cm for the secondary (the small mirror). How far 
from the smaller mirror should the film plane be located if the object is 
a star? What is the effective focal length of the system?

5.87* A point source S sitting on the central axis of a positive thin 
lens is located (to the left) between one and two focal lengths from the 
lens. A concave spherical mirror is to be positioned to the right of the 
lens so that the final real image also lies at point S. Where should  
the mirror be placed? Where should a convex spherical mirror be  
located to accomplish the same feat?

m3
4

Figure P.5.86
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5.107 The field of view of a simple two-element astronomical tele-
scope is restricted by the size of the eye-lens. Make a ray sketch show-
ing the vignetting that arises.

5.108 A field-lens, as a rule, is a positive lens placed at (or near) the 
intermediate image plane in order to collect the rays that would other-
wise miss the next lens in the system. In effect, it increases the field of 
view without changing the power of the system. Redraw the ray dia-
gram of the previous problem to include a field-lens. Show that as a 
consequence the eye relief is reduced somewhat.

5.109* Describe completely the image that results when a bug sits at 
the vertex of a thin positive lens. How does this relate directly to the 
manner in which a field-lens works? (See Problem 5.108.)

5.110* It is determined that a patient has a near point at 50 cm. If the 
eye is approximately 2.0 cm long,

(a)  How much power does the refracting system have when focused 
on an object at infinity? when focused at 50 cm?

(b)  How much accommodation is required to see an object at a dis-
tance of 50 cm?

(c)  What power must the eye have to see clearly an object at the stan-
dard near-point distance of 25 cm?

(d)  How much power should be added to the patient’s vision system 
by a correcting lens?

5.111* An optometrist finds that a farsighted person has a near point 
at 125 cm. What power will be required for contact lenses if they are 
effectively to move that point inward to a more workable distance of 
25 cm so that a book can be read comfortably? Use the fact that if the 
object is imaged at the near point, it can be seen clearly.

5.98 A stepped-index optical fiber has a core diameter of 20.0 mm 
and optical indices 1.472 and 1.461 for the core and cladding, respec-
tively. It is illuminated with a LED laser with a wavelength of 635 nm. 
How many modes can be sustained in it?

5.99* A multimode stepped-index glass fiber has a core index of 1.50 
and a cladding index of 1.48. Given that the core has a radius of 50.0 mm 
and operates at a vacuum wavelength of 1300 nm, find the number of 
modes it sustains.

5.100* Determine the intermodal delay (in ns>km) for a stepped-index 
fiber with a cladding of index 1.485 and a core of index 1.500.

5.101 Using the information on the eye in Section 5.7.1, compute the 
approximate size (in millimeters) of the image of the Moon as cast on 
the retina. The Moon has a diameter of 2160 miles and is roughly 230 
000 miles from here, although this, of course, varies.

5.102* Figure P.5.102 shows an arrangement in which the beam is 
deviated through a constant angle s, equal to twice the angle b be-
tween the plane mirrors, regardless of the angle-of-incidence. Prove 
that this is indeed the case.

b

s

Figure P.5.102

5.103 An object 20 m from the objective (ƒo = 4 m) of an astronom-
ical telescope is imaged 30 cm from the eyepiece (ƒo = 60 cm). Find 
the total linear magnification of the scope.

5.104* Figure P.5.104, which purports to show an erecting lens sys-
tem, is taken from an old, out-of-print optics text. What’s wrong with it?

5.105* Figure P.5.105 shows a pinhole in an opaque screen being 
used for something practical. Explain what’s happening and why it 
works. Try it.

5.106* A camera set at a shutter speed of 1
30 s and ƒ>8 produces pic-

tures that are properly exposed but have too much motion blur. If its 
shutter speed is changed to 1

120 s, what f-number should this camera be 
set to so the pictures come out well exposed?

Figure P.5.104

Pinhole

Pinhole

Figure P.5.105

 Problems 253

M05_HECH6933_05_GE_C05.indd   253 26/08/16   1:34 PM



254 Chapter 5 Geometrical Optics

5.121* The two glancing-incidence aspherical mirror systems depicted 
in Fig. P.5.121 are designed to focus X-rays. Explain how each works: 
identify the shapes of the mirrors, discuss the locations of their various 
foci, and so on.

5.112* A nearsighted person with the same vision in both eyes has a 
far point at 100 cm and a near point at 18 cm, each measured from her 
cornea. (a) Determine the focal length of the needed corrective contact 
lenses. (b) Find her new near point. Here you want to find the location 
of an object in front of the lens that will now be imaged at 18 cm in 
front of the lens. 

5.113* A 4 D myope (same for both eyes) wants to wear spectacles 
15 mm from his eyes. What is the appropriate power of the glasses?

5.114* A far-sighted person uses +5D glasses worn 12 mm from the 
eyes. He wishes to get contact lenses. Determine the optical power of 
these lenses.

5.115* Corrective glasses and contact lenses are normally offered in 
standard optical strengths with a 0.25 D step. Consider a set of glasses 
worn 15 mm from the eyes and an equivalent set of contact lenses. 
Their optical strength should normally be different for the same visual 
result, but for a certain range of diopters, the difference is less than the 
0.25 standard step and the same optical power can be used for both. 
Determine this range.

5.116* A hyperope has a near point at 60 cm and a far point effec-
tively at infinity. Determine the correction lenses that she needs (con-
sider the standard steps as 5.115) and locate the new near and far points.

5.117 A farsighted person can see very distant mountains with re-
laxed eyes while wearing +3.0–D contact lenses. Prescribe spectacle 
lenses that will serve just as well when worn 17 mm in front of the 
cornea. Locate and compare the far point in both cases.

5.118* An entomologist uses a magnifying glass having a focal 
length of 16.7 cm to study a 1-cm long insect. What is the angular size 
of the insect to the unaided eye if it is placed at 25 cm? What is the 
maximum angular size obtained using this magnifying glass? Deter-
mine the angular size obtained under normal operation.

5.119 Suppose we wish to make a microscope (that can be used with 
a relaxed eye) out of two positive lenses, both with a focal length of 
25 mm. Assuming the object is positioned 27 mm from the objective, 
(a) how far apart should the lenses be, and (b) what magnification can 
we expect?

5.120* Figure P.5.120 shows a glancing-incidence X-ray focusing 
system designed in 1952 by Hans Wolter. Fill in the missing portion of 
each ray. How many reflections does each ray undergo? How does the 
device work? Microscopes with this type of system have been used to 
photograph, in X-rays, the implosion of fuel pellet targets in laser fu-
sion research. Similar X-ray optical arrangements have been used in 
astronomical telescopes (see photos on p. 89).

F2 F1

Paraboloid

Hyperboloid

(a)

Figure P.5.120  (E.H.)

(b)

F1 F2

F1 F2

(a)

(b)

Figure P.5.121

5.122* The orbiting Hubble Space Telescope has a 2.4-m primary, 
which we will assume to be diffraction-limited. Suppose we wanted to 
use it to read the print on the side of a distant Russian satellite. Assum-
ing that a resolution of 1.0 cm at the satellite will do, how far away 
could it be from the HST?
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The preceding chapter, for the most part, dealt with paraxial 
theory as applied to spherical lens systems. The two predomi-
nant approximations were that we had thin lenses and that first-
order theory was sufficient for their analysis. Neither of these 
assumptions can be maintained throughout the design of a pre-
cision optical system, but, taken together, they provide the basis 
for a first rough solution. This chapter carries things a bit fur-
ther by examining thick lenses and aberrations; even at that, it 
is only a beginning. The advent of computerized lens design 
requires a certain shift in emphasis—there is little need to do 
what a computer can do better. 

6.1 Thick Lenses and Lens Systems

Figure 6.1 depicts a thick lens (i.e., one whose thickness is by 
no means negligible). As we shall see, it could equally well be 
envisioned more generally as an optical system, allowing for 
the possibility that it consists of a number of simple lenses, not 
merely one. The first and second focal points, or if you like, the 
object and image foci, Fo and Fi, can conveniently be measured 
from the two (outermost) vertices. In that case we have the fa-
miliar front and back focal lengths denoted by f.f.l. and b.f.l. 
When extended, the incident and emerged rays will meet at 
points, the locus of which forms a curved surface that may or 
may not reside within the lens. The surface, approximating a 
plane in the paraxial region, is termed the principal plane (see 
Section 6.3.1). Points where the primary and secondary princi-
pal planes (as shown in Fig. 6.1) intersect the optical axis are 
known as the first and second principal points, H1 and H2, 
respectively. They provide a set of very useful references from 
which to measure several of the system parameters. We saw 
earlier (Fig. 5.17, p. 169) that a ray traversing the lens through 
its optical center emerges parallel to the incident direction. Ex-
tending both the incoming and outgoing rays until they cross 
the optical axis locates what are called the nodal points, N1 and 
N2 in Fig. 6.2. When the lens is surrounded on both sides by 
the same medium, generally air, the nodal and principal 
points will be coincident. The six points, two focal, two princi-
pal, and two nodal, constitute the cardinal points of the system.

If the object location is known along with the six cardinal 
points, the final image can be determined for any system of 

6 More on  
Geometrical Optics

Primary
principal

plane

First focal
point

f.f.l.

Fo V1 V2H1 H2

Secondary
principal

plane

Second focal
point

b.f.l.

FiV2V1 H2H1

Figure 6.1  A thick lens.

255

N1

O N2

Figure 6.2  Nodal points.
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256 Chapter 6 More on Geometrical Optics

Depicted in Fig. 6.4 is ray-1 heading toward point-H1, just as 
a ray might head toward the center of a thin lens in Fig. 5.22. 
After striking H1 it moves on to H2, traveling parallel to the 
central axis. At H2 it refracts and emerges parallel to the incom-
ing ray, much as it would with a thin lens. Now consider ray-2 
in Fig. 6.4, traveling parallel to the central axis. It strikes the 
first principal plane and passes on, undeflected, to the second 
principal plane, where it refracts. If the lens is positive, ray-2 
converges to back focal point-F2. If the lens is negative, ray-2 
diverges as if from front focal point-F1, much as with the thin 
positive lens in Fig. 5.22. For a positive lens, ray-3 is the one 
that passes through front focal point-F1, strikes the first princi-
pal plane, refracts parallel to the central axis, and, undeflected, 
continues on. For a negative lens, ray-3, heading toward back 
focal point-F2, strikes the first principal plane, refracts parallel 
to the central axis, and, undeflected, continues on. 

Any parallel bundle of rays entering a positive thick lens must 
emerge as a converging cone heading toward a point on its focal 
plane. And any parallel bundle of rays entering a negative thick lens 
must emerge as a cone diverging from a point on its focal plane.

The thick lens can be treated as consisting of two spherical 
refracting surfaces separated by a distance dl between their ver-
tices, as in Section 5.2.3, where the thin-lens equation was  
derived. After a great deal of algebraic manipulation,* wherein 

coaxial refracting spherical surfaces regardless of the actual 
curvatures, spacings, and indices the rays encounter. Consequently, 
it’s common practice to calculate the positions of the cardinal 
points early in any analysis.

As shown in Fig. 6.3, the principal planes can lie completely 
outside the lens system. Here, though differently configured, 
each lens in either group has the same power. Observe that in 
the symmetrical lens the principal planes are, quite reasonably, 
symmetrically located. In the case of either the planar-concave 
or planar-convex lens, one principal plane is tangent to the 
curved surface—as should be expected from the definition 
 (applied to the paraxial region). In contrast, the principal points 
can be external for meniscus lenses. One often speaks of this 
succession of shapes with the same power as exemplifying lens 
bending. A rule-of-thumb for ordinary glass lenses in air is that 
the separation H1H2 roughly equals one-third the lens thick-
ness V1V2

 .
A quick way to trace rays through a thin lens is to draw a 

plane down the middle of the lens (perpendicular to the optical 
axis) and refract all the incoming rays at that plane, its principal 
plane, rather than at its two interfaces, where the bending actu-
ally takes place. In effect, for a thin lens the two principal planes 
in Fig. 6.1 coalesce into a single plane. A similar scheme can be 
devised to quickly ray trace through a thick lens provided we 
first set out a few rules. Keep in mind that the technique we are 
about to explore will take the actual entering ray and allow us to 
construct the actual emerging ray. However, the paths constructed 
inside the lens will generally not match the actual internal paths 
taken by the rays, but they didn’t for the thin lens either. 

Any ray impinging on the first lens face must be extended 
until it intersects the first principal plane, the one at H1. This 
“ghost” ray traverses the gap between H1 and H2 parallel to the 
optical axis. It strikes the second principal plane, the one at H2, 
refracts, and passes straight out of the lens in a direction yet to 
be determined. Just as with the thin lens, there are three special 
rays whose passage into, across, and out of the thick lens we 
can anticipate without the need for calculations.

*For the complete derivation, see Morgan, Introduction to Geometrical and 
Physical Optics, p. 57. We will be deriving much of this material using matrices  
in Section 6.2.1.

Figure 6.3  Lens bending.

H1

H2

F2F1

Ray-1

Ray-3

Ray-2

H1

H2

F2F1

Ray-1

Ray-3

Ray-2

Figure 6.4  Tracing rays through a thick lens.
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 6.1 Thick Lenses and Lens Systems 257

EXAMPLE 6.1

Find the image distance for an object positioned 30 cm from the 
vertex of a double convex lens having radii of 20 cm and 40 cm, 
a thickness of 1.0 cm, and an index of 1.5. 

SOLUTION 

From Eq. (6.2) the focal length (in centimeters) is

1
ƒ

= (1.5 - 1) c 1
20

-
1

-40
+

(1.5 - 1)1.0

1.5(20)(-40)
d

and ƒ = 26.8 cm. Furthermore,

h1 = -  
26.8(0.50)1.0

-40(1.5)
 = +0.22 cm

and

h2 = -  
26.8(0.5)1.0

20(1.5)
 = -0.44 cm

which means that H1 is to the right of V1, and H2 is to the left of 
V2. Finally, so = 30 + 0.22, whereupon

1
30.2

+
1
si

=
1

26.8

and si = 238 cm, measured from H2.

The principal points are conjugate to each other. In other 
words, since ƒ = sosi>(so + si), when so = 0, si must be zero, 
because ƒ is finite and thus a point at H1 is imaged at H2. Fur-
thermore, an object in the first principal plane (xo = -ƒ ) is im-
aged in the second principal plane (xi = -ƒ ) with unit magnifi-
cation (MT = 1). It is for this reason that they are sometimes 
spoken of as unit planes. Any ray directed toward a point on the 
first principal plane will emerge from the lens as if it originated 
at the corresponding point (the same distance above or below 
the axis) on the second principal plane.

Suppose we now have a compound lens consisting of two 
thick lenses, L1 and L2 (Fig. 6.6). Let so1, si1, and ƒ1 and so2, si2, 
and ƒ2 be the object and image distances and focal lengths for 
the two lenses, all measured with respect to their own principal 

dl is not negligible, one arrives at a very interesting result for the 
thick lens immersed in air. The expression for the conjugate 
points once again can be put in Gaussian form,

 
1
so

+
1
si

=
1
ƒ

 (6.1)

provided that both these object and image distances are mea-
sured from the first and second principal planes, respectively. 
Moreover, the effective focal length, or simply the focal length, 
ƒ, is also reckoned with respect to the principal planes and is 
given by

 1
ƒ

= (nl - 1) c 1
R1

-
1
R2

+
(nl - 1)dl

nlR1R2
d  (6.2)

The principal planes are located at distances of V1H1 = h1
  and 

V2H2 = h2, which are positive when the planes lie to the right of 
their respective vertices. Figure 6.5 illustrates the arrangement 
of the various quantities. The values of h1 and h2 are (Problem 6.22) 
given by

 h1 = -  
ƒ(nl - 1)dl

R2nl
 (6.3)

and h2 = -  
ƒ(nl - 1)dl

R1nl
 (6.4)

In the same way the Newtonian form of the lens equation holds, 
as is evident from the similar triangles in Fig. 6.4. Thus

 xo xi = ƒ2 (6.5)

so long as ƒ is given the present interpretation. And from the 
same triangles

 MT =
yi

yo
= -  

xi

ƒ
= -  

ƒ
xo

 (6.6)

Obviously, if dl S 0, Eqs. (6.1), (6.2), and (6.5) are transformed 
into the thin-lens expressions Eqs. (5.17), (5.16), and (5.23). 

Fo

Fi
yo

yi

V1 H1 V2H2

h1 h2

dl
xi

si

f

b.f.l.

f

f.f.l.

so

xo

Figure 6.5  Thick-lens geometry.
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258 Chapter 6 More on Geometrical Optics

which will not be derived here (see Section 6.2.1). We have 
in effect found an equivalent thick-lens representation of 
the compound lens. Note that if the component lenses are 
thin, the pairs of points H11, H12, and H21, H22 coalesce, 
whereupon d becomes the center-to-center lens separation, 
as in Section 5.2.3. 

EXAMPLE 6.2

Return to the thin lenses of Fig. 5.41 and locate the system’s prin-
cipal planes when ƒ1 = -30 cm, ƒ2 = 20 cm, and d = 10 cm.

SOLUTION 

As shown in Fig. 6.7, using Eq. (6.8), determine the focal length 
of the system:

1
ƒ

=
1

-30
+

1
20

-
10

(-30)(20)

so ƒ = 30 cm. We found earlier (p. 181) that b.f.l. = 40 cm and 
f.f.l. = 15 cm. Moreover, since these are thin lenses, Eqs. (6.9) 
and (6.10) can be written as

O1H1 =
30(10)

20
= +15 cm

and O2H2 = -  
30(10)

-30
= +10 cm 

Both are positive, and therefore the planes lie to the right of 
O1 and O2, respectively. Both computed values agree with 
the results depicted in the diagram. If light enters from the 
right, the system resembles a telephoto lens that must be 
placed 15 cm from the film or CCD plane, yet has an effec-
tive focal length of 30 cm.

The same procedures can be extended to three, four, or more 
lenses. Thus

 ƒ = ƒ1a-  
si2

so2
b a-  

si3

so3
b  . . . .  (6.11)

Equivalently, the first two lenses can be envisioned as combined 
to form a single thick lens whose principal points and focal 
length are calculated. It, in turn, is combined with the third lens, 
and so on with each successive element.

planes. We know that the transverse magnification is the prod-
uct of the magnifications of the individual lenses, that is,

 MT = a-  
si1

so1
b a-  

si2

so2
b = -  

si

so
 (6.7)

where so and si are the object and image distances for the com-
bination as a whole. When so is equal to infinity so = so1, si1 = ƒ1, 
so2 = -(si1 - d ), and si = ƒ. Since

1
so2

+
1
si2

=
1
ƒ2

it follows (Problem 6.1), upon substituting into Eq. (6.7), that

-  
ƒ1si2

so2
= ƒ

or ƒ = -  
ƒ1

so2
 a so2ƒ2

so2 - ƒ2
b =

ƒ1ƒ2

si1 - d + ƒ2
 

Hence 
1
ƒ

=
1
ƒ1

+
1
ƒ2

-
d

ƒ1ƒ2
 (6.8)

This is the effective focal length of the combination of two thick 
lenses where all distances are measured from principal planes. 
The principal planes for the system as a whole are located using 
the expressions

 H11H1 =
ƒd

ƒ2
 (6.9)

and H22H2 =
ƒd

ƒ1

 (6.10)

f f1 f1

H1 H11

f

H2H12 H21 H22

L1

f2
d

f2

L2

(a)

Fo Fo1 Fo2Fi1 FiFi2

so1

H11

si2
so2

si1 =  f1

H12 H2 H21 H22

L1

d

f
L2

(b)

Fi

Figure 6.6  Two different compound thick-lens systems.

Fo FiO1 O2 H1 H2

f = 30 cm

d=10 cm
f.f.l. = 15 cm

15 cm

10 cm f = 30 cm
b.f.l. = 40 cm

Figure 6.7  A compound lens.
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 6.2 Analytical Ray Tracing 259

In what follows (1) horizontal distances are measured from 
the vertices V1 and V2, to the right being positive, to the left 
negative. (2) Ray angles are positive when they are measured to 
upwardly traveling rays (above the central axis). Such angles 
increases counterclockwise.

The simplest case that will serve to illustrate the ray-tracing 
process is that of a paraxial, meridional ray traversing a thick 
spherical lens. Applying Snell’s Law in Fig. 6.8 at point-P1 yields

ni1ui1 = nt1ut1

or ni1(ai1 + a1) = nt1(at1 + a1) 

Keep in mind that all of these angles are in radians. Inasmuch 
as a1 = y1>R1, this becomes

ni1(ai1 + y1>R1) = nt1(at1 + y1>R1)

Rearranging terms yields

nt1at1 = ni1ai1 - ant1 - ni1

R1
b y1

but as we saw in Section 5.7.2, the power of a single refracting 
surface is

�1 =
(nt1 - ni1)

R1

Hence nt1at1 = ni1ai1 - �1y1 (6.12)

This is often called the refraction equation pertaining to the 
first interface. Having undergone refraction at point-P1, the ray ad-
vances through the homogeneous medium of the lens to point-P2 
on the second interface. The height of P2 can be expressed as

 y2 = y1 + d21at1 (6.13)

on the basis that tan at1 ≈ at1. This is known as the transfer 
equation because it allows us to follow the ray from P1 to P2. 
Recall that the angles are positive if the ray has a positive slope. 
Since we are dealing with the paraxial region, d21 ≈ V2V1 and 
y2 is easily computed. Equations (6.12) and (6.13) are then used 
successively to trace a ray through the entire system. Of course, 
these are meridional rays and because of the lenses’ symmetry 

6.2 Analytical Ray Tracing

Ray tracing is unquestionably one of the designer’s chief tools. 
Having formulated an optical system on paper, one can mathe-
matically shine virtual rays through it to evaluate its perfor-
mance. Any ray, paraxial or otherwise, can be traced through 
the system exactly. Conceptually, it’s a simple matter of apply-
ing the refraction equation

 ni (k̂  i : ûn) = nt (k̂  t : ûn) [4.6]

at the first surface, locating where the transmitted ray then 
strikes the second surface, applying the equation once again, 
and so on all the way through. At one time meridional rays 
(those in the plane of the optical axis) were traced almost exclu-
sively because nonmeridional or skew rays (which do not inter-
sect the axis) are considerably more complicated to deal with 
mathematically. The distinction is of less importance to a com-
puter, which simply takes a trifle longer to make the trace. 
Whereas it would probably take 10 or 15 minutes for a skilled 
person with a calculator to evaluate the trajectory of a single 
skew ray through a single surface, a computer would require 
less than a thousandth of a second for the same job, and equally 
important, it would be ready for the next calculation with undi-
minished enthusiasm.

Computer ray tracing. (Optical Research Associates, Pasadena CA)

ni1 nt1 = ni2 nt2 = ni3 nt3

at2

ut1

at1

ai1
ui1

a1

a1

a1

ai2

V1 V2 V3C

P2
P3

P1

R1y1

y2 y3

d21 d32 Figure 6.8  Ray geometry.
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260 Chapter 6 More on Geometrical Optics

The 2 * 2 matrix is the refraction matrix, denoted as

 ℛ ℛ1 K c1 -�1

0 1
d = £ 1

-(nt1 - ni1)

R1

0 1
§  (6.19)

and Eq. (6.16) can be stated concisely as

 rt1 = ℛ ℛ1 ri1 (6.20)

which just says that ℛ ℛ1 transforms the rays ri1 into the ray rt1 
during refraction at the first interface. Notice that the way we 
arranged the terms in Eqs. (6.14) and (6.15) determined the 
form of the refraction matrix. Accordingly, several equivalent 
variations of the matrix can be found in the literature.

From Fig. 6.8 we have ni2ai2 = nt1at1, that is,

 ni2ai2 = nt1at1 + 0 (6.21)

and yi2 = d21at1 + yt1 (6.22)

where ni2 = nt1, ai2 = at1, and use was made of Eq. (6.13), 
with y2 rewritten as yi2 to make things pretty. Thus

 cni2  ai2

yi2
d = c 1 0

d21>nt1 1
d cnt1 at1

yt1
d  (6.23)

As shown in Fig. 6.8, the quantity d21 is the horizontal distance 
traversed by the ray in going from P1 to P2. For rays coming in 
at small angles, d12 approaches the distance V1V2  between ver-
tices, which is the axial thickness of the lens—call it dl.

The transfer matrix is then

 � �21 K c 1 0
d21>nt1 1

d  (6.24)

Here for the lens d21 = dl, nt1 = nl and

� �21 = c 1 0
dl>nl 1

d
That matrix takes the transmitted ray at P1 (i.e., rt1) and trans-
forms it into the incident ray at P2:

rt2 K cni2  ai2

yi2
d

Hence Eqs. (6.21) and (6.22) become simply

 ri2 = � �21 rt1 (6.25)

about the optical axis, such a ray remains in the same meridional 
plane throughout its sojourn. The process is two-dimensional; 
there are two equations and two unknowns, at1 and y2. In contrast, 
a skew ray would have to be treated in three dimensions.

6.2.1 Matrix Methods

In the beginning of the 1930s, T. Smith formulated an interest-
ing way of handling the ray-tracing equations. The simple linear 
form of the expressions and the repetitive manner in which they 
are applied suggested the use of matrices. The processes of re-
fraction and transfer might then be performed mathematically 
by matrix operators. These initial insights were not widely ap-
preciated for almost 30 years. However, the early 1960s saw a 
rebirth of interest in this approach.* We shall only outline some 
of the salient features of the method, leaving a more detailed 
study to the references.

Matrix Analysis of Lenses

Let’s begin by writing the formulas

 nt1at1 = ni1ai1 - �1yi1 (6.14)

and yt1 = 0 + yi1 (6.15)

which are not very insightful, since we merely replaced y1 in 
Eq. (6.12) by the symbol yi1 and then let yt1 = yi1. This last bit 
of business is for purely cosmetic purposes, as you will see in a 
moment. In effect, it simply says that the height of reference 
point-P1 above the axis in the incident medium (yi1) equals its 
height in the transmitting medium (yt1) —which is obvious. But 
now the pair of equations can be recast in matrix form as

 cnt1at1

yt1
d = c1 -�1

0 1
d cni1ai1

yi1
d  (6.16)

This could equally well be written as

 cat1

yt1
d = cni1>nt1 -�1>nt1

0 1
d cai1

yi1
d  (6.17)

so that the precise form of the 2 * 1 column matrices is actu-
ally a matter of preference. In any case, these column matrices 
can be envisioned as rays on either side of P1, one before and 
the other after refraction. Accordingly, using rt1 and ri1 for the 
two rays in Eq. (6.16), we can write

 rt1 K cnt1at1

yt1
d   and  ri1 K cni1ai1

yi1
d  (6.18)

*For further reading, see K. Halbach, “Matrix Representation of Gaussian Optics,” 
Am. J. Phys. 32, 90 (1964); W. Brouwer, Matrix Methods in Optical Instrument 
Design; E. L. O’Neill, Introduction to Statistical Optics; or A. Nussbaum, 
Geometric Optics.

EXAMPLE 6.3

Consider a concave-planar lens immersed in air and having an  
index of refraction of 1.50. The lens has a thickness along 
its central axis of 1.00 cm. (a) Determine its transfer matrix. 
(b) Does it matter what the surrounding media are?

Continued
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For the flat surface R2 = ∞  and from Eq. (5.71)

�2 =
nl - 1

-R2
= 0

Hence,

ℛ2 = c1 -�2

0 1
d = c1 0

0 1
d

From Eq. (6.26)

  rt2 = ℛ ℛ2 � �21 ℛ ℛ1 ri1 (6.28)

The system matrix � � is then defined as

 � � K ℛ ℛ2 � �21 ℛ ℛ1 (6.29)

It carries the ray incident at P1 into the ray transmitted out of the 
second interface at P2. The system matrix has the form

 � � = ca11 a12

a21 a22
d  (6.30)

Inasmuch as

� � = c1 -�2

0 1
d c 1 0

d21>nt1 1
d c1 -�1

0 1
d

or � � = c1 -�2

0 1
d  £

1 -�1

d21

nt1
1 -

�1d21

nt1

§  

it follows that

� � = ≥
1 -

�2d21

nt1
-�1 - �2 +

�2�1d21

nt1

d21

nt1
1 -

�1d21

nt1

¥

and once more 0� � 0 = 1 (see Problem 6.21). Because we are 
working with only one lens, let’s simplify the notation a little 
again, letting d21 = dl and nt1 = nl, the index of the lens. Con-
sequently,

 ca11 a12

a21 a22
d = ≥

1 -
�2dl

nl
-�1 - �2 +

�1�2dl

nl

dl

nl
1 -

�1dl

nl

¥  

  (6.31)

The value of each element in � � is expressed in terms of the 
physical lens parameters, such as thickness, index, and radii (via �). 
Thus the cardinal points, which are properties of the lens deter-
mined solely by its makeup, should be deducible from � �. The 

SOLUTION 

(a) The transfer matrix in general is given by Eq. (6.24)

� �21 = c 1 0
d21>nt1 1

d

Here nt1 is the index of the lens, d21 its axial thickness. Hence 

� �21 = c 1 0
1>1.50 1

d = c 1 0
0.667 1

d
(b) The transfer matrix depends only on the medium traversed 

by the ray.

If use is made of Eq. (6.20), Eq. (6.25) becomes

 ri2 = � �21 ℛ ℛ1 ri1 (6.26)

The 2 * 2 matrix formed by the product of the transfer and re-
fraction matrices � �21ℛ ℛ1 will carry the ray incident at P1 into 
the ray incident at P2. Notice that the determinant of � �21, de-
noted by 0� �21 0 , equals 1; that is, (1)(1) - (0)(d21>nt1) = 1. 
Similarly 0ℛ ℛ1 0 = 1, and since the determinant of a matrix prod-
uct equals the product of the individual determinants, 
0� �21ℛ ℛ1 0 = 1. This provides a quick check on the computa-
tions. Carrying the procedure through the second interface  
(Fig. 6.8) of the lens, which has a refraction matrix ℛ ℛ2, it  
follows that

 rt2 = ℛ ℛ2 ri2 (6.27)

where

ℛ ℛ2 K c1 -�2

0 1
d

and the power of the second surface is

�2 =
(nt2 - ni2)

R2

EXAMPLE 6.4

A concave-planar lens has a first surface with a radius of 20.0 cm. 
The lens is in air and has an index of refraction of 1.50. Determine 
the refraction matrix for each of its surfaces.

SOLUTION 

For the concave surface, the first one, the radius is negative, and 
using Eq. (5.70),

�1 =
nl - 1

R1
=

1.5 - 1
-20.0

Consequently �1 = -0.025 cm-1. The power is properly neg-
ative. The refraction matrix for the curved surface is then

ℛ ℛ1 = c1 - �1

0 1
d = c1 0.025

0 1
d
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262 Chapter 6 More on Geometrical Optics

It follows from the two previous examples that

� � = c1 0
0 1

d c 1 0
0.667 1

d c1 0.025
0 1

d

� � = c1 0
0 1

d c 1 0.025
0.667 1.016 7

d

� � = c 1 0.025
0.667 1.016 7

d

and this agrees with the previous examples.

The concept of image formation enters directly (Fig. 6.9) 
after introduction of appropriate object and image planes. Con-
sequently, the first operator � �1O transfers the reference point 
from the object to the lens (i.e., PO to P1). The next operator 
� �21 then carries the ray through the lens, and a final transfer 
� �I 2 brings it to the image plane (i.e., PI ). Thus the ray at the 
image point (rI) is given by

 rI = � �I2 � �21� �1O rO (6.32)

where rO is the ray from PO. In component form this is

 cnI aI

yI
d = c 1 0

dI>nI 1
d ca11 a12

a21 a22
d c 1 0

-dO>nO 1
d cnO aO

yO
d  

(6.33)

There is a minus sign associated with the distance from the  
vertex V1 to the object because that distance dO is taken here to 
be a negative quantity.

Notice that � �1O  rO = ri1 and that � �21 ri1 = rt 2, hence 
� �I2  rt2 =  rI. The subscripts O, 1, 2, . . . , I correspond to refer-
ence points Po, P1, P2, and so on, and subscripts i and t denote the 
side of the reference point (i.e., whether incident or transmitted). 
Operation by a refraction matrix will change i to t but not the 
reference point designation. On the other hand, operation by a 
transfer matrix obviously does change the latter.

system matrix in this case, Eq. (6.31), transforms an incident 
ray at the first surface to an emerging ray at the second surface; 
as a reminder, we will write it as � �21.

EXAMPLE 6.5

A concave-planar lens immersed in air has an index of 1.50, 
an axial thickness of 1.00 cm, and a front-surface radius of 
curvature of 20.0 cm. A ray coming up toward the lens at an 
angle of 5.73° above the central axis contacts the front surface 
at a height of 2.00 cm above that axis. Determine the height 
and angle at which the ray emerges from the lens. Show that 
the system matrix agrees with the two previous examples.

SOLUTION 

Recall Eq. (6.28), where what we need is rt2, the exiting ray 
matrix. Equivalently,

rt2 = � �  ri1

Since the lens is in air, the ray transmitted at the second inter-
face is given by

cat2

yt2
d = ca11 a12

a21 a22
d cai1

yi1
d

Here where �2 = 0 it follows from Eq. (6.31) that

� � = £
1 - �1

dl>nl 1 -
�1dl

nl

§

Since the first radius R1 is negative

�1 =
(nl - 1)

R1
=

0.50
-20.0

= -0.025 cm-1

Accordingly,

� � = c 1 0.025
0.667 1 - (-0.025)0.667

d = c 1 0.025
0.667 1.016 7

d

Then, since 11.46° = 0.100 rad

cat2

yt2
d = c 1 0.025

0.667 1.016 7
d c0.100

2.00
d

and

cat2

yt2
d = c 0.100 + 0.025(2)

0.667(0.100) + 1.016 7(2)
d

Thus the ray emerges at an angle at2 = 0.150 rad and at a height 
above the central axis of yt2 = 2.10 cm. Because

� � = ℛ ℛ2 � �21 ℛ ℛ1

yO

yI

V2V1

PI

P2
P1

PO

y1 y2

dId21 = dl

nt2 = nInt1 = ni2nO = ni1 aI

at2

ai1
aO

dO

nl

Figure 6.9  Image geometry. Note that dO is negative here, whereas dI  
is positive.
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It is left for Problem 6.26 to show that this can be written in 
terms of the vertex object distance as 

 MT =
1

a11 - a12dO
 (6.38)

EXAMPLE 6.7

The Tessar lens in the previous example imaged an object lo-
cated 20.0 cm in front of it, at a distance of 6.00 cm behind it. 
Use Eqs. (6.37) and (6.38) to determine, and then check, the 
magnification.

SOLUTION 

Using Eq. (6.37), 
MT = a22 + a12dI

MT = 0.867 + (-0.198) 6.00

and MT = -0.321, the image is inverted and minified. As a 
check use 

MT =
1

a11 - a12dO

and remembering that here dO is to the left and negative, 

MT = [0.848 - (-0.198)(-20.0)]-1

Hence MT = -0.321 and all’s well.

Let’s return to Eq. (6.31) and examine several of the terms. 
For example,

-a12 = �1 + �2 - �1�2dl>nl

If we suppose, for the sake of simplicity, that the lens is in air, 
then

�1 =
nl - 1

R1
 and �2 =

nl - 1

-R2

as in Eqs. (5.70) and (5.71). Hence

-a12 = (nl - 1) c 1
R1

-
1
R2

+
(nl - 1)dl

R1R2nl
d

This is the expression for the effective focal length of a thick 
lens in air [Eq. (6.2)]; in other words,

 -a12 = -1>ƒo = +1>ƒi (6.39)

where ƒo measured from H1 to the left of the first vertex is neg-
ative, and ƒi measured from H2 to the right of the last vertex is 
positive. Thus the power of the lens as a whole is given by

-a12 = �l = �1 + �2 -
�1�2dl

nl

Let’s simplify Eq. (6.33) by taking the lens to be immersed 
in air, whereupon nI = nO = 1. It is left for Problem 6.18 to 
show that 

 
yI = aO[a21 - a22dO + (a11 - a12dO)dI]
      + yO(a22 + a12dI)

 (6.34)

But this must be independent of the angle aO at which any ray 
emanates from an object point. Paraxial rays leaving a point at 
yO must arrive at a point at yI regardless of aO. Hence

 a21 - a22dO + (a11 - a12dO)dI = 0 (6.35)

And so the image distance measured from the last vertex on the 
right, dI, is related to the object distance measured from the first 
vertex on the left, dO, by

 dI =
-a21 + a22dO

a11 - a12dO
 (6.36)

EXAMPLE 6.6

An object is located 20.0 cm in front of the first vertex of a 
compound Tessar lens immersed in air, whose system ma-
trix is

c0.848 -0.198
1.338 0.867

d

Determine the location of the image with respect to the back 
face of the lens.

SOLUTION 

From Eq. (6.35)

dI =
-a21 + a22dO

a11 - a12dO

and

dI =
-1.338 + 0.867(-20.0)

0.848 - (-0.198)(-20.0)

Here dO is a negative number with any units. Hence

dI =
-18.678
-3.112

= +6.00 cm

and the image is 6.00 cm to the right of the rightmost vertex.

We can get an expression for the magnification (MT) from 
Eq. (6.34), since the first term is zero, leaving

yI = yO(a22 + a12dI)

Consequently,

 MT = a22 + a12dI (6.37)
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(b) The principal planes are located by 

V1H1 =
1 - a11

-a12
 and V2H2 =

a22 - 1
-a12

so it would be a good idea now to compute a11, a12, and a22 
from Eq. (6.31). Accordingly,

a11 = 1 -
�2dl

nl
= 1 -

0.50(0.50)

1.50

a11 = 0.833

and  a12 = -�1 - �2 +
�1 �2 dl

nl
 

a12 = -0.25 - 0.50 +
(0.25)(0.50)(0.50)

1.50
a12 = -0.708

and a22 = 1 -
�1 dl

nl
= 1 -

0.25(0.50)

1.50
 

a22 = 0.917

The principal planes are then located by 

V1H1 =
1 - 0.833

+  0.708
= +  0.236 cm 

(i.e., H1 is to the right of V1) and 

V2H2 =
0.917 - 1

+  0.708
= -  0.117 cm 

(i.e., H2 is to the left of V2).

(c) The focal length (fi) of the lens is given by Eq. (6.39),

-  a12 = +  
1
fi

= +  0.708

Consequently, fi = +1.41 cm and fo = -1.41 cm, both mea-
sured from the principal points (to the right positive, to the left 
negative).

(d) The front and back focal lengths are then 

f.f.l. = a11 fo = 0.833(-1.412) = -1.18 cm

measured to the left of V1, and 

b.f.l. = a22fi = 0.917(+1.412) = +1.29 cm

measured to the right of V2.

To further illustrate how the technique can be used, let’s apply 
it, at least in principle, to the Tessar lens* shown in Fig. 6.11. 
The system matrix has the form

� �71 = ℛ ℛ7 � �76 ℛ ℛ6 � �65 ℛ ℛ5 � �54 ℛ ℛ4 � �43 ℛ ℛ3 � �32 ℛ ℛ2 � �21 ℛ ℛ1

If the embedding media were different on each side of the lens 
(Fig. 6.10), as in the human eye, this would become

 -a12 = -  
ni1

ƒo
= +  

nt2

ƒi
 (6.40)

Similarly, it is left as a problem to verify that in general

  V1H1 =
ni1 (1 - a11)

-a12
 (6.41a)

or with the lens immersed in air

  V1H1 =
(1 - a11)

-a12
 (6.41b)

where in general

 V2H2 =
nt2(a22 - 1)

-a12
 (6.42a)

or with the lens in air

 V2H2 =
(a22 - 1)

-a12
 (6.42b)

which locate the principal points. Likewise the front and back 
focal planes are located at distances of V1Fo  and V2Fi, where

 V1Fo = f.f.l. = a11 ƒo (6.43a) 

and 
 V2Fi = b.f.l. = a22 ƒi (6.43b)

referring back to Eq. (6.31).

EXAMPLE 6.8

A small biconvex spherical lens has a center-line thickness of 
0.500 cm and an index of 1.50, and it is surrounded by air. Given 
that its first face has a radius of 2.00 cm and its second face a  
radius of 1.00 cm (a) determine the power of each face; (b) lo-
cate the principal planes; (c) compute the focal length of the lens;  
(d) find the front and back focal lengths.

SOLUTION 

(a) The front and back surface powers are given by

�1 =
nl - 1

R1
  and  �2 =

nl - 1

-R2

and so �1 = (1.50 - 1)/2.00 = 0.250 cm-1, whereas �2 =
(1.50 - 1)>1.00 = 0.500 cm-1. Both are positive, as they 
should be. 

*This particular example was chosen primarily because Nussbaum’s book 
Geometric Optics contains a simple Fortran computer program written specifically 
for this lens. It would be almost silly to evaluate the system matrix by hand.

V1 V2H1 H2

b.f.l.
fo

Fo Fi

fi

nt2ni1

nt1 

nl 

f.f.l.

Figure 6.10  Principal planes and focal lengths.
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dl S 0, it corresponds to a thin lens. This is equivalent to mak-
ing � �21 a unit matrix; 

� � = ℛ ℛ2 ℛ ℛ1 = c1 -(�1 + �2)
0 1

d
But as we saw in Section 5.7.2, the power of a thin lens � is the 
sum of the powers of its surfaces. Hence

� � = c1 -�
0 1

d = c1 -1>ƒ
0 1

d
In addition, for two thin lenses (Fig. 5.36) separated by a dis-
tance d, in air, the system matrix is

� � = c1 -1>ƒ2

0 1
d c1 0

d 1
d c1 -1>ƒ1

0 1
d

or � � = c1 - d>ƒ2 -1>ƒ1 + d>ƒ1ƒ2 - 1>ƒ2

d -d>ƒ1 + 1
d  

Clearly then,

-a12 =
1
ƒ

=
1
ƒ1

+
1
ƒ2

-
d

ƒ1ƒ2

and from Eqs. (6.41) and (6.42)

O1H1 = ƒ d>ƒ2 O2H2 = -ƒ d>ƒ1

all of which should be quite familiar by now. Note how easy it would 
be with this approach to find the focal length and principal points for 
a compound lens composed of three, four, or more thin lenses.

Matrix Analysis of Mirrors

To derive the appropriate matrix for reflection, consult Fig. 6.12, 
which depicts a concave spherical mirror, and write down two 
equations that describe the incident and reflected rays. Again, 
the final form of the matrix depends on how we arrange these 
two equations and the signs we assign to the various quantities. 

where

� � 21 = £
1 0

0.357
1.611 6

1
§  � �32 = £

1 0
0.189

1
1
§

� �43 = £
1 0

0.081
1.605 3

1
§

and so forth. Furthermore,

ℛ ℛ1 = £ 1 -  
1.611 6 - 1

1.628
0 1

§  ℛ ℛ2 = £ 1 -  
1 - 1.611 6

-27.57
0 1

§

ℛ ℛ3 = £ 1 -  
1.605 3 - 1

-3.457
0 1

§

and so on. Multiplying out the matrices, in what is obviously a 
horrendous, though conceptually simple, calculation, one pre-
sumably will get

� �71 = c0.848 -0.198
1.338 0.867

d

and from that, ƒi = 5.06, V1H1 = 0.77, and V7H2 = -0.67.

Thin Lenses

It is often convenient to consider a system of thin lenses using 
the matrix representation. To that end, return to Eq. (6.31). It 
describes the system matrix for a single lens, and if we let 

V1 V2 V3 V4 V5 V6 V7

R1 = 1.628
R2 = –27.57
R3 = –3.457
R4 = 1.582

nt1 = 1.611 6

nt2 = 1

nt3 = 1.605 3 nt5 = 1.512 3
nt6 = 1.611 6

nt4 = 1

d21
0.357

d43
0.081 d54

0.325

d65
0.217 d76

0.396d32
0.189

R5 = ∞
R6 = 1.920
R7 = –2.400

Figure 6.11  A Tessar.

ai 

ai - ui 

ar 

ur 

ui 

ai 

ai

C

n

yi

R

Figure 6.12  The geometry for reflection 
from a mirror. The ray angles ai and ar 
are measured from the direction of  
the optical axis.
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This is a special kind of mathematical relationship known as an 
eigenvalue equation where, a bit more generally,

� � ri = a ri

and a is a constant. In other words,

c 1 0
2d 1

d cai

yi
d = a cai

yi
d

If ai = 0 and the initial ray is launched axially, then yi = ayi 
and it follows that a = 1. The system matrix functions like a 
unit matrix that carries ri into ri after two reflections. Axial rays 
of light travel back and forth across the so-called resonant cavity 
without escaping.

Cavities can be constructed in a number of different ways 
using a variety of mirrors (Fig. 13.16, p. 625). If after traversing 
a cavity some number of times the light ray returns to its origi-
nal location and orientation, the beam will be trapped and the 
cavity is said to be stable; that’s why the eigenvalue discussion 
is important. To analyze the confocal cavity composed of two 
concave spherical mirrors facing each other, see Problem 6.28.

6.3 Aberrations

To be sure, we already know that first-order theory is no more 
than a good approximation—an exact ray trace or even mea-
surements performed on a prototype system would certainly 
reveal inconsistencies with the corresponding paraxial de-
scription. Such departures from the idealized conditions of 
Gaussian Optics are known as aberrations. There are two main 
types: chromatic aberrations (which arise from the fact that n is 
actually a function of frequency or color) and monochromatic 
aberrations. The latter occur even with light that is quasimono-
chromatic, and they in turn fall into two subgroupings. There 
are monochromatic aberrations such as spherical aberration, 
coma, and astigmatism that deteriorate the image, making it un-
clear. In addition, there are aberrations that deform the image, 
for example, Petzval field curvature and distortion.

We have known all along that spherical surfaces in general 
would yield perfect imagery only in the paraxial region. Now we 
must determine the kind and extent of deviations that result sim-
ply from using those surfaces with finite apertures. By the judi-
cious manipulation of a system’s physical parameters (e.g., the 

What’s needed is an expression relating the ray angles and another 
relating their heights at the point of interaction with the mirror.

First let’s consider the ray angles. The Law of Reflection is 
ui = ur; therefore from the geometry tan (ai - ui) = yi>R, and 

 (ai - ui) ≈ yi>R (6.44)

Taking these angles to be positive, y is positive, but R isn’t, and 
this equation will be in error as soon as we enter a negative 
value for the radius. Therefore rewrite it as (ai - ui) = -yi>R. 
Now to get ar into the analysis, note that ai = ar + 2ui and 
ui = (ai - ar)>2. Substituting this into Eq. (6.44) yields ar =  
-ai - 2yi>R, and multiplying by n, the index of the surround-
ing medium (where usually n = 1), leads to

nar = -nai - 2nyi>R
The second necessary equation is simply yr = yi and so

cnar

yr
d = c-1 -2n>R

0 1
d cnai

yi
d

Thus the mirror matrix ℳ ℳ for a spherical configuration is given 
by

 ℳ ℳo = c-1 -2n>R
0 1

d  (6.45)

remembering from Eq. (5.49) that ƒ = -R>2.

Flat Mirrors and the Planar Optical Cavity

For a flat mirror (R S ∞) in air (n = 1), the matrix is 

ℳ ℳ 0 = c-1 0
0 1

d

where the minus sign in the first position reverses the ray upon 
reflection. Figure 6.13 shows two planar mirrors facing each other, 
forming an optical cavity (p. 621). Light leaves point-O, traverses 
the gap in the positive direction, is reflected by mirror-1, retraces 
the gap in the negative direction, and is reflected by mirror-2. The 
system matrix is

� � =  ℳ ℳ 02 � �21 ℳ ℳ 01 � �12

� � = c-1 0
0 1

d c 1 0
-d 1

d c-1 0
0 1

d c1 0
d 1

d

and � � = c 1 0
2d 1

d  

where again the determinant of the system matrix is 1: 0� � 0 = 1. 
Presumably, if the initial ray was axial (a = 0), the system ma-
trix should bring it back to its starting point so that the final ray 
rƒ is identical to the initial ray ri. That is,

� � ri = rƒ = ri

M2 M1

O
ℳ2

ℳ1�12

�21

Figure 6.13  A schematic representation of a planar cavity formed by 
mirrors-M1 and -M2.
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If the approximations for /o and /i are improved a bit (Prob-
lem 6.31), we get the third-order expression:

n1

so
+

n2

si
=

n2 - n1

R
+ h2 c n1

2so
 a 1

so
+

1
R
b

2

+
n2

2si
 a1

R
-

1
si
b

2

d  

 (6.46)
The additional term, which varies approximately as h2, is clear-
ly a measure of the deviation from first-order theory. As shown 
in Fig. 6.14, rays striking the surface at greater distances above 
the axis (h) are focused nearer the vertex. In brief, spherical 
aberration, or SA, corresponds to a dependence of focal length 
on aperture for nonparaxial rays. Similarly, for a converging 
lens, as in Fig. 6.15, the marginal rays will, in effect, be bent too 

powers, shapes, thicknesses, glass types, and separations of the 
lenses, as well as the locations of stops), these aberrations can 
indeed be minimized. In effect, one cancels out the most unde-
sirable faults by a slight change in the shape of a lens here, or a 
shift in the position of a stop there (very much like trimming up 
a circuit with small variable capacitors, coils, and pots). When 
it’s all finished, the unwanted deformations of the wavefront in-
curred as it passes through one surface will, it is hoped, be ne-
gated as it traverses some other surfaces farther down the line.

As early as 1950, ray-tracing programs were being developed 
for the new digital computers, and by 1954 efforts were already 
under way to create lens-designing software. In the early 1960s, 
computerized lens design was a tool of the trade used by manu-
facturers worldwide. Today there are elaborate computer pro-
grams for “automatically” designing and analyzing the perfor-
mance of all sorts of complicated optical systems.

6.3.1 Monochromatic Aberrations

The paraxial treatment was based on the assumption that 
sin w, as in Fig. 5.6, could be represented satisfactorily by w 
alone; that is, the system was restricted to operating in an ex-
tremely narrow region about the optical axis. Obviously, if rays 
from the periphery of a lens are to be included in the formation 
of an image, the statement sin w ≈ w is somewhat unsatisfac-
tory. Recall that we also occasionally wrote Snell’s Law simply 
as niui = ntut, which again would be inappropriate. In any event, 
if the first two terms in the expansion

 sin w = w -
w3

3!
+
w5

5!
-
w7

7!
+ g  [5.7]

are retained as an improved approximation, we have the so-
called third-order theory. Departures from first-order theory 
that then result are embodied in the five primary aberrations 
(spherical aberration, coma, astigmatism, field curvature, and 
distortion). These were first studied in detail by Ludwig von 
Seidel (1821–1896) in the 1850s. Accordingly, they are fre-
quently spoken of as the Seidel aberrations. In addition to the 
first two contributions, the series contains many other terms, 
smaller to be sure, but still to be reckoned with. Thus there are 
most certainly higher-order aberrations. The difference be-
tween the results of exact ray tracing and the computed primary 
aberrations can therefore be thought of as the sum of all contrib-
uting higher-order aberrations. We shall restrict this discussion 
exclusively to the primary aberrations.

Spherical Aberration

Let’s return for a moment to Section 5.2.2 (p. 164), where we 
computed the conjugate points for a single refracting spherical 
interface. We found that for the paraxial region,

 
n1

so
+

n2

si
=

n2 - n1

R
 [5.8]

V

h

C Paraxial
focus

Fi

n1
n2

Figure 6.14  Spherical aberration resulting from refraction at a single 
interface.

L·SA

h

ΣLC

Caustic

T·SA

(a)

Fi

L·SA

(b)

Figure 6.15  Spherical aberration for a lens. The envelope of the refracted 
rays is called a caustic. The intersection of the marginal rays and the caustic 
locates ΣLC.
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268 Chapter 6 More on Geometrical Optics

Spherical aberration essentially shifts light out of the central 
disk into the surrounding rings, which become far more promi-
nent. For example, Rayleigh established that one quarter-wave 
of spherical aberration diminishes the irradiance of the image 
disk by about 20%. You can see how that happens in general in 
Fig. 6.16 where rays (perpendicular to the distorted wavefront) 
head out away from the central spot toward the rings. Notice 
that even if the overall wavefront deviation is l>4, when the 
wavefront has tight wiggles in it, lots of light will go out to the 
rings, creating a hazy image. That’s what you can expect if the 
surfaces are not smooth. 

Returning to Fig. 6.15, if a screen is placed at Fi the image of 
a star will appear as a bright central spot on the axis surrounded 
by a symmetrical halo delineated by the cone of marginal rays. 
For an extended image, SA would reduce the contrast and de-
grade the details.

The height above the axis where a given ray strikes this screen 
is called the transverse (or lateral) spherical aberration, or  
T · SA for short. Evidently, SA can be reduced by stopping 
down the aperture—but that reduces the amount of light enter-
ing the system as well. Notice that if the screen is moved to the 
position labeled ΣLC, the image blur will have its smallest di-
ameter. This is known as the circle of least confusion, and ΣLC 
is generally the best place to observe the image. If a lens exhib-
its appreciable SA, it will have to be refocused after it is stopped 
down because the position of ΣLC will approach Fi as the aper-
ture decreases.

The amount of spherical aberration, when the aperture and 
focal length are fixed, varies with both the object distance and 
the lens shape. For a converging lens, the nonparaxial rays are 
too strongly bent. Yet if we imagine the lens as roughly resem-
bling two prisms joined at their bases, it is evident that the inci-
dent ray will undergo a minimum deviation when it makes, more 
or less, the same angle as does the emerging ray (Section 5.5.1). 
A striking example is illustrated in Fig. 6.17, where simply 
turning the lens around markedly reduces the SA. When the 
object is at “infinity,” a simple concave or convex lens that has 
an almost, but not quite, flat rear side will suffer a minimum 
amount of spherical aberration. In the same way, if the object 
and image distances are to be equal (so = si = 2ƒ), the lens 
should be equiconvex to minimize SA. A combination of a con-
verging and a diverging lens (as in an achromatic doublet) can 
also be utilized to diminish spherical aberration.

Recall that the aspherical lenses of Section 5.2.1 were com-
pletely free of spherical aberration for a specific pair of conjugate 
points. Moreover, Huygens seems to have been the first to discover 
that two such axial points exist for spherical surfaces as well. These 
are shown in Fig. 6.18a, which depicts rays issuing from P and 
leaving the surface as if they came from P′. It is left as a problem 
to show that the appropriate locations of P and P′ are those indi-
cated in the figure. Just as with the aspherical lenses, spherical 
lenses can be formed that have this same zero SA for the pair of 
points-P and -P′. One simply grinds another surface of radius PA 
centered on P to form either a positive- or negative-meniscus lens. 

much, being focused in front of the paraxial rays. Keep in mind 
that spherical aberration pertains only to object points that are 
on the optical axis. The distance between the axial intersection 
of a marginal ray entering parallel to the central axis and the 
paraxial focus, Fi, is known as the longitudinal spherical aber-
ration, or L · SA. In this case, the SA is positive. In contrast, the 
marginal rays for a diverging lens will generally intersect the 
axis behind the paraxial focus, and its spherical aberration is 
therefore negative.

To better appreciate aberrations in terms of their effects on 
the wavefronts, consider the light from a point source traversing 
an optical system. Ideally, if the transmitted wavefront at the 
exit pupil is a sphere centered on the Gaussian image point (P ), 
then the image is perfect; if not, it’s aberrated (Fig. 6.16). Wave 
(or wavefront) aberrations are the deviations in optical path 
length between the actual and ideal wavefronts, often specified 
by the maximum values given in microns, nanometers, or wave-
lengths. Thus, the peak-to-peak deviation of the wavefront in 
Fig. 6.16 from the ideal spherical surface converging to P is 
some fraction of a wavelength, l>N. With this in mind J. W. 
Strutt, better known as Lord Rayleigh, suggested a practical cri-
terion of optical quality: an optical instrument will produce a 
noticeably degraded image when the wavefront aberration at 
550 nm (yellow-green) exceeds l>4.

The idea of an optical system forming a point image is, of 
course, physically unrealistic (if for no other reason than the 
irradiance would be infinite and Nature abhors infinities). Un-
der the very best conditions, a lens will form an image of a point 
source (e.g., a star) which is a tiny bright circular disk surround-
ed by rings that are so faint they’re hardly noticeable (see the 
photo on p. 491 and Fig. 10.36); that’s the Airy pattern. In  
Fig. 6.16 it’s represented at P by a tall central irradiance peak 
surrounded by tiny maxima corresponding to a cross section of 
the rings. 

l�N

l

P

Figure 6.16  Since this wavefront deviates from a portion of a sphere 
(converging to the Gaussian image point), it is said to be aberrated. The 
extent of that deviation measured peak-to-peak is an indication of how far 
from perfection the image will be.
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Soon after the Hubble Space Telescope (HST) was placed in 
orbit in April 1990, it became obvious that there was something 
terribly wrong. The pictures it was returning remained blurred, 
despite all attempts to adjust the orientation and location of the 
secondary mirror (p. 237). For a distant star, which was essen-
tially a point source, the size of the image disk was close to the 
expected diffraction-limited value (about 0.1 arcsecond in di-
ameter), but only about 12% of the radiant energy was there, 
instead of the expected 70% (roughly 84% is the ideal limit). 
The disk was surrounded by a halo extending out in diameter to 
about 1.5 arcseconds containing some 70% of the light. The 
remaining radiant energy was unavoidably distributed beyond 
the halo in a radial tendril pattern as a result of a combination of 
mirror micro-roughness and diffraction from the struts holding 
the secondary (Fig. 6.20b). The situation was a classic example 
of spherical aberration.

As scientists later determined, the primary mirror (p. 193) 
had been polished incorrectly; it was too flat at its periphery by 
about half a wavelength. Rays from its central region were fo-
cusing on the optical axis in front of those from the edges. The 
people at Perkin-Elmer, the company that fashioned the 2.4-m 
hyperboloid, had polished it superbly well, but to the wrong 
figure, or curvature. A series of blunders, starting with a 1.3-
mm error in the position of a component in the shape-testing 
device, ultimately led to the flaw. The $1.6 billion telescope 

The oil-immersion microscope objective uses this principle to 
great advantage. The object under study is positioned at P and 
surrounded by oil of index n2, as in Fig. 6.19. P and P′ are the 
proper conjugate points for zero SA for the first element, and P′ 
and P″ are those for the meniscus lens.

Figure 6.17  SA for a planar-convex lens.

(a)
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Figure 6.18  Corresponding axial points for which SA is zero.
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Figure 6.19  An oil-immersion microscope objective.
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270 Chapter 6 More on Geometrical Optics

the forward direction, to a small axial image spot. But the 
1000-ft dish had to be immobile, and so its designers opted for 
a compromise. The primary mirror was made spherical and 
therefore could collect radiation from a wide range of direc-
tions, in each case focusing it at a “point” along the axis con-
necting the dish and the source. High above the mirror, they 
suspended a movable radio receiver whose position deter-
mined which part of the sky the telescope was looking at. 
Nonetheless, although a spherical mirror is omnidirectional, 
it’s also equally imperfect in all directions. It suffers from 
spherical aberration just like the convex lens (Fig. 6.15). In-
stead of a single focal point there is an axial focal line. This 
was dealt with as best as possible by detecting the signals at 
several axial points and combining them via so-called line 
feeds, but the scheme was inefficient and the instrument rarely 
operated at its full potential.

In 1997 the Arecibo telescope underwent a major upgrade 
with the installation of a set of off-axis aspherical mirrors  

ended up with a debilitating longitudinal spherical aberration of 
38 mm (Fig. 6.20a).

In 1993 astronauts from the Endeavor Space Shuttle suc-
cessfully executed a dramatic repair mission. They installed a 
new Wide-Field Planetary Camera (with its own corrective  
optics that added about half a wavelength to the edges) and  
the Corrective Optics Space Telescope Axial Replacement 
(COSTAR) module. The job of COSTAR was to reshape the 
aberrated wavefronts entering the three remaining scientific in-
struments. It inserted a pair of small mirrors (10 mm and 30 mm) 
into the beam heading toward each instrument aperture. One of 
these mirrors simply redirected the light to the other, which 
was a complex asymmetrical aspheric. That off-axis correcting 
mirror was configured with the inverse of the spherical aberra-
tion of the primary, so that upon reflection the wavefront was 
reshaped into a perfect wave directed toward the intended ap-
erture. Thereafter better than 70% of the light energy resided in 
the central image disk, and celestial objects were about 6.5 
times brighter than before. People at NASA liked to point out 
that with its vision clearer than ever (see photo), and its light-
gathering ability improved, the HST could then spot a firefly 
over a distance equivalent to roughly halfway around the 
world. (Of course, the bug would have to stay stuck at maxi-
mum emission for about 90 minutes.) Moreover, the HST 
could distinguish two such persistent fireflies provided they 
were at least 3 m apart.

The Arecibo Observatory in Puerto Rico is home to the 
largest single radiotelescope in the world. Its objective is a 
1000-ft-diameter stationary spherical dish antenna operating 
at wavelengths from 3 cm to 6 m. By comparison, steerable 
radiotelescopes (p. 192) are usually parabolic because that 
configuration can focus the radiation from a source, located in 

38 mm

(a)

Figure 6.20  (a) Because the primary mirror is too flat, rays from the outer edges met at a 
point 38 mm beyond the point where inner rays converge. (b) The image of a distant star 
formed by the HST. (NASA)

(b)

HST images of the M-100 galaxy with (before repair) and without (after 
repair) spherical aberration. (NASA)
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the principal “planes” can actually be treated as planes only in 
the paraxial region. They are, in fact, principal curved surfaces 
(Fig. 6.1). In the absence of SA, a parallel bundle of rays will 
focus at the axial point-Fi, a distance b.f.l. from the rear vertex. 
Yet the effective focal lengths, and therefore the transverse 
magnifications, will differ for rays traversing off-axis regions of 
the lens. When the image point is on the optical axis, this situa-
tion is of little consequence, but when the ray bundle is oblique 
and the image point is off-axis, coma will be evident.

The dependence of MT on h, the ray height at the lens, is 
shown in Fig. 6.22a. Here meridional rays traversing the ex-
tremities of the lens arrive at the image plane closer to the axis 
than do the rays in the vicinity of the principal ray (i.e., the ray 
that passes through the principal points). In this instance, the 
least magnification is associated with the marginal rays that 
would form the smallest image—the coma is negative. By com-
parison, the coma in Figs. 6.22b and c is positive because the 
marginal rays focus farther from the axis.

Several non-meridional or skew rays are drawn from an extra- 
axial object point-S in Fig. 6.23 to illustrate the formation of the 
geometrical comatic image of a point. Observe that each circu-
lar cone of rays whose endpoints (1-2-3-4-1-2-3-4) form a ring 
on the lens is imaged in what H. Dennis Taylor called a comatic 
circle on Σi. This case corresponds to positive coma, so the 
larger the ring on the lens, the more distant its comatic circle 

(Fig. 6.21) that compensate for spherical aberration in much the 
same way as do the corrective mirrors added to the Hubble 
Space Telescope. Named after James Gregory, the man who in-
troduced a reflecting telescope with a concave secondary in 
1661 (p. 236), the 90-ton Gregorian receiver dome is suspended 
450 ft above the main reflector. Within an aluminum housing it 
contains a 72-ft-diameter secondary mirror that receives the up-
wardly reflected EM-radiation from the primary. It, in turn, re-
flects this radiation down onto a 26-ft-diameter tertiary mirror 
that focuses the beam upward to a spot at the receiver. The sur-
faces are so configured that the optical path length traversed by 
each ray is identical and all arrive (within a one-eight-inch circle) 
at the focus in-phase. 

The device can also operate in reverse as a 1-megawatt radar 
transmitter, which is used for planetary studies. By sending out 
and receiving back reflected radar signals, the telescope can re-
solve features about a half mile across on the surface of Venus. It 
could detect a conductor the size of a golf ball on the Moon.

Coma

Coma, or comatic aberration, is an image-degrading, mono-
chromatic, primary aberration associated with an object point 
even a short distance from the axis. Its origins lie in the fact that 

Figure 6.21  (a) The upgraded (1997) Arecibo radio-
telescope. (Arecibo Observatory/NSF) (b) The Gregorian dome 
housing the two new correcting mirrors and the receiv-
er. (c) This ray diagram shows how all the optical paths 
from the 1000-ft-diameter spherical mirror to the 
receiver are made to be equal. (d) The receiver and 
tertiary mirror. (U.S. General Services Administration Office of 

Citizen Services and Innovative Technologies) See the paper 
“Synthesis of Multireflector Antennas by Kinematic and 
Dynamic Ray Tracing,” IEEE Trans. Antennas Propagat. 
38 (10), 1587–1599 (Oct. 1990), by Per-Simon Kildal.

72-foot-
diameter
secondary
re�ector

86-foot-
diameter
aluminum
dome

26-foot-diameter
tertiary re�ector Aperture

Receiver

Focal point

(b)

Receiver

Tertiary
mirror

Secondary
mirror

Primary mirror

(c)(a)

(d)

M06_HECH6933_05_GE_C06.indd   271 08/09/16   8:45 PM



272 Chapter 6 More on Geometrical Optics

there is, the more the cone departs from the Airy pattern into an 
elongated structure of blotches and arcs that only vaguely sug-
gests the disk-ring structure from which it evolved (Fig. 6.24).

Like SA, coma is dependent on the shape of the lens. Thus a 
strongly concave positive-meniscus lens  with the object at in-
finity will have a large negative coma. Bending the lens so that it 
becomes planar-convex , then equiconvex , convex-planar , 
and finally convex-meniscus  will change the coma from nega-
tive, to zero, to positive. The fact that it can be made exactly zero 
for a single lens with a given object distance is quite significant. 
The particular shape it then has (so = ∞) is almost convex-planar 
and nearly the configuration for minimum SA.

It is important to realize that a lens that is well corrected for 
the case in which one conjugate point is at infinity (so = ∞) may 
not perform satisfactorily when the object is nearby. One would 
therefore do well, when using off-the-shelf lenses in a system 

from the axis. When the outer ring is the intersection of mar-
ginal rays, the distance from 0 to 1 in the image is the tangential 
coma, and the length from 0 to 3 on Σi is termed the sagittal 
coma. A little more than half of the energy in the image appears 
in the roughly triangular region between 0 and 3. The coma 
flare, which owes its name to its cometlike tail, is often thought 
to be the worst of all aberrations, primarily because of its asym-
metric configuration.

It’s not the purview of Geometrical Optics to be concerned 
with interference, but when light reaches the screen in Fig. 6.23, 
it’s certainly to be expected. The coma cone, just like the Gauss-
ian image point, is an oversimplification. The image point is 
really an image disk-ring system, and the coma cone is actually 
a complicated asymmetrical diffraction pattern. The more coma 

(a)

(b)

(c)

Figure 6.22  (a) Negative coma. (b) and (c) Positive coma. (E.H.)
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It was discovered independently in 1873 by Abbe and Helmholtz, 
although a different form of it was given 10 years earlier by R. 
Clausius (of thermodynamics fame). In any event, it states that

 noyo sin ao = niyi sin ai (6.47)

where no, yo, ao and ni, yi, ai are the index, height, and slope 
angle of a ray in object and image space, respectively, at any 
aperture size* (Fig. 6.9). If coma is to be zero,

 MT =
yi

yo
 [5.24]

must be constant for all rays. Suppose, then, that we send a 
marginal and a paraxial ray through the system. The former will 
comply with Eq. (6.47), the latter with its paraxial version (in 
which sin ao = aop, sin ai = aip). Since MT is to be constant 
over the entire lens, we equate the magnification for both mar-
ginal and paraxial rays to get

 
sin ao

sin ai
=
aop

aip
= constant (6.48)

operating at finite conjugates, to combine two infinite conjugate 
corrected lenses, as in Fig. 6.25. In other words, since it is un-
likely that a lens with the desired focal length, which is also cor-
rected for the particular set of finite conjugates, can be obtained 
ready-made, this back-to-back lens approach is an appealing  
alternative.

Coma can also be negated by using a stop at the proper loca-
tion, as William Hyde Wollaston (1766–1828) discovered in 
1812. The order of the list of primary aberrations (SA, coma, 
astigmatism, Petzval field curvature, and distortion) is signifi-
cant, because any one of them, except SA and Petzval curva-
ture, will be affected by the position of a stop, but only if one of 
the preceding aberrations is also present in the system. Thus, 
while SA is independent of the location along the axis of a stop, 
coma will not be, as long as SA is present. This can be appreci-
ated by examining the representation in Fig. 6.26. With the stop 
at Σ1, ray-3 is the chief ray and there is SA but no coma; that is, 
the ray pairs meet on 3. If the stop is moved to Σ2, the symme-
try is upset, ray-4 becomes the chief ray, and the rays on either 
side of it, such as 3 and 5, meet above, not on it—there is posi-
tive coma. With the stop at Σ3, rays-1 and -3 intersect below the 
chief ray, 2, and there is negative coma. In this way, controlled 
amounts of the aberration can be introduced into a compound 
lens in order to cancel coma in the system as a whole.

The optical sine theorem is an important relationship that 
must be introduced here even if space precludes its formal proof. 

Figure 6.24  Third-order coma. (a) A computer-generated diagram of the image of a 
point source formed by a heavily astigmatic optical system. (OPAL Group, St. Petersburg, Russia.) 
(b) A plot of the corresponding irradiance distribution. (OPAL Group, St. Petersburg, Russia.)

*To be precise, the sine theorem is valid for all values of ao only in the sagittal plane 
(from the Latin sagitta, meaning arrow), which is discussed in the next section.

f2f1

L2L1

Figure 6.25  A combination of two infinite conjugate lenses yielding a 
system operating at finite conjugates.
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Figure 6.26  The effect of stop location on coma.
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274 Chapter 6 More on Geometrical Optics

we should say that there are actually several sagittal planes, one 
attendant with each region within the system. Nevertheless, all 
skew rays from the object point lying in a sagittal plane are 
termed sagittal rays.

In the case of an axial object point, the cone of rays is sym-
metrical with respect to the spherical surfaces of a lens. There is 
no need to make a distinction between meridional and sagittal 
planes. The ray configurations in all planes containing the opti-
cal axis are identical. In the absence of spherical aberration, all 
the focal lengths are the same, and consequently all rays arrive 
at a single focus. In contrast, the configuration of an oblique, 
parallel ray bundle will be different in the meridional and sagit-
tal planes. As a result, the focal lengths in these planes will be 
different as well. In effect, here the meridional rays are tilted 
more with respect to the lens than are the sagittal rays, and they 
have a shorter focal length. It can be shown,* using Fermat’s 
Principle, that the focal length difference depends effectively on 
the power of the lens (as opposed to the shape or index) and the 
angle at which the rays are inclined. This astigmatic difference, 
as it is often called, increases rapidly as the rays become more 
oblique, that is, as the object point moves farther off the axis, 
and is, of course, zero on axis.

Having two distinct focal lengths, the incident conical bun-
dle of rays takes on a considerably altered form after refraction 
(Fig. 6.28). The cross section of the beam as it leaves the lens is 
initially circular, but it gradually becomes elliptical with the 
major axis in the sagittal plane, until at the tangential or me-
ridional focus FT, the ellipse degenerates into a “line” (at least 
in third-order theory). Actually, it’s a complicated elongated 
diffraction pattern that looks more linelike the more astigma-
tism is present. All rays from the object point traverse this 
“line,” which is known as the primary image. Beyond this point, 
the beam’s cross section rapidly opens out until it is again cir-
cular. At that location, the image is a circular blur known as the 
circle of least confusion. Moving farther from the lens, the 
beam’s cross section again deforms into a “line,” called the sec-
ondary image. This time it’s in the meridional plane at the sagit-
tal focus, FS.

The image of a point source formed by a slightly astigmatic 
optical system (⪝ 0.2l), in the vicinity of the circle of least confu-
sion, looks very much like the Airy disk-ring pattern, but it’s 
somewhat asymmetrical. As the amount of astigmatism increases 
(upwards of roughly 0.5l), the biaxial asymmetry becomes more 
apparent. The image transforms into a complex distribution of 
bright and dark regions (resembling the Fresnel diffraction pat-
terns for rectangular openings, p. 523) and only very subtly retains 
a curved structure arising from the circular aperture. Remember 
that in all of this we are assuming the absence of SA and coma.

Since the circle of least confusion increases in diameter as the 
astigmatic difference increases (i.e., as the object moves farther 
off-axis), the image will deteriorate, losing definition around its 

which is known as the Sine Condition. A necessary criterion 
for the absence of coma is that the system meet the Sine Condi-
tion. If there is no SA, compliancy with the Sine Condition will 
be both necessary and sufficient for zero coma.

It’s an easy matter to observe coma. In fact, anyone who has 
focused sunlight with a simple positive lens has no doubt seen 
the effects of this aberration. A slight tilt of the lens, so that the 
nearly collimated rays from the Sun make an angle with the 
optical axis, will cause the focused spot to flare out into the 
characteristic comet shape.

Astigmatism

When an object point lies an appreciable distance from the opti-
cal axis, the incident cone of rays will strike the lens asymmetri-
cally, giving rise to a third primary aberration known as astigma-
tism. The word derives from the Greek a-, meaning not, and 
stigma, meaning spot or point. To facilitate its description, envi-
sion the meridional plane (also called the tangential plane) con-
taining both the chief ray (i.e., the one passing through the center 
of the aperture) and the optical axis. The sagittal plane is then 
defined as the plane containing the chief ray, which, in addition, 
is perpendicular to the meridional plane (Fig. 6.27). Unlike the 
latter, which is unbroken from one end of a complicated lens sys-
tem to the other, the sagittal plane generally changes slope as the 
chief ray is deviated at the various elements. Hence to be accurate 
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Figure 6.27  The sagittal and meridional planes. *See A. W. Barton, A Text Book on Light, p. 124.
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(with the x-, y-, and z-axes fixed in the lens), astigmatism should 
be observable. The meridional is the xz-plane (z being the lens 
axis, now at about 45° to the laser axis), and the sagittal plane 
corresponds to the plane of y and the laser axis. As the wire 

edges. Observe that the secondary “line” image will change in 
orientation with changes in the object position, but it will always 
point toward the optical axis; that is, it will be radial. Similarly, 
the primary “line” image will vary in orientation, but it will re-
main normal to the secondary image. This arrangement causes 
the interesting effect shown in Fig. 6.29 when the object is made 
up of radial and tangential elements. The primary and secondary 
images are, in effect, formed of transverse and radial dashes, 
which increase in size with distance from the axis. In the latter 
case, the dashes point like arrows toward the center of the 
 image—ergo, the name sagitta.

The existence of the sagittal and tangential foci can be veri-
fied directly with a fairly simple arrangement. Place a positive 
lens with a short focal length (about 10 or 20 mm) in the beam 
of a He-Ne laser. Position another positive test lens with a 
somewhat longer focal length far enough away so that the now 
diverging beam fills that lens. A convenient object, to be located 
between the two lenses, is a piece of ordinary wire screening (or 
a transparency). Align it so the wires are horizontal (x) and ver-
tical (y). If the test lens is rotated roughly 45° about the vertical 
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ray

Primary
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Secondary
image

Circle of least
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FT
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Meridional
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Figure 6.28  Astigmatism. (a) The light from a monochromatic point source  
is elongated by an astigmatic lens. (b) A computer-generated diagram showing  
the distribution of light, that is, the diffraction pattern, near the circle of least  
confusion, corresponding to 0.8l of astigmatism. (OPAL Group, St. Petersburg, Russia.)
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Figure 6.29  Images in the tangent and sagittal focal planes.
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276 Chapter 6 More on Geometrical Optics

will be unaltered by changes in the positions or shapes of the 
lenses or in the location of the stop, as long as the values of nj 
and ƒj are fixed. Notice that for the simple case of two thin 
lenses (m = 2) having any spacing, ∆x can be made zero pro-
vided that

1
n1ƒ1

+
1

n2ƒ2
= 0

or, equivalently,

 n1ƒ1 + n2ƒ2 = 0 (6.50)

This is the so-called Petzval condition. As an example of its 
use, suppose we combine two thin lenses, one positive, the other 
negative, such that ƒ1 = -ƒ2 and n1 = n2. Since

 
1
ƒ

=
1
ƒ1

+
1
ƒ2

-
d

ƒ1ƒ2
 [6.8]

 ƒ =
ƒ2

1

d

the system can satisfy the Petzval condition, have a flat field, 
and still have a finite positive focal length.

In visual instruments a certain amount of curvature can be 
tolerated, because the eye can accommodate for it. Clearly, in 
photographic lenses field curvature is most undesirable, since it 
has the effect of rapidly blurring the off-axis image when the 

mesh is moved toward the test lens, a point will be reached 
where the horizontal wires are in focus on a screen beyond the 
lens, whereas the vertical wires are not. This is the location of 
the sagittal focus. Each point on the object is imaged as a short 
line in the meridional (horizontal) plane, which accounts for the 
fact that only the horizontal wires are in focus. Moving the 
mesh slightly closer to the lens will bring the vertical lines into 
clarity while the horizontal ones are blurred. This is the tangen-
tial focus. Try rotating the mesh about the central laser axis 
while at either focus.

Note that unlike visual astigmatism (p. 222), which arose 
from an actual asymmetry in the surfaces of the optical system, 
the third-order aberration by that same name applies to spheri-
cally symmetrical lenses.

Mirrors, with the singular exception of the plane mirror, suf-
fer many  of the same monochromatic aberrations as do lenses. 
Thus, although a paraboloidal mirror is free of SA for an infi-
nitely distant axial object point, its off-axis imagery is quite poor 
due to astigmatism and coma. This strongly restricts its use to 
narrow field devices, such as searchlights and astronomical tele-
scopes. A concave spherical mirror shows SA, coma, and astig-
matism. Indeed, one could draw a diagram just like Fig. 6.28 
with the lens replaced by an obliquely illuminated spherical mir-
ror. Incidentally, such a mirror displays appreciably less SA than 
would a simple convex lens of the same focal length.

Field Curvature

Suppose we had an optical system that was free of all the aberra-
tions thus far considered. There would then be a one-to-one cor-
respondence between points on the object and image surfaces 
(i.e., stigmatic imagery). We mentioned earlier (Section 5.2.3) 
that a planar object normal to the axis will be imaged approxi-
mately as a plane only in the paraxial region. At finite apertures 
the resulting curved stigmatic image surface is a manifestation of 
the primary aberration known as Petzval field curvature, after 
the Hungarian mathematician Josef Max Petzval (1807–1891). 
The effect can readily be appreciated by examining Figs. 5.21  
(p. 171) and 6.30. A spherical object segment so is imaged by the 
lens as a spherical segment si, both centered at O. Flattening out 
so into the plane s′o will cause each image point to move toward 
the lens along the concomitant chief ray, thus forming a parabo-
loidal Petzval surface ΣP. Whereas the Petzval surface for a pos-
itive lens curves inward toward the object plane, for a negative 
lens it curves outward away from that plane. Evidently, a suitable 
combination of positive and negative lenses will negate field cur-
vature. Indeed, the displacement ∆x of an image point at height yi 
on the Petzval surface from the paraxial image plane is given by

 ∆x =
y2

i

2
 ^

m

j = 1
 

1
njƒj

 (6.49)

where nj and ƒj are the indices and focal lengths of the m thin 
lenses forming the system. This implies that the Petzval surface 

s0�

s0

si

(b) (c)

yi

Fi

∆x

Σp

O

(a) Paraxial
image
plane

Figure 6.30  Field curvature. (a) When the object corresponds to so′, the 
image will correspond to surface ΣP. (b) The image formed on a flat 
screen near the paraxial image plane will be in focus only at its center. (E.H.) 
(c) Moving the screen closer to the lens will bring the edges into focus. (E.H.)
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ing the lenses or by moving the stop. The configuration of  
Fig. 6.32b is known as an artificially flattened field. A stop in 
front of an inexpensive meniscus box camera lens is usually ar-
ranged to produce just this effect. The surface of least confusion, 
ΣLC, is planar, and the image there is tolerable, losing definition 
at the margins because of the astigmatism. That is to say, although 
their loci form ΣLC, the circles of least confusion increase in 
diameter with distance off the axis. Modern good-quality photo-
graphic objectives are generally anastigmats; that is, they are 
designed so that ΣS and ΣT cross each other, yielding an addi-
tional off-axis angle of zero astigmatism. The Cooke Triplet, 
Tessar, Orthometer, and Biotar (Fig. 5.115) are all anastigmats, 
as is the relatively fast Zeiss Sonnar, whose residual astigmatism 
is illustrated graphically in Fig. 6.33. Note the relatively flat 
field and small amount of astigmatism over most of the film 
plane.

Let’s return briefly to the Schmidt camera shown in  
Fig. 5.125 (p. 239), since we are now in a better position to ap-
preciate how it functions. With a stop at the center of curvature 
of the spherical mirror, all chief rays, which by definition pass 
through C, are incident normally on the mirror. Moreover, each 
pencil of rays from a distant object point is symmetrical about 
its chief ray. In effect, each chief ray serves as an optical axis, 
so there are no off-axis points and, in principle, no coma or 
astigmatism. Instead of attempting to flatten the image surface, 
the designer has coped with curvature by simply shaping the 
film plate to conform with it.

Distortion

The last of the five primary, monochromatic aberrations is 
distortion. Its origin lies in the fact that the transverse magnifi-
cation, MT, may be a function of the off-axis image distance, yi. 
Thus, that distance may differ from the one predicted by paraxi-
al theory in which MT is constant. In other words, distortion 
arises because different areas of the lens have different focal 
lengths and different magnifications. In the absence of any of the 

film plane is at Fi. An effective means of nullifying the inward 
curvature of a positive lens is to place a negative field flattener 
lens near the focal plane. This is often done in projection and 
photographic objectives when it is not otherwise practicable to 
meet the Petzval condition (Fig. 6.31). In this position the flat-
tener will have little effect on other aberrations.

Astigmatism is intimately related to field curvature. In the 
presence of the former aberration, there will be two paraboloidal 
image surfaces, the tangential, ΣT, and the sagittal, ΣS (as in 
Fig. 6.32). These are the loci of all the primary and secondary 
images, respectively, as the object point roams over the object 
plane. At a given height (yi), a point on ΣT always lies three 
times as far from ΣP as does the corresponding point on ΣS, and 
both are on the same side of the Petzval surface (Fig. 6.32). 
When there is no astigmatism, ΣS and ΣT coalesce on ΣP. It is 
possible to alter the shapes of ΣS and ΣT by bending or relocat-

(a) Petzval lens with �eld �attener

(b) 16 mm projection lens

Figure 6.31  The field flattener.
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Figure 6.32  The tangential, sagittal, and Petzval image surfaces.
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Figure 6.33  A typical Sonnar. The markings C, S, and E denote the limits 
of the 35-mm film format (field stop), that is, corners, sides, and edges. 
The Sonnar family lies between the double Gauss and the triplet.
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278 Chapter 6 More on Geometrical Optics

which MT decreases with the axial distance, and in effect, each 
point on the image moves radially inward toward the center  
(Fig. 6.34c). 

Distortion can easily be seen by just looking through an ab-
errant lens at a piece of lined or graph paper. Fairly thin lenses 
will show essentially no distortion, whereas ordinary positive or 
negative, thick, simple lenses will generally suffer positive or 
negative distortion, respectively. The introduction of a stop into 
a system of thin lenses is invariably accompanied by distortion, 
as indicated in Fig. 6.35. One exception is the case in which the 
aperture stop is at the lens, so that the chief ray is, in effect, the 
principal ray (i.e., it passes through the principal points, here 
coalesced at O). If the stop is in front of a positive lens, as in 
Fig. 6.35b, the object distance measured along the chief ray will 
be greater than it was with the stop at the lens (S2A 7 S2O). 
Thus xo will be greater and [Eq. (5.26)] MT will be smaller—
ergo, barrel distortion. In other words, MT for an off-axis point 
will be less with a front stop in position than it would be with-
out it. The difference is a measure of the aberration, which, by 
the way, exists regardless of the size of the aperture. In the same 
way, a rear stop (Fig. 6.35c) decreases xo along the chief ray 
(i.e., S2O 7 S2B), thereby increasing MT and introducing pin-
cushion distortion. Interchanging the object and image thus has 
the effect of changing the sign of the distortion for a given lens 
and stop. The aforementioned stop positions will produce the 
opposite effect when the lens is negative.

All of this suggests the use of a stop midway between identical 
lens elements. The distortion from the first lens will precisely can-
cel the contribution from the second. This approach has been used 
to advantage in the design of a number of photographic lenses 
(Fig. 5.115). To be sure, if the lens is perfectly symmetrical and 
operating as in Fig. 6.35d, the object and image distances will be 
equal, hence MT = 1. (Incidentally, coma and lateral color will 
then be identically zero as well.) This applies to (finite conjugate) 

other aberrations, distortion is manifest in a misshaping of the 
image as a whole, even though each point is sharply focused. 
Consequently, when processed by an optical system suffering 
positive or pincushion distortion, a square array deforms, as in 
Fig. 6.34b. In that instance, each image point is displaced radi-
ally outward from the center, with the most distant points mov-
ing the greatest amount (i.e., MT increases with yi). Similarly, 
negative or barrel distortion corresponds to the situation in 

(a) (c)(b)

(d) (e)

Figure 6.34  (a) Undistorted object. (b) When the magnification on the 
optical axis is less than the off-axis magnification, pincushion distortion 
results. (c) When it is greater on axis than off, barrel distortion results.  
(d) Pincushion distortion in a single thin lens. (e) Barrel distortion in a  
single thin lens. (E.H.)
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Figure 6.35  The effect of stop location on distortion.
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Since the thin-lens equation

 
1
ƒ

= (nl - 1) a 1
R1

-
1
R2

b [5.16]

is wavelength-dependent via nl (l), the focal length must also 
vary with l. In general (Fig. 3.40, p. 82), nl (l) decreases with 
wavelength over the visible region, and thus ƒ(l) increases with 
l. The result is illustrated in Fig. 6.37, where the constituent col-
ors in a collimated beam of white light are focused at different 
points on the axis. The axial distance between two such focal 
points spanning a given frequency range (e.g., blue to red) is 
termed the axial (or longitudinal) chromatic aberration, A · CA 
for short.

It’s an easy matter to observe chromatic aberrations, or CA, 
with a thick, simple converging lens. When illuminated by a 
polychromatic point source (a candle flame will do), the lens 
will cast a real image surrounded by a halo. If the plane of ob-
servation is then moved nearer the lens, the periphery of the 
blurred image will become tinged in orange-red. Moving it 
back away from the lens, beyond the best image, will cause the 
outlines to become tinted in blue-violet. The location of the 
circle of least confusion (i.e., the plane ΣLC) corresponds to  
the position where the best image will appear. Try looking di-
rectly through the lens at a source—the coloration will be far 
more striking.

The image of an off-axis point will be formed of the constitu-
ent frequency components, each arriving at a different height 
above the axis (Fig. 6.38). In essence, the frequency dependence 
of ƒ causes a frequency dependence of the transverse magnifica-
tion as well. The vertical distance between two such image points 
(most often taken to be blue and red) is a measure of the lateral 
chromatic aberration, L · CA, or lateral color. Consequently, a 

copy lenses used, for example, to record data. Nonetheless, even 
when MT is not 1, making the system approximately symmetrical 
about a stop is a very common practice, since it markedly reduces 
these several aberrations.

Distortion can arise in compound lens systems, as for 
 example in the telephoto arrangement shown in Fig. 6.36. For a 
distant object point, the margin of the positive achromat serves 
as the aperture stop. In effect, the arrangement is like a negative 
lens with a front stop, so it displays positive or pincushion 
 distortion.

Suppose a chief ray enters and emerges from an optical sys-
tem in the same direction as, for example, in Fig. 6.35d. The 
point at which the ray crosses the axis is the optical center of 
the system, but since this is a chief ray, it is also the center of 
the aperture stop. This is the situation approached in Fig. 6.35a, 
with the stop up against the thin lens. In both instances the in-
coming and outgoing segments of the chief ray are parallel, 
and there is zero distortion; that is, the system is orthoscopic. 
This also implies that the entrance and exit pupils will corre-
spond to the principal planes (if the system is immersed in a 
single medium—see Fig. 6.2). Bear in mind that the chief ray 
is now a principal ray. A thin-lens system will have zero distor-
tion if its optical center is coincident with the center of the 
aperture stop. By the way, in a pinhole camera, the rays con-
necting conjugate object and image points are straight and pass 
through the center of the aperture stop. The entering and 
emerging rays are obviously parallel (being one and the same), 
and there is no distortion.

6.3.2 Chromatic Aberrations

The five primary or Seidel aberrations have been considered in 
terms of monochromatic light. To be sure, if the source has a 
broad spectral bandwidth, these aberrations are influenced ac-
cordingly; but the effects are inconsequential, unless the system 
is quite well corrected. There are, however, chromatic aberra-
tions that arise specifically in polychromatic light, which are far 
more significant. The ray-tracing equation [Eq. (6.12)] is a 
function of the indices of refraction, which in turn vary with 
wavelength. Different “colored” rays will traverse a system 
along different paths, and this is the quintessential feature of 
chromatic aberration.

Aperture stop

Chief ray

Figure 6.36  Distortion in a compound lens.
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Figure 6.37  Axial chromatic aberration.
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Figure 6.38  Lateral chromatic aberration.
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use 1>ƒ1 = (n1 - 1)r1 and 1>ƒ2 = (n2 - 1)r2 for the two ele-
ments. Then

1
ƒ

= (n1 - 1)r1 + (n2 - 1)r2 - d(n1 - 1)r1(n2 - 1)r2 (6.51)

This expression will yield the focal length of the doublet for red 
(ƒR) and blue (ƒB) light when the appropriate indices are intro-
duced, namely, n1R, n2R, n1B, and n2B. But if  ƒR is to equal ƒB, 
then

1
ƒR

=
1
ƒB

and, using Eq. (6.51),

(n1R - 1)r1 + (n2R - 1)r2 - d(n1R - 1)r1(n2R - 1)r2 =  

 (n1B - 1)r1 + (n2B - 1)r2 - d(n1B - 1)r1(n2B - 1)r2 
 (6.52)

One case of particular importance corresponds to d = 0; that is, 
the two lenses are in contact. Expanding out Eq. (6.52) with  
d = 0 then leads to

 
r1

r2
= -  

n2B - n2R

n1B - n1R
 (6.53)

The focal length of the compound lens (ƒY) can conveniently be 
specified as that associated with yellow light, roughly midway 
between the blue and red extremes. For the component lenses in 
yellow light, 1>ƒ1Y = (n1Y - 1)r1 and 1>ƒ2Y = (n2Y - 1)r2. 
Hence

 
r1

r2
=

(n2Y - 1)

(n1Y - 1)
 
ƒ2Y

ƒ1Y
 (6.54)

Equating Eqs. (6.53) and (6.54) leads to

 
ƒ2Y

ƒ1Y
= -  

(n2B - n2R)>(n2Y - 1)

(n1B - n1R)>(n1Y - 1)
 (6.55)

The quantities
n2B - n2R

n2Y - 1
 and 

n1B - n1R

n1Y - 1

are known as the dispersive powers of the two materials form-
ing the lenses. Their reciprocals, V2 and V1, are variously 
known as the dispersive indices, V-numbers, or Abbe num-
bers. The lower the Abbe numbers, the greater the dispersive 
power. Thus

ƒ2Y

ƒ1Y
= -  

V1

V2

or ƒ1YV1 + ƒ2YV2 = 0 (6.56)

Since the dispersive powers are positive, so too are the V-numbers. 
This implies, as we anticipated, that one of the two component 
lenses must be negative, and the other positive, if Eq. (6.56) is to 
obtain; that is, if ƒR is to equal ƒB.

chromatically aberrant lens illuminated by white light will fill a 
volume of space with a continuum of more or less overlapping 
images, varying in size and color. Because the eye is most sensi-
tive to the yellow-green portion of the spectrum, the tendency is 
to focus the lens for that region. With such a configuration one 
would see all the other colored images superimposed and slightly 
out of focus, producing a whitish blur or hazed overlay.

When the blue focus, FB, is to the left of the red focus, FR, the 
A · CA is said to be positive, as it is in Fig. 6.37. Conversely, a 
negative lens would generate negative A · CA, with the more 
strongly deviated blue rays appearing to originate at the right of 
the red focus. Physically, what is happening is that the lens, 
whether convex or concave, is prismatic in shape; that is, it be-
comes either thinner or thicker as the radial distance from the 
axis increases. As you well know, rays are therefore deviated 
either toward or away from the axis, respectively. In both cases 
the rays are bent toward the thicker “base” of the prismatic cross 
section. But the angular deviation is an increasing function of n, 
and therefore it decreases with l. Hence blue light is deviated 
the most and is focused nearest the lens. In other words, for a 
convex lens the red focus is farthest and to the right; for a con-
cave lens it is farthest and to the left.

The human eye has a substantial amount of chromatic aberra-
tion which is compensated for by several psychophysical mecha-
nisms. Still, it’s possible to see the effect with a small purple dot: 
held close to the eye, it will appear blue at the center surrounded 
by red; farther away it will appear red surrounded by blue.

Thin Achromatic Doublets

All of this suggests that a combination of two thin lenses, one 
positive and one negative, could conceivably result in the pre-
cise overlapping of FR and FB (Fig. 6.39). Such an arrangement 
is said to be achromatized for those two specific wavelengths. 
Notice that what we would like to do is effectively eliminate the 
total dispersion (i.e., the fact that each color is deviated by a 
different amount) and not the total deviation itself. With the two 
lenses separated by a distance d,

 
1
ƒ

=
1
ƒ1

+
1
ƒ2

-
d

ƒ1ƒ2
 [6.8]

Rather than writing out the second term in the Thin-Lens  
Equation [Eq. (5.15), p. 167] let’s abbreviate the notation and 

H2

Red

Blue Yellow
H1

Figure 6.39  An achromatic doublet. The paths of the rays are much 
exaggerated.

M06_HECH6933_05_GE_C06.indd   280 26/08/16   1:52 PM
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TAbLe 6.1  Several Strong Fraunhofer Lines

Designation Wavelength (Å)* Source

C 6562.816 Red H

D1 5895.923 Yellow Na

D Center of doublet 5892.9 Na

D2 5889.953 Yellow Na

D3 or d 5875.618 Yellow He

b1 5183.618 Green Mg

b2 5172.699 Green Mg

c 4957.609 Green Fe

F 4861.327 Blue H

f 4340.465 Violet H

g 4226.728 Violet Ca

K 3933.666 Violet Ca

*1 Å = 0.1 nm.

Figure 6.40  Refractive index versus Abbe number for various glasses. The specimens in the upper  
shaded area are the rare-earth glasses, which have high indices of refraction and low dispersions. 
(Source: Diagram of Optical Glasses as per catalog No. 3050e and 3060e, August 1969, Schott Optical Glass Inc. Duryea, PA 18542.)

At this point we could presumably design an achromatic 
doublet, and indeed we presently shall, but a few additional 
points must be made first. The designation of wavelengths as 
red, yellow, and blue is far too imprecise for practical applica-
tion. Instead it is customary to refer to specific spectral lines 
whose wavelengths are known with great precision. The 
Fraunhofer lines, as they are called, serve as the needed ref-
erence markers across the spectrum. Several of these for the 
visible region are listed in Table 6.1. The lines F, C, and d (i.e., 
D3) are most often used (for blue, red, and yellow, respectively), 
and one generally traces paraxial rays in d-light. Glass manu-
facturers will usually list their wares in terms of the Abbe 
number, as in Fig. 6.40, which is a plot of the refractive index 
versus

 Vd =
nd - 1

nF - nC
 (6.57)
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(a)

Fraunhofer
cemented

Edge contact Center contact
Flint

Gaussian Edge contact Center contact

Crown

Figure 6.41  (a) Achromatic doublets. (b) Doublets and triplets. 
(Melles Griot)

(Take a look at Table 6.2 as well.) Thus Eq. (6.56) might better 
be written as

 ƒ1dV1d + ƒ2dV2d = 0 (6.58)

where the numerical subscripts pertain to the two glasses used 
in the doublet, and the letter relates to the d-line.

Incidentally, Newton erroneously concluded, on the basis of ex-
periments with the very limited range of materials available at the 
time, that the dispersive power was constant for all glasses. This is 
tantamount to saying [Eq. (6.58)] that ƒ1d = -ƒ2d, in which case 
the doublet would have zero power. Newton, accordingly, shifted 
his efforts from the refracting to the reflecting telescope, and this 
fortunately turned out to be a good move in the long run. The ach-
romat was invented around 1733 by Chester Moor Hall, Esq., but 
it lay in limbo until it was seemingly reinvented and patented in 
1758 by the London optician John Dollond.

Several forms of the achromatic doublet are shown in  
Fig. 6.41. Their configurations depend on the glass types selected, 
as well as on the choice of the other aberrations to be controlled. 
By the way, when purchasing off-the-shelf doublets of unknown 
origin, be careful not to buy a lens that has been deliberately 
designed to include certain aberrations in order to compensate 
for errors in the original system from which it came. Perhaps the 
most commonly encountered doublet is the cemented Fraunhofer 
achromat. It’s formed of a crown* double-convex lens in contact 

TAbLe 6.2  Optical Glass

Type 
Number  Name nD VD

511:635 Borosilicate crown—BSC-1 1.511  0 63.5

517:645 Borosilicate crown—BSC-2 1.517  0 64.5

513:605 Crown—C 1.512  5 60.5

518:596 Crown 1.518  0 59.6

523:586 Crown—C-1 1.523  0 58.6

529:516 Crown flint—CF-1 1.528  6 51.6

541:599 Light barium crown—LBC-1 1.541 1 59.9

573:574 Barium crown—LBC-2 1.572  5 57.4

574:577 Barium crown 1.574  4 57.7

611:588 Dense barium crown—DBC-1 1.611  0 58.8

617:550 Dense barium crown—DBC-2 1.617  0 55.0

611:572 Dense barium crown—DBC-3 1.610  9 57.2

562:510 Light barium flint—LBF-2 1.561  6 51.0

588:534 Light barium flint—LBF-1 1.588  0 53.4

584:460 Barium flint—BF-1 1.583 8 46.0

605:436 Barium flint—BF-2 1.605  3 43.6

559:452 Extra light flint—ELF-1 1.558  5 45.2

573:425 Light flint—LF-1 1.572  5 42.5

580:410 Light flint—LF-2 1.579  5 41.0

605:380 Dense flint—DF-1 1.605  0 38.0

617:366 Dense flint—DF-2 1.617  0 36.6

621:362 Dense flint—DF-3 1.621  0 36.2

649:338 Extra dense flint—EDF-1 1.649  0 33.8

666:324 Extra dense flint—EDF-5 1.666  0 32.4

673:322 Extra dense flint—EDF-2 1.672  5 32.2

689:309 Extra dense flint—EDF 1.689  0 30.9

720:293 Extra dense flint—EDF-3 1.720  0 29.3

Source: From T. Calvert, “Optical Components,” Electromechanical Design, May 
1971. For more data, Smith, W. J., Modern Optical Engineering, McGraw-Hill,  
New York (2nd ed), 1990. Type number is given by (nD - 1):(10VD).

*Traditionally, the glasses roughly in the range nd 7 1.60, Vd 7 50, as well as 
nd 6 1.60, Vd 7 50 are known as crowns, and the others are flints. Note the  
letter designations in Fig. 6.40.
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or 
1

-0.217 7
-

1
R22

=
-2.685

0.620 04

and R22 = -3.819 m. In summary, the radii of the crown ele-
ment are R11 = 21.8 cm and R12 = -21.8 cm, while the flint 
has radii of R21 = -21.8 cm and R22 = -381.9 cm.

Note that for a thin-lens combination the principal planes co-
alesce, so that achromatizing the focal length corrects both  
A · CA and L · CA. In a thick doublet, however, even though the 
focal lengths for red and blue are made identical, the different 
wavelengths may have different principal planes. Consequently, 
although the magnification is the same for all wavelengths, the 
focal points may not coincide; in other words, correction is made 
for L · CA but not for A · CA.

In the above analysis, only the C- and F-rays were brought 
to a common focus, and the d-line was introduced to establish 
a focal length for the doublet as a whole. It is not possible for 
all wavelengths traversing a doublet achromat to meet at a 
common focus. The resulting residual chromatism is known 
as secondary spectrum. The elimination of secondary spec-
trum is particularly troublesome when the design is limited to 
the glasses currently available. Nevertheless, a fluorite (CaF2) 
element combined with an appropriate glass element can form 
a doublet achromatized at three wavelengths and having very 
little secondary spectrum. More often triplets are used for 
color correction at three or even four wavelengths. The sec-
ondary spectrum of a binocular can easily be observed by 
looking at a distant white object. Its borders will be slightly 
haloed in magenta and green—try shifting the focus forward 
and backward.

Separated Achromatic Doublets

It is also possible to achromatize the focal length of a doublet 
composed of two widely separated elements of the same glass. 
Return to Eq. (6.52) and set n1R = n2R = nR and n1B = n2B = nB. 
After a bit of straightforward algebraic manipulation, it  
becomes

(nR - nB)[(r1 + r2) - r1r2d(nB + nR - 2)] = 0

or d =
1

(nB + nR - 2)
 a 1
r1

+
1
r2
b

Again introducing the yellow reference frequency, as we did 
before, namely, 1>ƒ1Y = (n1Y - 1)r1 and 1>ƒ2Y = (n2Y - 1)r2, 
we can replace r1 and r2. Hence

d =
(ƒ1Y + ƒ2Y)(nY - 1)

nB + nR - 2

where n1Y = n2Y = nY. Assuming nY = (nB + nR)>2, we have

d =
ƒ1Y + ƒ2Y

2

with a concave-planar (or nearly planar) f lint lens. The use 
of a crown front element is quite popular because of its re-
sistance to wear. Since the overall shape is roughly convex-
planar, by selecting the proper glasses, both spherical aber-
ration and coma can be corrected as well. Suppose that we 
wish to design a Fraunhofer achromat of focal length 50 
cm. We can get some idea of how to select glasses by solv-
ing Eq. (6.58) simultaneously with the compound-lens 
equation

1
ƒ1d

+
1

ƒ2d
=

1
ƒd

to get 
1

ƒ1d
=

V1d

ƒd (V1d - V2d)
 (6.59)

and 
1

ƒ2d
=

V2d

ƒd (V2d - V1d)
 (6.60)

Thus, in order to avoid small values of ƒ1d andƒ2d, which would 
necessitate strongly curved surfaces on the component lenses, 
the difference V1d - V2d should be made large (roughly 20 or more 
is convenient). From Fig. 6.40 (or its equivalent) we select, say, 
BK1 and F2. These have catalogued indices of nC = 1.507 63, 
nd = 1.510 09, nF = 1.515 66 and nC = 1.615 03, nd = 1.620 04, 
nF = 1.632 08, respectively. Likewise, their V-numbers are gen-
erally given rather accurately, and we needn’t compute them. In 
this instance they are V1d = 63.46 and V2d = 36.37, respectively. 
The focal lengths, or if you will, the powers of the two lenses, 
are given by Eqs. (6.59) and (6.60):

�1d =
1

ƒ1d
=

63.46
0.50 (27.09)

and �2d =
1

ƒ2d
=

36.37
0.50 (-27.09)

Hence �1d = 4.685 D and �2d = -2.685 D, the sum being 2 
D, which is 1>0.5, as it should be. For ease of fabrication let the 
first or positive lens be equiconvex. Consequently, its radii R11 
and R12 are equal in magnitude. Hence

r1 =
1

R11
-

1
R12

=
2

R11

or, equivalently,

2
R11

=
�1d

n1d - 1
=

4.685
0.510 09

= 9.185

Thus R11 = - R12 = 0.217 7 m. Furthermore, having specified 
that the lenses be in intimate contact, we have R12 = R21; that is, the 
second surface of the first lens matches the first surface of the 
second lens. For the second lens

r2 =
1

R21
-

1
R22

=
�2d

n2d - 1
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284 Chapter 6 More on Geometrical Optics

To get a rough sense of how a GRIN lens might work, con-
sider the device pictured in Fig. 6.43 where, for simplicity, we 
assume ƒ 7 r. This is a flat disk of glass that has been treated 
so that it has an index n(r) that drops off radially in some as yet 
undetermined fashion from a maximum value of nmax on the 
optical axis. Accordingly, it’s called a radial-GRIN device.  
A ray that traverses the disk on the optical axis passes along an 
optical path length of (OPL)o = nmaxd, whereas for a ray tra-
versing at a height r, overlooking the slight bending of its path, 
(OPL)r ≈ n(r)d. Since a planar wavefront must bend into a 
spherical wavefront, the OPLs from one to the other, along any 
route must be equal (p. 163):

(OPL)r + AB = (OPL)o

and n(r)d + AB = nmaxd 

But AF ≈ 2r2 + ƒ2; moreover, AB = AF - ƒ and so

n(r) = nmax -
2r2 + ƒ2 - ƒ

d

Rewriting the square root via the Binomial Theorem, n(r)  
becomes

n(r) = nmax -
r2

2ƒd

(a)

(b)

Blue

Red

Figure 6.42  Achromatized lenses.

or in d-light

 d =
ƒ1d + ƒ2d

2
 (6.61)

This is precisely the form taken by the Huygens ocular (Section 
5.7.4). Since the red and blue focal lengths are the same, but the 
corresponding principal planes for the doublet need not be, the 
two rays will generally not meet at the same focal point. Thus 
the ocular’s lateral chromatic aberration is well corrected, but 
axial chromatic aberration is not.

In order for a system to be free of both chromatic aberrations, 
the red and blue rays must emerge parallel to each other (no L · CA) 
and must intersect the axis at the same point (no A · CA),  
which means they must overlap. Since this is effectively the 
case with a thin achromat, it implies that multi-element sys-
tems, as a rule, should consist of achromatic components in 
order to keep the red and blue rays from separating (Fig. 6.42). 
As with all such invocations there are exceptions. The Taylor 
triplet (Section 5.7.7) is one. The two colored rays for which it 
is achromatized separate within the lens but are recombined 
and emerge together.

6.4 GRin Systems

An ordinary homogeneous lens has two physical features that 
contribute to the manner in which it reconfigures a wavefront: the 
difference between its index of refraction and that of the surround-
ing medium, and the curvature of its interfaces. But as we have 
already seen, when light propagates through an inhomogeneous 
medium, wavefronts essentially slow down in optically dense re-
gions and speed up in less dense regions, and bending again oc-
curs. In principle, then, it should be possible to make a lens from 
some inhomogeneous material, one where there is a GRadient in 
the INdex of refraction; such a device is known as a GRIN lens. 
A powerful incentive for developing such systems is that they pro-
vide the optical designer with an additional set of new parameters 
with which to control aberrations.

(a)

(b)

d

F

BA

r

n(r)

nmax

f

Figure 6.43  A disk of transparent glass whose index of refraction 
decreases radially out from the central axis. (b) The geometry corresponding 
to the focusing of parallel rays by a GRIN lens.
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This tells us that if the index of refraction drops off parabolically 
from its high along the central axis, the GRIN plate will focus a 
collimated beam at F and serve as a positive lens. Although this 
is a rather simplistic treatment, it does make the point: a para-
bolic refractive index profile will focus parallel light.

Today a variety of radial-GRIN lenses are commercially 
available, and tens of millions of them are already in service in 
laser printers, photocopiers, and fax machines. The most com-
mon device is a GRIN cylinder a few millimeters in diameter, 
similar in kind to the optical fiber shown in Fig. 5.82b. Mono-
chromatically, they provide nearly diffraction-limited perfor-
mance on axis. Polychromatically, they offer substantial bene-
fits over aspherics.

These small-diameter GRIN rods are usually fabricated via 
ionic diffusion. A homogeneous base glass is immersed in a 
molten salt bath for many hours during which ion diffusion>
exchange slowly occurs. One type of ion migrates out of the 
glass, and another from the bath takes its place, changing the 
index of refraction. The process works its way inward radially 
toward the optical axis, and the time it takes is roughly propor-
tional to the rod’s diameter squared. For a parabolic profile, that 
sets the practical limit on the aperture size. The focal length is 
determined by the index change, ∆n, and the faster the lens the 
larger must be ∆n. Even so, ∆n is usually constrained to be less 
than about 0.10 for production reasons. Most GRIN cylinders 
have a parabolic index profile typically expressed as

n(r) = nmax(1 - ar2>2)

Figure 6.44 shows one such radial-GRIN rod of length L, under 
monochromatic illumination. Meridional rays travel sinusoidal 
paths within the plane-of-incidence, which is perpendicular to 
the circumference. These sinusoids have a period in space of 
2p>1a, where the gradient constant, 1a, is a function of l 
and depends on the specific GRIN material. The cross-sectional 
view in Fig. 6.44a shows how a radial-GRIN lens can form an 
erect, real, magnified image. By changing the object distance or 
the length of the lens L, a wide range of images can be pro-
duced. It’s even possible to have the object and image planes on 
the face of the rod (Figs. 6.44b and c).

Radial-GRIN lenses are often specified in terms of their 
length or, equivalently, their pitch (Fig. 6.45). A radial-GRIN 
rod with a pitch of 1.0 is one sine-wave long: L = 2p>1a. A 
rod with a pitch of 0.25 has a length of a quarter of a sine-wave 
(p>21a).

An alternative approach to the flat-faced radial-GRIN rod 
is the axial-GRIN lens, which is generally polished with 
spherical surfaces. As such, it’s similar to a bi-aspheric, but 
without the difficulty of creating the complex surfaces. Usually, 
a stack of glass plates with appropriate indices are fused together. 
At high temperatures the glasses meld, diffusing into each other, 
creating a block of glass with a continuous index profile that can 
be made linear, quadratic, or even cubic (Fig. 6.46a). When such 
a block is ground into a lens, the process cuts back on the glass 
and exposes a range of indices. Every annulus (concentric 

so si

L
2p�√a�

(a)

(b)

(c)

Figure 6.44  (a) A radial-GRIN rod producing a real, magnified, erect 
image. (b) Here the image is formed on the face of the rod. (c) This is a 
convenient setup for use in a copy machine.

0.125 pitch

0.25 pitch

0.50 pitch

Figure 6.45  Radial GRIN lenses with several pitches used in a few  
typical ways.

M06_HECH6933_05_GE_C06.indd   285 26/08/16   1:52 PM



286 Chapter 6 More on Geometrical Optics

arises because the edges of the spherical lens refract too 
strongly. Gradually lowering the index of refraction out to-
ward the edges allows the axial-GRIN lens to correct for 
spherical aberration.

Generally, introducing a GRIN element into the design of a 
compound lens greatly simplifies the system, reducing the num-
ber of elements by as much as a third while maintaining overall 
performance.

6.5 Concluding Remarks

For the practical reason of manufacturing ease, the vast majority 
of optical systems are limited to lenses having spherical surfaces. 
There are, to be sure, toric and cylindrical lenses as well as many 
other aspherics. Indeed, very fine, and as a rule very expensive 
devices, such as high-altitude reconnaisance cameras and track-
ing systems, may have several aspherical elements. Even so, 
spherical lenses are here to stay and with them are their inherent 
aberrations, which must satisfactorily be dealt with. As we have 
seen, the designer (and his faithful electronic companion) must 
manipulate the system variables (indices, shapes, spacings, 
stops, etc.) in order to balance out offensive aberrations. This is 
done to whatever degree and in whatever order is appropriate for 
the specific optical system. Thus one might tolerate far more 
distortion and curvature in an ordinary telescope than in a good 
photographic objective. Similarly, there is little need to worry 
about chromatic aberration if you want to work exclusively with 
laser light of almost a single frequency. 

In any event, this chapter has only touched on the problems 
(more to appreciate than solve them). That they are most cer-
tainly amenable to solution is evidenced, for example, by the 
accompanying aerial photographs, which speak rather eloquently 
for themselves, especially when you consider that a good spy 
satellite will do upwards of ten times better than this.

x

z

z

z

n(z)

y

(a)

(b)

(d)

(c)

Figure 6.46  (a) A slab of axial-GRIN material for which the index  
of refraction is n(z). (b) An axial-GRIN lens for which there is no spherical 
aberration. (c) An ordinary lens having SA. (d) The index profile.

of 1.50, and it is immersed in air. Find the focal length of the lens and 
explain the significance of its sign.

6.5 A positive meniscus lens (n = 1.6) has radii 10 cm and 15 cm, 
respectively and is 2 cm thick. Determine its focal length and the posi-
tion of its principal points.

6.6* Prove that if the principal points of a biconvex lens of thickness 
dl overlap midway between the vertices, the lens is a sphere. Assume 
the lens is in air.

6.7 Using Eq. (6.2), derive an expression for the focal length of a 
homogeneous transparent sphere of radius R. Locate its principal 
points.

Complete solutions to all problems—except those with an  
asterisk—can be found in the back of the book.

6.1* Work out the details leading to Eq. (6.8).

6.2 According to the military handbook MIL-HDBK-141 (23.3.5.3), 
the Ramsden eyepiece (Fig. 5.105) is made up of two planar-convex 
lenses of equal focal length ƒ′ separated by a distance 2ƒ′>3. Deter-
mine the overall focal length f of the thin-lens combination and locate 
the principal planes and position of the field stop.

6.3 Write an expression for the thickness dl of a double-convex lens 
such that its focal length is infinite.

6.4* The radii of curvature of a thick lens are +10.0 cm and +9.0 cm. 
The thickness of the lens along its optical axis is 1.0 cm, it has an index 

PRObLeMS

with the optical axis) on the lens’s face has a gradually chang-
ing index. Rays impinging at different heights above the opti-
cal axis encounter glass with different indices and bend ap-
propriately. The spherical aberration evident in Fig. 6.46c 
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(a) (b)

(c)

(a) New Orleans and the Mississippi River photographed from 12,500 m (41,000 ft) with Itek’s Metritek-21 camera ( ƒ = 21 cm).  
Ground resolution, 1 m; scale, 1:59,492. (b) Photo scale, 1:10,000. (c) Photo scale, 1:2500. (Litton/Itek Optical Systems)
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288 Chapter 6 More on Geometrical Optics

6.8* A fish-tank has negligibly thin walls and a radius of 15 cm. 
Locate its focus relative to its walls when it is filled with water 
(nw = 4>3).

6.9* The observational window of a submersible vessel is made of a  
5-cm thick glass (n = 1.5) which is curved so that both the surfaces 
have a radius of curvature of 30 cm. Determine the focal length of this 
window while the submersible is still in air.

6.10* A thick lens has radii R1 and R2 such that R1 7 R2 with both 
vertices to the left of their respective centers of curvature. How thick 
must the lens be for its focal length to be infinite if it is made of glass 
with refractive index n?

6.11 A solid sphere focuses sunlight 5 cm behind itself (measured 
from the surface). An object 50 cm in front of the sphere produces an 
image 10 cm behind it (both distances measured from the surface). 
Determine the radius of the sphere and its refractive index. Use the 
results of Problem 6.7.

6.12* Determine the position of the principal planes for a lens con-
sisting of two concentric spherical surfaces.

6.13 A thick double-convex lens is made of polycarbonate (n = 1.586). 
If it is 3 cm thick and the curved surfaces have radii of 16 cm and  
50 cm, respectively, determine the focal length and the positions of its 
principal points. If a picture is placed 50 cm in front of the lens, where 
will its image appear?

6.14* Two identical thick planar-convex lenses are positioned with 
their curved surfaces towards each other, 4 cm apart (measured from 
surfaces). Given that the curved surfaces have a radius of 12 cm, the 
thickness of each lens is 2 cm, and the refractive index of the glass is 
1.6, compute the focal length of this compound system.

6.15* A compound lens is composed of two thin lenses separated by 
10 cm. The first of these has a focal length of +20 cm, and the second 
a focal length of -20 cm. Determine the focal length of the combina-
tion and locate the corresponding principal points. Draw a diagram of 
the system.

6.16* A meniscus lens has radii 20 cm and 10 cm, respectively and is 
4 cm thick. Compute the system matrix if the refractive index of the 
glass is 1.7.

6.17* A thick meniscus lens (n = 1.7) has the first radius of curvature 
of 10 cm and its second is 20 cm and is 4 cm thick. Determine the 
system matrix .

6.18* Starting with Eq. (6.33) derive Eq. (6.34) when both the object 
and image are in air.

6.19* Show that Eq. (6.36), relating the object and image distances 
measured from the vertices of a lens, reduces to Gauss’s Formula  
[Eq. (5.17)] for thin lenses. Remember that when so 7 0, d1O 6 0 and 
when si 7 0, dI  2 7 0.

6.20* A positive meniscus lens with an index of refraction of 2.4 is 
immersed in a medium of index 1.9. The lens has an axial thickness of 

9.6 mm and radii of curvature of 50.0 mm and 100 mm. Compute the 
system matrix when light is incident on the convex face and show that 
its determinant is equal to 1.

6.21* Prove that the determinant of the system matrix in Eq. (6.31) is 
equal to 1.

6.22 Establish that Eqs. (6.41) and (6.42) are equivalent to Eqs. (6.3) 
and (6.4), respectively.

6.23 Show that the planar surface of a concave-planar or convex-
planar lens doesn’t contribute to the system matrix.

6.24 Compute the system matrix for a thick biconvex lens of index 
1.5 having radii of 6 cm and 25 cm and a thickness of 3 cm.

6.25* The system matrix for a thick biconvex lens in air is given by

c0.6 -2.6
0.2 0.8

d
Knowing that the first radius is 0.5 cm, that the thickness is 0.3 cm, and 
that the index of the lens is 1.5, find the other radius.

6.26* Starting with Eq. (6.35) and Eq. (6.37), show that the 2 * 2 
matrix resulting from the product of the three 2 * 2 matrices in Eq. 
(6.33) has the form

c(a11 - a12 dO) a12

0 MT
d

Since this matrix is the product of matrices each of which has a unit 
determinant, it has a unit determinant. Accordingly, show that

 MT =
1

a11 - a12 dO
 [6.38]

6.27* A concave-planar glass (n = 1.50) lens in air has a radius of 
10.0 cm and a thickness of 1.00 cm. Determine the system matrix and 
check that its determinant is 1. At what positive angle (in radians mea-
sured above the axis) should a ray strike the lens at a height of 2.0 cm, 
if it is to emerge from the lens at the same height but parallel to the 
optical axis?

6.28* A plano-convex lens has a radius of curved surface of 12 cm. 
The lens is made of glass with an index of 1.6 and is 4 cm thick. Use 
the system matrix to determine its focal length and the position of its 
principal points.

6.29* Figure P.6.29 shows two identical concave spherical mirrors 
forming a so-called confocal cavity. Show, without first specifying the 
value of d, that after traversing the cavity two times the system matrix is

≥
a2d

r
- 1b

2

-
2d
r

4
r
 ad

r
- 1b

2d a1 -
d
r
b 1 - 2 

d
r

¥

Then for the specific case of d = r show that after four reflections the 
system is back where it started and the light will retrace its original path.
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2

4

dFigure P.6.29

6.30 Referring back to Fig. 6.18a, show that when P′C = Rn2>n1 and 
PC = Rn1>n2 all rays originating at P appear to come from P′.

6.31 Starting with the exact expression given by Eq. (5.5), show that 
Eq. (6.46) results, rather than Eq. (5.8), when the approximations for 
/o and /i are improved a bit.

6.32 Supposing that Fig. P.6.32 is to be imaged by a lens system suf-
fering spherical aberration only, make a sketch of the image.

Figure P.6.32

Figure P.6.33a (E.H.)

6.33* Figure P.6.33 shows the image irradiance distributions arising 
when a monochromatic point source illuminates three different optical 
systems, each having only one type of aberration. From the graphs 
identify that aberration in each case and justify your answer.

Figure P.6.33b (E.H.)

Figure P.6.33c (E.H.)

(a) (b)

Figure P.6.34

6.34* Figure P.6.34 shows the distribution of light corresponding to 
the image arising when a monochromatic point source illuminates two 
different optical systems each having only one type of aberration. 
Identify the aberration in each case and justify your answer.
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7
In succeeding chapters we shall study the phenomena of po-
larization, interference, and diffraction. These all share a 
common conceptual basis in that they deal, for the most 
part, with various aspects of the same process. Stating this 
in the simplest terms, we are really concerned with what 
happens when two or more lightwaves overlap in some re-
gion of space. The precise circumstances governing this su-
perposition determine the final optical disturbance. Among 
other things, we are interested in learning how the specific 
properties of each constituent wave (amplitude, phase, fre-
quency, etc.) influence the ultimate form of the composite 
disturbance.

Recall that each field component of an electromagnetic wave 
(Ex, Ey, Ez, Bx, By, and Bz) satisfies the scalar three-dimensional 
differential wave equation,

 
02c

0x2 +
02c

0y2 +
02c

0z2 =
1

v2 
02c

0t2  [2.60]

A significant feature of this expression is that it is linear; c( r$, t) 
and its derivatives appear only to the first power. Consequently, 
if c1(r$, t), c2(r$, t), c, cn(r$, t) are individual solutions of 
Eq. (2.60), any linear combination of them will, in turn, be a 
solution. Thus

 c( r$, t) = ^
n

i = 1
Cici( r$, t) (7.1)

satisfies the wave equation, where the coefficients Ci are 
simply arbitrary constants. Known as the Principle of Su-
perposition, this property suggests that the resultant distur-
bance at any point in a medium is the algebraic sum of the 
separate constituent waves (Fig. 7.1). At this time we are 
interested only in linear systems where the superposition 
principle is applicable. Do keep in mind, however, that large-
amplitude waves, whether sound waves or waves on a string, 
can generate a nonlinear response. The focused beam of a 
high-intensty laser (where the electric field might be as high 
as 1010 V>cm) is easily capable of eliciting nonlinear effects 
(see Chapter 13). By comparison, the electric field associated 
with sunlight here on Earth has an amplitude of only about 
10 V>cm.

In many instances we need not be concerned with the 
vector nature of light, and for the present we will restrict 
ourselves to such cases. For example, if the lightwaves all 
propagate along the same line and share a common constant 
plane of vibration, they can each be described in terms of 
one electric-field component. These would all be either par-
allel or antiparallel at any instant and could thus be treated 
as scalars. A good deal more will be said about this point as 
we progress; for now, let’s represent the optical disturbance 
as a scalar function E( r$, t), which is a solution of the dif-
ferential wave equation. This approach leads to a simple 
scalar theory that is highly useful as long as we are careful 
about applying it.

The Superposition  
of Waves

Figure 7.1  The superposition of two disturbances.

290
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 7.1 The Addition of Waves of the Same Frequency 291

and  E0 sin a = E01 sin a1 + E02 sin a2 (7.8)

This is not an obvious substitution, but it will be legitimate as 
long as we can solve for E0 and a. To that end, and remember-
ing that cos2a + sin2a = 1, square and add Eqs. (7.7) and (7.8) 
to get

 E0
2 = E2

01 + E2
02 + 2E01E02 cos (a2 - a1) (7.9)

That’s the sought-after expression for the amplitude (E0) of the 
resultant wave. Now to get the phase, divide Eq. (7.8) by (7.7):

 tan a =
E01 sin a1 + E02 sin a2

E01 cos a1 + E02 cos a2
 (7.10)

Provided these last two expressions are satisfied for E0 and a, 
the situation of Eqs. (7.7) and (7.8) is valid. The total distur-
bance [Eq. (7.6)] then becomes

E = E0 cos a sin vt + E0 sin a cos vt

or E = E0 sin (vt + a) (7.11)

where you can use Eq. (7.9) to determine E0 and Eq. (7.10) to 
compute a. A single disturbance results from the superposition 
of the sinusoidal waves E1 and E2. The composite wave [Eq. (7.11)] 
is harmonic and of the same frequency as the constituents,  
although its amplitude and phase are different.

Note that when  E01 7 7  E02 in Eq. (7.10), a ≈ a1 and 
when E02 7 7  E01, a ≈ a2; the resultant is in-phase with the 
dominant component wave (take another look at Fig. 4.11).  
The flux density of a lightwave is proportional to its amplitude 
squared, by way of Eq. (3.44). It follows from Eq. (7.9) that  
the resultant flux density is not simply the sum of the compo-
nent flux densities; there is an additional contribution 2E01E02
cos (a2 - a1), known as the interference term. The crucial 
factor is the difference in phase between the two interfering waves 
E1 and E2, d K (a2 - a1). When d = 0, ±2p, ±4p, cthe 
resultant amplitude is a maximum, whereas d = ±p, ±3p, c 
yields a minimum at any point in space (Problem 7.3). In the 
former case, the waves are said to be in-phase; crest overlaps 
crest. In the latter instance, the waves are 180° out-of-phase and 
trough overlaps crest, as shown in Fig. 7.2. Realize that the 
phase difference may arise from a difference in path length tra-
versed by the two waves, as well as a difference in the initial 
phase angle; that is,

 d = (kx1 + e1) - (kx2 + e2) (7.12)

or d =
2p
l

 (x1 - x2) + (e1 - e2) (7.13)

Here x1 and x2 are the distances from the sources of the two 
waves to the point of observation, and l is the wavelength in the 

7.1  The Addition of Waves of the 
Same Frequency

There are several equivalent ways of mathematically adding two 
or more overlapping waves that have the same frequency and 
wavelength. Let’s explore these different approaches so that, in 
any particular situation, we can use the one most suitable.

7.1.1 The Algebraic Method

We now examine the superposition of two harmonic waves of the 
save frequency (v) traveling in the same direction (x). A solution 
of the differential wave equation can be written in the form

 E(x, t) = E0 sin [vt - (kx + e)] (7.2)

in which E0 is the amplitude of the harmonic disturbance prop-
agating along the positive x-axis. To separate the space and time 
parts of the phase, let

 a(x, e) = -(kx + e) (7.3)
so that

 E(x, t) = E0 sin [vt + a(x, e)] (7.4)

Suppose then that there are two such waves

 E1 = E01 sin (vt + a1) (7.5a)

and E2 = E02 sin (vt + a2) (7.5b)

each with the same frequency and speed, coexisting in space. The 
resultant disturbance is the linear superposition of these waves: 

E = E1 + E2

Here it helps to know beforehand what we’re looking for. The 
sum should resemble Eq. (7.4); you can’t add two signals of the 
same frequency and get a resultant with a different frequency. 
That makes a lot of sense when you remember that the frequency 
of a photon corresponds to its energy and that doesn’t change. 
In any event, we can anticipate the sum to be a sinusoidal func-
tion of frequency v with an amplitude (E0) and phase (a) that 
have to be determined.

Forming the sum and expanding Eqs. (7.5a) and (7.5b) leads 
to

E = E01 (sin vt cos a1 + cos vt sin a1)

+ E02 (sin vt cos a2 + cos vt sin a2)

When we separate out the time-dependent terms, this becomes

E = (E01 cos a1 + E02 cos a2) sin vt

+ (E01 sin a1 + E02 sin a2) cos vt (7.6)

Since the parenthetical quantities are constant in time, let

 E0 cos a = E01 cos a1 + E02 cos a2 (7.7)
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292 Chapter 7 The Superposition of Waves

The quantity n(x1 - x2) is known as the  optical path differ-
ence and will be represented by the abbreviation OPD or by the 
symbol Λ. It’s the difference in the two optical path lengths  
[Eq. (4.9)]. It is possible, in more complicated situations, for each 
wave to travel through a number of different thicknesses of dif-
ferent media (Problem 7.6). Notice too that Λ>l0 = (x1 - x2)>l 
is the number of waves in the medium corresponding to the path 
difference; one route is that many wavelengths longer than the 
other. Since each wavelength is associated with a 2p radian 
phase change, d = 2p(x1 - x2)>l, or

 d = k0Λ (7.16)

k0 being the propagation number in vacuum; that is, 2p>l0. 
One route is essentially d radians longer than the other.

Waves for which e1 - e2 is constant, regardless of its value, 
are said to be coherent, a situation we shall assume obtains 
throughout most of this discussion.

One special case of some interest is the superposition of two 
waves that travel slightly different distances (∆x) in the same 
direction:

E1 = E01 sin [vt - k(x + ∆x)]

and E2 = E02 sin (vt - kx) 

where in particular E01 = E02 and a2 - a1 = k∆x. It is left to 
Problem 7.7 to show that in this case Eqs. (7.9), (7.10), and 
(7.11) lead to a resultant wave of

 E = 2E01 cos ak ∆x
2

b sin cvt - k ax +
∆x
2
bd  (7.17)

This brings out rather clearly the dominant role played by the 
path length difference, ∆x, especially when the waves are emit-
ted in-phase (e1 = e2). There are many practical instances in 
which one arranges just these conditions, as will be seen later. 
If ∆x 6 6  l, the resultant has an amplitude that is nearly 2E01, 
whereas if ∆x = l>2, since k = 2p>l, the cosine term is zero 
and E = 0. Recall that the former situation (p. 29) is referred to 
as constructive interference, and the latter as destructive 
interference (see Fig. 7.3).

pervading medium. If the waves are initially in-phase at their 
respective emitters, then e1 = e2, and

 d =
2p
l

 (x1 - x2) (7.14)

This would also apply to the case in which two disturbances 
from the same source traveled different routes before arriving at 
the point of observation. Since n = c>v = l0>l,

 d =
2p
l0

 n(x1 - x2) (7.15)

E1

E2

E

x

E2

E

E1

E = E1 +  E2

x

Figure 7.2  The superposition of two harmonic waves in-phase and  
out-of-phase.

E2 E1E
x

E = E1 +  E2 E2 leads E1 by k∆x

∆x

E2
E1E

x

∆x

Figure 7.3  Waves out-of-phase by k∆x 
radians.
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 7.1 The Addition of Waves of the Same Frequency 293

the same results would prevail if cosine functions were used. In 
general, then, the sum of N such waves,

E = ^
n

i = 1
 E0i cos (ai ± vt)

is given by E = E0 cos (a ± vt) (7.18)

where

 E2
0 = ^

N

i = 1
 E2

0i + 2 ^
N

j 7 i
 ^

N

i = 1
 E0iE0j cos (ai - aj) (7.19)

and tan a =
^

N

i = 1
E0i sin ai

^
N

i = 1
E0i cos ai

 (7.20)

Pause for a moment and satisfy yourself that these relations are 
indeed true.

Consider a number (N) of atomic emitters constituting an 
ordinary source (an incandescent bulb, candle flame, or dis-
charge lamp). A flood of light is emitted that presumably cor-
responds to a torrent of photons, which manifest themselves  
en masse as an electromagnetic wave. To keep things in a wave 
perspective, it’s useful to imagine the photon as somehow as-
sociated with a short-duration oscillatory wave pulse. Each 
atom is effectively an independent source of photon wavetrains 
(Section 3.4.4), and these, in turn, extend in time for roughly 1 
to 10 ns. In other words, the atoms can be thought of as emitting 
wavetrains that have a sustained phase for only up to about 10 
ns. After that a new wavetrain may be emitted with a totally 
random phase, and it too will be sustained for less than approx-
imately 10 ns, and so forth. On the whole each atom emits a 
disturbance (composed of a stream of photons) that varies in its 
phase rapidly and randomly.

In any event, the phase of the light from one atom, ai (t), will 
remain constant with respect to the phase from another atom 
aj (t), for only a time of at most 10 ns before it changes ran-
domly: the atoms are coherent for up to about 10-8 s. Since 
flux density is proportional to the time average of E2

0 , generally 

To underscore the potential for practical application of these 
ideas, consider Fig. 7.4. It shows a jet fighter that has been 
 illuminated by microwaves from a hostile ground-based radar 
transmitter. To the considerable consternation of the pilot (and 
unlike the F-117 Stealth fighter, p. 107) the plan reflects a sub-
stantial amount of radiant energy down toward the radar antenna. 
But all is not lost; having detected the beam, the plan matches 
its frequency and amplitude, and transmits a l>2 phase-shifted 
radar wave of its own. Propagating back to the source in nearly 
the same direction, the two waves (reflected and emitted) inter-
fere destructively [via Eq. (7.17)], thereby eliminating the radar 
echo in the specific direction of the enemy detector. Of course, 
if there happened to be several ground receivers, the pilot could 
be in big trouble. 

The Superposition of Many Waves

By repeated applications of the procedure used to arrive at  
Eq. (7.11), we can show that the superposition of any number 
of coherent harmonic waves having a given frequency and 
traveling in the same direction leads to a harmonic wave of 
that same frequency (Fig. 7.5). We happen to have chosen to 
represent the two waves above in terms of sine functions, but 

Re�ected 
wave

Emitted wave

Figure 7.4  The French fighter Rafale uses active cancellation to con-
found radar detection. It sends out a signal that’s one-half a wavelength 
out-of-phase with the radar wave it reflects. The reflected and emitted 
waves cancel in the direction of the enemy receiver.

Figure 7.5  The superposition of three harmonic 
waves yields a harmonic wave of the same  
frequency.
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294 Chapter 7 The Superposition of Waves

or E1 = E01 cos (a1 ∓ vt) 

can be written as

 E ˜1 = E01ei(a1 ∓vt) (7.24)

if we remember that we are interested only in the real part (see 
Section 2.5). Suppose that there are N such overlapping waves 
having the same frequency and traveling in the positive x-direction. 
The resultant wave is given by

E ˜ = E0ei(a+vt)

which is equivalent to Eq. (7.18) or, upon summation of the 
component waves,

 E ˜ = c^
N

j = 1
 E0je

iajd e+ ivt (7.25)

The quantity

 E0eia = ^
N

j = 1
 E0je

iaj (7.26)

is known as the complex amplitude of the composite wave and is 
simply the sum of the complex amplitudes of the constituents. 
Since

 E2
0 = (E0eia)(E0eia)* (7.27)

we can always compute the resultant irradiance from Eqs. 
(7.26) and (7.27). For example, if N = 2,

E2
0 = (E01eia1 + E02eia2)(E01e-ia1 + E02e-ia2)

E2
0 = E2

01 + E2
02 + E01E02[ei(a1 -a2) + e-i(a1 -a2)]

or E2
0 = E2

01 + E2
02 + 2E01E02 cos (a1 - a2) 

which is identical to Eq. (7.9).

7.1.3 Phasor Addition

The summation described in Eq. (7.26) can be represented 
graphically as an addition of vectors in the complex plane (recall 
the discussion on p. 30). In the parlance of electrical engineer-
ing, the complex amplitude is known as a phasor, and it’s spec-
ified by its magnitude and phase, often written simply as E0∠a. 
Imagine, then, that we have a disturbance described by

E1 = E01 sin (vt + a1)

In Fig. 7.6a the wave is represented by a vector of length E01 
rotating counterclockwise at a rate v such that its projection on 
the vertical axis is E01 sin (vt + a1). If we were concerned with 
cosine waves, we would take the projection on the horizontal 
axis. Incidentally, the rotating vector is, of course, a phasor 

taken over a comparatively long interval of time, it follows that 
the second summation in Eq. (7.19) will contribute terms pro-
portional to 8cos[a i(t) - aj (t)]9, each of which will average out 
to zero because of the random rapid nature of the phase changes. 
Only the first summation in Eq. (7.19) remains in the time aver-
age, and its terms are constants. If each atom is emitting wave-
trains of the same amplitude E01, then

 E2
0 = NE2

01 (7.21)

The resultant flux density arising from N sources having ran-
dom, rapidly varying phases is given by N times the flux density 
of any one source. In other words, it is determined by the sum of 
the individual flux densities.

A flashlight bulb, whose atoms are all emitting a random tu-
mult, puts out light that (as the superposition of these essentially 
“incoherent” wavetrains) is itself rapidly and randomly varying 
in phase. Thus two or more such bulbs will emit light that is es-
sentially incoherent (i.e., for durations longer than about 10 ns), 
light whose total combined irradiance will simply equal the sum 
of the irradiances contributed by each individual bulb. This is 
also true for candle flames, flashbulbs, and all thermal (as dis-
tinct from laser) sources. We cannot expect to see interference 
when the lightwaves from two reading lamps overlap.

At the other extreme, if the sources are coherent and in-phase 
at the point of observation (i.e., ai = aj), Eq. (7.19) will become

E2
0 = ^

N

i = 1
 E2

0i + 2 ^
N

j 7 i
^

N

i = 1
 E0iE0j

or, equivalently,

 E2
0 = a^

N

i = 1
 E0ib

2

 (7.22)

Again, supposing that each amplitude is E01, we get

 E2
0 = (NE01)2 = N2E2

01 (7.23)

In this case of in-phase coherent sources, we have a situation in 
which the amplitudes are added first and then squared to deter-
mine the resulting flux density. The superposition of coherent 
waves generally has the effect of altering the spatial distribution 
of the energy but not the total amount present. If there are regions 
where the flux density is greater than the sum of the individual 
flux densities, there will be regions where it is less than that sum.

7.1.2 The Complex Method

It’s often mathematically convenient to make use of the complex 
representation when dealing with the superposition of harmonic 
disturbances. Accordingly, let’s redo the calculation of Section 7.1.1, 
adding two harmonic waves. The wavefunction

E1 = E01 cos (kx ± vt + e1)
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In Fig. 7.7 when the phase angle was, say, (vt + 45°), the 
phasor was drawn up 45° from the horizontal axis. That’s just a 
convention and we could have taken +45° to be downward as 
long as we were consistent. Similarly, we used sine functions but 
the same procedure works for cosines (see Problem 7.10).

To exemplify the method, Fig. 7.8 depicts the superposition 
of two different-amplitude waves of the same frequency that are 

E01∠a1, and the R and I designations signify the real and imag-
inary axes. Similarly, a second wave

E2 = E02 sin (vt + a2)

is depicted along with E1 in Fig. 7.6b. Their algebraic sum,  
E = E1 + E2, is the projection on the I-axis of the resultant pha-
sor determined by the vector addition of the component pha-
sors, as in Fig. 7.6c. The law of cosines applied to the triangle 
of sides E01, E02, and E0 yields

E2
0 = E2

01 + E2
02 + 2E01E02 cos (a2 - a1)

where use was made of the fact that cos [p - (a2 - a1)] 5
-cos (a2 - a1). This is identical to Eq. (7.9), as it must be. Us-
ing the same diagram, observe that tan a is given by Eq. (7.10) 
as well. We are usually concerned with finding E0 rather than 
E(t), and since E0 is unaffected by the constant revolving of all 
the phasors, it will often be convenient to set t = 0 and elimi-
nate that rotation.

Some rather elegant schemes, such as the vibration curve 
and the Cornu spiral (Chapter 10), will be predicated on the 
technique of phasor addition. As a further example, let’s briefly 
examine the wave resulting from the addition of

E1 = 5 sin vt

E2 = 10 sin (vt + 45°)

E3 = sin (vt - 15°)

E4 = 10 sin (vt + 120°)

and E5 = 8 sin (vt + 180°) 

where for simplicity vt is in degrees. The appropriate phasors 
5∠0°, 10∠45°, 1∠-15°, 10∠120°, and 8∠180° are plotted in 
Fig. 7.7. Notice that each phase angle, whether positive or neg-
ative, is referenced to the horizontal. One need only read off 
E0∠w with a scale and protractor to get E = E0 sin (vt + a). It 
is evident that this technique offers a tremendous advantage in 
speed and simplicity, if not in accuracy.
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(b)
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E02E0
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Figure 7.6  Phasor addition.
E05

E0

E04

180°

15°
120°

E02

45°w

E03

E01

Figure 7.7  The phasor 
sum of E1, E2, E3, E4, and 
E5.
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w
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E1

a

a
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Figure 7.8  The summation of two sinusoidal functions of the same  
frequency using phasor addition. Here e1 is taken as the reference phasor, 
and since E2 leads E1 (i.e., its peak occurs at an earlier location) the angle 
a is positive. Thus w is positive and the resultant E also leads E1.
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296 Chapter 7 The Superposition of Waves

satisfies the differential wave equation. In particular let’s exam-
ine two harmonic waves of the same frequency propagating in 
opposite directions. A situation of practical concern arises when 
the incident wave is reflected backward off some sort of mirror; 
a rigid wall will do for sound waves or a conducting sheet for 
electromagnetic waves. Imagine that an incoming wave travel-
ing to the left,

 EI = E0I sin (kx + vt + eI) (7.28)

strikes a mirror at x = 0 and is reflected to the right in the form

 ER = E0R sin (kx - vt + eR) (7.29)

The composite wave in the region to the right of the mirror is 
E = EI + ER. In other words, the two waves (one traveling to 
the right, the other to the left) exist simultaneously in the region 
between the source and the mirror.

We could perform the indicated summation and arrive at a 
general solution* much like that of Section 7.1. However, some 
valuable physical insights can be gained by taking a slightly 
more restricted approach.

The initial phase eI may be set to zero by merely starting 
our clock at a time when EI = E0I sin kx. Certain qualifica-
tions determined by the physical setup must be met by the 
mathematical solution, and these are known formally as 
boundary conditions. For example, if we were talking about 
a rope with one end tied to a wall at x = 0, that point must 
always have a zero displacement. The two overlapping waves, 
one incident and the other reflected, would have to add in 
such a way as to yield a zero resultant wave at x = 0. Simi-
larly, at the boundary of a perfectly conducting sheet, the re-
sultant electromagnetic wave must have a zero electric-field 
component parallel to the surface. Assuming E0I = E0R = E0, 
the boundary conditions require that at x = 0, E = 0, for all 
values of t and since eI = 0, it follows from Eqs. (7.28) and 
(7.29) that eR = 0. In other words, at x = 0, EI = E0 sin (+vt) 
and ER = E0 sin (-vt); the two are 180° out-of-phase, 
EI = -ER, and they cancel at any time t. The composite dis-
turbance is then

E = E0 [sin (kx + vt) + sin (kx - vt)]

Applying the identity

sin a + sin b = 2 sin 12 (a + b) cos 12 (a - b)

yields

 E(x, t) = 2E0 sin kx cos vt (7.30)

E

E01

E1

E2

E3

E4

E02

E0

E4
E3
E2
E1
kx

E03

E04

w

a

w
a

a

a

a

E = E0�w

Figure 7.9  The summation of four sinusoidal waves of the same  
frequency. To further explore the phasor method, this time we’ll take  
the origin as the zero of phase and reference everything with respect  
to it. The wave E1 lags the origin by a; that is, the magnitude of the wave 
is zero at a larger value of kx than 0. Moreover, each wave lags the previ-
ous one by that same angle a. Accordingly, we draw the phasor e1 below 
the horizontal reference level and so lagging by a. All the other phasors 
successively lag one another by that same amount. Note that the length of 
the resultant phasor equals the amplitude of the resultant wave.

*See, for example, J. M. Pearson, A Theory of Waves.

out-of-phase by an amount a. Notice that the amplitude of each 
wave (E01 or E02) is the amplitude of the corresponding phasor. 
The length of the resultant phasor (E0) equals the amplitude of 
the resultant wave, and its phase angle is a bit less than a. In a 
similar situation to that of Fig. 7.5, picture four equal-amplitude 
waves of the same frequency (Fig. 7.9), each shifted from the 
previous one by the same small amount a. The resultant phasor 
is E = E0∠w, and it has the amplitude and phase of the resultant 
wave. That amplitude is substantial, but interestingly, if there 
were more constituent waves their phasors, tipped-to-tailed, 
would spiral around and E0 would start to decrease. That’s obvi-
ous in the phasor diagram, though it’s not nearly so apparent in 
the wave representation.

7.1.4 Standing Waves

We saw earlier (p. 28) that the sum of solutions to the differential 
wave equation is itself a solution. Thus, in general,

c(x, t) = C1ƒ(x - vt) + C2g(x + vt)
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 7.1 The Addition of Waves of the Same Frequency 297

This is the equation for a standing or stationary wave, as op-
posed to a traveling wave (Fig. 7.10). Its profile does not move 
through space; it is clearly not of the form ƒ(x ± vt). At any 
point x = x′, the amplitude is a constant equal to 2E0 sin kx′, 
and E(x′, t) varies harmonically as cos vt. At certain points, 
namely, x = 0, l>2, l, 3l>2, . . . , the disturbance will be zero 
at all times. These are known as nodes or nodal points  
(Fig. 7.11). Halfway between each adjacent node, that is, at 
x = l>4, 3l>4, 5l>4, . . . , the amplitude has a maximum value 
of ±2E0, and these points are known as antinodes. The distur-
bance E(x, t) will be zero at all values of x whenever cos vt = 0, 
that is, when t = (2m + 1)t>4, where m = 0, 1, 2, 3, . . . and t 
is the period of the component waves.
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Figure 7.10  The creation of standing waves. Two waves of  
the same amplitude and wavelength traveling in opposite  
directions form a stationary disturbance that oscillates  
in place.

Figure 7.11  A standing wave at various times.
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298 Chapter 7 The Superposition of Waves

traveling to the right (increasing x). Let the phasors E1 represent 
a wave traveling to the left, and E2 a wave to the right. The re-
sultant phasor is E1 + E2 = E = E0∠w, where E0 is the ampli-
tude of the curve (i.e., the resultant disturbance) at any chosen 
moment. It’s gotten by tip-to-tailing E1 and E2. If we wish to 
reproduce Fig. 7.11, let the two waves have the same amplitude, 
E01 = E02. Keeping the two phasors tip-to-tail and having E1 
rotate counterclockwise as E2 rotates (at the same rate) clock-
wise generates E as a function of t. Notice that the triangles 
formed by the three phasors are always isosceles, with E being 
vertical. It doesn’t rotate at all, and the resultant wave it repre-
sents doesn’t progress through space—it’s a standing wave. 

Going back to Fig. 7.10, if the reflection is not perfect, as is 
often the case, the composite disturbance will not have zero 
amplitude at the nodes (Fig. 7.13). That’s most easily seen with 
the phasors E1 and E2 where this time E01 7 E02. Now E  
rotates in the same direction (counterclockwise) as the larger 
of the two component phasors, namely, E1. The composite 
wave contains a traveling component along with the stationary 
wave (see Fig. 7.13c and Problem 7.17). Under such condi-
tions there will be a net transfer of energy, whereas for the pure 
standing wave there is none. It’s also possible to write an ex-
pression for the resultant partial standing wave in the form 
E = E0(x) cos [vt - w(x)] where the amplitude varies from point 
to point, while at each value of x the wave oscillates in time cosi-
nusoidally. You can see from the phasor diagram (Fig. 7.13b), 

EXAMPLE 7.1 

Write an equation for a standing wave that has an antinode at 
x = 0. Start with the two waves of equal amplitude E0,

EI = E0 sin (vt - kx)

and 

ER = E0 sin (vt + kx)

Here we have interchanged the space and time parts of the 
phases in Eqs. (7.28) and (7.29) and that will interchange them 
in Eq. (7.30).

SOLUTION 

Using the identity

 sin a + sin b = 2 sin 12 (a + b) cos 12 (a - b)

EI + ER = 2E0 sin 12 (2vt) cos 12 (-2kx)

Since cos (-kx) = cos (kx)

EI + ER = 2E0 sin vt cos kx
or

E(x, t) = 2E0 cos kx sin vt

At x = 0,  E(0, t) = 2E0 sin vt, which oscillates from +2E0
to -2E0 as time goes on.

Figure 7.12 illustrates how the standing-wave pattern is gen-
erated from a phasor perspective. There are two harmonic 
waves, so begin with two phasors E1 and E2. The waves are 
180° out-of-phase at the boundary x = 0, and hence the two 
phasors must have initial values of E01∠0 and E02∠p. Earlier 
(Section 2.6) we saw that a phasor rotating counterclockwise at 
a rate v is equivalent to a wave traveling to the left (decreasing 
x), and similarly, one rotating clockwise corresponds to a wave 

E01 + E02

E01 + E02

E1 E1

E1

E2

E1

E2

E1

E2

E1

E1

E1
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E2
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E E
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l l0
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Figure 7.12  The generation of a standing wave from  
the perspective of phasor addition. The two phasors  
rotate at the same rate but in opposite directions. Here  
both waves have the same amplitudes, and that produces 
complete cancellation at the nodes.

Standing waves on a vibrating string. (PASCO)
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 7.1 The Addition of Waves of the Same Frequency 299

A pail used to wash a floor contained a suspension of fine dirt particles in 
water. When placed in a curved sink, the pail gently rocked along a fixed 
axis, setting up standing waves and distributing the particles in ridges as 
they settled. (E.H.)

applying the Law of Cosines, that the position-dependent ampli-
tude is E0(x) = (E01

2 - E02
2 + 2E01E02 cos 2kx)1>2.

Although the analysis carried out above is essentially one-di-
mensional, standing waves exist in two and three dimensions as 
well. The phenomenon is extremely commonplace: standing 
waves occur in one dimension on guitar strings and diving boards, 
in two dimensions on the surface of a drum or in a jiggled pail of 
water (see photo), and in three dimensions when you sing in a 
shower stall. In fact, standing waves are created within the cavities 
inside your head whenever you sing, no matter where you are.

If a standing-wave system is driven by an oscillating source, 
it will efficiently absorb energy provided that the vibrations 
match one of its standing-wave modes. That process is known 
as resonance, and it happens every time your house buzzes 
when an airplane flies low overhead or when a heavy truck 

Figure 7.13  (a) The generation of a partial standing wave from the  
perspective of phasor addition. This time the two waves have different 
amplitudes, and that produces nonzero nodes. Accordingly, the distur-
bance has a traveling wave component that propagates in the direction  
of the larger constituent wave. (b) The wave can be written in the form 
E = E0(x) cos [vt - w(x)]. Applying the Law of Cosines, the amplitude is 
given by E0(x) = (E01

2 + E02
2 + 2E01E02 cos 2k x)1>2. (c) The traveling wave 

component in the alternative case where e1 rotates counterclockwise and 
e2 clockwise. Since e1 7 e2, e then rotates clockwise and the disturbance 
moves to the right. (Curves in [c] courtesy Justin Dove.) The tip of the phasor 
sweeps out an ellipse.
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300 Chapter 7 The Superposition of Waves

passes by. If the source continues to supply energy, the wave 
will continue to build until the system’s inherent losses equal 
the energy input and equilibrium is reached. This ability to sus-
tain and simplify an input is an extremely important feature of 
standing-wave systems. The ear’s auditory canal is just such a 
resonant cavity. It amplifies (by about 100%) sounds in the 
range from ≈3 kHz to ≈4 kHz. Similarly, the laser builds its 
powerful emission within a standing-wave cavity (p. 620). 

It was by measuring the distances between the nodes of stand-
ing waves that Hertz was able to determine the wavelength of the 
radiation in his historic experiments (see Section 3.6.1).  
A few years later, in 1890, Otto Wiener first demonstrated the  

A two-dimensional standing-wave pattern formed between a source and a 
reflector. EM waves from a 3.9-GHz antenna enter from the right. They 
reflect off a metal rod and travel back to the antenna. The pattern is made 
visible by absorbing the microwave radiation and recording the resulting 
temperature distribution with an IR camera. (H.H. Pohle, Phillips Laboratory, Kirtland 

Air Force Base)

A standing-wave pattern on the side of a car due to vibrations caused by 
its running engine. The scale is in microns, where 1 mm = 10-6 m. The 
photo was made using a holographic technique. (HOLO3/FTPO)

existence of standing lightwaves. The arrangement he used is de-
picted in Fig. 7.14b. It shows a normally incident parallel beam of 
quasimonochromatic light reflecting off a front-silvered mirror. 
Using a mirror ensured that the two overlapping waves would 
have nearly the same amplitudes, yielding a pattern more like 
Fig. 7.12 than 7.13. Maxima occur where trough overlays trough 
and peak overlays peak. Minima occur where trough overlays 
peak and vice versa. A transparent photographic film, less than 
l>20 thick, deposited on a glass plate, was inclined to the mirror 
at an angle of about 10-3 radians. In that way the film plate cut 
across the pattern of standing plane waves. After developing the 
emulsion, it was found to be blackened along a series of equidis-
tant parallel bands. These corresponded to the regions where the 
photographic layer had intersected the antinodal planes. Signifi-
cantly, there was no blackening of the emulsion at the mirror’s 
surface. It can be shown that the nodes and antinodes of the mag-
netic field component of an electromagnetic standing wave alter-
nate with those of the electric field (Problem 7.13). We might 
suspect as much from the fact that at t = (2m + 1)t>4, E = 0 for 
all values of x, so to conserve energy it follows that B Z 0. In 
agreement with theory, Hertz had previously (1888) determined 
the existence of a nodal point of the electric field at the surface of 
his reflector. Accordingly, Wiener could conclude that the black-
ened regions were associated with antinodes of the E$-field. It is 
the electric field that triggers the photochemical process.

Figure 7.14  Wiener’s experiment. (a) The incoming wave has a down-
ward component and the reflected wave has an upward component. These 
overlap to produce a standing wave in two dimensions. The little black dots 
mark maxima; the little circles locate minima. (b) Here the incident beam 
comes straight down onto a mirror and it forms a standing-wave pattern 
with the upward reflected wave.

(a)

(b)

Mirror

Antinodal planes

Film
platel�2

l�2
l�4

M07_HECH6933_05_GE_C07.indd   300 26/08/16   2:03 PM



 7.1 The Addition of Waves of the Same Frequency 301

point of observation somewhere near the middle, is far from 
the sources, angle f is small, the two waves superimpose, and 
there results a complicated interference pattern (that will be 
treated in detail in Chapter 9). Suffice it to say here that the 
space surrounding the sources will be filled with a system of 
bright and dark bands where the interference is alternately con-
structive and destructive. As P comes closer and f gets larger, 

In a similar way Drude and Nernst showed that the E$-field is 
responsible for fluorescence. These observations are all quite 
understandable, since the force exerted on an electron by the 
B$-field component of an electromagnetic wave is generally neg-
ligible in comparison to that of the E$-field. For these reasons, the 
electric field is referred to as the optic disturbance or light field.

Standing waves generated by two oppositely propagating 
disturbances represent a special case of the broader subject of 
double-beam interference (p. 398). Consider the two point 
sources sending out waves in Fig. 7.15. When point-P, the 

S2S1

f

P

Figure 7.15  Two monochromatic point sources. At any point-P the resul-
tant wave is maximum where peak (—) overlaps peak (—) or trough (– –) 
overlaps trough (– –). It’s minimum where peak overlaps trough. The maxi-
ma that form along the S1S2 line correspond to standing waves.

Ultrasonic levitation. Ultrasonic waves, one traveling up and the other 
down, form a standing-wave pattern. Here a droplet of water is suspend-
ed in a nodal region. (NASA)

Slices of the three-dimensional electromagnetic standing-wave pattern  
at different heights inside a microwave oven. (Alistair Steyn-Ross, University of 

Waikato)
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302 Chapter 7 The Superposition of Waves

and k K 1
2 (k1 + k2)  km K 1

2 (k1 - k2) (7.32)

thus

 E = 2E01 cos (kmx - vmt) cos (kx - vt) (7.33)

The total disturbance may be regarded as a traveling wave of 
frequency v, known as the carrier, having a time-varying or 
modulated amplitude E0(x, t) such that

 E(x, t) = E0(x, t) cos (kx - vt) (7.34)
where

 E0(x, t) = 2E01 cos (kmx - vmt) (7.35)

Accordingly, k and v are often referred to as the spatial and 
temporial carrier frequencies. In applications of interest here, 
v1 and v2 will always be rather large. In addition, if they are 
comparable to each other, v1 ≈ v2 , then v 7 7  vm and 
E0(x, t) will change slowly, whereas E(x, t) will vary quite rap-
idly (Fig. 7.16). The irradiance is proportional to

E0
2(x, t) = 4E0

2
1 cos2 (km x - vmt)

or E0
2(x, t) = 2E0

2
1[1 + cos (2km x - 2vmt)] 

Notice that E0
2(x, t) oscillates about a value of 2E0

2
1 with an angu-

lar frequency of 2vm or simply (v1 - v2), which is known as the 
beat frequency. That is, E0 varies at the modulation frequency, 
whereas E0

2 varies at twice that, namely, the beat frequency.
When the two overlapping harmonic waves have different 

amplitudes, they still produce beats, but the cancellation is  
incomplete—there’s less contrast. Figure 7.17 depicts such a 
pattern and indicates how the two phasors E1 and E2 give rise to 
it. Remember that the resultant phasor E = E0(x, t)∠w provides 
the amplitude and relative phase of the composite disturbance. 
The slowly oscillating envelope is a plot of E0(x, t) as it changes 
in time. The resultant phasor does not give us the instantaneous 
magnitude of the oscillating carrier. 

The two waves travel in the same direction, and consequent-
ly their phasors rotate the same way—one at v1 and the other 
at v2. Rather than letting both phasors revolve around at their 
different frequencies, we can simplify things a little. Suppose 
that v1 7 v2 and place the higher-frequency phasor E1 at the 
tip of the lower-frequency one E2 (Fig. 7.17b). Redraw E2 
fixed along the horizontal zero-phase reference line. The angle 
a that E1 makes (Fig. 7.17c) with the horizontal (i.e., with E2) 
at any instant is its phase with respect to E2, and so E1 rotates 
at a rate (v1 - v2) and a = (v1 - v2)t. The amplitude E0(x, t) 
of the resultant (the envelope of the carrier) oscillates between 
values of E02 + E01 and E02 - E01. The angle that E makes 
with the horizontal (w) is the phase of the resultant wave with 
respect to E2, and it gradually oscillates as E1 rotates around in 
a circle. 

Note that in the case of Fig. 7.16, where E01 = E02, E0 
oscillates between 0 and 2E01. Moreover, 2w = a, and the  

the fringes become finer, that is, narrower, until P is on the line 
joining the sources and f = 180°. Then standing waves are set 
up, and the “fringes” are the finest they’ll get, namely, half a 
wavelength peak-to-peak.

7.2  The Addition of Waves of  
Different Frequency

Thus far the analysis has been restricted to the superposition of 
waves all having the same frequency. Yet one never actually has 
disturbances, of any kind, that are strictly monochromatic. It 
will be far more realistic, as we shall see, to speak of qua-
simonochromatic light, which is composed of a narrow range of 
frequencies. The study of such light will lead us to the impor-
tant concepts of bandwidth and coherence time.

The ability to modulate light effectively (Section 8.11.3) makes 
it possible to couple electronic and optical systems in a way that 
has had and will certainly continue to have far-reaching effects on 
the entire technology. Moreover, with the advent of electro-optical 
techniques, light has taken on a significant role as a carrier of in-
formation. This section is devoted to developing some of the 
mathematical ideas needed to appreciate this new emphasis.

7.2.1 Beats

We’ll start with the especially simple case of two waves of dif-
ferent frequency traveling in the same direction. Consider the 
composite disturbance arising from a combination of the waves

E1 = E01 cos (k1x - v1t)

and E2 = E01 cos (k2x - v2t) 

where k1 7 k2 and v1 7 v2. These waves have equal ampli-
tudes and zero initial phase angles. The net composite wave

E = E01[cos (k1x - v1t) + cos (k2x - v2t)]

can be reformulated as

E = 2E01 cos 12[(k1 + k2)x - (v1 + v2)t]

* cos 12[(k1 - k2)x - (v1 - v2)t]

using the identity

cos a + cos b = 2 cos 12(a + b) cos 12(a - b)

Now define the quantities v and k, which are the average angular 
frequency and average propagation number, respectively. Simi-
larly, the quantities vm and km are designated the modulation fre-
quency and modulation propagation number, respectively. Let

 v K 1
2 (v1 + v2)  vm K 1

2 (v1 - v2) (7.31)
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To obtain two waves of slightly different frequency they used 
the Zeeman Effect. When the atoms of a discharge lamp, in 
this case mercury, are subjected to a magnetic field, their en-
ergy levels split. As a result, the emitted light contains two 
frequency components, n1 and n2, which differ in proportion 
to the magnitude of the applied field. When these components 
are recombined at the surface of a photoelectric mixing tube, 

resultant phasor E —which corresponds to the amplitude of the 
disturbance—rotates at a rate vm = 1

2 (v1
- v2), all of which 

agrees with Eq. (7.33).
Beats are commonplace in sound: piano tuners have al-

ways done their work beating the notes of vibrating strings 
against tuning forks. But the effect was only first observed 
with light in 1955 by Forrester, Gudmundsen, and Johnson.* 
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Figure 7.16  The superposition of two equal-amplitude harmonic waves of different frequency  
producing a beat pattern.

*A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson, “Photo-electric mixing of 
incoherent light,” Phys. Rev. 99, 1691 (1955).

E2 E1E2 E1

E1
E2

E E2
E1

E

E E

E2 E1

E

(a)

E2

E
w

a

E1

(b)

(v1–v2)t

v1t

v2t
E2

E1

(c)

Figure 7.17  (a) The superposition of two unequal-amplitude harmonic 
waves of different frequency producing a beat pattern. (b) Here the  
higher-frequency phasor e1 is placed at the end of e2. (c) It rotates with 
the difference frequency.
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304 Chapter 7 The Superposition of Waves

Each small peak in the carrier would travel to the right with the 
usual phase velocity. In other words,

 v = -  
(0w>0t)x

(0w>0x)t
 [2.32]

From Eq. (7.34) the phase is given by w = (kx - vt), hence

 v = v>k (7.36)

This is the phase velocity of the carrier, whether it’s modulated 
or not. In the former case, the peaks simply change amplitude 
periodically as they stream along.

Evidently, there is another motion to be concerned with, and 
that’s the propagation of the modulation envelope. Return to 
Fig. 7.16a and suppose that the constituent waves, E1(x, t) and 
E2(x, t), advance with the same speed, v1 = v2. Imagine, if you 
will, the two harmonic functions having different wavelengths 
and frequencies drawn on separate sheets of clear plastic. When 
these are overlaid in some way (as in Fig. 7.16a), the resultant 
is a stationary beat pattern. If the sheets  are both moved to the 
right at the same speed so as to resemble traveling waves, the 
beats will obviously move with that same speed. The rate at 
which the modulation envelope advances is known as the group 
velocity, or vg. In this instance, the group velocity equals the 
phase velocity of the carrier (the average speed, v>k). In other 
words, vg = v = v1 = v2. This applies specifically to nondis-
persive media in which the phase velocity is independent of 
wavelength so that the two waves could have the same speed.

For a more generally applicable solution, examine the ex-
pression for the modulation envelope:

 E0(x, t) = 2E01 cos (kmx - vmt) [7.35]

The speed with which that wave moves is again given by  
Eq. (2.32), but now we can forget the carrier wave. The modula-
tion advances at a rate dependent on the phase of the envelope
(km  

x - vmt), and

vg =
vm

km

or vg =
v1 - v2

k1 - k2
=

∆v
∆k

 

Recall that in ordinary media v is dependent on l, or equiva-
lently on k. The particular function v = v(k) is called a disper-
sion relation. When the frequency range ∆v, centered about v, 
is small, ∆v>∆k is approximately equal to the derivative of the 
dispersion relation evaluated at v; that is,

 vg = adv
dk

b
 v

 (7.37)

(to see how this works in practice study Problem 7.37). The 
modulation or signal propagates at a speed vg that may be 

the beat frequency, n1 - n2, is generated. Specifically, the 
field was adjusted so that n1 - n2 = 1010 Hz, which conve-
niently corresponds to a 3-cm microwave signal. The recorded 
photoelectric current had the same form as the E0

2(x) curve in 
Fig. 7.16d.

The advent of the laser has since made the observation of 
beats using light considerably easier. Even a beat frequency of a 
few Hz out of 1014 Hz can be seen as a variation in phototube 
current. The observation of beats now represents a particularly 
sensitive and fairly simple means of detecting small frequency 
differences. The ring laser (Section 9.8.3), functioning as a gyro-
scope, utilizes beats to measure frequency differences induced 
as a result of the rotation of the system. The Doppler Effect, 
which accounts for the frequency shift when light is reflected off 
a moving surface, provides another series of applications of 
beats. By scattering light off a target, whether solid, liquid, or 
even gaseous, and then beating the original and reflected waves, 
we get a precise measure of the target speed. In much the same 
way on an atomic scale, laser light will shift in phase upon inter-
acting with sound waves moving in a material. (This phenome-
non is called Brillouin Scattering.) Thus 2vm becomes a measure 
of the speed of sound in the medium.

7.2.2 Group Velocity

The specific relationship between v and k determines v, the 
phase velocity of a wave. In a nondispersive medium, and 
vacuum is the only truly nondispersive environment, v = v>k  
[Eq. (2.33)], and a plot of v versus k is a straight line. The 
frequency and wavelength change so as to keep v constant. All 
waves of a particular type (e.g., all EM waves) travel with the 
same phase speed in a nondispersive medium. By contrast, in 
a dispersive medium (anything other than vacuum) every elec-
tromagnetic wave propagates at a speed that depends on its 
frequency. 

When a number of different-frequency harmonic waves su-
perimpose to form a composite disturbance, the resulting 
modulation envelope will travel at a speed different from that 
of the constituent waves. This raises the important notion of 
the group velocity and its relationship to the phase velocity. 
The concept was first put forward (1839) by the great Irish 
physicist and mathematician Sir William Rowan Hamilton, 
though it got little attention until Stokes reintroduced it in 
1876 in the context of hydrodynamics. Assuming we can rec-
ognize some constant feature in the shape of a pulse, like its 
leading edge, we’ll take the rate at which that feature moves to 
be the velocity of the group of waves as a whole. 

The disturbance examined in the previous section,

 E(x, t) = E0(x, t) cos (kx - vt) [7.34]

consists of a high-frequency (v) carrier wave, amplitude-
modulated by a cosine function. Suppose, for a moment, that the 
wave in Fig. 7.16b was not modulated; that is, E0 = constant. 
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greater than, equal to, or less than v, the phase velocity of 
the carrier. The group velocity for deep-water surface waves 
(Problem 7.29) is one-half the phase velocity, whereas for waves 
on a string v = vg.

EXAMPLE 7.2

In quantum mechanics v = Uk2>2m for a wave packet (like that 
of Fig. 7.18) representing a free particle of mass m. Here U is 
Planck’s Constant divided by 2p. Show that for the wavefunc-
tion of a free particle the group velocity (which corresponds to 
the classical particle velocity) equals twice the phase velocity.

SOLUTION 

Given that v = Uk2>2m, the phase velocity (really phase speed) is

v =
v

k
=

Uk2

k2m
=

Uk
2m

By contrast the group velocity of the wave packet is

vg =
dv
dk

=
2k  U
2m

=
Uk
m

and so

vg = 2v

Incidentally, k = 2p>l, p = h>l, and k = 2pp>h = p>U. But 
E = p2>2m so the phase velocity of the packet, v, is 

v =
Uk
2m

= A E
2m

whereas the classical velocity, vc, follows from the fact that the 
particle’s energy is all kinetic; E = 1

2 mv2
c and

vc = A2E
m

= 2v

Hence
vc = vg

Strictly speaking, any real wave is finite in spatial extent: it’s 
turned on (or received) at some specific time and, presumably, 
shut off at some later time. A real wave is therefore actually a 
pulse, though it could be a rather long one. As we’re about to 
learn (p. 308), any such pulse is identical to a superposition of 
numerous different-frequency sine waves (i.e., Fourier compo-
nents), each with a specific amplitude and phase. Accordingly, 
envision not just two constituent waves as in Fig (7.16), but up-
wards of a thousand, all with different frequencies. If, as is cer-
tainly possible, the sinusoids cancel each other everywhere ex-
cept over a region where they are in-phase, or nearly so, the 
resulting disturbance will resemble a localized pulse, often 
called a wave packet (Fig. 7.18) to remind us that it’s just that. 

+

+

+

+

+
+

+

+

+

+ +

+

+ +

+

vg(v̄ )

v(v̄ )

Figure 7.18  A wave pulse in a dispersive medium. Here v 7 vg and new 
wavelets enter the moving pulse at its near (on the left). If v had been less 
than vg new wavelets would have entered the front of the pulse (on the right).

Here again it’s natural to think about the group velocity. Equa-
tion (7.37) will be true, more or less, for any collection of over-
lapping sinusoidal waves, as long as ∆k, their range of values of 
k, is narrow. As we’ll learn, a narrow range of k (or equivalently 
of l) means that we have a wide packet in space. By contrast, if 
the pulse is narrow in space, there will be a large number of si-
nusoidal components present that have a correspondingly wide 
range of k values. Since each wavelength component travels at a 
different phase velocity in a dispersive medium, such a pulse 
would change shape as it moved along, making vg a less than 
precise concept to deal with experimentally.

Recall that a typical medium in the vicinity of a resonance
(n0) has an n(n)-versus-n curve resembling Fig. 7.19. Radiant 
energy corresponding in frequency to the central region, 
where the slope of the curve is negative, is very strongly ab-
sorbed, and so this is called the absorption band. On either 
side of it, n(n) increases with increasing n, and this is the do-
main of normal dispersion. Inside the absorption band, n(n) 
decreases with increasing n, and this is the domain of anomalous 
dispersion. 
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306 Chapter 7 The Superposition of Waves

travel slower than low-frequency waves (e.g., red). Moreover, 
the slope of the dispersion curve (vg) is always less than the 
slope of the line (v); that is, vg 6 v, whereas in anomalous dis-
persion vg 7 v.

Since v = kv, Eq. (7.37) yields

 vg = v + k 
dv
dk

 (7.38)

As a consequence, in an idealized nondispersive medium in 
which v is independent of l, dv>dk = 0 and vg = v. Specifi-
cally, in vacuum v = kc, v = c, and vg = c. 

Real substantial media are all more or less dispersive (v1 Z v2, 
as is the case in Fig. 7.21). Given that n(k) is known, v = kc>n, 
and it’s then useful to reformulate vg as

vg =
c
n

-
kc

n2 
dn
dk

or vg = v a1 -
k
n

 
dn
dk

b (7.39)

For optical media, in regions of normal dispersion, the refrac-
tive index increases with frequency (dn ,dk + 0), and as a 
result Yg * Y. Clearly, one should also define a group index of 
refraction

 ng K c>vg (7.40)

which must be carefully distinguished from n. In 1885 A. A. 
Michelson measured ng in carbon disulfide using pulses of 
white light and obtained 1.758 in comparison to n = 1.635.

EXAMPLE 7.3

Consider Michelson’s 1885 experiment in which the two stan-
dard wavelengths used are lF = 486.1 nm and lD = 589.2 nm. 
The corresponding indices of refraction are nF = 1.652 and 
nD = 1.628. Using the results of Problem 7.36, determine the 

A plot of the dispersion relation (Fig. 7.20) produces a curve 
passing through the origin that is convex upward for normal 
dispersion and concave downward for anomalous dispersion  
(p. 82). In either case, the slope of a line drawn from the origin 
to any point (v, k) on the curve is the phase velocity at that 
frequency. Similarly, the slope of the curve at the point (v, k),  
 is (dv>dk) v, and that’s the group velocity for the set of compo-
nent waves centered at v. In normal dispersion, sinusoidal 
waves of high frequency (e.g., blue) have larger indices and 

Absorption
     band

n(n)

n

n0

Figure 7.19  A typical representation of the frequency dependence of 
the index of refraction in the vicinity of an atomic resonance. Also shown 
is the absorption curve centered on the resonant frequency.

(a) v

k0

(b)

k0

vg(v̄ )

(v̄ ,k̄)
v̄ 

vg(v̄ )
(v̄ ,k̄)

v(v̄ )

v

k̄k̄

v̄ 

v(v̄ ) = v̄ �k̄

Figure 7.20  A plot of the dispersion relation. (a) In normal dispersion 
v( v ) 7 vg( v ), whereas in (b) anomalous dispersion  vg( v ) 7 v(v). The 
phase velocity v, of a wave of any frequency v, is the slope of the line 
drawn from the origin to that point. The group velocity is the slope of the 
tangent to the curve at (v,  k) where v is the mean frequency of the 
waves composing the group.

Continued

A sequence of ripple tank photos of a wave packet traveling in the upward 
direction starting at the left. The arrows mark the crest, which travels faster 
than the packet, and eventually vanishes at its leading edge (top right). 
This sort of normal dispersion corresponds to v 7 vg. (B. Ströbel, “Demonstration 

and study of the dispersion of water waves with a computer-controlled ripple tank,” Am. J. Phys. 

79(6), 581–590 [June, 2011], American Association of Physics Teachers)
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Be very careful here!

We are dealing with a situation of normal dispersion where 
(∆n>∆l) 6 0, that is, the index decreases as l increases. 
Hence

vg = 1.828 0 * 108[1 + (3.278 4 * 10-7)(-2.327 8 * 105)

vg = 1.828 0 * 108(0.923 69)

 vg = 1.688 * 108 m>s
The average phase velocity is

v =
c
n

=
2.998 * 108

1.640

and

v = 1.828 * 108 m>s
As is appropriate v 7 vg.

Return to Fig. 7.18, where the medium is normally disper-
sive and the phase velocity will be taken as the velocity of the 

group velocity in the medium (CS2) and compare it to the aver-
age value of the phase velocity.

SOLUTION 

From Problem 7.36

vg =
c
n

+
lc

n2  
dn
dl

and, more conveniently,

vg =
c
n

 a1 +
l

n
 
dn
dl

b
The definition of vg calls for it to be evaluated at v so let’s  
rewrite this expression as

vg =
c
n

 a1 +
l

n
 
∆n
∆l

b
where the average values are

n =
nF + nD

2
  and  l =

lF + lD

2

then

vg =
2.998 * 108

1.640
 a1 +

537.65 * 10-9

1.640
 
∆n
∆l

b

(a)

v1 (t2 – t1)

v2 (t2 – t1)

t = t1

t = t2

vg (t2 – t1)

(b)

(c)

(d)

Figure 7.21  Group and phase velocities. In 
(a) the two waves coincide at the point indicat-
ed by an ⊗ . And in (b) the peak of the modu-
lated wave occurs at that point. But the waves 
travel at different speeds in (c) and the two 
original peaks (marked by x and ~ ) separate.  
A different pair now coincide in (d) to form the 
high point of the modulated wave, which 
therefore travels at yet a different speed. Here 
v1 7 v2 7 vg, and since l1 7 l2 this is a 
case of normal dispersion.
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308 Chapter 7 The Superposition of Waves

Alternatively:

 v = akΥ
r
b

1>2
=
v

k

 v = k akΥ
r
b

1>2
= k3>2 aΥ

r
b

1>2

 vg =
dv
dk

=
3
2

 k1>2 aΥ
r
b

1>2
=

3
2

 v

As established in Problem 7.33,

ng = n - l
dn
dl

In a dispersive medium n is a function of l, and so ng is a func-
tion of l as well. Moreover, as shown in Fig. 3.42, in regions of 
normal dispersion dn>dl 6 1 and we can expect ng 7 n for or-
dinary optical media. For example, Fig. 7.22 displays the wave-
length dependence of both the phase and group indices for 
fused silica glass (pure SiO2) over the range from mid-light, 
500 nm, to 1900 nm in the IR. The fact that ng is nearly horizon-
tal in the region around 1300 nm is very important in modern 
communications applications. It means there will be little dis-
persion to disturb signals if we use 1300 nm IR as the carrier to 
send data pulses down long glass fiberoptic cables.

carrier, that is, of the roughly sinusoidal wave of frequency v. 
Because the peaks of the carrier travel faster than does the 
pulse as a whole, they appear to enter it at the left, sweep 
through it, and vanish off at the right. Although each peak of 
the carrier changes height as it progresses across the pulse, 
v(v) is the speed of any such peak and it’s therefore properly 
the speed of the condition of constant phase. By contrast, the 
modulation envelope travels at a speed vg(v) = (dv>dk) v, 
which in this particular instance equals one quarter of v(v). 
Any point on the envelope (e.g., the maximum at the center of 
the pulse) moves at a speed vg(v), which is the speed of the 
condition of constant magnitude.

EXAMPLE 7.4

The speed at which short-wavelength ripples travel over water 
is given by

v = a2pΥ
lr

b
1>2

where Υ is the surface tension and r is the density of water. Deter-
mine the corresponding group velocity (actually the group “speed”).

SOLUTION 

By definition

vg =
dv
dk

=
d(2pn)

d(2p/l)
=

dn
d(1/l)

Here v = nl = (2pΥ/lr)1>2 and

n = a2pΥ
lr

b
1>2

a1
l
b = a2pΥ

r
b

1>2
a1
l
b

3>2

dn
d(1/l)

= a2pΥ
r

b
1>2

a3
2
b a1

l
b

1>2

vg =
3
2

 a2pΥ
lr

b
1>2

=
3
2

 v

Alternatively, from Eq. (7.38),

 vg = v + k 
dv
dk

= v + k 
d
dk

 akΥ
r
b

1>2

 vg = akΥ
r
b

1>2
+ k aΥ

r
b

1>2 d
dk

 k1>2

 vg = akΥ
r
b

1>2
+ k aΥ

r
b

1>2
 
1
2

 k-1>2

 vg = akΥ
r
b

1>2
+

1
2

 akΥ
r
b

1>2

 vg =
3
2

 akΥ
r
b

1>2

Figure 7.22  A plot of both the phase index of refraction (n) and the 
group index of refraction (ng) for fused silica glass (SiO2). The point of 
inflection of n is at 1312 nm and ng is minimum there.
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7.3 Anharmonic Periodic Waves

It has already been asserted—without proof—that any real 
wave in space can be constructed out of appropriately selected 
harmonic waves having the right spatial frequencies, ampli-
tudes, and relative phases. The technique that accomplishes this 
feat is called Fourier analysis, and it’s one of the most impor-
tant methodologies in all of theoretical physics. This section 
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shows how that synthesis is actually carried out, although we 
will be a little untraditional and develop the procedure using 
two complementary approaches. Because the usual analytic 
method is a little obscure mathematically, we start with a more 
intuitive graphical approach that will make obvious what the 
formal math really does. The methods developed apply equally 
to spatial events (i.e., ones that exist at many locations in space 
all at one time, like waves on a rope) and to temporal events 
(i.e., ones that exist at one location in space at many moments 
in time, like an AC voltage). In all that follows it will be as-
sumed that we are dealing with real phenomena that are there-
fore describable by mathematically well-behaved functions.

7.3.1 Fourier series

The shape of a wave in space (i.e., its profile), or a signal in 
time, is often referred to as a waveform. Earlier in this chapter 
(Fig. 7.9) it was shown how several harmonic waveforms of the 
same frequency add to produce a resultant harmonic waveform 
of the same frequency. That observation can be generalized: re-
gardless of their amplitudes and relative phases, the superposi-
tion of any number of harmonic waveforms of the same fre-
quency results in a harmonic waveform of that same frequency. 
By contrast, adding waveforms of different frequencies, as in 
Fig. 7.23, results in a composite that is anharmonic (i.e., not 
sinusoidal).

Figure 7.23 begins to suggest that by using a number of sinu-
soidal functions judiciously selected, it would be possible to 
synthesize some interesting wave profiles. The wavelengths of 
the sinusoids in that illustration, l1 and l2, are different, and 
after one cycle they’re out-of-phase. But after N1 cycles of one 
and N2 cycles of the other (where N1 and N2 are whole num-
bers), such that l1N1 = l2N2, they’ll be back in-phase and the 
resultant will repeat itself over and over again; the synthesized 
function is periodic with a spatial period l. 

When several harmonic waveforms are added without much 
concern for wavelength (Fig. 7.24), the periodicity of the resul-
tant can require a great many cycles of its constituents before it 
becomes established. By contrast, starting with the longest 
waveform, of wavelength l, and adding to it waveforms with 
wavelengths of l>2, l>3, l>4, and so forth, produces a resul-
tant that also has a wavelength or spatial period of l. This is 
because all of the contributing shorter waveforms fit exactly a 
whole number of times into the fundamental l-wavelength.

Figure 7.23  The superposition of two 
harmonic waves of different frequency. 
The resultant wave is periodic but  
anharmonic.

E2

E1

E

E = E1 +  E2

l1

l2

l

Figure 7.24  The sum of three equal-amplitude sinusoids: c1(x) = 3 sin px, 
c2(x) = 3 sin (px>4), and c3(x) = 3 sin (px>3). Here l1 = 2, l2 = 8, and 
l3 = 6.
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That’s what is happening in Fig. 7.25a in the time domain. 
Notice that here, just for the sake of illustration, the waveforms 
start (at the origin at the left) at varying points in their cycles; 
in other words, they have different phases. The amplitude of 
each constituent waveform is indicated by a vertical bar, and 
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310 Chapter 7 The Superposition of Waves

those bars are all displayed at their corresponding frequencies 
in Fig. 7.25c. For the moment these amplitude bars are all arranged 
above the axis; we’ll soon introduce a more informative way of 
displaying them. In any event, such a graph, which is called a 
frequency spectrum, tells us how much of each sinusoid of a 
given frequency must be added in to generate the resultant wave 
shown in Fig. 7.25b. 

Suppose that we want to synthesize some periodic waveform 
ƒ(x), of spatial period l, using harmonic contributions. The 
above discussion suggests that we would do well to start with a 
sinusoid or cosinusoid that also has a wavelength of l and add 
to it harmonic terms whose arguments contain whole-number 
fractions of l.

The waveform depicted in Fig. 7.24, which is exclusively a 
sum of sines and  cosines, wiggles about the central x-axis seem-
ingly as much above as below it. Of course, the whole resultant 
could be raised or lowered by simply adding in a positive or 
negative constant, as is done in Fig. 7.26. There the straight line 
at a height A0>2 above the x-axis corresponds to such a constant, 
and in that particular instance it equals 1.0. Why this constant is 
written as A0 on 2 will be explained presently. Because it is not 
associated with any frequency, this contribution is often called 

the DC term; we’ll examine its physical significance in Optics 
later on. 

An excep tionally beautiful mathematical technique for ana-
lyzing periodic functions was devised by the French physicist 
Jean Baptiste Joseph, Baron de Fourier (1768–1830). That the-
ory is predicated on what has come to be known as Fourier’s 
Theorem, which states that a function ƒ(x), having a spatial 
period l, can be synthesized by a sum of harmonic functions 
whose wavelengths are integral submultiples of l (that is, l, 
l>2, l>3, etc.) This Fourier-series representation has the math-
ematical form

ƒ(x) = C0 + C1 cos a2p
l

 x + e1b

+ C2 cos a 2p
l>2 x + e2b + c  (7.41)

where the C-values are constants, and of course the profile ƒ(x)
may correspond to a traveling wave ƒ(x - vt). Notice that the 
argument of each cosine is unitless, as it must be. To get some 
sense of how this scheme works, observe that although C0 by 
itself is obviously a poor substitute for the original function, it 
will be appropriate at those few points where it crosses the ƒ(x) 
curve. In the same way, adding on the next term improves things 
a bit, since the function

[C0 + C1 cos (2px>l + e1)]

will be chosen so as to cross the ƒ(x) curve even more frequently. 
If the synthesized function [the right-hand side of Eq. (7.41)] 
comprises an infinite number of terms, selected to intersect the 
anharmonic function at an infinite number of points, the series 
will presumably be identical to ƒ(x).

It is usually more convenient to reformulate Eq. (7.41) by 
making use of the trigonometric identity

Cm cos (mkx + em) = Am cos mkx + Bm sin mkx

Figure 7.25  (a) The superposition of six harmonic temporal waves with 
different amplitudes and frequencies. (b) The resultant periodic function. 
(c) The frequency spectrum.
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Figure 7.26  The decomposition of a periodic function ƒ(x) into its  
harmonic Fourier components. Here ƒ(x) = 1 + sin kx - 1
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1
2 A0 and cos kx is 1

2 A0 cos kx and the area under that curve is 
zero, so it contributes nothing. The second term, A1 cos 1kx, is 
of special interest and we’ll come back to it after we review the 
technique of multiplying functions.

To numerically multiply cos kx and, say, sin 2kx, partition the 
graphs of each function into the same number of equally spaced 
intervals with a series of vertical lines, as in Fig. 7.28. Then 
multiply the corresponding pairs of values where these lines 
intersect the two curves: 1.00 * 0, 0.966 * 0.500, 0.866 *
0.866, 0.707 * 1.00, and so on. A plot of the resulting numbers  
(Fig. 7.28c) reveals the purpose of the exercise. Imagine the 
whole diagram divided into four 1

4 l-regions (here bounded by 
dashed lines). The product curve has two positive peaks and two 
identical negative peaks such that the area beneath that entire 
curve is zero. The symmetry is such that for every 1

4 l-segment 
of cos kx multiplying a corresponding segment of sin 2kx produc-
ing a positive area, there will be a matching segment producing 
an equal negative area. And this is true regardless of the spatial 

where k = 2p>l, l being the wavelength of ƒ(x), Am =   
Cm cos em, and Bm = -Cm sin em. Thus

       ƒ(x) =
A0

2
+ ^

∞

m = 1
Am cos mk  x + ^

∞

m = 1
Bm sin mk  x (7.42)

The first term is written as A0>2 because of the mathematical 
simplification it will lead to later on. This equation says that a 
periodic waveform ƒ(x) can be synthesized out of an infinite 
number of terms such that

ƒ(x) =
A0

2
+ A1 cos 1kx + A2 cos 2kx + A3 cos 3kx + c

+  B1 sin 1kx + B2 sin 2kx + B3 sin 3kx + c

All we have to do now is figure out how to determine each of 
the Am and Bm coefficients. To that end, note that the right side 
of the above equation in its totality is identical in all regards to 
the left side. This means that the area under a plot of the func-
tion ƒ(x) taken over a distance of, say, l must equal the sum of 
all of the areas under separate plots of each of the terms on the 
right taken over that same distance l. As soon as we settle a few 
details this observation will provide a means of determining the 
value of A0.

When we talk about “the area under a curve” what is meant is 
the area enclosed between the curve and the horizontal zero-axis, 
computed over some specified range, in this case, of x. Area seg-
ments above the x-axis are positive, those below are negative, 
and the total area is the difference (of their absolute values). 

For the moment let’s skip the DC term and find the area un-
der each harmonic term on the right in the above expression for 
ƒ(x). Over a distance l each of these contributions oscillates 
through a whole number of cycles and is therefore symmetrical 
in area above and below the x-axis. The net area contribution 
under A1 cos 1kx and A2 cos 2kx and all of the other cosine 
terms is therefore zero. And that’s true as well for the area under 
B1 sin 1kx and B2 sin 2kx and all of the other sine terms; they’re 
all zero. Thus the only quantity on the right contributing to the 
area over an interval of l is A0>2. In other words, the area under 
ƒ(x) equals one-half the area under the constant A0. That rectan-
gular area of height A0 and length l equals A0 * l. Thus 12A0l 
equals the area under ƒ(x) and so

A0 =
2
l

* the area under ƒ(x)

Later on we will write a more formal integral expression for 
“the area under ƒ(x)” but this will do for the moment.

We can apply a similar approach to determining the other Am
and Bm coefficients. Accordingly, imagine some periodic func-
tion ƒ(x) and its various Fourier components as shown sche-
matically in Fig. 7.27. To find A1 we will utilize an approach 
that involves forming the product of cos kx with each term on 
the right, and then finding the area under that product computed 
over a single cycle of ƒ(x), namely, l. Clearly, the product of 

Figure 7.27  The Fourier decomposition of the periodic anharmonic func-
tion ƒ(x). The spatial period or wavelength of ƒ(x) is l.
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312 Chapter 7 The Superposition of Waves

height A1 and length 1
2l is simply 1

2 A1l. Thus the area under 
ƒ(x) cos kx = 1

2 A1l and so

A1 =
2
l

* the area under ƒ(x) cos kx

computed over one spatial period of ƒ(x). 
Given some periodic waveform ƒ(x) that we wish to synthe-

size, the Fourier coefficient A1 is found by computing the area 
under the ƒ(x) cos kx curve over one spatial period l and then 
dividing that by 12 l. In precisely the same way,

A2 =  
2
l

* the area under ƒ(x) cos 2kx

computed over one spatial period of ƒ(x). In general, for m = 0,  

1, 2, 3, . . .

Am =
2
l

* the area under ƒ(x) cos mkx

This expression applies to A0 as well, which was the reason 
for starting the series [Eq. 7.42)] with A0>2. Thus A0 is the 
zeroth amplitude coefficient and A0>2 is the DC term in the 
series.

If we go through this entire process all over again in order to 
compute B1, this time multiplying by sin 1kx, we would get 
much the same results: 

B1 =
2
l

* the area under ƒ(x) sin kx

computed over one spatial period of ƒ(x). In general, for m = 0, 
1, 2, 3, . . .

Bm =
2
l

* the area under ƒ(x) sin mkx

Quite often we will have “ƒ(x)” not as an actual function but 
as a collection of data points (see Section 7.4.4). The process 
of numerically determining the Am and Bm coefficients using 
the above scheme is called discrete Fourier analysis and it’s 
usually performed by a computer. If, on the other hand, we 
have an expression for ƒ(x), the easiest way to calculate the 
needed areas is via integration. 

What follows is the equivalent of what we have already stud-
ied more or less graphically, now carried out with well-behaved 
functions using integrals. The agenda is the same, namely, to 
determine the Am and Bm coefficients. To that end, integrate 
both sides of Eq. (7.42) over any spatial interval equal to l, for 
example, from 0 to l or from -l>2 to +l>2 or, more generally, 
from x′ to x′ + l. Since over any such interval

3l
0

sin mk  x dx = 3l
0

cos mk  x dx = 0

frequency of either function as long as they are not the same. Thus 
the area under (cos kx)(A2 cos 2kx) is zero, just as the areas under 
(cos kx)(A3 cos 3kx), (cos kx)(B1 sin 1kx), (cos kx)(B2 sin 2kx), 
(cos kx)(B3 sin 3kx), and so on, are all zero. 

Now back to the A1 cos kx term, which is different from the 
others, since on multiplying by (cos kx) we get (cos kx)
(A1 cos kx) = A1 cos2 kx, which is everywhere positive. Figure 
7.29a is a plot of A1 cos2 kx extending for a distance l. To deter-
mine the area under that curve, examine Fig. 7.29b, where the 
second half is cut in two, flipped over, and neatly slid into the 
valley in the first half. The area of the resulting rectangle of 

Figure 7.28  The product of two harmonic functions cos kx and sin 2kx.
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Figure 7.29  The area under the curve A1 cos2 kx over an interval l 
equals A1 l>2.
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 7.3 Anharmonic Periodic Waves 313

there is only one nonzero term to be evaluated, namely, 

3l
0

ƒ(x) dx = 3l
0

  
A0

2
 dx = A0 

l

2

and thus 

 A0 =
2
l3

l

0
ƒ(x) dx  (7.43)

To find Am and Bm we will make use of the orthogonality of  
sinusoidal functions (Problem 7.43), that is, the fact that

 3l
0

sin ak  x cos bkx dx = 0 (7.44)

 3l
0

cos ak  x cos bkx dx =
l

2
 dab (7.45)

 3l
0

sin ak  x sin bkx dx =
l

2
 dab (7.46)

where a and b are nonzero positive integers and dab, known as 
the Kronecker delta, is a shorthand notation equal to zero when 
a Z b and equal to 1 when a = b. To find Am we now multiply 
both sides of Eq. (7.42) by cos /kx, / being a positive integer, 
and then integrate over a spatial period. Only one term is non-
vanishing, and that is the single contribution in the first sum, 
which corresponds to / = m, in which case

3l
0

ƒ(x) cos mk  x dx = 3l
0

Am cos2 mk  x dx =
l

2
 Am

Thus Am =
2
l3

l

0
ƒ(x) cos mk  x dx (7.47)

This expression can be used to evaluate Am for all values of m, 
including m = 0, as is evident from a comparison of Eqs. (7.43) 
and (7.47). Similarly, multiplying Eq. (7.42) by sin /k x and in-
tegrating, leads to

 Bm =
2
l3

l

0
ƒ(x) sin mk  x dx (7.48)

In summary, a periodic function ƒ(x) can be represented as a 
Fourier series

 ƒ(x) =
A0

2
+ ^

∞

m = 1
Am cos mk  x + ^

∞

m = 1
Bm sin mk  x [7.42]

where, knowing ƒ(x), the coefficients are computed using

 Am =
2
l3

l

0
ƒ(x)  cos mk  x dx  [7.47]

and Bm =
2
l3

l

0
ƒ(x) sin mk  x dx  [7.48]

Be aware that there are some mathematical subtleties related to 
the convergence of the series and the number of singularities in 
ƒ(x), but we need not be concerned with these matters here.

Certain symmetry conditions are well worth recognizing, 
because they lead to some computational shortcuts. Thus if a 
function ƒ(x) is even, that is, if ƒ(-x) = ƒ(x), or equivalently, if 
it is symmetrical about x = 0, its Fourier series will contain 
only cosine terms (Bm = 0 for all m) that are themselves even 
functions. Likewise, odd functions that are antisymmetrical 
about x = 0, that is, ƒ(-x) = -ƒ(x), will have series expan-
sions containing only sine functions (Am = 0 for all m). In ei-
ther case, one need not bother to calculate both sets of coeffi-
cients. This is particularly helpful when the location of the 
origin (x = 0) is arbitrary, and we can choose it so as to make 
life as simple as possible. Nonetheless, keep in mind that many 
common functions are neither odd nor even (e.g., e 

x).
The serrated “saw tooth” of wavelength l drawn in Fig. 7.30 

is an odd function; whatever its value is a certain distance to the 
right of the origin, its value is the negative of that, at the same 
distance to the left of the origin. Thus it can be synthesized out of 
sinusoids alone. Moreover, the component harmonic functions 

Figure 7.30  (a) An approximation of a saw-tooth wave. Ordinarily, such a 
wave would be composed of thousands of sine components and have 
straight edges that meet at sharp points. (b) The six harmonic waves, with 
different amplitudes and frequencies, that constitute this wiggly saw tooth. 
(c) The frequency spectrum. 
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314 Chapter 7 The Superposition of Waves

are all in-phase and zero at the origin. The necessity for that is 
clearer in Fig. 7.31, where you can see how the sinusoidal wave-
lets, which are all zero to start, add constructively just beyond the 
origin, then fall out-of-phase, begin to cancel one another, and all 
reach zero again at l>2 (i.e., at the first dashed line in Fig. 7.30). 
Beyond that point the wavelets, being sinusoids, appear as if  
reflected twice (horizontally and then vertically), as does the re-
sultant curve, which is now negative. Notice that the smallest 
component wavelet fits six times into l, and there are six small 
bumps on the edge of this six-term wiggly saw tooth.

This suggests that adding in terms with higher and higher 
frequency, and with finer and finer wavelengths and smaller 
amplitudes, would smooth out the synthesized function. That’s 
nicely illustrated in Fig. 7.32, where we go from 3 terms, to 7, 
to 11, to 100. The spike or ringing at each jump discontinuity 
in the last part of the figure is an artifact of the process called 
the Gibbs phenomenon.

EXAMPLE 7.5

Compute the Fourier series for the square waveform shown in 
Fig. 7.33.

SOLUTION

ƒ(x) = e +1 when 0 6 x 6 l>2
-1 when l>2 6 x 6 l

The area under one cycle of ƒ(x) is zero—hence A0 = 0.

Since ƒ(x) is odd, Am = 0, and

Bm =
2
l

 3l>2
0

 (+1) sin mk  x dx +
2
l

 3l
l>2

 (-1) sin mk  x dx

thus

Bm =
1

mp
 [-cos mk  x]0

l>2 +
1

mp
 [cos mkx]l>2

l

Figure 7.31  Here we see how the component wavelets go in- and  
out-of-phase.

Figure 7.32  Fourier series for a saw-tooth curve. (a) Three terms.  
(b) Seven terms. (c) Eleven terms. (d) One hundred terms.

(a)

(b)

(c)

(d)

Remembering that k = 2p>l, we obtain

Bm =
2

mp
 (1 - cos mp)

The Fourier coefficients are therefore

B1 =
4
p

,  B2 = 0,  B3 =
4

3p
,

B4 = 0,  B5 =
4

5p
 , . . . ,

and the required series is simply

         ƒ(x) =
4
p

 (sin kx + 1
3 sin 3kx + 1

5 sin 5k  x + g) (7.49)
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 7.3 Anharmonic Periodic Waves 315

Figure 7.34 is a plot of a few partial sums of the above series 
as the number of terms increases. We could pass over to the 
time domain to find ƒ(t) by just changing kx to vt. Suppose 
that we have three ordinary electronic oscillators whose out-
put voltages vary sinusoidally and are controllable in both fre-
quency and amplitude. If these are connected in series with 
their frequencies set at v, 3v, and 5v and the total signal is 
examined on an oscilloscope, we can synthesize any of these 
curves. Similarly, we might simultaneously strike three keys 
on an appropriately tuned piano with just the correct force on 
each to create a chord, or composite sound wave, having the 
curve in Fig. 7.34c as its profile. Curiously enough, the human 
ear–brain audio system is capable of Fourier analysis of a 
simple composite wave into its harmonic constituents. Pre-
sumably there are people who could even name each note in 
the chord.

Earlier we postponed any detailed consideration of anhar-
monic periodic functions and restricted the analysis to purely 
sinusoidal waves. We now have a cogent rationale for having 
done so. From here on we can envision this kind of disturbance 
as a superposition of harmonic constituents of different fre-
quencies whose individual behavior can be studied separately. 
Accordingly, we can write

ƒ(x ± vt) =
A0

2
+ ^

∞

m = 1
Am cos mk(x ± vt)

 + ^
∞

m = 1
Bm sin mk (x ± vt) (7.50)

or, equivalently,

 ƒ(x ± vt) = ^
∞

m = 0
 Cm cos [mk (x ± vt) + em] (7.51)

for any such anharmonic periodic wave.
As a last example, let’s analyze the square waveform of  

Fig. 7.35 into its Fourier components. Notice that with the ori-
gin chosen as shown, the function is even, and all the Bm terms 

Figure 7.33  The profile of a periodic square wave.
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Figure 7.34  Synthesis of the profile of a periodic square wave. Notice 
that all of the constituent waves are in-phase and zero wherever the square 
wave is zero. Since all the sine waves are in-phase at x = 0, all the Bm 
coefficients are positive. The photograph is of the face of an oscilloscope 
displaying a time-varying voltage created by two signal generators repro-
ducing the curve in part (b). (E.H.)
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316 Chapter 7 The Superposition of Waves

where it is in Fig. 7.33 to where it is in Fig. 7.35 will change 
sines into cosines in the analysis, but otherwise leave the con-
stituent harmonic functions in Fig. 7.34 unaltered. The sinusoids 
that make up the square pulse in Fig. 7.34 will be the cosinu-
soids that make it up in Fig. 7.35b. With the vertical axis in the 
middle of the square peak, it’s clear from Fig. 7.35b that alter-
nate cosines will have to be negative at x = 0.

The width of the square peak, 2(l>a), can be any fraction of 
the total wavelength, depending on a. The Fourier series is then

 ƒ(x) =
2
a

+ ^
∞

m = 1
 
4
a

 (sinc m2p>a) cos mk  x (7.53)

If we were synthesizing the corresponding function of time, 
ƒ(t), having a square peak of width 2(t>a), the same expres-
sion, Eq. (7.53), would apply where k  x was simply replaced 
by vt. Here v is the angular temporal frequency of the peri-
odic function ƒ(t) and is known as the fundamental. It is the 
lowest frequency of the cosine term and arises when m = 1. 
Frequencies of 2v, 3v, 4v, . . . are known as harmonics of 
the fundamental and are associated with m = 2, 3, 4, . . . . In 
much the same way, since l is the spatial period, k K 1>l is 
the spatial frequency, and k = 2pk is called the angular 
spatial frequency. Again one speaks of the harmonics, of 
frequency 2k, 3k, 4k, . . . , where these are spatial alterna-
tions. Evidently, the dimensions of k are cycles per unit 
length (e.g., cycles per mm or possibly just cm-1), and those 
of k are radians per unit length.

Let’s clarify a few points so as to avoid future confusion 
concerning the use of the terms spatial frequency and spatial 
period (or wavelength). Consider a disturbance oscillating in 
time and moving through space. Figure 7.35a shows such a 
one-dimensional periodic waveform spread out in space along 
the x-axis. This might be the profile of a rather extraordinary 
disturbance moving along a taut rope. It repeats itself in space 
over a distance known as the wavelength, and one over that is 
the spatial frequency.

Now suppose instead that the pattern corresponds to a 
stationary irradiance distribution, a series of bright and dark 
stripes—for instance, the kind of thing you might see looking 
through a narrow horizontal slit against a picket fence or, even 
better, while scanning on a line across a group of fixed alter-
nately clear and opaque bands (Fig. 13.30) illuminated by 
monochromatic light. Again the pattern will have some spatial 
period and frequency determined by the rate at which the bands 
repeat in space. As ever, the light field will also have a spatial 
frequency (k) and period (l), as well as a temporal frequency 
and period, quite apart from the variations of the pattern. The 
stationary pattern might have a wavelength of 20 cm, and the 
light generating it a wavelength of 500 nm. Wherever there 
might be confusion, we will reserve the symbol k for the light-
wave itself and use k to describe stationary spatial optical 
patterns. This distinction will become more important in later 
chapters.

are zero. The appropriate Fourier coefficients (Problem 7.44) 
are then

 A0 =
4
a

 and Am =
4
a

 asin m2p>a
m2p>a b (7.52)

Incidentally, had the pulse been a rectangle of height h, rather 
than a square of height 1.0, each coefficient in Eg. (7.52) would 
have been multiplied by h. Unlike the previous function [Eq. (7.49)], 
this one has a nonzero value of A0, since the curve lies com-
pletely above the axis.

The expression (sin u)>u, which we studied earlier (p. 59), 
was given the name sinc u, and its values are listed in Table 1 in 
the appendix. Since the limit of sinc u as u goes to zero is 1, Am 
can represent all the coefficients, if we let m = 0, 1, 2, . . . . 
Notice, too, that because the sinc function has negative values, 
some of the Am coefficients will now be negative. This means 
that some of the higher order cosines will be 180° out-of-phase 
with the m = 1 cosine term. That is to say, a negative Am in the 
frequency spectrum tells us that the corresponding cosine 
term when added in must be flipped over about the x-axis. 
We’ll come back to this notion presently.

Three things distinguish the functions in Figs. 7.33 and 7.35, 
which otherwise have the same shape: the location of the x = 0 
axis, the location of the ƒ(x) = 0 axis, and the height of the 
steps. Consequently, beyond the constant A0, the constituent 
harmonic terms must have the same relation to either ƒ(x) when 
they are plotted. In other words, moving the x = 0 axis from 

Figure 7.35  An even periodic anharmonic function. In part (b) the area 
under the pulse is (2l>a) * 1 and A0 = (2>l)(2l>a) = 4>a. The DC term 
in the Fourier series is A0>2 = 2>a.
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 7.3 Anharmonic Periodic Waves 317

Return to the square function of Fig. 7.35 where now a = 4, 
or in other words the peak has a width of l>2. In that instance

ƒ(x) =
1
2

+
2
p

 acos kx +
1
3

 cos 3kx +
1
5

 cos 5kx - gb (7.54)

As a matter of fact, if the graph of the function ƒ(x) is such 
that a horizontal line could divide it into equally shaped seg-
ments, above and below that line, the Fourier series will con-
sist of only odd harmonics.

You can appreciate why that might be the case from Fig. 7.34. 
There every half cycle of the square waveform contains an odd 
number of half wavelengths of each contributing odd harmonic. 
This means that the area under the product curve [there, ƒ(x) 
sin mkx] will be nonzero and all odd harmonics will have non-
zero coefficients. By contrast, if the argument of a given com-
ponent is an even multiple of kx, then there will be an even 
number of wavelengths of that harmonic within the distance l. 
Consequently, an even number of those harmonic waveforms 
will fit within each half cycle of ƒ(x). Provided the function be-
ing synthesized can be shifted (by a DC term) so that it is sym-
metrical above and below the horizontal axis, the product area  
[ƒ(x) sin mkx or ƒ(x) cos mkx] will be zero over a distance l for  
m = 2, 4, 6, . . . and the corresponding coefficients (Am or Bm) will 
be zero (see, for instance, the triangle function in Problem 7.45).

Figure 7.36 is a plot of the square pulse with a = 4 as repre-
sented by the series in Eq. (7.54) where A0 = 1 and the DC term 
is A0>2. Appropriately, all of the even Am terms are absent. 
Equation (7.53) for the Fourier coefficients contains the quan-
tity sinc m2p>a, and so the dashed curve that forms the enve-
lope of the Am coefficients is a sinc function. We saw in Chapter 
3 that sinc u equals zero when u = p, 2p, 3p, and so on. For  
a = 4 the quantity m2p>a becomes mp>2, and when m = 2,  
4, 6, . . . the sinc is zero, the dashed curve crosses the axis, and the 
corresponding Am coefficients are again absent from the series.

Were we to plot the curve representing the partial sum of the 
terms through m = 9 in Eq. (7.54), it would closely resemble 
the  square wave. In contrast, if the width of the peak is reduced, 
the number of terms in the series needed to produce the same 

general resemblance to ƒ(x) will increase. This can be appreci-
ated by examining the ratio

 
Am

A1
=

sin m2p>a
m sin 2p>a (7.55)

Observe that for a = 4, the ninth term (i.e., m = 9) is fairly 
small, A9 ≈ 10% A1. In comparison, for a peak 100 times nar-
rower (that is, a = 400), A9 ≈ 99% A1. Making the peak nar-
rower has the effect of introducing higher-order harmonics, 
which in turn have smaller wavelengths. We might guess, 
then, that it is not the total number of terms in the series that is 
of prime importance but rather the relative dimensions of the 
smallest features being reproduced and the corresponding 
wavelengths available.* If there are fine details in the profile, 
the series must contain comparatively short-wavelength (or in 
the time domain, short-period) contributions.

The negative values of Am in Eq. (7.53) should simply be 
thought of as the amplitudes of those harmonic contributions 
that are to be added into the synthesis with their phases shifted 
by 180°, as compared with the positive terms. The equivalence 
between a negative amplitude and a p-rad phase shift is clear 
from the fact that Am = cos (kx + p) = -Am cos kx.

To see how all of this comes together examine the function 
in Fig. 7.37 where now a = 8, but the size of the peak is un-
changed because the spatial period is doubled from 1 cm to 2 cm. 
The function is still even and therefore, as before, there are only 
Am terms in the series. Nonetheless, the frequency spectrum has 
changed in several ways. Unlike Fig. 7.36 (where A2, A4, A6, 
etc., were zero) the waveform cannot now be raised or lowered 
so as to make it symmetrical with the axis; hence the synthesis 
contains both odd and even values of m and therefore of the ar-
gument of cos mkx. The space between successive Am terms is 
k, which equals 2p>l, and because l has doubled, that space 
has been halved; there are more cosine contributions squeezed 
tighter together.

*Evidently, one is not going to be able to build a castle of blocks unless the blocks 
are a good deal smaller than the castle.

l

0
0

1

0

A0
A1

A2 A3

0 2k 3k 4k 5kk
0 4p 6p 8p 10p

8k
16p

10k
20p2p

Fo
ur

ie
r 

co
ef

�c
ie

nt
s

f (x)

ll�4
1�4 1 (cm)

a = 4
l = 1 cm

x

mk
k = 2p

–l�4
–1�4

1

1
2

Figure 7.36  A periodic square waveform and its spatial frequency  
spectrum. Here l, the spatial period, equals 1.0 cm and each pulse is half a 
wavelength wide. Note that only two of the infinite number of peaks are shown.

Figure 7.37  A periodic square waveform and its spatial frequency  
spectrum. Here l = 2.0 cm and each pulse is one-quarter wavelength 
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318 Chapter 7 The Superposition of Waves

The way to physically generate a frequency comb is to pro-
duce a series of equally spaced, identical, very short oscillatory 
bursts. The ideal instrument to do just that is a mode-locked 
laser, which has a very regular repetition rate, typically around 
109 Hz. The temporal period (t) of the pulses (not the period of 
the carrier) is the time between emission of successive bursts 
(i.e., one over the repetition rate) and it’s constant. As was the 
case spatially in Fig. 7.37 the separation between successive 
temporal frequency spikes in Fig. 7.39b goes as 1>t, which is 
the inverse of the time between pulses. If the laser puts out a 
pulse every N nanoseconds the spikes in the comb will each be 
separated by 1>N gigahertz. The shorter the burst in compari-
son to t, the more spikes will be present in the comb. With a 
repetition rate of one GHz, a comb spanning the visible region 
of the spectrum (see Table 3.4), which is roughly 380 * 1012 Hz 
wide, will have about 380 000 frequency spikes. A stable laser 
will produce a comb with very narrow-frequency teeth. Today 
the best laser for the job is the titanium-doped sapphire or 
Ti:sapphire laser, known in the trade as a Ti:sapph. 

Most materials have an index of refraction that is very slightly 
dependent on irradiance (Section 13.4) and that gives rise to 
something called self-phase modulation. When the output of a 
Ti:sapph laser is passed through an adequate length of some 
transparent material like fused silica, self-phase modulation 
broadens the frequency envelope without affecting the comb 
structure. The goal is to spread the envelope so that it spans the 
visible region. Whatever effect the medium has on a single 
pulse it will have the same effect on every identical pulse, and 
so an input of a periodic train of pulses will result in the output 
of a frequency comb. All of this can be done quite efficiently by 
passing the near-IR beam of the laser through a long micro-
structure (also known as a photonic crystal) fiber, which can 
maintain the required high irradiance over a long distance and 
therefore more effectively broaden the spectrum.* 

In 2005 the Nobel Prize in Physics went to John Hall and 
Theodor Hänsch “for their contributions to the development of 
laser-based precision spectroscopy, including the optical fre-
quency comb technique.”

7.4.1 Fourier Integrals

Return to Fig. 7.35 and suppose that we keep the width of the 
square peak constant while l is made to increase without limit. 
As l approaches infinity, the resulting function will no longer 
appear periodic. We then have one single square pulse, the  
adjacent peaks having moved off to infinity. This suggests a 
possible way of generalizing the method of Fourier series to 
include nonperiodic functions. 

To essentially stretch out the function in Fig. 7.35, let’s ini-
tially set a = 4 and choose some value of l; anything will do, 

7.4 Nonperiodic Waves

All real waves are pulses (i.e., finite wavetrains), albeit sometimes 
rather long ones, and so it’s important to learn how to analyze 
nonperiodic functions. Such functions are of great practical interest 
in physics, particularly in Optics and Quantum Mechanics.

We saw earlier (Fig. 7.16) how adding two sinusoids pro-
duces beats; the sines fall out-of-phase, creating a minimum in 
the envelope, and then come back in-phase to produce a maxi-
mum. We might guess that packing in more frequency compo-
nents would necessitate a greater distance in space before they 
all could come back in-phase to form the next maximum in the 
envelope (Fig. 7.38). In other words, the presence of more fre-
quency components might well have the effect of separating 
the pulses. Remember too that the carrier in the beat pattern 
was at the average frequency (call it kp because it’s going to 
turn out to be the peak frequency present). If we add in sinu-
soids symmetrically around kp the carrier oscillation shouldn’t 
change frequency; we can see as much in Fig. 7.38b and via 
Problem 7.21. The agenda that lies before us if we are to gener-
ate a single solitary pulse out of harmonic components (Fig. 7.38e) 
is to determine exactly which frequencies need to be added in 
and how much of each should be included.

Until now we have been developing an elegant mathematical 
way of appreciating waveforms in terms of frequency without 
any concern for practical applications. In that regard this is a 
perfect place for a brief detour into modern optical technology. 
One of the most important new methodologies—one having a 
wide range of applications, from ultrasensitive chemical detec-
tors, fiberoptic communications, and lidar (light detection and 
ranging) systems, to a new generation of high-precision optical 
atomic clocks—is known as the optical frequency comb. It 
consists of tens or even hundreds of thousands of equally 
spaced, narrow, temporal frequency spikes spanning the visible 
region of the spectrum (that should bring to mind the spatial 
frequency comb shown in Fig. 7.38d ). These frequency spikes, 
the colored teeth on the comb, can be used much like a ruler. 
With this kind of tool the frequencies of light, which are much 
higher than can be accessed by any other method, can be mea-
sured with extraordinary precision.

Figure 7.39 is the temporal equivalent of Fig. 7.38; the wave-
form in 7.38d exists in space and the spectrum is a display of 
spatial frequencies. The waveform in 7.39a exists in time, and 
the spectrum  (Fig. 7.39b) is a display of temporal frequencies 
(each having a specific “color”). A short pulse, one, say, 10 
femtoseconds (10 * 10-15 s) in duration, in vacuum, will be 
only about 3 * 10-6 m long. With a carrier wavelength toward 
the end of the visible each pulse will contain only a few oscilla-
tions of the carrier wave (as shown in Fig. 7.39a). Notice that, 
as in Fig. 7.38, the central peak in the comb corresponds to the 
average or carrier frequency. The width of the envelope of the 
comb is inversely proportional to the duration of each wave 
packet emitted by the laser. *S. Cundiff, J. Ye, and J. Hall, “Rulers of light,” Sci. Am. 298, 74 (2008).
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Figure 7.38  Here we start with a single infinitely long sinusoid at a spatial frequency (kp) that’s 
called the carrier (or peak) frequency. Adding in two more frequency components symmetrical about 
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of sinusoids further separates the pulses without changing their shapes or the carrier frequency. This 
is consistent with the fact that as l increases the pulse can be thought of as becoming a finer detail 
of the entire waveform. As we’ll see in Fig. 7.44, if the amplitudes of the constituents form an enve-
lope that is Gaussian (i.e., of the form e-ax2

), the envelopes of the pulses will also be Gaussian.
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320 Chapter 7 The Superposition of Waves

Figure 7.41 successively depicts the overlap of the square peak 
and several cosines: cos 1kx, cos 3kx, and cos 8kx. The shaded  
areas of the cosines under the square peak, that is, under ƒ(x) 
cos mkx, get smaller and so A1, A2, A3, . . . get smaller as well. The 
component cos 4kx has a wavelength of 1 cm (i.e., 1

4l) and one-
half cycle of it fits exactly within the square peak. Higher m terms 
will produce increasing negative-area contributions. When m = 8 
an entire cos 8kx profile will fit precisely within the peak (half 
above and half below the axis) such that the overlap area will be 

say, l = 1 cm so it matches Fig. 7.36. The peak then has a width 
of 1

2 cm, that is, 2(l>a), centered at x = 0, as illustrated in Fig. 
7.40a. The importance of each particular frequency, mk, can be 
appreciated by examining the value of the corresponding Fou-
rier coefficient, in this case Am. The coefficients may be thought 
of as weighting factors that appropriately emphasize the various 
harmonics. Figure 7.40a contains a plot of a number of values 
of Am (where m = 0, 1, 2, . . .) versus mk for the foregoing peri-
odic square waveform. Recall that such a curve is known as the 
spatial frequency spectrum.

We can regard Am as a function, A(mk), of mk, which may be 
nonzero only at values of m = 0, 1, 2, . . . . If the quantity a is 
now made equal to 8 while l is increased to 2 cm, the peak 
width will be completely unaffected. The only alteration is a 
doubling of the space between peaks. Yet a very interesting 
change in the spatial frequency spectrum is evident in Fig. 7.40b. 
Note that the density of components along the mk-axis has in-
creased markedly. Nonetheless, A(mk) is still zero when 
mk = 4p, 8p, 12p, . . . , but since k is now p rather than 2p, 
there will be more terms between these zero points. Finally, let 
a = 16 and increase l to 4 cm. Again the individual square 
peaks are unaltered in shape, but the terms in the frequency 
spectrum are now even more densely packed. In effect, the 
pulse, as compared with l, is getting smaller and smaller, there-
by requiring higher frequencies to synthesize it.

In Fig. 7.40a A2 is zero, and in Fig. 7.40b the sinc function 
is zero at the same location but it’s A4 that is zero, just as A8 is 
zero in Fig. 7.40c. A nice way to appreciate that there must be 
these zero-amplitude terms is to reconsider the statement

Am =
2
l

* the area under ƒ(x) cos mkx

Here ƒ(x) is either 1 or 0, so each Am corresponds to the area 
of the segment of cos mkx under the square peak. The DC 
term in the series is 12 A0 where A0 = (2>l)[area under ƒ(x)] and 
it will be different for each waveform in Fig. 7.40 getting small-
er as the peak gets smaller in comparison to l. For example, in  
Fig. 7.40c, where the area is (1 cm)(1

2 cm), with l = 4 cm A0 
becomes 14.
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Figure 7.39  (a) A stream of femtosecond wave packets each having a 
Gaussian envelope corresponds to a frequency spectrum (b) in the shape of 
a comb having a Gaussian envelope.
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provided that

A(k) = 3 ∞

- ∞
ƒ(x) cos kx dx

and B(k) = 3 ∞

- ∞
ƒ(x) sin kx dx (7.57)

The similarity with the series representation should be obvi-
ous. The quantities A(k) and B(k) are interpreted as the ampli-
tudes of the sine and cosine contributions in the range of an-
gular spatial frequency between k and k + dk. They are the 
Fourier cosine and sine transforms, respectively. In the 
foregoing example of a square pulse, it is the cosine trans-
form, A(k), that will be found to correspond to the envelope 
in Fig. 7.40.

Recall that the first term in the series is 12 A0, which suggests 
another way to represent the frequency spectrum. Inasmuch as 
cos (mkx) = cos (-mkx), we can divide the amplitude of every 
contribution beyond m = 0 in half and plot it twice, once with a 
positive value of k and again with a negative one (Fig. 7.42). 
This mathematical contrivance provides a nice symmetrical 
curve; it’s introduced here because it is common practice to rep-
resent frequency spectra in that fashion.

As we will see in Chapter 11, the most powerful Fourier 
transform methods involve a complex representation that auto-
matically gives rise to a symmetrical distribution of positive and 
negative spatial frequency terms. Certain optical phenomena 
(such as diffraction) also occur symmetrically in space, and a 
marvelous relationship can be constructed with the spatial fre-
quency spectrum, provided that it encompasses positive and 
negative frequencies. Thus the negative frequency is a useful 
mathematical device that allows us to describe physical systems 
that are symmetrical (going off in opposite directions from a 
central point).

zero; that’s why the A8 term is absent in Fig. 7.40c. Whenever the 
sinc function is zero for some value of m, there will be a whole 
number of cos mkx waveforms spanning the peak.

Observe that the sinc-function envelope of the coefficients, 
which was barely discernible in Fig. 7.40a, is quite evident in Fig. 
7.40c. In fact, the envelope is identical in each case, except for a 
scale factor. That curve is determined only by the shape of the 
original signal and will be different for other waveforms. As we 
have already seen, as l increases and the function takes on the ap-
pearance of a single square pulse, the space between each of the 
A(mk) contributions in the spectrum decreases. The discrete spec-
tral lines, while decreasing in amplitude, will gradually merge, 
becoming individually unresolvable. In the limit as l approaches 
∞ , the spectral lines will become infinitely close to each other. As 
k becomes extremely small, m must consequently become ex-
ceedingly large, if mk is to be at all appreciable. Changing nota-
tion, replace mk, the angular frequency of the harmonics, by km. 
Although it comprises discrete terms, in the limit km will be trans-
formed into k (i.e., a continuous frequency distribution). The 
function A(km) in the limit will become the envelope shown in 
Fig. 7.40. It is obviously no longer meaningful to talk about the 
fundamental frequency and its harmonics. The pulse being syn-
thesized, ƒ(x), has no apparent fundamental frequency.

An integral is actually the limit of a sum as the number of 
elements goes to infinity and their size approaches zero. Thus it 
should not be surprising that the Fourier series must be replaced 
by the so-called Fourier integral as l goes to infinity. That 
integral, which is stated here without proof, is

  ƒ(x) =
1
p
c3 ∞

0
A(k) cos kx dk + 3 ∞

0
B(k) sin kx dkd  (7.56)

Figure 7.41  The shaded region is the area under the product 
ƒ(x) * cos mkx. If we multiply that area by 2>l we get the values of Am. 
Notice that when m = 8 the product area (half positive and half negative) 
is zero and A8 = 0.
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322 Chapter 7 The Superposition of Waves

It is a simple matter to write out the integral representation 
of ƒ(x) using Eq. (7.56):

 ƒ(x) =
1
p

 3 ∞

0
E0 L sinc (kL>2) cos kx dx (7.59)

An evaluation of this integral is left for Problem 7.50.

The Cosine Wavetrain

Earlier, when we talked about monochromatic waves, we point-
ed out that they were in fact fictitious, at least physically. There 
will always have been some point in time when the generator, 
however perfect, was turned on. Figure 7.44 depicts a some-
what idealized harmonic pulse with a carrier frequency kp cor-
responding to the function

E(x) = eE0 cos kp  

x when -L … x … L
0 when 0 x 0 7 L

We chose to work in the space domain but could certainly 
have envisioned the disturbance as a function of time. We are 
effectively examining the spatial profile of the wave E(x - vt) 
at t = 0 rather than the temporal profile at x = 0. The spatial 
frequency kp is that of the harmonic region of the pulse itself 
(i.e., the many cosinusoidal undulations depicted in Fig. 7.44a). 
Note that E(x) is an even function; consequently, B(k) = 0 and

A(k) = 3+L

-L
E0 cos kp x cos kx dx

This is identical to

A(k) = 3+L

-L
E0 

1
2 [cos (kp + k)x + cos (kp - k)x] dx

which integrates to

A(k) = E0 L c
sin (kp + k)L

(kp + k)L
+

sin (kp - k)L

(kp - k)L
d

or, if you like,

 A(k) = E0 L[sinc (kp + k)L + sinc (kp - k)L] (7.60)

When there are many waves in the train (lp 6 6  L), kp L 7 7   
2p. Thus (kp + k)L  7 7  2p, and therefore sinc (kp + k)L is 
down to fairly small values. In contrast, when kp = k, the sec-
ond sinc function in the brackets has a maximum value of 1. In 
other words, the function given by Eq. (7.60) can be thought of 
as having a peak at k = -kp as shown in part (b) of the drawing. 
If we limit the treatment to only positive values of k, only the 
tail of that left-side peak that crosses into the positive k region 
will contribute. As we have just seen, such contributions will be 
negligible far from k = -kp, especially when L 7 7  lp and 
the peaks are both narrow and widely spaced. The positive tail 
of the left-side peak then falls off rapidly beyond k = -kp. 

7.4.2 Pulses and Wave Packets

Let’s now determine the Fourier-integral representation of the 
square pulse in Fig. 7.43, which is described by the function

ƒ(x) = eE0 when 0 x 0 6 L>2
0 when 0 x 0 7 L>2

For the moment we’ll limit the analysis to positive values of k. 
Since ƒ(x) is an even function, the sine transform, B(k), will be 
found to be zero. Pressing on,

A(k) = 3 ∞

- ∞
ƒ(x) cos kx dx = 3+L>2

-L>2
E0 cos kx dx

Hence

A(k) =
E0

k
 sin kx `

+L�2

-L�2

=
2E0

k
 sin kL>2

Multiplying numerator and denominator by L and rearranging 
terms, we have

A(k) = E0 L 
sin kL>2

kL>2
or equivalently

 A(k) = E0 L sinc (kL>2) (7.58)

The Fourier transform of the square pulse is plotted in Fig. 7.43b 
and should be compared with the envelope in Fig. 7.40. As  
L increases, the spacing between successive zeros of A(k)  
decreases and vice versa. Moreover, when k = 0, it follows 
from Eq. (7.58) that A(0) = E0 L.
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Figure 7.43  The square pulse and its transform.
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where v and k are related by the phase velocity. The frequency 
spectrum, except for the notational change from k to v and L to 
T , is identical to that of Fig. 7.44c.

To summarize, the waveform (Fig. 7.44a) whose transform 
we computed is a cosinusoidal pulse oscillating at a constant 
angular spatial frequency kp. That single-frequency oscillation 
can be thought of as being modulated by a rectangular pulse 
extending from -L to +L such that the resultant is zero every-
where but in that range. The desired transform is the transform 
of the envelope function (i.e., the rectangle), which is a sinc 
function. The fact that we are not just dealing with a rectangular 
function results in the sinc being shifted along the positive  
k-axis by an amount equal to kp. Reasonably enough, the domi-
nant frequency in the transform is the frequency of oscillation 
of the cosine portion of the waveform. Notice that the width of 
the transform, taken arbitrarily between the first zeros on either 
side of kp, equals 2p>L; the longer the oscillatory wavetrain 
(2L), the narrower its transform (2p>L).

Thus just looking at the transform (Fig. 7.44c), we see from 
its shape that the original waveform was rectangular; from its 
location on the k-axis we know that the original pulse was oscil-
latory at a frequency kp; from its width we can get an idea of the 
length of the wavetrain; from its peak amplitude, we can deter-
mine the amplitude of the wavetrain; from the fact that it’s a 
cosine transform we know the phase of the oscillation at x = 0.

Had the pulse been a cosinusoidal oscillation at frequency kp 
modulated by some other envelope, the transform would have 
been the transform of that envelope function centered on kp 
(see, for example, Fig. 7.46).

Frequency Bandwidth

For the particular wave packet being studied, the range of 
angular frequencies (v or k) that the transform comprises is 

Consequently, we can neglect the first sinc in this particular 
case and write the transform as

 A(k) = E0 L sinc (kp - k)L (7.61)

(Fig. 7.44c). Even though the wavetrain is very long, since it is 
not infinitely long it must be synthesized from a continuous 
range of spatial frequencies. Thus it can be thought of as the 
composite of an infinite ensemble of harmonic waves. One 
speaks of such pulses as wave packets or wave groups. As we 
might have expected, the dominant contribution is associated 
with k = kp. Had the analysis been carried out in the time do-
main, the same results would have obtained where the trans-
form was centered about the temporal angular frequency vp. 
Clearly, as the wavetrain becomes infinitely long (i.e., L S ∞ ), 
its frequency spectrum shrinks, and the curve of Fig. 7.44c closes 
down to a single tall spike at kp (or vp). This is the limiting case 
of the idealized monochromatic wave.

Since we can think of A(k) as the amplitude of the contribu-
tions to E(x) in the range k to k + dk, A2(k) must be related to 
the energy of the wave in that range (Problem 7.54). We’ll 
come back to this point in Chapter 11 when we consider the 
power spectrum. For the moment, merely observe (Fig. 7.44c) 
that most of the energy is carried in the spatial frequency range 
from kp - p>L to kp + p>L, extending between the minima on 
either side of the central peak. An increase in the length of the 
wavetrain causes the energy of the wave to become concen-
trated in an ever narrowing range of k about kp.

The wave packet in the time domain, that is,

E(t) = eE0 cos vp  

t when -T … t … T
0 when 0 t 0 7 T

has the transform

 A(v) = E0T sinc (vp - v)T  (7.62)

0

0

k

E(x)

(c)

(a)+L

E0

E0L

p

L
kp – p

L
kp +

A(k)

x

–L

kp

k

(b)

A(k)

kp–kp

Figure 7.44  The profile of a finite cosine wavetrain 
and its transform.
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324 Chapter 7 The Superposition of Waves

wavetrains and again tend to broaden the frequency distribution. 
The total effect of all these mechanisms is that each spectral line 
has a bandwidth ∆n rather than one single frequency. The time 
that satisfies Eq. (7.63) is referred to as the coherence time 
(henceforth to be written ∆tc), and the length ∆lc given by

 ∆lc = c ∆tc (7.64)

is the coherence length. As will become evident presently, the 
coherence length is the extent in space over which the wave is 
nicely sinusoidal so that its phase can be predicted reliably. The 
corresponding temporal duration is the coherence time. These 
concepts are extremely important in considering the interaction 
of waves, and we will come back to them later in the discussion 
of interference.

Although the concept of the photon wavetrain is already fa-
miliar, we are now in a position, armed with a little Fourier 
analysis, to deduce something about its configuration. This can 
be done by essentially working backward from the experimen-
tal observation that the frequency distribution of a spectral line 
from a quasimonochromatic (nonlaser) source can be represent-
ed by a bell-shaped Gaussian function (Section 2.1). That is, the 
irradiance versus frequency is found to be Gaussian. But irradi-
ance is proportional to the electric-field amplitude squared, and 
since the square of a Gaussian function is a Gaussian function, 
it follows that the net amplitude of the light field is also bell-
shaped.

Now suppose a single photon wavetrain, one of N identical 
such packets making up the beam, resembles Fig. 7.46a in that it 
is a harmonic function modulated by a Gaussian envelope. Its 
Fourier transform, A(v), is also Gaussian. Imagine that we look at 
only one and the same harmonic frequency component that goes 
into making up each photon wavetrain, for example, the one cor-
responding to v′. Remember that this component is an infinitely 

certainly not finite. Yet if we were to speak of the width of 
the transform (∆v or ∆k), Fig. 7.44c suggests that we use 
∆k = 2p>L or ∆v = 2p>T . In contrast, the spatial or tempo-
ral extent of the pulse is unambiguous at ∆x = 2L or ∆t = 2T , 
respectively. The product of the width of the packet in what 
might be called k-space and its width in x-space is 
∆k ∆x = 4p or, analogously, ∆v ∆t = 4p. The quantities ∆k 
and ∆v are the frequency bandwidths. Had we used a dif-
ferently shaped pulse, the product of the bandwidth and the 
pulse length might certainly have been somewhat different. 
The ambiguity arises because we have not yet chosen one of 
the alternative possibilities for specifying ∆v and ∆k. For 
example, rather than using the first minima of A(k) (there are 
transforms that have no such minima, such as the Gaussian 
function of Section 11.2), we could have let ∆k be the width 
of A2(k) at a point where the curve had dropped to 1

2 or pos-
sibly 1>e of its maximum value. In any event, it will suffice 
for the time being to observe that since ∆v = 2p∆n,

 ∆n ≈ 1>∆t (7.63)

that is, the frequency bandwidth is the same order of magnitude 
as the reciprocal of the temporal extent of the pulse (Problem 7.55). 
If the wave packet has a narrow bandwidth, it will extend over 
a large region of space and time. Accordingly, a radio tuned to 
receive a bandwidth of ∆n will be capable of detecting pulses of 
duration no shorter than ∆t ≈ 1>∆n.

These considerations are of profound importance in Quan-
tum Mechanics, where wave packets describe particles, and  
Eq. (7.63) is akin to the Heisenberg Uncertainty Principle.

7.4.3 Coherence Length

Let’s now consider the light emitted by what is loosely termed 
a monochromatic source, for example, a sodium discharge 
lamp. When the beam is passed through some sort of spectrum 
analyzer, all its various frequency components are observed. 
Typically, we find that a number of fairly narrow frequency 
ranges contain most of the energy and that these are separated 
by much larger regions of darkness. Each such brightly col-
ored band is known as a spectral line. There are devices in 
which the light enters by way of a slit, and each line is actu-
ally a colored image of that slit. Other analyzers represent the 
frequency distribution on the screen of an oscilloscope. In any 
event, the individual spectral lines are never infinitely sharp. 
They always consist of a band of frequencies, however small 
(Fig. 7.45).

The electron transitions responsible for the generation of 
light have a duration on the order of 10-8 s to 10-9 s. Because 
the emitted wavetrains are finite, there will be a spread in the 
frequencies present, known as the natural linewidth (see Sec-
tion 11.3.4). Moreover, since the atoms are in random thermal 
motion, the frequency spectrum will be altered by the Doppler 
Effect. In addition, the atoms suffer collisions that interrupt the 

Imax

Imax

2

I

643.847 ±0.000 65 nm at Imax�2

+0.001 +0.002–0.001–0.002
l (nm)

Figure 7.45  The cadmium red (l = 643.847 nm) spectral line from a 
low-pressure lamp.
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wave packets, even though the amplitude of each frequency 
component present in the resultant is simply N1�2 times its 
amplitude in any one packet. The observed spectral line cor-
responds to the power spectrum of the resultant beam, to be 
sure, but it also corresponds to the power spectrum of an indi-
vidual packet. Ordinarily there will be a tremendous number 
of arbitrarily overlapping wave groups, so that the envelope of 
the resultant will rarely, if ever, be zero. If the source is qua-
simonochromatic (i.e., if the bandwidth is small compared 
with the mean frequency n), we can envision the resultant as 
being “almost” sinusoidal.

In summary, the composite lightwave can be pictured as in 
Fig. 7.47. We might imagine the frequency and amplitude to be 
randomly varying, the former over a range ∆n centered at n. 
Accordingly, the frequency stability, defined as ∆n>   n, is a 
useful measure of spectral purity. Even a coherence time as 
short as 10-9 s corresponds to roughly a few million wave-
lengths of the rapidly oscillating carrier (n), so that any ampli-
tude or frequency variations will occur quite slowly in com-
parison. Equivalently, we can introduce a time-varying phase 
factor such that the disturbance can be written as

 E(t) = E0(t) cos [e(t) - 2pnt] (7.65)

where the separation between wave crests changes in time.
The average duration of a wave packet is ∆tc, so two points 

on the wave in Fig. 7.47 separated by more than ∆tc must lie on 
different contributing wavetrains. These points would thus be 
completely uncorrelated in phase. In other words, if we deter-
mined the electric field of the composite wave as it passed by an 
idealized detector, we could predict its phase fairly accurately 
for times much less than ∆tc later, but not at all for times greater 
than ∆tc. In Chapter 12 we will consider the degree of coher-
ence that applies over the region between these extremes as 
well.

White light has a frequency range from 0.4 * 1015 Hz to 
about 0.7 * 1015 Hz, that is, a bandwidth of about 0.3 * 1015 Hz. 
The coherence time is then roughly 3 * 10-15 s, which corre-
sponds [Eq. (7.64)] to wavetrains having a spatial extent only a 
few wavelengths long (Table 7.1). Accordingly, white light 
may be envisaged as a random succession of very short pulses. 
Were we to synthesize white light, we would have to superim-
pose a broad, continuous range of harmonic constituents in order 
to produce the very short wave packets. Inversely, we can pass 
white light through a Fourier analyzer, such as a diffraction 

long, constant-amplitude sinusoid. If every packet is indeed iden-
tical, the amplitude of the Fourier component associated with v′ 
will be the same in each. At any point in a stream of photons these 
v′-component monochromatic waves, one from each wavetrain, 
will have a random relative phase distribution that rapidly changes 
in time with the arrival of each photon. Thus all such contributions 
taken together [Eq. (7.21)] will correspond on average to a har-
monic wave of frequency v′ having an amplitude proportional to 
N1>2, and this is the v′ part of the net observed field. The same 
will be true for every other frequency constituting the packets. 
This means that the same amount of energy is present at each 
frequency in the net light field of the beam as there is in the total-
ity of the separate constituent wavetrains. Moreover, we know all 
about this energy-frequency distribution; it’s Gaussian, so the 
transform of the photon wavetrain must be Gaussian, too. In other 
words, the observed spectral line corresponds to the power spec-
trum of the beam, but it also corresponds to the power spectrum of 
an individual photon packet. If the irradiance is Gaussian, the pho-
ton wavetrain is Gaussian.

As a result of the randomness of the wavetrains, the indi-
vidual harmonic components of the resultant wave will not 
have the same relative phases as they did in each packet. Thus 
the profile of the resultant will differ from that of the separate 

0
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t

A(v)

(a)

(b)

E(t)

∆v

∆tc

v̄ v�

Figure 7.46  A cosinusoidal wave packet modulated by a Gaussian envelope 
along with its transform, which is also Gaussian.

t

E(t) Figure 7.47  A fairly crude representa-
tion of a quasimonochromatic lightwave.
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326 Chapter 7 The Superposition of Waves

EXAMPLE 7.6

A red light–emitting diode (LED) radiates in vacuum at a mean 
wavelength of 607 nm. If the emission has a linewidth of 18 nm, 
what is its frequency bandwidth?

SOLUTION
We need to relate ∆l0, the vacuum linewidth, to ∆n, the fre-
quency bandwidth. Accordingly, differentiate n = c>l0 with 
respect to l0 to get ∆n>∆l0 = cl-2

0 . We dropped the minus 
sign, since it just tells us that an increase ∆n is accompanied by 
a decrease ∆l0. Thus at l0, the mean vacuum wavelength, the 
frequency bandwidth is 

∆n =
c∆l0

l2
0

=
(3.0 * 108m>s)(18 * 10-9m)

(607 * 10-9m)2

and
∆n = 1.47 * 1013 Hz = 15 THz

7.4.4 The Discrete Fourier Transform

A function that describes some physical process can be Fourier 
analyzed, and its transform can be determined analytically. 
We’ve already been introduced to the basics of how that’s done, 
and we’ll return to elaborate the effort in Chapter 11. But before 
leaving the subject, it’s important to extend the ideas of Fourier 
analysis to situations where there are no functional representa-
tions of the data. Often one has a collection of data points or 
perhaps a curve created on a plotter or computer screen. In any 
event, the information can be digitized; that is, numbers can be 
associated with points on the curve at convenient intervals. To 
determine the frequency content of such a limited collection of 
data, a numerical technique known as the discrete Fourier 
transform is used. Since the treatment is computer based, it 
will suffice for our purposes just to understand the general 
scheme and be able to appreciate the results.

Until now we dealt with functions such as ƒ(x)—representing 
something interesting like an electric field—that provided 
values for all x. Instead, suppose we have a finite number of 
points, N, located at 0, x1, x2, . . . , xN - 1 and the corresponding 
specific values of whatever quantity is being studied: ƒ0,  ƒx1

, 
ƒx2

, and so on. When the sample points are equally spaced by 
an interval x0, they can be represented by the sequence ƒ0, ƒx0

, 
ƒ2x0

, and so forth. In essence, each Fourier integral transform 
[Eq. (7.57)] is approximated by a summation that is carried out 
successively, point by point, over the range of the available data: 
ƒ0, ƒx0

, ƒ2x0
, . . . . Figure 7.48 depicts a hand-drawn pulse and 

the corresponding computer-calculated discrete Fourier trans-
form (displayed with positive and negative frequency values, 
as in Fig. 7.42).

It’s a straightforward business (Section 11.2.2) to extend 
Fourier analysis to two-dimensional functions, ƒ(x, y). For 

grating or a prism, and in so doing actually generate those 
components.

The available bandwidth in the visible spectrum (≈300 
THz) is so broad that it represents something of a wonderland 
for the communications engineer. For example, a typical tele-
vision channel occupies a range of about 4 MHz in the electro-
magnetic spectrum (∆n is determined by the duration of the 
pulses needed to control the scanning electron beam). Thus the 
visible region could carry roughly 75 million television chan-
nels. Needless to say, this is an area of active research (see 
Section 8.11).

Ordinary discharge lamps have relatively large bandwidths 
leading to coherence lengths only on the order of several milli-
meters. In contrast, the spectral lines emitted by low-pressure 
isotope lamps such as Hg198 (lair = 546.078 nm) or the inter-
national standard Kr86 (lair = 605.616 nm) have bandwidths of 
roughly 1000 MHz. The corresponding coherence lengths are 
approximately 0.3 m, and the coherence times are about 1 ns. 
The frequency stability is about one part per million—these 
sources are certainly quasimonochromatic.

The most spectacular of all present-day sources is the laser. 
Under optimum conditions, with temperature variations and 
vibrations meticulously suppressed, a laser was actually operat-
ed at quite close to its theoretical limit of frequency constancy.  
A short-term frequency stability of about 8 parts per 1014 was 
attained* with a He–Ne continuous gas laser at l0 = 1153 nm. 
That corresponds to a remarkably narrow bandwidth of about 
20 Hz. More common and not very difficult to obtain are  
frequency stabilities of several parts per 109. There are com-
mercially available CO2 lasers that provide a short-term 
(≈10-1 s) ∆n>n ratio of 10-9 and a long-term (≈103 s) value 
of 10-8.

TABLe 7.1  Approximate Coherence Lengths  
of Several Sources

Source Mean Wavelength Linewidth* Coherence Length

 l0(nm) ∆l0(nm) ∆lc
Thermal IR 10000 ≈4000 ≈25000 nm = 2.5l0 
(8000–12000 nm)

Mid-IR 4000 ≈2000 ≈8000 nm = 2l0 
(3000–5000 nm)

White light 550 ≈300 ≈900 nm = 1.6l0

Mercury arc 546.1 ≈1.0 ⪝ 0.03 cm

Kr86 discharge lamp 605.6 1.2 * 10-3 0.3 m

Stabilized He–Ne laser 632.8 ≈10-6 ⪝ 400 m

Special He–Ne laser 1153 8.9 * 10-11 15 * 106 m

*To find the corresponding frequency bandwidth use, ∆v>∆l0 = n >l0.

*T. S. Jaseja, A. Javan, and C. H. Townes, “Frequency stability of helium–neon 
lasers and measurements of length,” Phys. Rev. Lett. 10, 165 (1963).

M07_HECH6933_05_GE_C07.indd   326 26/08/16   2:03 PM



 7.4 Nonperiodic Waves 327

example, whereas Fig. 7.49b is the transform of the one-di-
mensional unit-square pulse in terms of the angular spatial 
frequency k, Fig. 7.49d is the transform of the two-dimensional 
unit-square pulse in terms of the angular spatial frequencies kx 
and ky.

It’s natural for physicists to think about processes in rela-
tion to energy, especially if any measurements are to be made. 
The energy associated with a harmonic wave is proportional 
to the amplitude squared, and since the transform tells us the 
amplitudes of all the constituent sinusoids that make up the 

Figure 7.49  (a) A one-
dimensional square pulse and 
(b) its transform. (c) A two-
dimensional square pulse and 
(d) its transform. (e) The 
power spectrum of the trans-
form in (R.G. Wilson, Illinois 

Wesleyan University) (d) plotted in 
two-dimensional k-space. (R.G. 

Wilson, Illinois Wesleyan University)

(d)

(e)

(a)

(b)

k

x

(c)

Input

Transform

(a)

0
x

(b)

0

k

Figure 7.48  An input signal and its discrete Fourier transform.

input signal, the square of the transform provides a measure 
of the distribution of energy, or power, at each and every 
component frequency. Consequently, the square of the trans-
form is a function of spatial frequency called the power 
spectrum. Since the transform will most often be written as 
a complex quantity, the power spectrum can be defined as the 
product of the transform and its complex conjugate, given in 
units of W>m-2 or W·m2.

Figure 7.49e is a plot (in k-space) of the power spectrum for 
the two-dimensional square pulse. Notice that it is everywhere 
positive, which is not the case with the transform. It’s clear from 
the power spectrum that most of the energy in the signal is associ-
ated with relatively low frequencies—the frequency increases 
radially out from the center of the pattern. Because the power 
spectrum is always positive, it’s useful to plot it as a kind of spot 
diagram in a two-dimensional format; each point then corre-
sponds to the contribution at a particular frequency. Later (p. 567) 
we’ll write the transform in terms of the coordinates (Y, Z) on a 
distant observing screen and establish that the transform squared 
is identical to the irradiance distribution in the diffraction pattern 
on that screen. Expressed in this way, the transform squared (in 
units of W>m2) can be called the irradiance spectrum. Although 
there is a mathematical distinction between the power and irradi-
ance spectra, if you were shown an unlabeled representation of 
each (the former plotted in k-space and the latter in ordinary co-
ordinate space), you’d be hard pressed to tell the difference.
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328 Chapter 7 The Superposition of Waves

single fixed spatial frequency (k0). Its presence shows up in 
the computed power spectrum of any portion of the picture, 
essentially as two bright spots on the horizontal axis at ±k0. 
Ideally, the power spectrum of a signal in the form of a sinu-
soidal grating is remarkably simple. It consists of just two 
spikes, one at plus and the other at minus the grating fre-
quency.

The filter (represented by the white square with two black 
spots) was used to create the inserted small images within each 
photo. It removed frequencies +k0 and -k0 from each power 
spectrum (the filtered versions of which are shown in the upper 
right). The subregion images were then reconstructed using the 
filtered power spectra. Each of the “cleaned up” images, sans 
sinusoid, was then returned to its place in the original. Notice 
how different those two spectra are—the facets on the cut-glass 
cup dominate the spectrum in Fig. 7.51b. Clearly, the frequency 
content of a picture, as spread out before us in the form of either 
the Fourier transform or the power spectrum, provides a won-
derful new way to think about the image.

When analytic functions are not available, similar results  
can be accomplished with the discrete Fourier transform. A 
two-dimensional field of data (e.g., the picture of the Mona 
Lisa in Fig. 7.50a) can be scanned, digitized, and the discrete 
transform computed. The graph of the transform of so compli-
cated a signal is itself rather complicated, and so the power 
spectrum (Fig. 7.50b) is pictured instead. Because of the way 
negative frequencies were introduced, the pattern is symmetri-
cal along any diagonal. The bright narrow central cross arises 
from the sharp boundary edges of the picture. (As we’ll see 
later, the horizontal edge produces the vertical line and the  
vertical edge produces the horizontal line—take a look at  
Fig. 13.34.) If the higher spatial frequency terms that carry the 
fine details (the ones far from center) are filtered out and the 
picture is reconstructed from what remains, a soft blur results 
(Fig. 7.50c). On the other hand, if the low spatial frequency 
terms are removed by blocking out the center of the transform, 
the high frequencies that remain will result in a sharp-edged 
reconstruction (Fig. 7.50d ).

The form of the elements within a given image determine 
its transform and therefore its power spectrum. The pictures in 
Fig. 7.51 were computer-created, with a vertical sinusoidal 
pattern superimposed in order to illustrate the point. The idea 
was to successively isolate several subregions of the picture, 
to study their transforms, and to filter them. The vertical peri-
odic modulation forms a sinusoidal grid or grating that has a 

Figure 7.50  (a) The Mona Lisa and (b) the central portion of its power 
spectrum. (c) Mona, with her high spatial frequencies removed. (d) Mona 
with her low spatial frequencies removed. (Synoptics Image Processing Systems, 

Cambridge, UK)

(a) (b)

(c) (d)

Figure 7.51  Two computer-processed images. The small inserts on  
the left were created by filtering out the sinusoidal modulation. The  
white insert represents the filter, and the black one is the filtered power 
spectrum in each case. (MountainGate, Reno NV)

(b)

(a)

M07_HECH6933_05_GE_C07.indd   328 26/08/16   2:03 PM



 7.4 Nonperiodic Waves 329

Fourier spatial frequency component. A directory of all of 
these component plane waves constitutes the transform of the 
transmitted optical field at the transparency. The Fourier 
transform of the electric field at the slide is a weighting func-
tion that gives the relative strength of each spatial frequency 
component composing that field, and therefore each plane-
wave stream leaving the aperture. The sum total of all the 
plane waves is all the transmitted light and must be equivalent 
to the complicated Mona Lisa wavefront leaving the slide, 
which is also all the transmitted light.

Another nice way to envision what’s happening is to suppose 
that every picture element with a spatial frequency along any 
direction in the photo plane acts like a sinusoidal grating. And 
every such grating essentially diffracts light into two symmetri-
cal streams of plane waves traveling at angles proportional to 
the grating frequency (p. 496).

The region to the right of the slide is filled with waves that 
increasingly overlap as the distance from the slide increases. 
Nearby, the light arriving on a viewing screen would show the 
Mona Lisa fairly clearly, but as the screen was moved away the 
image would blur and change until it soon became totally unrec-
ognizable. The region beyond the slide contains an intricate dis-
tribution of light, the diffraction pattern of the transparency. 
Mathematically, there are two regimes: Fresnel diffraction, 
which appears close to the aperture (i.e., the slide) and extends 
out to the region of Fraunhoffer diffraction, which comes into 
being very far from the aperture and goes on from there (p. 460). 

If a lens is placed one focal length from the slide, as in  
Fig. 7.52c, it will cause the parallel ray bundles (which produce 
Fraunhoffer diffraction beyond a distance so great that it’s ef-
fectively infinite) to conveniently focus on a nearby screen. 
There, each point of light in the resulting diagonally symmetri-
cal, two-dimensional irradiance distribution corresponds to a 
specific value of spatial frequency. The amplitude of the elec-
tric field everywhere in the Fraunhoffer diffraction pattern 
corresponds to the Fourier transform of the input signal, that 
is, the electric-field distribution over the aperture, although 
neither is measurable directly.

The observable phenomenon is the two-dimensional ir-
radiance distribution, which is identical to the square of the 
Fourier transform of the input field (p. 460). It’s also a map 
of the spatial frequency content of the Mona Lisa, and it 
“matches” the power spectrum pictured in Fig. 7.50b. As we’ll 
see (p. 642), it’s possible to spatially filter the optical transform, 
thereby altering the reconstructed image, just as was done via 
computer to produce Figs. 7.50c and d.

Superluminal Light

The title of this section announces that it will treat “faster than 
light” light, which certainly seems strange, but the phrase makes 
for great headlines in the news media and in recent years it’s 
become part of the popular scientific discourse. 

Fourier Analysis and Diffraction

A discussion of computer image analysis, which is a kind of 
virtual Optics, can be fascinating in its own right, but it also 
presages a far more fundamental aspect of diffraction, which 
can only be touched on in this chapter. The photographic trans-
parency (let it be a slide of the Mona Lisa) shown in Fig. 7.52a 
is a two-dimensional record of the distribution of light that 
once was an image of the painting. The information so stored 
can be read out as a signal by illuminating the slide, and that’s 
done here with monochromatic plane waves. Every point on 
the surface of the slide is a scatterer, and rays emerge from it in 
a wide range of directions (Fig. 7.52b). For every plane wave 
going off at some angle above the axis, there is one streaming 
away at the same angle below the axis. Each plane wave (or 
parallel ray bundle) traveling in a particular ki-direction is a 

+k2

+k1

+k0

–k1

–k2

–k1

k0

+k1

(a)

(b)

(c)

Figure 7.52  An illuminated transparency. (a) Incident monochromatic 
plane waves. (b) Scattered parallel bundles of rays (plane waves). (c) The 
projection of the power spectrum onto an observing screen.
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330 Chapter 7 The Superposition of Waves

difficulty could be addressed using a medium that had gain, 
one that amplified light. This was recently accomplished in a 
small cell containing cesium gas. The desired index profile was 
produced by pumping the cesium atoms using two different-
frequency laserbeams. A region of lossless anomalous disper-
sion was thereby created between the two resulting gain lines 
(Fig. 7.53). 

A diode laser then fired a very long 3.7-ms— nearly Gaussian— 
pulse toward the cell. Amazingly, an essentially identical pulse 
appeared at the far side of the cell even before the peak of the 
incoming pulse reached the entrance. The measured lead time 
was 62 ns, the equivalent of the exiting pulse getting about 20 m 
ahead of the entering pulse. That’s ≈310 times farther than if 
the pulse had traveled the 6-cm length of the cell in vacuum 
(which would take a mere 0.2 ns).

When dn(n)>dn is very large and negative, even though it’s 
counterintuitive, it is possible for ng to be negative. Indeed, in 
this experiment ng = -310. To appreciate what that means, 
consider that it takes a pulse a time L>vg = ngL>c to traverse a 
medium of length L, as compared to the time it would take 
(L>c) to cover the same distance in vacuum. The difference be-
tween these two intervals, ∆t = L>vg - L>c = (ng - 1)L>c, is 
the delay the pulse experiences in crossing the medium as op-
posed to vacuum. However, when ng 6 1, ∆t 6 0 and there is 
no such “delay,” the pulse arrives early; it appears on the far 
side sooner than if it had traveled the distance L in vacuum.

To begin to understand how that could happen, imagine a 
Gaussian wave packet whose amplitude falls toward zero ahead 
and behind the central region. Physically, it’s entirely equiva-
lent to a large group of overlapping sine waves that are all in-
phase at the one point where the peak of the pulse happens to be 
at any time. Because their wavelengths are different, moving 
out from the center of the peak these Fourier component waves 
individually fall in- and out-of-phase with distance. The jumble 
of sine waves on either side of the peak increasingly cancel 
each other, forming the long tapered “wings” of the pulse. 

The central insight is that regardless of the amplitude of a 
wing at any location, it still contains exactly the same sine-wave 

The Special Theory of Relativity maintains that there are no 
circumstances under which a signal (i.e., a communicative in-
strumentality, which perforce carries energy) can propagate at a 
speed greater than c. Yet we have already seen that under certain 
circumstances (Section 3.5.1) the phase velocity can do just that. 
Indeed, as early as 1904 R. W. Wood showed experimentally that 
white light passing through a chamber containing sodium vapor 
could have phase velocities exceeding c. He studied the region 
of anomalous dispersion in the vicinity of the two closely spaced 
yellow sodium D resonances (having  wavelengths of 589.0 nm 
and 589.6 nm). 

At frequencies far from the resonant frequencies of the  
vapor, the index of refraction was slightly greater than 1, as 
expected. Moreover, little or no light was transmitted in the fre-
quency range of the absorption band. But for light with a fre-
quency close to the D lines, the index n(n) began to show signs 
of anomalous dispersion. As the frequency approached the reso-
nances from the high-frequency low-wavelength side, n rapidly 
decreased, becoming much less than 1 (v 7 c). So superluminal 
phase velocities have been well known for some time. 

The contradiction of Relativity is only an apparent one, aris-
ing from the fact that although a monochromatic wave can have 
a speed in excess of c, it cannot convey information. In contrast, 
a signal in the form of any modulated wave will propagate at the 
group velocity, which is always less than c in normally disper-
sive media.*

Starting in the 1980s and continuing to the present, a number 
of experimenters† have worked to establish that the group ve-
locity could also exceed c. A light pulse of frequency n will 
have a group index of refraction given by

ng = n(n) + n 
dn(n)

dn

(It’s left for Problem 7.32 to prove that that’s the case.) This 
suggests that the place to go to create superluminal pulses is a 
region of anomalous dispersion where n(n) changes rapidly 
with n. We want ng 6 1, so we need a negative value of 
dn(n)>dn; that’s just what obtains inside an absorption band—
the slope of the n(n)-versus-n curve is negative.

The problem with that approach is that it’s also a place of 
considerable absorption and the pulses would either be severe-
ly distorted or attenuated, making the results ambiguous. That 

*In regions of anomalous dispersion (Section 3.5.1) where dn>dk 6 0, vg may 
be greater than c. Here, however, the signal propagates at yet a different speed, 
known as the signal velocity, vs. Thus vs = vg except in a resonance absorption 
band. In all cases vs corresponds to the velocity of energy transfer and never 
exceeds c.

†S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. 
Rev. Lett. 48, 738 (1982); L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted 
superluminal light propagation,” Nature 406, 277 (2000); D. Mognai, A. Ranfagni, 
and R. Ruggeri, “Observation of superluminal behavior in wave propagation,” 
Phys. Rev. Lett. 84, 4830 (2000).
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Figure 7.53  Gain-assisted linear anomalous dispersion used to demon-
strate superluminal group velocity. The index of refraction and gain coeffi-
cient for a cesium gas with two closely spaced gain lines.
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 7.4 Nonperiodic Waves 331

probe light (np) falls within the transmission band around n0, it 
“sees” an essentially transparent medium. There is the usual 
dispersion, but no absorption and no subsequent dissipation of 
energy out of the pulse. Furthermore, to avoid distortion of the 
signal pulse, it was made adequately long in time so that its 
frequency spectrum would be narrow enough to fit within the 
transparency band. 

The frequency dependence of the index of refraction is sketched 
in Fig. 7.54b. At n0 the index is 1, and so the second term in

ng = n(n) + n 
dn(n)

dn
dominates. The steep portion of the curve, where dn(n)>dn is 
positive and large, corresponds to a region of normal dispersion 
with a tremendous group index ng. Pulses centered at np = n0 
propagate through the gas with group velocities as low as 17 m>s. 
Not long after these results were obtained, by coupling the so-
dium D2 line to the sodium D1 probe line, researchers were able 
to take the group velocity down to 0.44 m>s (a mere 1 mph).

In 2001 two independent teams at Harvard (one using cold 
sodium and the other warm rubidium) brought pulses of light to 
a crawl, and then, by shutting off the coupling laser—turning 
the medium opaque again—they stopped the light altogether. 
Of course, every time you blink you stop light in its tracks, but 
this was very different. Here the light was first coupled to a 
system of atoms, and the information characterizing the compo-
nent sinusoids of the signal pulse (frequency, amplitude, and 
angular momentum) was imprinted on the gas as a coherent or-
dering of its atomic spins. This information was later trans-
ferred back to the light field and the signal pulse reappeared. 
The following briefly describes the way this was accomplished.

As the signal pulse (which had a free-space length of 3.4 km) 
entered the dense dark-state gas, it was thereupon compressed by 
a factor of c>vg. (You can imagine this happening as the leading 
edge of the pulse enters the medium and slows; the fast-moving 
remainder of the pulse compacts in on itself. The situation can be 
simulated by a line of runners several strides apart, one behind 
the other, on a dry road. Suppose the leader suddenly enters a 
large puddle of knee-deep water with everyone following behind. 
By the time the last guy reaches the water, the “pulse” of runners 
will be far more compact and traveling much slower.) 

distribution as does the main peak. It’s just that in the outskirts of 
the pulse, the component waves overlap in such a way as to pro-
duce a highly diminished net result. When the leading wing of the 
wave packet traverses the cell, the cesium atoms take up and re-
emit the constituent sine waves, shifting their relative phases (in 
a frequency-dependent way). That has the effect of reconstituting 
a clone of the original wave packet. This composite pulse appears 
at the far end of the cell as if it had traveled at a rate far in excess 
of c, while the incident pulse vanishes within the gas.

Subluminal Light

At the same time that researchers were producing superluminal 
wave packets, others were making equally dramatic break-
throughs in slowing down and even stopping light pulses.* 

In one experiment sodium atoms were chilled to nano-kelvin 
temperatures via laser cooling (p. 75), followed by evaporative 
cooling. When the gas fell below 435 nK, it transitioned into  
a Bose-Einstein condensate (BEC)—a dense cloud of atoms 
all in the same quantum state. Increasing the density (here at 
maximum about 5 * 1012 atoms>cm3) is desirable because it 
increases the steepness of the n(n)-versus-n curve. 

Ordinarily, a dense gas would manifest a great deal of dissi-
pative absorption in the vicinity of any one of its resonances 
(i.e., spectral lines), and that’s just where we want to send our 
laser pulses (each centered at np). In other words (Fig. 7.54a), 
in a dense gas the transition from the ground state 0 19 to the first 
excited state 0 39 will result in dissipative absorption of the light 
at that frequency (n0). An atom absorbs a photon and gets ex-
cited, but before it can reradiate, it collides with a neighboring 
atom and loses that energy. As a consequence, the medium is 
opaque to pulses centered on n0. 

This difficulty can be surmounted with a technique called 
electromagnetically induced transparency (EIT). Using 
magnetic filtering, all of the atoms are first put into the 0 19 state. 
The gas is then illuminated by a second so-called coupling las-
erbeam (vc). It’s tuned to the transition between a close-by un-
populated hyperfine ground-state level 0 29 and the same excited 
state 0 39. What results is a coupling of the two ground states (a 
quantum interference effect) that does not allow light in a nar-
row band around n0 to be absorbed; it closes out the 0 19 S 0 39 
transition. In other words, with the coupling laser turned on and 
all the atoms in 0 19, the system is in a “dark state” wherein its 
atoms cannot absorb light of frequency n0 . When the incident 

*Lene Vestergaard Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed 
reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 
594 (1999); Chien Liu, Z. Dutton, C. H. Behroozi, and Lene Vestergaard Hau, 
“Observation of coherent optical information storage in an atomic medium using 
halted light pulses,” Nature 409, 490 (2001); D. F. Phillips, A Fleischhauer, A. 
Mair, R. L. Walsworth,  and M. D. Lukin, “Storage of light in atomic vapor,” Phys. 
Rev. Lett. 86, 783 (2001). Also take a look at Kirk T. McDonald, “Slow light,” Am. 
J. Phys. 68, 293 (2000). For a short review, see Barbara Gross Levi, “Researchers 
stop, store, and retrieve photons—or at least the information they carry,” Phys. 
Today 54, 17 (2001).
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Figure 7.54  (a) The energy-level configuration involved in producing 
electromagnetically induced transparency. (b) The index of refraction  
versus frequency curve for sodium showing the region of high-slope  
normal dispersion around the resonant frequency.
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332 Chapter 7 The Superposition of Waves

Negative Phase Velocity

As we saw in Chapter 3 it is possible to create exotic structures 
called metamaterials wherein the index of refraction is nega-
tive. It follows that an EM wave propagating in such a medium 
has a negative phase velocity. The Poynting vector still corre-
sponds to the direction of flow of energy and that’s still the di-
rection of the light beam. 

Any beam of EM-radiation is, in the final analysis, a pulse. 
Consequently, envision a wave packet of finite extension; imag-
ine it as an amplitude-modulated harmonic carrier like that de-
picted in Fig. 7.38 (p. 319). When traveling in a negative index 
medium the wave has a negative phase velocity, and this can 
only mean that the carrier must be propagating backward. The 
pulse moves forward, the energy associated with the distur-
bance moves forward, but the carrier moves backward. With 
that in mind, suppose we have a laser immersed in some, as yet 
hypothetical, negative-index fluid. The beam shines onto and 
illuminates a distant wall; as usual, energy propagates forward 
to the wall with the group velocity. But instead of diverging, the 
beam would tend to converge. If we could see the carrier we’d 
see the harmonic wavelets streaming backward from the wall 
toward the laser. In other words, although the wave packet travels 
(at vg) away from the laser, carrying energy with it, the Fourier-
constituent plane waves flow (at v) back toward the source (see 
Fig. 4.30 on p. 114).

Everything was prearranged so that the compressed signal 
pulse, of about 27 * 103 photons, just fit inside the ultracold 
sodium cloud (339 mm). And it was traveling very slowly; at 
that moment, much of the probe-pulse energy had been trans-
ferred to the coupling light field (via stimulated emission, p. 616) 
and had left the cell. The atoms within the active region of the 
pulse were in a superposition state determined by the ampli-
tudes and phases of the two laser fields. 

Just as the signal pulse disappeared into the cloud, and be-
fore it could emerge, the coupling beam was abruptly shut off. 
The very small amount of energy still associated with the pulse 
went into a collective spin excitation of the gas cloud. The im-
printed atoms retained the information about the physical char-
acteristics of the constituent sine-wave components for up to 
about 1 ms. When the coupling beam was promptly turned back 
on, a duplicate of the original pulse re-emerged from the gas. In 
other words, operating as a coherent quantum-mechanical sys-
tem, the activated atoms of the gas stored a template of the 
pulse. When the dark state was switched back on, and electro-
magnetic energy was thereby made available (via the coupling 
beam), the atoms reconstituted the signal pulse.

Everything we’ve talked about in this section relates to pulses 
of light and their group velocities, whether they’re greater than or 
less than c. In either case, photons exist only at c and they either 
exist or they don’t. Photons never speed up and never slow down, 
and they certainly never stop and wait around, motionless.

7.5 Answer the following:

(a)  How many wavelengths of l0 = 540 nm light will span a 0.8-m 
gap in vacuum?

(b)  How many waves span the gap when a glass plate 10 cm thick 
(n = 1.5) is inserted in the path?

(c)  Determine Λ the OPD between the two situations.

(d)  Verify that Λ>l0 corresponds to the difference between the solu-
tions to (a) and (b) above.

7.6* Determine the optical path difference for the two waves A and B, 
both having vacuum wavelengths of 610 nm, depicted in Fig. P.7.6; the 
glass (n = 1.52) tank is filled with water (n = 1.33). If the waves start 
out in-phase and all the above numbers are exact, find their relative 
phase difference at the finishing line.

7.7* Using Eqs. (7.9), (7.10), and (7.11), show that the resultant of the 
two waves

E1 = E01 sin [vt - k(x + ∆x)]

and E2 = E01 sin (vt - kx) 

is E = 2E01 cos ak ∆x
2

b sin cvt - k ax +
∆x
2
bd  [7.17]

Complete solutions to all problems—except those with an asterisk— 
can be found in the back of the book. 

7.1 Determine the resultant of the superposition of the parallel waves 
E1 = E01 sin (vt + e1) and E2 = E02 sin (vt + e2) when v = 200p, 
E01 = 8, E02 = 10, e1 = 0, and e2 = p>3. Plot each function and the 
resultant.

7.2* Considering Section 7.1, suppose we began the analysis to find  
E = E1 + E2 with two cosine functions E1 = E01 cos (vt + a1) and  
E2 = E02 cos (vt + a2). To make things a little less complicated, let 
E01 = E02 and a1 = 0. Add the two waves algebraically and make use 
of the familiar trigonometric identity cos u + cos Φ = 2 cos 12 (u + Φ) 
cos 12 (u - Φ) in order to show that E = E0 cos (vt + a), where E0 =
2E01 cos a2>2 and a = a2>2. Now show that these same results follow 
from Eqs. (7.9) and (7.10).

7.3* Show that when the two waves of Eq. (7.5) are in-phase, the re-
sulting amplitude squared is a maximum equal to (E01 + E02)2, and 
when they are out-of-phase it is a minimum equal to (E01 - E02)2.

7.4* Show that the optical path length, defined as the sum of the prod-
ucts of the various indices times the thicknesses of media traversed by 
a beam, that is, ^i ni xi, is equivalent to the length of the path in vacuum 
that would take the same time for that beam to negotiate.

PrOBLeMS
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Figure P.7.6

7.8 Add the two waves of Problem 7.7 directly to find Eq. (7.17).

7.9 Use the complex representation to find the resultant E = E1 + E2,
where

E1 = E0 cos (k  x + vt) and E2 = -E0 cos (k  x - vt)

Describe the composite wave.

7.10* Consider the functions E1 = 3 cos vt and E2 = 4 sin vt. First 
prove that E2 = 4 cos (vt - p>2). Then, using phasors and referring to 
Fig. P.7.10, show that E3 = E1 + E2 = 5 cos (vt - w); determine w. 
Discuss the values of E3 wherever either E1 = 0 or E2 = 0. Does E3 

lead or lag E1? Explain.
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Figure P.7.10

7.12* Using phasors, determine the amplitude and phase of the wave-
form given by

c(t) = 16 cos vt + 8 cos (vt + p>2)

+ 4 cos (vt + p) + 2 cos (vt + 3p>2)

In other words, knowing that c(t) = A cos (vt + a) find A and a using 
a ruler and protractor.

7.13 The electric field of a standing electromagnetic plane wave is 
given by

 E(x, t) = 2E0 sin kx cos vt [7.30]

Derive an expression for B(x, t). (You might want to take another look 
at Section 3.2.) Make a sketch of the standing wave.

7.14* Considering Wiener’s experiment (Fig. 7.14) in monochromat-
ic light of wavelength 610 nm, if the film plane is angled at 0.9° to the 
reflecting surface, determine the number of bright bands per centime-
ter that will appear on it.

7.15* Microwaves of frequency 3 * 1010 Hz are beamed directly at a 
metal reflector. Neglecting the refractive index of air, determine the spac-
ing between successive nodes in the resulting standing-wave pattern.

7.16* A standing wave is given by

E = 200 sin 13 px cos 3pt

Determine two waves that can be superimposed to generate it.

7.17* Show that a standing wave created by two unequal-amplitude 
waves

EI = E0 sin (kx ∓ vt)

and ER = rE0 sin (kx ± vt) 

has the form

E = 2rE0 sin kx cos vt + (1 - r)E0 sin (kx ∓ vt).

Here r is the ratio of the amplitude reflected to the amplitude incident. 
Discuss the meaning of the two terms. What happens when r = 1?

7.18* Imagine that we strike two tuning forks, one with a frequency 
of 380 Hz, the other 377 Hz. What will we hear? 

7.19* Use the phasor method, described in conjunction with Fig. 7.17, 
to explain how two equal-amplitude waves of sightly different frequen-
cies generate the beat pattern shown in Fig. 7.19 or Fig. P.7.19a. The 
curve in Fig. P.7.19b is a sketch of the phase of the resultant measured 
with respect to one of the constituent waves. Explain its main features. 
When is it zero and why? When does the phase change abruptly and why?

7.20* As we’ve seen, Eq. (7.33) describes the beat pattern. Let’s now 
derive a different version of that expression assuming that the two 
overlapping equal-amplitude cosine waves have angular spatial fre-
quencies of kc + ∆k and kc - ∆k, and angular temporal frequencies of 
vc + ∆v and vc - ∆v, respectively. Here kc and vc correspond to the 
central frequencies. Show that the resultant wave is then

E = 2E01 cos (∆k   x - ∆v  t) cos (kc  

x - vc t)

7.11* Using phasors, determine the amplitude and phase of the wave-
form given by

c(t) = 6 cos vt + 4 cos (vt + p>2) + 3 cos (vt + p)

Draw an appropriate diagram. In other words, knowing that c(t) =
A cos (vt + a) find A and a with a ruler and protractor.
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334 Chapter 7 The Superposition of Waves

Explain how each term relates back to 

 E = 2E01 cos (km  x - vmt) cos (k x - vt) [7.33]

Prove that the speed of the envelope, which is the wavelength of the 
envelope divided by the period of the envelope, equals the group veloc-
ity, namely, ∆v>∆k.

7.21 Figure P.7.21 shows a carrier of frequency vc being amplitude-
modulated by a sine wave of frequency vm, that is,

E = E0(1 + a cos vmt) cos vct

Show that this is equivalent to the superposition of three waves of fre-
quencies vc, vc + vm, and vc - vm. When a number of modulating 
frequencies are present, we write E as a Fourier series and sum over all 
values of vm. The terms vc + vm constitute what is called the upper 
sideband, and all the vc - vm terms form the lower sideband. What 
bandwidth would you need in order to transmit the complete audible 
range?

E
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Figure P.7.19

E
Figure P.7.21

7.24* Show that

vg =
c
n

+
c
l

 
d(1/n)

d(1/l)

[Hint: first prove that vg = dn/d(1>l).]

7.25* With the previous problem in mind show that

vg = v c1 -
c

ln2 
dn

d(1>l)
d

And then since

d
d(1>l)

=
dn

d(1>l)
 

d
dn

prove that

vg =
v

1 + (n/n)(dn/dn)

Check this expression by confirming that the units are correct.

7.26* At a wavelength of 1100 nm pure silica glass has an index of 
refraction of 1.449. Use Fig. 7.22 to (a) determine its group index at that 
wavelength. Then (b) find its group velocity and (c) compare that to its 
phase velocity.

7.27* Using the relation 1>vg = dk>dn, prove that

1
vg

=
1
v

-
n

v2 
dv
dn

7.28* In the case of lightwaves, show that

1
vg

=
n
c

+
n

c
 
dn
dn

7.29 The speed of propagation of a surface wave in a liquid of depth 
much greater than l is given by

v = A gl

2p
+

2pΥ
rl

where g = acceleration of gravity, l = wavelength, r = density, Υ 
5 surface tension. Compute the group velocity of a pulse in the long 
wavelength limit (these are called gravity waves).

7.30* Show that the group velocity can be written as

vg = v - l 
dv
dl

7.31 Show that the group velocity can be written as

vg =
c

n + v(dn>dv)

7.32* With the previous problem in mind prove that

ng = n(n) + n 
dn(n)

dn

7.22 Given the dispersion relation v = 2ak3, compute both the phase 
and group velocities.

7.23* Beginning with vg = dv/dk prove that

vg = -l2 
dn
dl
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(a) Explain why the series contains both sine and cosine terms.  
(b) Why does the series contain harmonic terms having arguments 
with odd and even multiples of vt? (c) What is the value of the DC 
term? (d) What is the value of A0? (e) What is the value of the period 
of E(t)? (f) Make a sketch of the frequency spectrum, including the 
v = 0 term.

7.43 Show that

 3l
0

sin akx cos bkx dx = 0 [7.44]

 3l
0

cos akx cos bkx dx =
l

2
 dab [7.45]

 3l
0

sin akx sin bkx dx =
l

2
 dab [7.46]

where a Z 0, b Z 0, and a and b are positive integers.

7.44 Compute the Fourier series components for the periodic func-
tion shown in Fig. 7.35.

7.45* Determine the Fourier series for the periodic function depicted 
in Fig. P.7.45.

7.33* With the previous problem in mind show that

ng = n - l
dn
dl

7.34* A well-known Optics book gives the equation

vg =
dv
dk

=
c
n

-
c

n2 
dn
dk

= v a1 -
1
n

 
dn
dk

b

Could this possibly be correct? Explain. [Hint: Check the units.]

7.35* Determine the group velocity of waves when the phase velocity 
varies inversely with the square of the wavelength.

7.36* Show that the group velocity can be written as

vg =
c
n

+
lc

n2  
dn
dl

7.37* For light at a wavelength of l1 = 656.3 nm water (at 20 °C) has 
an index of n1 = 1.3311. At a wavelength of l2 = 589.3 nm water has 
an index of n2 = 1.333 0. Determine the approximate value of the 
group velocity of light in water. Is v 7 vg? [Hint: Reread Problem 
7.36, approximate the differentials by finite differences, and remember 
the little v in the definition of vg. Be careful of the slope of n versus l.]

7.38* For a wave propagating in a periodic structure for which  
v(k) = 2v0 sin (k/>2), determine both the phase and group velocities. 
Write the former as a sinc function.

7.39* An ionized gas or plasma is a dispersive medium for EM waves. 
Given that the dispersion equation is

v2 = vp
2 + c2k2

where vp is the constant plasma frequency, determine expressions for 
both the phase and group velocities and show that vvg = c2.

7.40 Using the dispersion equation,

 n2(v) = 1 +
Nqe

2

P0me
 

ĵ
 a ƒj

v0j
2 - v2b [3.71]

show that the group velocity is given by

vg =
c

1 + Nqe
2>P0  

mev
22

for high-frequency electromagnetic waves (e.g., X-rays). Keep in mind 
that since ƒj are the weighting factors, ^jƒj = 1. What is the phase 
velocity? Show that vvg ≈ c2.

7.41* Analytically determine the resultant when the two functions  
E1 = 2E0 cos vt and E2 = 1

2 E0 sin 2vt are superimposed. Draw E1, E2 , 
and E = E1 + E2. Is the resultant periodic; if so, what is its period in 
terms of v?

7.42* Figure P.7.42 depicts an electric field in time and the Fourier 
components that compose it. The units are arbitrary. Given that

E(t) =
1
3

+  sin vt +
1
6

 cos 2vt +
1
8

 sin 2vt +
1
6

 sin 3vt

Figure P.7.42
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7.46* Given the function ƒ(x) = A cos (px>L), determine its Fourier 
series.

7.47* Consider the periodic function defined over one wavelength by

ƒ(x) = (kx)2 where -p 6 kx 6 p 

which repeats over and over again with a period of 2p. Draw a diagram 
of ƒ(x) and determine the corresponding Fourier series representation.
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336 Chapter 7 The Superposition of Waves

7.48* Take the function ƒ(u) = u2 in the interval 0 6 u 6 2p and 
assume it repeats itself with a period of 2p. Now show that the Fourier 
expansion of that function is

ƒ(x) =
4p2

3
+ ^

∞

m = 1
a 4

m2 cos mu -
4p
m

 sin mub

7.49* Show that the Fourier series representation of the function  
ƒ(u) = 0 sin u 0  is

ƒ(u) =
2
p

-
4
p

^
∞

m = 1 

cos 2mu

4m2 - 1

7.50 Change the upper limit of Eq. (7.59) from ∞  to a and evaluate 
the integral. Leave the answer in terms of the so-called sine integral:

Si(z) = 3z

0
sinc w dw

which is a function whose values are commonly tabulated.

7.51* Consider the periodic function

E(t) = E0 cos vt

and suppose all of the negative half-cycles are removed. Determine the 
Fourier series representation of the resulting modified (“rectified”) 
function.

7.52* Consider the periodic function defined over one wavelength by

ƒ(x) = e  sin kx 0 6 kx 6 p

0 p 6 kx 6 2p

Determine the Fourier series representation of ƒ(x). Draw a diagram of 
ƒ(x).

E(t)

E(t) = E0 cos vp t
E0

t

∆t

Figure P.7.54

Figure P.7.53
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7.53* Examine Fig. P. 7.53, which shows three periodic functions and 
their corresponding Fourier frequency spectra. Discuss the graphs ex-
plaining what’s happening in successive parts. What happens to the 
envelopes of the frequency spectra as the wavelength increases? Why 
are the same number of frequency terms present in each spectrum be-
tween 0 and, say, 4k? Why is there a DC term in each spectrum and 
why does it have the same value in all of them? Why are there no terms 
corresponding to A2, A4, A6, and so forth?

7.54 Write an expression for the transform A(v) of the harmonic 
pulse of Fig. P.7.54. Check that sinc u is 50% or greater for values of u 
roughly less than p>2. With that in mind, show that ∆v ∆t ≈ 1, where 
∆v is the bandwidth of the transform at half its maximum amplitude. 
Verify that ∆v ∆t ≈ 1 at half the maximum value of the power spec-
trum as well. The purpose here is to get some sense of the kind of ap-
proximations used in the discussion.

7.55 Derive an expression for the coherence length (in vacuum)  
of a wavetrain that has a frequency bandwidth ∆v; express your answer 
in terms of the linewidth ∆l0 and the mean wavelength l0 of the train.

7.56* A blue-light LED with a mean vacuum wavelength of 446 nm 
has a linewidth of 21 nm. Determine its coherence time and coherence 
length.
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*D. Hinkley and C. Freed, Phys. Rev. Lett. 23, 277 (1969).

7.57 Consider a photon in the visible region of the spectrum emitted 
during an atomic transition of about 10-8 s. How long is the wave pack-
et? Keeping in mind the results of the previous problem (if you’ve done 
it), estimate the linewidth of the packet (l0 = 500 nm). What can you 
say about its monochromaticity, as indicated by the frequency stability?

7.58 The first* experiment directly measuring the bandwidth of a la-
ser (in this case a continuous-wave Pb0.88Sn0.12 Te diode laser) was 
carried out in 1969. The laser, operating at l0 = 10 600 nm, was het-
erodyned with a CO2 laser, and bandwidths as narrow as 54 kHz were 
observed. Compute the corresponding frequency stability and coher-
ence length for the lead-tin-telluride laser.

7.59* A magnetic-field technique for stabilizing a He–Ne laser to 2 
parts in 1010 has been patented. At 632.8 nm, what would be the coher-
ence length of a laser with such a frequency stability?

7.60 Imagine that we chop a continuous laserbeam (assumed to be 
monochromatic at l0 = 632.8 nm) into 0.1-ns pulses, using some sort 
of shutter. Compute the resultant linewidth ∆l, bandwidth, and coher-
ence length. Find the bandwidth and linewidth that would result if we 
could chop at 1015 Hz.

7.61* Suppose that we have a filter with a pass band of 1.0 Å centered 
at 600 nm, and we illuminate it with sunlight. Compute the coherence 
length of the emerging wave.

7.62* A filter passes light with a mean wavelength of l0 = 500 nm. If 
the emerging wavetrains are roughly 20l0 long, what is the frequency 
bandwidth of the exiting light?

7.63* Suppose we spread white light out into a fan of wavelengths by 
means of a diffraction grating and then pass a small select region of 
that spectrum out through a slit. Because of the width of the slit, a band 
of wavelengths 1.2 nm wide centered on 500 nm emerges. Determine 
the frequency bandwidth and the coherence length of this light.

 Problems 337
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8.1 The Nature of Polarized Light

It has already been established that light may be treated as a 
transverse electromagnetic wave. Thus far we have considered 
only linearly polarized or plane-polarized light, that is, light 
for which the orientation of the electric field is constant, al-
though its magnitude and sign vary in time (Fig. 3.14). In that 
case, the electric field or optical disturbance resides in what is 
known as the plane-of-vibration. That fixed plane contains 
both E$  and k$, the electric field vector and the propagation vec-
tor in the direction of motion. 

Imagine two harmonic, linearly polarized lightwaves of the 
same frequency, moving through the same region of space, in 
the same direction. If their electric field vectors are colinear, the 
superimposing disturbances will simply combine to form a re-
sultant linearly polarized wave. Its amplitude and phase will be 
examined in detail, under a diversity of conditions, in the next 
chapter, when we consider the phenomenon of interference. On 
the other hand, if the two lightwaves are such that their respec-
tive electric-field directions are mutually perpendicular, the re-
sultant wave may or may not be linearly polarized. The exact 
form the light takes (i.e., its state of polarization) and how we 
can observe it, produce it, change it, and make use of it is the 
concern of this chapter.

8.1.1 Linear Polarization

The two orthogonal optical disturbances that were considered 
above can be represented as

 E$x (z, t) = î E0x cos (kz - vt) (8.1) 

and E$y(z, t) = ĵ E0y cos (kz - vt + e) (8.2)

where e is the relative phase difference between the waves, 
both of which are traveling in the z-direction. Keep in mind 
from the start that because the phase is in the form (kz - vt), 
the addition of a positive e means that the cosine function in 
Eq. (8.2) will not attain the same value as the cosine in Eq. (8.1) 
until a later time (e>v). Accordingly, Ey lags Ex by e 7 0. Of 
course, if e is a negative quantity, Ey leads Ex by e 6 0. The 

resultant optical disturbance is the vector sum of these two 
 perpendicular waves:

 E$(z, t) = E$x(z, t) + E$y(z, t) (8.3)

If e  is zero or an integral multiple of ±2p, the waves are said 
to be in-phase. In that case Eq. (8.3) becomes

 E$ = ( îE0x + ĵE0y) cos (kz - vt) (8.4)

The resultant wave has a fixed amplitude equal to ( îE0x + ĵE0y);  
in other words, it too is linearly polarized (Fig. 8.1). The waves 
advance toward a plane of observation where the fields are to be 
measured. There one sees a single resultant E$  oscillating, along 
a tilted line, cosinusoidally in time (Fig. 8.1b). The tilt angle u 
is determined by the amplitudes of the original orthogonal 
waves. From Eq. (8.4) 

tan u =
E0y

E0x

and when E0x = E0y, as in Fig. 8.1, the electric field oscillates at 
u = 45°.

Many animals can see variations in polarization just as we see variations  
in color. The pygmy octopus is one such creature. The varying pattern  
of polarized light reflected from its surface suggests it might be  
“communicating” with other pygmy octopuses, the way birds display  
color. (Thomas W. Coronin and Nadav Shashar, University of Maryland)

8 Polarization

338
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 8.1 The Nature of Polarized Light 339

The E$-field progresses through one complete oscillatory 
cycle as the wave advances along the z-axis through one 
 wavelength. This process can be carried out equally well in 
 reverse; that is, we can resolve any plane-polarized wave into 
two orthogonal components.

EXAMPLE 8.1

Show explicitly that when E$y (z, t) lags E$x (z, t) by 2p the  
resulting wave is given by Eq. (8.4).

SOLUTION 

When E$y (z, t) lags by 2p 

E$ = î  E0x cos (kz - vt) + ĵ  E0y cos (kz - vt + 2p)

Using the identity

cos (x ± y) = cos x cos y ∓ sin x sin y

the resultant wave becomes

E$ = î  E0x cos (kz - vt) + ĵ  E0y[cos (kz - vt) cos 2p

- sin (kz - vt) sin 2p]

and so
E$ = ( îE0x + ĵ  E0y) cos (kz - vt)

which was to be proven.

Suppose now that e is an odd integer multiple of ±p. The 
two waves are 180° out-of-phase, and

 E$ = ( îE0x - ĵE0y) cos (kz - vt) (8.5)

y
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z

(a) (b)
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(c)

E�
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Figure 8.1  Linear light. (a) The E-field linearly polarized in the first and third quadrants. (b) That same  
oscillating field seen head on. (c) Light linearly polarized in the second and fourth quadrants.

This wave is again linearly polarized, but the plane-of-vibration 
has been rotated (and not necessarily by 90°) from that of the 
previous condition, as indicated in Fig. 8.2.

EXAMPLE 8.2

Show explicitly that when E$y (z, t) lags E$x (z, t) by p the result-
ing wave is given by Eq. (8.5). 

SOLUTION

When E$y (z, t) lags E$x (z, t) by p

E$ = î  E0x cos (kz - vt) + ĵ  E0y cos (kz - vt + p)

Using the identity

 cos (x ± y) =  cos x cos y ∓  sin x sin y

The cosmic microwave background radiation emitted by hot plasma at the 
dawn of the Universe. The lines are a fairly crude indication of its polarization. 
(ESA/NASA)
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340 Chapter 8 Polarization

Phasor addition provides a highly useful technique for deal-
ing with the superposition of orthogonal waves like those of 
Eqs. (8.1) and (8.2). The utility of the method will become obvi-
ous later in this chapter as we start shifting the phases of the two 
waves by passing them through anisotropic media. Figure 8.3 
illustrates the basic procedure for the simple case of two or-
thogonal waves that are in-phase, e = 0. The radii of the two 
circles correspond to the two electric field amplitudes, and here 
E0y 7 E0x. The Ey phasor begins at its unshifted position-0 
pointing upward vertically, and it rotates clockwise. At any  
instant the wave oscillating in the y-direction [Eq. (8.2)] corre-
sponds to the projection of the rotating Ey phasor onto the y-
axis. As we’ll soon see, an initial shift in phase simply rotates 
the reference axis from the vertical, that is, moves position-0.  
Similarly, the Ex phasor begins at its unshifted position-0 point-
ing right horizontally. It too rotates clockwise, at the same rate 
v, as does Ey. At any instant the wave oscillating in the x-direction 
[Eq. (8.1)] corresponds to the projection of the rotating Ex phasor 
onto the x-axis.

Each phasor uniformly revolves to its respective position-1, 
-2, -3, and so forth. The resultant wave is formed by the intersec-
tion of the horizontal and vertical projections of the two phasors. 
The points (0, 0), (1, 1), (2, 2), and so forth, which here lie along 
a straight line, locate the successive sums of the two orthogonal 
electric field vectors [viz., Eq. (8.3)]. Thus the resultant wave in 
this instance is linearly polarized in the first and third quadrants, 
tilted up at an angle u 7 45° because E0y 7 E0x.

the resultant wave becomes

E$ = î  E0x cos (kz - vt) + ĵ  E0y[cos (kz - vt) cos p

- sin (kz - vt) sin p]

and so

E$ = ( î  E0x - ĵ  E0y) cos (kz - vt)

which was to be proven.

Figure 8.3  Phasor addition of two orthogonal electromagnetic waves  
in-phase and of amplitudes E0x and E0y. Both rotate clockwise at a rate v.
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Figure 8.2  (a) Linear light oscillating in the second and fourth quadrants.
(b) The x-component leads the y-component by half a cycle, or p radians. 
When E$y is just starting upward, E$x has already reached a positive maximum, 
decreased back to zero, and is about to start in the negative x-direction.
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 8.1 The Nature of Polarized Light 341

is right-circularly polarized (Fig. 8.6), and one generally simply 
refers to it as right-circular light. The E$-vector makes one com-
plete rotation as the wave advances through one wavelength. 

Figure 8.7 shows five successive moments in the unfolding of 
a right-circular E$-field. Here E$y leads E$x by p>2, so in part (a) the 
dot on the y-axis (corresponding to Ey) is at its maximum dis-
placement (E0) and is heading down, while Ex = 0 and the dot on 
the x-axis is heading right. The net field is E$ = E0 ĵ, and that vector 
subsequently rotates clockwise until in part (d ) it is on the x-axis 

8.1.2 Circular Polarization

Another case of particular interest arises when both constituent 
waves have equal amplitudes (i.e., E0x = E0y = E0), and in ad-
dition, their relative phase difference e = -p>2 + 2mp, where 
m = 0, ±1, ±2, . . . . In other words, e = -p>2 or any value 
increased or decreased from -p>2 by   whole-number multiples 
of 2p and E$y (z, t) leads E$x (z, t) by p>2. Accordingly

 E$x (z, t) = îE0 cos (kz - vt) (8.6)

 E$y (z, t) = ĵE0 cos (kz - vt - p>2) (8.7)

but that’s equivalent to

E$y (z, t) = ĵE0 [cos (kz - vt) cos p>2 + sin (kz - vt) sin p>2]

and so

E$y (z, t) = ĵE0 sin (kz - vt)

The consequent wave is

 E$ = E0[ î  cos (kz - vt) + ĵ  sin (kz - vt)] (8.8)

(Fig. 8.4). Notice that now the scalar amplitude of E$ , that is, 
(E$ · E$)1>2 = E0, is a constant. But the direction of E$  is time-
varying, and it’s not restricted, as before, to a single plane.  
Figure 8.5 depicts what is happening at some arbitrary point z0 
on the axis. At t = 0, E$  lies along the reference axis in Fig. 8.5a, 
and so

E$x = îE0 cos kz0  and  E$y = ĵE0 sin kz0

At a later time, t = kz0>v, E$x = îE0, E$y = 0, and E$ is along the 
x-axis. The resultant electric-field vector E$ is rotating clockwise at 
an angular frequency of v, as seen by an observer toward whom 
the wave is moving (i.e., looking back at the source). Such a wave 

(a) (b)
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kz0

vt

vt = p�4

vt = p�2

vt = 3p�4

vt = 0
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E�y
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Time
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Figure 8.5  Rotation of the electric vector in a 
right-circular wave. Note that the rotation rate is 
v and kz = p>4.
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Figure 8.4  Right-circular light. (a) Here the electric field, which has a 
constant amplitude, rotates clockwise with the same frequency with which 
it oscillates. (b) Two perpendicular antennas radiating with a 90° phase dif-
ference produce circularly polarized electromagnetic waves.
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342 Chapter 8 Polarization

able to get rid of the (kz - vt) dependence. Expand the expres-
sion for Ey into

Ey>E0y = cos (kz - vt) cos e - sin (kz - vt) sin e

and combine it with Ex>E0x to yield

 
Ey

E0y
-

Ex

E0x
 cos e = -sin (kz - vt) sin e (8.13)

and E$ = E0 î. It is left to the reader to show how phasor addition 
(in the manner of Fig. 8.3) leads to circular light.

In comparison, if e = p>2, 5p>2, 9p>2, and so on (i.e., 
e = p>2 + 2mp, where m = 0, ±1, ±2, ±3, . . .) , then

 E$ = E0[ î  cos (kz - vt) - ĵ  sin (kz - vt)] (8.9)

The amplitude is unaffected, but E now rotates counterclock-
wise, and the wave is left-circularly polarized.

A linearly polarized wave can be synthesized from two oppo-
sitely polarized circular waves of equal amplitude. In particular, 
if we add the right-circular wave of Eq. (8.8) to the left-circular 
wave of Eq. (8.9), we get

 E$ = 2E0 î  cos (kz - vt) (8.10)

which has a constant amplitude vector of 2E0 î and is therefore 
linearly polarized.

8.1.3 Elliptical Polarization

As far as the mathematical description is concerned, both lin-
ear and circular light may be considered to be special cases of 
elliptically polarized light or, more simply, elliptical light. 
This means that, in general, the resultant electric-field vector E$  
will rotate, and change its magnitude, as well. In such cases the 
endpoint of E$  will trace out an ellipse, in a fixed-space perpen-
dicular to k$, as the wave sweeps by. We can see this better by 
actually writing an expression for the curve traversed by the tip 
of E$ . To that end, recall that

 Ex = E0x cos (kz - vt) (8.11)

and Ey = E0y cos (kz - vt + e) (8.12)

The equation of the curve we are looking for should not be a 
function of either position or time; in other words, we should be 

y

x

z

kz

E�
B

z

Figure 8.6  Right-circular light. Looking down the z-axis toward the origin, 
we see the electric field vector rotates clockwise as the wave advances 
toward the observer.

Figure 8.7  The formation of right-circular light. Note that Ey leads Ex by 
p>2 or 1>4 of a cycle.
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 8.1 The Nature of Polarized Light 343

Equation (8.14) might be a bit more recognizable if the principal 
axes of the ellipse were aligned with the coordinate axes, that is, 
a = 0 or equivalently e = ±p>2, ±3p>2, ±5p>2, . . . , in 
which case we have the familiar form

 
E2

y

E2
0y

+
E2

x

E2
0x

= 1 (8.16)

Furthermore, if E0y = E0x = E0, this can be reduced to

 E2
y + E2

x = E2
0 (8.17)

which, in agreement with our previous results, is a circle. If e is 
an even multiple of p, Eq. (8.14) yields

 Ey =
E0y

E0x
 Ex (8.18)

and similarly for odd multiples of p,

 Ey = -  

E0y

E0x
 Ex (8.19)

These are both straight lines having slopes of ±E0y>E0x; in 
other words, we have linear light.

Figure 8.9 diagrammatically summarizes most of these con-
clusions. This very important diagram is labeled across the bottom 
“Ex leads Ey by: 0, p>4, p>2, 3p>4, . . . ,” where these are the 
positive values of e to be used in Eq. (8.2). The same set of curves 
will occur if “Ey leads Ex by: 2p, 7p>4, 3p>2, 5p>4, . . . ,” 
and that happens when e equals -2p, -7p>4, -3p>2, -5p>4,  
and so forth. Figure 8.9b illustrates how Ex leading Ey by p>2 
is equivalent to Ey leading Ex by 3p>2 (where the sum of these 
two angles equals 2p). This will be of continuing concern as we 
go on to shift the relative phases of the two orthogonal compo-
nents making up the wave.

It follows from Eq. (8.11) that

sin (kz - vt) = [1 - (Ex>E0x)
2]1>2

so Eq. (8.13) leads to

a Ey

E0y
-

Ex

E0x
 cos eb

2

= c1 - a Ex

E0x
b

2

d  sin2 e

Finally, on rearranging terms, we have

 a Ey

E0y
b

2

+ a Ex

E0x
b

2

- 2 a Ex

E0x
b a Ey

E0y
b cos e =  sin2e (8.14)

This is the equation of an ellipse making an angle a with the 
(Ex, Ey)-coordinate system (Fig. 8.8) such that

 tan 2a =
2E0xE0y cos e

E2
0x - E0y

2  (8.15)
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a E0x
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Figure 8.8  Elliptical light. The endpoint of the electric field vector 
sweeps out an ellipse as it rotates once around.
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Figure 8.9  (a) Various polarization configurations. The light would be cir-
cular with e = p>2 or 3p>2 if E0x = E0y, but here for the sake of general-
ity E0y was taken to be larger than E0x. (b) Ex leads Ey (or Ey lags Ex) by 
p>2, or alternatively, Ey leads Ex (or Ex lags Ey) by 3p>2.
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344 Chapter 8 Polarization

amplitudes of the two circular waves are different. (An analyti-
cal treatment is left for Problem 8.6.)

8.1.4 Natural Light

An ordinary light source consists of a very large number of ran-
domly oriented atomic emitters. Each excited atom radiates a 
polarized wavetrain for roughly 10-8 s. All emissions having 
the same frequency will combine to form a single resultant po-
larized wave, which persists for no longer than 10-8 s. New 
wavetrains are constantly emitted, and the overall polarization 
changes in a completely unpredictable fashion. If these changes 
take place at so rapid a rate as to render any single resultant 
polarization state indiscernible, the wave is referred to as natural 
light. It is also known as unpolarized light, but this is a misno-
mer, since in actuality the light is composed of a rapidly varying 
succession of the different polarization states. Randomly polar-
ized is probably a better way to speak of it.

We can mathematically represent natural light in terms of 
two arbitrary, incoherent, orthogonal, linearly polarized waves 
of equal amplitude (i.e., waves for which the relative phase dif-
ference varies rapidly and randomly).

Keep in mind that an idealized monochromatic plane wave 
must be depicted as an infinite wavetrain. If this disturbance is 
resolved into two orthogonal components perpendicular to the 
direction of propagation, they, in turn, must have the same fre-
quency, be infinite in extent, and therefore be mutually coherent 
(i.e., e = constant). In other words, a perfectly monochromatic 
plane wave is always polarized. In fact, Eqs. (8.1) and (8.2) are 
just the Cartesian components of a transverse (Ez = 0) harmonic 
plane wave.

Whether natural in origin or artificial, light is generally nei-
ther completely polarized nor completely unpolarized; both 
cases are extremes. More often, the electric-field vector varies in 
a way that is neither totally regular nor totally irregular, and such 
an optical disturbance is partially polarized. One useful way of 
describing this behavior is to envision it as the result of the su-
perposition of specific amounts of natural and polarized light.

8.1.5 Angular Momentum and the Photon Picture

We have already seen that an electromagnetic wave impinging 
on an object can impart both energy and linear momentum to 
that body. Moreover, if the incident plane wave is circularly po-
larized, we can expect electrons within the material to be set 
into circular motion in response to the force generated by the 
rotating E$-field. Alternatively, we might picture the field as be-
ing composed of two orthogonal �-states that are 90° 
 out-of-phase. These simultaneously drive the electron in two 
perpendicular directions with a p>2 phase difference. The re-
sulting motion is again circular. In effect, the torque exerted by 
the B$-field averages to zero over an orbit, and the E$-field drives 

To illustrate the general nature of elliptical light let’s use a 
phasor diagram like that of Fig. 8.3. Suppose we want to find the 
resultant of two orthogonal harmonic electric fields having differ-
ent amplitudes (E0x 7 E0y), where Ey leads Ex by, say, p>3 rad, 
or 60°. Because Ey leads Ex by 60° we rotate the Ey reference axis 
from the vertical, 60° clockwise, leaving the Ex-axis horizontal. 
Figure 8.10 shows that the resulting light is right-handed ellipti-
cal, as one would expect from Fig. 8.9a. In accord with  
Fig. 8.8, the ellipse fits in a rectangle 2E0y high by 2E0x wide.

We are now in a position to refer to a particular lightwave in 
terms of its specific state of polarization. We shall say that 
linearly polarized or plane-polarized light is in a �-state, and 
right- or left-circular light is in an ℛ- or ℒ-state, respectively. 
Similarly, the condition of elliptical polarization corresponds to 
an ℰ-state. We’ve already seen that a �-state can be represented 
as a superposition of ℛ- and ℒ-states [Eg. (8.10)], and the same 
is true for an ℰ-state. In this case, as shown in Fig. 8.11, the 
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E��

Figure 8.11  Elliptical light as the superposition of an ℛ- and ℒ-state.

Figure 8.10  The phasor representation of the superposition of two orthog-
onal EM waves. Here E0x 7 E0y, where these are the radii of the circles. E$y 
leads E$x by 60° and so position-0 of Ey is advanced clockwise 60°.
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Figure 8.12  Angular momentum of a photon.

*This choice of terminology is admittedly a bit awkward. Yet its use in Optics is 
fairly well established, even though it is completely antithetic to the more rea-
sonable convention adopted in elementary particle physics.

**As a rather important yet simple example, consider the hydrogen atom. It is 
composed of a proton and an electron, each having a spin of U>2. The atom has 
slightly more energy when the spins of both particles are in the same direction.  
It is possible, however, that once in a very long time, roughly 107 years, one of 
the spins will flip over and be antiparallel to the other. The change in angular 
momentum of the atom is then U, and this is imparted to an emitted photon, 
which carries off the slight excess in energy as well. This is the origin of the  
21-cm microwave emission, which is so significant in radio astronomy.

†Richard A. Beth, “Mechanical detection and measurement of the angular momen-
tum of light,” Phys. Rev.  50, 115 (1936).

the electron with an angular velocity v equal to the frequency 
of the electromagnetic wave. Angular momentum will thus be 
imparted by the wave to the substance in which the electrons 
are imbedded and to which they are bound. We can treat the 
problem rather simply without actually going into the details of 
the dynamics. The power delivered to the system is the energy 
transferred per unit time, dℰ>dt. Furthermore, the power gener-
ated by a torque Γ acting on a rotating body is just vΓ (which is 
analogous to vF for linear motion), so

 
d  ℰ
dt

= vΓ (8.20)

Since the torque is equal to the time rate-of-change of the angu-
lar momentum L, it follows that on the average

 
d  ℰ
dt

= v 
dL
dt

 (8.21)

A charge that absorbs a quantity of energy ℰ from the incident 
circular wave will simultaneously absorb an amount of angular 
momentum L such that

 L =
ℰ
v

 (8.22)

If the incident wave is in an ℛ-state, its E$-vector rotates clock-
wise, looking toward the source. This is the direction in which 
a positive charge in the absorbing medium would rotate, and 
the angular momentum vector is therefore taken to point in the 
direction opposite to the propagation direction,* as shown in 
Fig. 8.12.

According to the quantum-mechanical description, an elec-
tromagnetic wave transfers energy in quantized packets or pho-
tons such that ℰ = hn. Thus ℰ = Uv (where U K h>2p), and the 
intrinsic or spin angular momentum of a photon is either -U or 
+U, where the signs indicate right- or left-handedness, respec-
tively. Notice that the angular momentum of a photon is com-
pletely independent of its energy. Whenever a charged particle 
emits or absorbs electromagnetic radiation, along with changes 

in its energy and linear momentum, it will undergo a change of 
±U in its angular momentum.**

The energy transferred to a target by an incident monochro-
matic electromagnetic wave can be envisaged as being trans-
ported in the form of a stream of identical photons. We can 
anticipate a corresponding quantized transport of angular mo-
mentum. A purely left-circularly polarized plane wave will  
impart angular momentum to the target as if all the constituent 
photons in the beam had their spins aligned in the direction of 
propagation. Changing the light to right circular reverses the 
spin orientation of the photons, as well as the torque exerted by 
them on the target. In 1935, using an extremely sensitive tor-
sion pendulum, Richard A. Beth was actually able to perform 
such measurements.† 

Thus far we’ve had no difficulty in describing purely right- 
and left-circular light in the photon picture; but what is linearly 
or elliptically polarized light? Classically, light in a �-state can 
be synthesized by the coherent superposition of equal amounts 
of light in ℛ- and ℒ-states (with an appropriate phase differ-
ence). Any single photon whose angular momentum is some-
how measured will be found to have its spin either totally paral-
lel or antiparallel to k$. A beam of linear light will interact with 
matter as if it were composed, at that instant, of equal numbers 
of right- and left-handed photons. There is a subtle point that 
has to be made here. We cannot say that the beam is actually 
made up of precisely equal amounts of well-defined right- and 
left-handed photons; the photons are all identical. Rather, each 
individual photon exists in either spin state with equal likeli-
hood. If we measured the angular momentum of the constituent 
photons, -U would result as often as +U. This is all we can 
observe. We are not privy to what the photon is doing before the 
measurement (if indeed it exists before the measurement). As a 
whole, a linearly polarized lightbeam will impart no total angu-
lar momentum to a target.

In contrast, if each photon does not occupy both spin states 
with the same probability, one angular momentum, say +U, will 
be found to occur somewhat more often than the other, -U. In 
this instance, a net positive angular momentum will therefore 
be imparted to the target. The result en masse is elliptically po-
larized light, that is, a superposition of unequal amounts of  
ℛ- and ℒ-light bearing a particular phase relationship.
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346 Chapter 8 Polarization

of the detector (e.g., a photocell) will be unchanged because of 
the complete symmetry of unpolarized light. Keep in mind that 
we are dealing with waves, but because of the very high fre-
quency of light, our detector will measure only the incident ir-
radiance. Since the irradiance is proportional to the square of 
the amplitude of the electric field [Eq. (3.44)], we need only 
concern ourselves with that amplitude.

Now suppose that we introduce a second identical ideal lin-
ear polarizer, or analyzer, whose transmission axis is vertical 
(Fig. 8.14). If the amplitude of the electric field transmitted by 
the first polarizer is E01, only its component, E01 cos u, parallel 
to the transmission axis of the analyzer will be passed on to the 
detector (assuming no absorption). According to Eq. (3.44), the 
irradiance reaching the detector is then given by

 I(u) =
cP0

2
 E2

01 cos2 u (8.23)

The maximum irradiance, I(0) = cP0 E2
01>2 = I1, occurs when 

the angle u between the transmission axes of the analyzer and 
 polarizer is zero. Equation (8.23) can be rewritten as

 I(u) = I(0) cos2 u (8.24)

This is known as Malus’s Law, having first been published in 
1809 by Étienne Malus, military engineer and captain in the 
army of Napoleon.

8.2 Polarizers

Now that we have some idea of what polarized light is, the next 
logical step is to develop an understanding of the techniques 
used to generate, change, and manipulate it to fit our needs. An 
optical device whose input is natural light and whose output is 
some form of polarized light is a polarizer. For example, recall 
that one possible representation of unpolarized light is the su-
perposition of two equal-amplitude, incoherent, orthogonal  
�-states. An instrument that separates these two components, 
discarding one and passing on the other, is known as a linear 
polarizer. Depending on the form of the output, we could also 
have circular or elliptical polarizers. All these devices vary in 
effectiveness down to what might be called leaky or partial  
polarizers.

Polarizers come in many different configurations, but they 
are all based on one of four fundamental physical mechanisms: 
dichroism, or selective absorption; reflection; scattering; and 
birefringence, or double refraction. There is, however, one un-
derlying property that they all share: there must be some form of 
asymmetry associated with the process. This is certainly under-
standable, since the polarizer must somehow select a particular 
polarization state and discard all others. In truth, the asymmetry 
may be a subtle one related to the incident or viewing angle, but 
usually it is an obvious anisotropy in the material of the polar-
izer itself.

8.2.1 Malus’s Law

One matter needs to be settled before we go on: how do we 
determine experimentally whether or not a device is actually a 
linear polarizer?

By definition, if natural light is incident on an ideal linear 
polarizer, as in Fig. 8.13, only light in a �-state will be trans-
mitted. That �-state will have an orientation parallel to a spe-
cific direction called the transmission axis of the polarizer. 
Only the component of the optical field parallel to the transmis-
sion axis will pass through the device essentially unaffected. If 
the polarizer in Fig 8.13 is rotated about the z-axis, the reading 

Natural
light Linear

polarizer

Tran
sm

iss
ion 

axis

Linear light
u

u

E�

Figure 8.13  Natural light incident on a linear polarizer tilted at an angle 
u with respect to the vertical.
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Figure 8.14  A linear polarizer and  
analyzer—Malus’s Law. Natural light of 
irradiance I0 is incident on a linear polarizer 
tilted at an angle u with respect to the ver-
tical. The irradiance leaving the first linear 
polarizer is I1 = I(0). The irradiance leaving 
the second linear polarizer (which makes 
an angle u with the first) is I(u).
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and so

I2 = 250 W>m2

The light emerges linearly polarized, oscillating at -80.0° in 
the second and fourth quadrants. Notice that the order of 
 passage through the polarizers is crucial.

8.3 Dichroism

In its broadest sense, the term dichroism refers to the selective 
absorption of one of the two orthogonal �-state components of 
an incident beam. The dichroic polarizer itself is physically 
anisotropic, producing a strong asymmetrical or preferential 
 absorption of one field component while being essentially 
transparent to the other.

8.3.1 The Wire-Grid Polarizer

The simplest device of this sort is a grid of parallel conducting 
wires, as shown in Fig. 8.15. Imagine that an unpolarized elec-
tromagnetic wave impinges on the grid from the left. The  electric 
field can be resolved into the usual two orthogonal components, 
in this case, one chosen to be parallel to the wires and the 
 other perpendicular to them. The y-component of the field drives 
the conduction electrons along the length of each wire, thus 
 generating a current. The electrons in turn collide with lattice 
atoms, imparting energy to them and thereby heating the 
wires  ( joule heat). In this manner energy is transferred from 
the field to the grid. In addition, electrons accelerating along the 
 y-axis radiate in both the forward and backward directions. As 
should be expected, the incident wave tends to be canceled by 
the wave reradiated in the forward direction, resulting in little or 
no transmission of the y-component of the field. The radiation 
propagating in the backward direction simply appears as a 
 reflected wave. In contrast, the electrons are not free to move 
very far in the z-direction, and the corresponding field  component 
of the wave is essentially unaltered as it propagates through the 

Keep in mind that I(0) is the irradiance arriving on the ana-
lyzer. Thus, if 1000 W>m2  of natural light impinges on the first 
linear polarizer in Fig. 8.14, assuming that polarizer is ideal, it 
will pass 500 W>m2 of linear light on to the analyzer; that’s  
I(0). Depending on u, we can use Eq. (8.24) to calculate the 
transmitted irradiance I(u). Alternatively, suppose the incident 
beam is 1000 W>m2  of linear light parallel to the transmission 
axis of the first polarizer. In that case I(0) = 1000 W>m2.

Observe that I(90°) = 0. This arises from the fact that the 
electric field that passed through the polarizer is perpendicular 
to the transmission axis of the analyzer (the two devices so 
 arranged are said to be crossed). The field is therefore parallel 
to what is called the extinction axis of the analyzer and has no 
component along the transmission axis. We can use the setup of 
Fig. 8.14 along with Malus’s Law to determine whether a 
 particular device is a linear polarizer. 

As we’ll see presently, the most common kind of linear polar-
izer used today is the Polaroid filter. And although you certainly 
can confirm Malus’s Law with two ordinary Polaroids, you’ll 
have to be careful to use light in the range from ≈450 nm to  
≈650 nm. Ordinary Polaroids are not very good at polarizing IR.

EXAMPLE 8.3

The electric field of a 1000 W>m2 linearly polarized lightbeam 
oscillates at +10.0° from the vertical in the first and third quad-
rants. The beam passes perpendicularly through two consecu-
tive ideal linear polarizers. The transmission axis of the first is 
at -80.0° from the vertical in the second and fourth quadrants. 
And that of the second is at +55.0° from the vertical in the 
first and third quadrants. (a) How much light emerges from the 
second polarizer? (b) Now interchange the two polarizers with-
out altering their orientations and determine the amount of light 
that emerges. Explain your answers.

SOLUTION 

(a) The incident light (at +10°) is perpendicular to the 
transmission axis of the first polarizer (at -80°) and so no light 
leaves it and no light leaves the second polarizer. (b) With the 
polarizers interchanged, the light now oscillates at 45.0° to the 
transmission axis of the first polarizer, which, via Malus’s Law, 
passes (I1) where

I(u) = I(0) cos2u

and so here

I1 = (1000 W>m2) cos2 45.0°

Hence

I1 = 500 W>m2

This light, oscillating at +55.0°, makes an angle of 45.0° with 
the transmission axis of the new second polarizer. Therefore the 
irradiance emerging from it (I2) is

I2 = (500 W>m2)  cos2 45.0°

E�

y

z

Figure 8.15  A wire-grid polarizer. The grid eliminates the vertical compo-
nent (i.e., the one parallel to the wires) of the E-field and passes the hori-
zontal component.
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348 Chapter 8 Polarization

the E$-fields are perpendicular to it (ergo the term dichroic, 
meaning two colors).

Several other substances display similar characteristics. A 
crystal of the mineral hypersthene, a ferromagnesium silicate, 
might look green under white light polarized in one direction 
and pink for a different polarization direction.

We can get a qualitative picture of the mechanism that gives 
rise to crystal dichroism by considering the microscopic structure 
of the sample. (You might want to take another look at Section 3.5.) 
Recall that the atoms within a crystal are strongly bound together 
by short-range forces to form a periodic lattice. The electrons, 
which are responsible for the optical properties, can be envi-
sioned as elastically tied to their respective equilibrium positions. 
Electrons associated with a given atom are also under the influ-
ence of the surrounding nearby atoms, which themselves may 
not be symmetrically distributed. As a result, the elastic binding 
forces on the electrons will be different in different directions. 
Consequently, their response to the harmonic electric field of an 
incident electromagnetic wave will vary with the direction of E$. 

grid. The transmission axis of the grid is perpendicular to 
the  wires. It is a common error to assume naively that the  
y-component of the field somehow slips through the spaces 
 between the wires.

One can easily confirm our conclusions using microwaves 
and a grid made of ordinary electrical wire. It is not so easy a 
matter, however, to fabricate a grid that will polarize light, but it 
has been done! In 1960 George R. Bird and Maxfield Parrish, 
Jr., constructed a grid having an incredible 2160 wires per mm.* 
Their feat was accomplished by evaporating a stream of gold 
(or at other times aluminum) atoms at nearly grazing incidence 
onto a plastic diffraction grating replica (see Section 10.2.7). 
The metal accumulated along the edges of each step in the grat-
ing to form thin microscopic “wires” whose width and spacing 
were less than one wavelength across.

Several kinds of wire-grid polarizers are commercially avail-
able, including ones made with microscopic aluminum wires. 
They offer high transmission across the visible and into the in-
termediate IR.

Although the wire grid is useful, especially at higher tem-
peratures, it is mentioned here more for pedagogical than prac-
tical reasons. The underlying principle is shared by other, more 
common, dichroic polarizers.

8.3.2 Dichroic Crystals

Certain materials are inherently dichroic because of an anisot-
ropy in their respective crystalline structures. Probably the best 
known of these is the naturally occurring mineral tourmaline, a 
semiprecious stone often used in jewelry. Actually there are sev-
eral tourmalines, which are boron silicates of differing chemical 
composition [e.g., NaFe3B3Al6Si6O27(OH)4]. For this sub-
stance there is a specific direction within the crystal known as 
the principal or optic axis, which is determined by its atomic 
configuration.  The electric-field component of an incident light-
wave that is perpendicular to the principal axis is strongly 
 absorbed by the sample.  The thicker the crystal, the more com-
plete the absorption (Fig. 8.16). A plate cut from a tourmaline 
crystal parallel to its principal axis and several millimeters thick 
will serve as a linear polarizer. In this instance the crystal’s prin-
cipal axis becomes the polarizer’s transmission axis. But the 
usefulness of tourmaline is rather limited by the fact that its crys-
tals are comparatively small. Moreover, even the transmitted 
light suffers a certain amount of absorption. To complicate mat-
ters, this undesirable absorption is strongly wavelength depen-
dent, and the specimen will therefore be colored. A tourmaline 
crystal held up to natural white light might appear green (they 
come in other colors as well) when viewed normal to the princi-
pal axis and nearly black when viewed along that axis, where all 

*G. R. Bird and M. Parrish, Jr., “The wire grid as a near-Infrared polarizer,” J. Opt. 
Soc. Am. 50, 886 (1960).

Figure 8.16  A dichroic crystal. The E-field parallel to the optic axis is 
transmitted without any diminution. The naturally occurring ridges evident 
in the photograph of the tourmaline crystals correspond to the optic axis. 
(E.H.)
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experiments, the crystals were aligned nearly parallel to each 
other by means of magnetic or electric fields. Later, Land found 
that they would be mechanically aligned when a viscous col-
loidal suspension of the herapathite needles was extruded 
through a long narrow slit. The resulting J-sheet was effectively 
a large flat dichroic crystal. The individual submicroscopic 
crystals still scattered light a bit, and as a result, J-sheet was 
somewhat hazy.

In 1938 Land invented H-sheet, which is now probably the 
most widely used linear polarizer. It does not contain dichroic 
crystals but is instead a molecular analogue of the wire grid. A 
sheet of clear polyvinyl alcohol is heated and stretched in a 
given direction, its long hydrocarbon molecules becoming 
aligned in the process. The sheet is then dipped into an ink 
 solution rich in iodine. The iodine impregnates the plastic and 
attaches to the straight long-chain polymeric molecules, 
 effectively forming a chain of its own. The conduction electrons 
 associated with the iodine can move along the chains as if 
they were long thin wires. The component of E$  in an incident 
wave that is parallel to the molecules drives the electrons, does 
work on them, and is strongly absorbed. The transmission axis 
of the polarizer is therefore perpendicular to the direction in 
which the film was stretched.

Each separate minuscule dichroic entity is known as a dichro-
mophore. In H-sheet the dichromophores are of molecular di-
mensions, so scattering represents no problem. H-sheet is a very 
effective polarizer across the entire visible spectrum, but is some-
what less so at the blue end. When a bright white light is viewed 
through a pair of crossed H-sheet Polaroids the extinction color 
will be a deep blue as a result of this leakage. HN-50 would be the 
designation of a hypothetical, ideal H-sheet having a neutral 
 color (N) and transmitting 50% of the incident natural light while 
absorbing the other 50%, which is the undesired polarization 
component. In practice, however, about 4% of the incoming light 
will be reflected back at each surface (antireflection coatings are 
not generally used), leaving about 92%. Half of this is presum-
ably absorbed, and thus we might contemplate an HN-46 Pola-
roid. Actually, large quantities of HN-38, HN-32, and HN-22, 
each differing by the amount of iodine present, are produced 
commercially and are readily available (Problem 8.15).

If in addition to being anisotropic the material is absorbing, a 
detailed analysis would have to include an orientation-dependent 
conductivity. Currents will exist, and energy from the wave will 
be converted into joule heat. The attenuation, in addition to vary-
ing in direction, may be dependent on frequency as well. This 
means that if the incoming white light is in a �-state, the crystal 
will appear colored, and the color will depend on the orientation 
of E$. Substances that display two or even three different colors 
are said to be dichroic or trichroic, respectively.*

8.3.3 Polaroid

In 1928 Edwin Herbert Land, then a 19-year-old undergraduate 
at Harvard College, invented the first dichroic sheet polarizer, 
known commercially as Polaroid J-sheet. It incorporated a syn-
thetic dichroic substance called herapathite, or quinine sulfate 
periodide.† Land’s own retrospective account of his early work 
makes fascinating reading. It is particularly interesting to fol-
low the sometimes whimsical origins of what is now, no doubt, 
the most widely used group of polarizers. The following is an 
excerpt from Land’s remarks:

In the literature there are a few pertinent high spots in the devel-
opment of polarizers, particularly the work of William Bird  
Herapath, a physician in Bristol, England, whose pupil, a  
Mr. Phelps, had found that when he dropped iodine into the urine 
of a dog that had been fed quinine, little scintillating green crys-
tals formed in the reaction liquid. Phelps went to his teacher, and 
Herapath then did something which I [Land] think was curious 
under the circumstances; he looked at the crystals under a micro-
scope and noticed that in some places they were light where they 
overlapped and in some places they were dark. He was shrewd 
enough to recognize that here was a remarkable phenomenon, a 
new polarizing material [now known as herapathite]. . . .

Herapath’s work caught the attention of Sir David Brewster, 
who was working in those happy days on the kaleidoscope. . . . 
Brewster, who invented the kaleidoscope, wrote a book about it, 
and in that book he mentioned that he would like to use herapa-
thite crystals for the eyepiece. When I was reading this book, 
back in 1926 and 1927, I came across his reference to these re-
markable crystals, and that started my interest in herapathite.

Land’s initial approach to creating a new form of linear po-
larizer was to grind herapathite into millions of submicroscopic 
crystals, which were naturally needle-shaped. Their small size 
lessened the problem of the scattering of light. In his earliest 

†Source: Edwin Herbert Land, “Some Aspects of the Development of Sheet 
Polarizers,” J Opt. Soc. Am 41, 957 (1951 ) JOSA, Vol. 41, Issue 12, pp. 957–962 
(1951) Journal of Optical Society of America. Optical Society of America.

A pair of crossed polaroids. Each polaroid appears gray because it absorbs 
roughly half the incident light. (E.H.)

*More will be said about these processes later on when we consider 
 birefringence. Suffice it to say now that for crystals classified as uniaxial 
there are two distinct directions, and therefore two colors may be displayed 
by  absorbing specimens. In biaxial crystals there are three distinct directions 
and the possibility of three colors.
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(≈1
2 T0) of ≈38%, ≈32%, and ≈22%, respectively, so that 

here T0 is, in turn, 76%, 64%, and 44%.  In other words, for an 
HN-38 polarizer 76% of the linear light parallel to its transmis-
sion axis will be passed.

By adding increased amounts of iodine the leakage is cut down, 
but so too is the desired transmittance (T0). Thus HN-32 has a 
 minor transmittance (T90) of roughly 0.005%, whereas the corre-
sponding value for HN-22 is nearly 0.000 5% and the filter is 
 essentially free of leakage. The reason these values are not more 
precise is that transmittance is frequency dependent; T90 peaks in 
the blue around 400 nm. Today many companies produce a variety 
of polarizing filters and there is no universally accepted designa-
tion like HN. Sheet polarizers are specified, in part, by their trans-
mittances in unpolarized light, Tn, which can be as high as 46%.

When two identical real linear polarizers in natural light are 
positioned one behind the other with their transmission axes 
parallel, the resulting transmittance is

 Tni = 1
2 T0T0 + 1

2 T90T90 ≈ 1
2 T0

2 (8.26)

On the other hand, when two such identical linear polarizers 
illuminated by natural light are crossed, whereupon their trans-
mission axes are perpendicular, their total transmittance is

 Tn# = 1
2 T0T90 + 1

2 T90T0 = T0 T90 (8.27)

In general, then, when the two filters’ transmission axes are at 
an angle u the total transmittance becomes

Tnu = (1
2 T0 T0 + 1

2 T90 T90) cos2 u + T0T90 sin2 u

or Tnu ≈ 1
2 T0

2 cos2 u (8.28)

EXAMPLE 8.4

The newer HN-42HE variety of sheet dichroic linear polarizer 
combines high transmittance with enhanced extinction. Sup-
pose two such identical filters are aligned, one behind the other, 
with their transmission axes parallel. If 250 W>m2 of natural 
light impinges normally on the first polarizer, how much light 
will emerge from the second?

SOLUTION 

Because the light is unpolarized, 50% of the incident 
irradiance (Ii) can be assumed to vibrate parallel to the 
transmission axis of the first polarizer and the other 50% 
will more or less be absorbed. If the first filter were perfect, 
it would transmit 1

2 Ii but it actually transmits a fraction (T0) 
of that, namely, 1

2 Ii T0. Here we have an HN-42HE filter for 
which 12 T0 ≈ 42% and so T0 ≈ 84%; that’s the percentage of 
the linear light, all of which is parallel to the transmission 
axis, which is transmitted by the first filter. The second 
polarizer passes the fraction (T0) of the linear light (1

2 Ii T0) 
incident on it, namely, It = (1

2 Ii T
2
0) = 1

2(250 W>m2)(0.84)2 =
0.353(250 W>m2) = 88.2 W>m2. We can check this using 
Eq. (8.26); Tni ≈ 1

2 T0
2 and so It = (1

2 T0
2)Ii, which is what we 

just concluded.

Many other forms of Polaroid have been developed.* K-
sheet, which is humidity- and heat-resistant, has as its dichro-
mophore the straight-chain hydrocarbon polyvinylene. A com-
bination of the ingredients of H- and K-sheets leads to HR-sheet, 
a near-infrared polarizer. And there are commercially available 
dichroic sheet linear polarizers that function in the ultraviolet 
from ≈300 nm to ≈400 nm.

Remember that sheet dichroic polarizers are designed for a 
specific wavelength range. A pair of crossed sheet linear polar-
izers intended to block the visible will leak substantially below 
≈450 nm and above ≈650 nm. 

All sorts of dichroic linear polarizers, from sheet Polaroid to 
Polarcor (i.e., glass containing aligned elongated silver crystals) 
to tourmaline, can be characterized by specifying their trans-
mission properties. To that end consider a linearly polarized 
beam of vertical light impinging normally on a linear polarizer.  
The latter can be revolved around an axis parallel to the beam 
through an angle u, measured from its transmission axis to the 
vertical. When the beam’s electric field is parallel to the polar-
izer’s transmission axis (u = 0) the transmitted irradiance, call 
it It 0, will be maximum. Then, given that the incident irradiance 
is Ii, the quantity It 0>Ii is known as the principal transmittance, 
T0. It is the fraction of the incident light parallel to the transmis-
sion axis that is passed by the polarizer. When the electric field 
oscillates perpendicular to the transmission axis, the irradiance 
(It 90) passing out of the polarizer is minimal and It 90>Ii is known 
as the minor transmittance, T90. It is the fraction of the incident 
linear light, all of which is aligned perpendicular to the transmis-
sion axis, that is passed or leaked by the polarizer. 

Again imagine a beam of linear light incident on a linear di-
chroic polarizer making an angle u with the transmission axis.  
Since irradiance is proportional to the field amplitude squared, 
and since there are components of that amplitude parallel and 
perpendicular to the transmission axis, the transmittance of 
the polarizer illuminated with linear light is

 Tl = T0 cos2 u + T90 sin2 u (8.25)

The transmittance ratio is defined as (It 0>Ii)>(It 90>Ii) =
T0>T90 = It 0>It 90 and this could be as high as 30 000 :1.  Like-
wise the extinction ratio is one over that, or T90>T0. As a rule,  
T0 7 7  T90.

For an ideal dichroic linear polarizer under natural illumina-
tion, all of the light parallel to the transmission axis will be passed 
and so T0 = 1.0, whereas none of the light perpendicular to it 
will be passed, and T90 = 0. If an actual polarizer is illuminated 
by natural light, both orthogonal directions will transmit and the 
total transmittance (Tn) of the device will be given by Tn =   
1
2 (T0 + T90) ≈ 1

2 T0.  The 1
2 is there because ideally half the un-

polarized incident light is absorbed. In the case of the original 
Polaroid sheets illuminated by natural light, designations like 
HN-38, HN-32, and HN-22 correspond to total transmittances 

*See Polarized Light: Production and Use, by Shurcliff, or its more readable little 
brother, Polarized Light, by Shurcliff and Ballard.
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springs of differing stiffness (i.e., having different spring con-
stants). An electron that is displaced from equilibrium along a 
direction parallel to one set of “springs” will evidently oscillate 
with a different characteristic frequency than it would were it 
displaced in some other direction. 

As was pointed out previously, light propagates through a 
transparent substance by exciting the atoms within the  medium. 
The electrons are driven by the E$-field, and they reradiate; 
these secondary wavelets recombine, and the resultant  refracted 
wave moves on. The speed of the wave, and therefore the index 
of refraction, is determined by the difference between the 
 frequency of the E$-field and the natural frequency of the  atoms. 
An anisotropy in the binding force will be manifest in an 
 anisotropy in the refractive index. For example, if �-state light 
was to move through some hypothetical crystal so that it en-
countered electrons that could be represented by Fig. 8.17, its 
speed would be governed by the orientation of E$ . If E$  was 
parallel to the stiff springs, that is, in a direction of strong bind-
ing, here along the x-axis, the electron’s natural frequency 
would be high (proportional to the square root of the spring 
constant). In contrast, with E$  along the y-axis, where the bind-
ing force is weaker, the natural frequency would be somewhat 
lower. Keeping in mind our earlier discussion of dispersion and 
the n(v) curve of Fig. 3.41, the appropriate indices of refrac-
tion might look like those in Fig. 8.18. A material of this sort, 
which displays two different indices of refraction, is said to be 
birefringent.*

If the crystal is such that the frequency of the incident light ap-
pears in the vicinity of vd, in Fig. 8.18, it resides in the absorption 
band of ny(v). A crystal so illuminated will be strongly absorbing 
for one polarization direction (y) and transparent for the other (x). 
A birefringent material that absorbs one of the orthogonal �-states, 
passing on the other, is dichroic. Furthermore, suppose that the 
crystal symmetry is such that the binding forces in the y- and  
z-directions are identical; in other words, each of these springs has 
the same natural frequency and they are equally lossy. The x-axis 
now defines the direction of the optic axis. Inasmuch as a crystal 
can be represented by an array of these oriented anisotropic 
charged oscillators, the optic axis is actually a direction and not 
merely a single line. The model works rather nicely for dichroic 
crystals, since if light was to propagate along the optic axis (E$ in 
the yz-plane), it would be strongly absorbed, and if it moved 
 normal to that axis, it would emerge linearly polarized.

Often the natural frequencies of birefringent crystals are 
above the optical range, and they appear colorless. This is 
 represented by Fig. 8.18, where the incident light is now con-
sidered to have frequencies in the region of vb. Two different 
indices are  apparent, but absorption for either polarization is 
negligible. Equation (3.71) shows that n(v) varies inversely 
with the natural frequency. This means that a large effective 

Polaroid vectograph is a commercial material at one time 
 designed to be incorporated in a process for making three- 
dimensional photographs. The stuff never was successful at its 
intended purpose, but it can be used to produce some rather 
thought-provoking, if not mystifying, demonstrations. Vecto-
graph film is a water-clear plastic laminate of two sheets of poly-
vinyl alcohol arranged so that their stretch directions are at right 
angles to each other. In this form there are no conduction elec-
trons available, and the film is not a polarizer. Using an iodine 
solution, imagine that we draw an X on one side of the film and a 
Y overlapping it on the other. Under natural illumination the light 
passing through the X will be in a �-state perpendicular to the  
�-state light coming from the Y. In other words, the painted 
 regions form two crossed polarizers. They will be seen superim-
posed on each other. Now, if the vectograph is viewed through a 
linear polarizer that can be rotated, either the X, the Y, or both will 
be seen. Obviously, more imaginative drawings can be made. (One 
need only remember to make the one on the far side backward.)

8.4 Birefringence

Many crystalline substances (i.e., solids whose atoms are 
 arranged in some sort of regular repetitive array) are optically 
anisotropic. Their optical properties are not the same in all 
 directions within any given sample. The dichroic crystals of the 
previous section are but one special subgroup. We saw there 
that if the crystal’s lattice atoms were not completely symmetri-
cally arrayed, the binding forces on the electrons would be 
anisotropic. Earlier, in Fig. 3.38b we represented the isotropic 
oscillator using the simple mechanical model of a spherical 
charged shell bound by identical springs to a fixed point. This 
was fine for optically isotropic substances (amorphous solids, 
such as glass and plastic, are usually, but not always, isotropic). 
Figure 8.17 shows another charged shell, this one bound by 

+

x

Electron
cloud

z

y

Figure 8.17  Mechanical model depicting a negatively charged shell 
bound to a positive nucleus by pairs of springs having different stiffness.

*The word refringence used to be used instead of our present-day term refraction. 
It comes from the Latin refractus by way of an etymological route beginning with 
frangere, meaning to break.
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edly different when E$ is either in or normal to those planes 
(Problem 8.34). In any event the asymmetry is clear enough.

Calcite samples can readily be split, forming smooth sur-
faces known as cleavage planes. The crystal is essentially made 
to come apart between specific planes of atoms where the inter-
atomic bonding is relatively weak. All cleavage planes in calcite 
(Fig. 8.20) are normal to three different directions. As a crystal 
grows, atoms are added layer upon layer, following the same 
pattern. But more raw material may be available to the growth 
process on one side than on another, resulting in a crystal with 
an externally complicated shape. Even so, the cleavage planes 
are dependent on the atomic configuration, and if one cuts a 
sample so that each surface is a cleavage plane, its form will be 
related to the basic arrangement of its atoms.  Such a specimen 
is referred to as a cleavage form. In the case of calcite it is a 
rhombohedron, with each face a parallelogram whose angles 
are 78° 5′ and 101° 55′ (Fig. 8.21).

There are only two blunt corners where the surface planes 
meet to form three obtuse angles. A line passing through the ver-
tex of either of the blunt corners, oriented so that it makes equal 
angles with each face (45.5°) and each edge (63.8°), is clearly an 
axis of 3-fold symmetry. (This would be a bit more obvious if we 
cut the rhomb to have edges of equal length.) Evidently, such a 
line must correspond to the optic axis. Whatever the natural shape 
of a particular calcite specimen, you need only find a blunt corner 
and you have the optic axis.

In 1669 Erasmus Bartholinus (1625–1692), doctor of  
medicine and professor of mathematics at the University of 
Copenhagen (and incidentally, the father-in-law of Ole Römer, 
the man who in 1679 first measured the speed of light), came 

spring constant (i.e., strong binding) corresponds to a low po-
larizability, a low dielectric constant, and a low refractive index.

We will construct, if only pictorially, a linear polarizer utiliz-
ing birefringence by causing the two orthogonal �-states to fol-
low different paths and separate. Even more fascinating things 
can be done with birefringent crystals, as we shall see later.

8.4.1 Calcite

Let’s spend a moment relating the above ideas to a typical bire-
fringent crystal, calcite. Calcite or calcium carbonate (CaCO3)
is a common naturally occurring substance. Both marble and 
limestone are made up of many small calcite crystals bonded 
together. Of particular interest are the beautiful large single 
crystals, which, although they are becoming rare, can still be 
found, particularly in India, Mexico, and South Africa. Calcite 
is the most common material for making linear polarizers for 
use with high-power lasers.

Figure 8.19 shows the distribution of carbon, calcium, and 
oxygen within the calcite structure; Fig. 8.20 is a view from 
above, looking down along what has, in anticipation, been la-
beled the optic axis in Fig. 8.19. Each CO3 group forms a trian-
gular cluster whose plane is perpendicular to the optic axis. If 
Fig. 8.20 is rotated about a line normal to and passing through 
the center of any one of the carbonate groups, the same exact 
configuration of atoms would appear three times during each 
revolution. The direction designated as the optic axis corresponds 
to a special crystallographic orientation, in that it is an axis of 
3-fold symmetry. The large birefringence displayed by calcite 
arises from the fact that the carbonate groups are all in planes 
normal to the optic axis. The behavior of their electrons, or rath-
er the mutual interaction of the induced oxygen dipoles, is mark-

v

vb vd

n(v)

1

v

n(v)

1

ny

nx

Figure 8.18  Refractive index versus frequency along two axes in a crys-
tal. Regions where dn>dv 6 0 correspond to absorption bands.

Optic
axis

Carbon

Calcium

Oxygen

Figure 8.19  Arrangement of atoms in calcite.
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upon a new and remarkable optical phenomenon in calcite, 
which he called double refraction. Calcite had been discov-
ered not long before, near Eskifjordur in Iceland, and was then 
known as Iceland spar. In the words of Bartholinus:*

Greatly prized by all men is the diamond, and many are the joys 
which similar treasures bring, such as precious stones and 
pearls. . . but he, who, on the other hand, prefers the knowledge 
of unusual phenomena to these delights, he will, I hope, have no 
less joy in a new sort of body, namely, a transparent crystal, re-
cently brought to us from Iceland, which perhaps is one of the 
greatest wonders that nature has produced. . . .

As my investigation of this crystal proceeded there showed 
itself a wonderful and extraordinary phenomenon: objects which 
are looked at through the crystal do not show, as in the case of 
other transparent bodies, a single refracted image, but they ap-
pear double.

The double image referred to by Bartholinus is quite evi-
dent in the accompanying photograph. If we send a narrow 
beam of natural light into a calcite crystal normal to a cleav-
age plane, it will split and emerge as two parallel beams. To 
see the same effect quite simply, we need only place a black 
dot on a piece of paper and then cover it with a calcite rhomb. 
The image will now consist of two gray dots (black where 
they overlap). Rotating the crystal will cause one of the dots 
to remain stationary while the other appears to move in a 
circle about it, following the motion of the crystal. The rays 
forming the fixed dot, which is the one invariably closer to 
the upper blunt corner, behave as if they had merely passed 
through a plate of glass. In accord with a suggestion made by 
Bartholinus, they are known as the ordinary rays, or o-rays. 
The rays coming from the other dot, which behave in such an 
unusual fashion, are known as the extraordinary rays, or  
e-rays. If the crystal is examined through an analyzer, it will 
be found that the ordinary and extraordinary images are lin-
early polarized (see photo). Moreover, the two emerging  
�-states are orthogonal.

*Source: Erasmus Bartholinus (1625–1692) W.F. Magie, A Source Book in Physics.
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Figure 8.21  Calcite cleavage form.

Double image formed by a calcite crystal (not cleavage form). (E.H.)

Figure 8.20  Atomic arrangement for calcite looking down the  
optical axis.
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354 Chapter 8 Polarization

in Fig. 8.23. The wave strikes the surface of the crystal, there-
upon driving electrons into oscillation, and they in turn reradi-
ate secondary wavelets. The wavelets superimpose and recom-
bine to form the refracted wave, and the process is repeated 
over and over again until the wave emerges from the crystal. 
This represents a cogent physical argument for applying the 
ideas of scattering via Huygens’s Principle. Huygens himself, 
though without benefit of electromagnetic theory, used his 
construction to explain many aspects of double refraction in 
calcite as long ago as 1690. It should be made clear from the 
outset, however, that his treatment is incomplete,* in which 
form it is appealingly, though deceptively, simple.

Inasmuch as the E$-field is perpendicular to the optic axis, one 
assumes that the wavefront stimulates countless atoms on the 
surface, which then act as sources of spherical wavelets, all of 
which are in-phase. Presumably, as long as the field of the wave-
lets is everywhere normal to the optic axis, they will expand into 
the crystal in all directions with a speed v#, as they would in an 
isotropic medium. (Keep in mind that the speed is a function of 
frequency.) Since the o-wave displays no anomalous behavior, 
this assumption seems reasonable. The envelope of the wavelets 
is essentially a portion of a plane wave, which in turn stimulates 
a distribution of secondary atomic point sources. The process 
continues, and the wave moves straight across the crystal.

In contrast, consider the incident wave in Fig. 8.24 whose  
E$-field is parallel to the principal section. Notice that E$  now 
has a component normal to the optic axis, as well as a compo-
nent parallel to it. Since the medium is birefringent, light of a 
given frequency polarized parallel to the optic axis propagates 
with a speed vi, where vi Z v#. In particular for calcite and 
sodium yellow light (l = 589 nm), 1.486vi = 1.658v# = c. 
What kind of Huygens’s wavelets can we expect now? At the 
risk of oversimplifying matters, we represent each e-wavelet, 

A calcite crystal (blunt corner on the bottom). The transmission axes of the 
two polarizers are parallel to their short edges. Where the image is doubled, 
the lower, undeflected one is the ordinary image. Take a long look: there’s a 
lot in this one. (E.H.)

109°

6.2°

71°

Optic
axis

Optic axis

e-ray

e-ray

o-ray

o-ray

E�

Figure 8.22  A lightbeam with two orthogonal field components traversing 
a calcite principal section.

71°

Optic axis

o-wave

E�

Figure 8.23  An incident plane wave polarized perpendicular to the  
principal section.

*A. Sommerfeld, Optics, p. 148.

Any number of planes can be drawn through the rhomb so as 
to contain the optic axis, and these are all called principal 
planes. More specifically, if the principal plane is also normal 
to a pair of opposite surfaces of the cleavage form, it slices the 
crystal across a principal section. Evidently, three of these pass 
through any one point; each is a parallelogram having angles of 
109° and 71°. Figure 8.22 is a diagrammatic representation of 
an initially unpolarized beam traversing a principal section of a 
calcite rhomb. The filled-in circles and arrows drawn along the 
rays indicate that the o-ray has its electric-field vector normal to 
the principal section, and the field of the e-ray is parallel to the 
principal section.

To simplify matters a bit, let E$  in the incident plane wave 
be linearly polarized perpendicular to the optic axis, as shown 
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usually the case). Light will scatter off internal flaws, making its 
path fairly visible.

The electromagnetic description of what is happening is 
rather complicated but well worth examining at this point, 
even if only superficially. Recall from Chapter 3 that the inci-
dent E$-field will polarize the dielectric; that is, it will shift the 
distribution of charges, thereby creating electric dipoles. The 
field within the dielectric is thus altered by the inclusion of an 
induced field, and one is led to introduce a new quantity, the 
displacement D$  (see Appendix 1), which is an electric flux 
density. In isotropic media D$  is related to E$  by a scalar quan-
tity, P, the permittivity, such that D$ = PE$  and the two fields 
are always parallel.  Recall that expressions for E$  (e.g., de-
rived from Coulomb’s Law or Gauss’s Law) contain a factor 
of 1>P and so D$  is independent of the permittivity of the me-
dium, whereas E$  is not.

In anisotropic crystals D$  and E$  are related by a tensor and 
are not always parallel. If we now apply Maxwell’s Equations 
to the problem of a wave moving through such a medium, we 
find that the fields vibrating within the wavefront are D$  and B$  
and not, as before, E$  and B$ . 

Keep in mind that B$ = mH$ , where expressions for B$  contain 
a factor of m, and so it is H$  that is independent of the medium. 
Still, for all the materials we will be concerned with, m is a sca-
lar, B$  and H$  are parallel, and we needn’t generally deal with H$ . 
The propagation vector k$, which is normal to the surfaces of 
constant phase, is now perpendicular to D$  rather than E$ . In fact, 
D$ , E$ , and k$ are all coplanar (Fig. 8.26). The ray direction cor-
responds to the direction of the Poynting vector S$ = v2PE$ : B$, 
which is generally different from that of k$. Because of the man-
ner in which the atoms are distributed, E$  and D$  will, however, 
be colinear when they are both either parallel or perpendicular 
to the optic axis.* This means that the o-wavelet will encounter 

71°

Optic axis

e-wave
E�

Figure 8.24  An incident plane wave polarized parallel to the principal 
section.

Optic axis

E�

v⊥

v∣∣ Figure 8.25  Wavelets  
within calcite.

for the moment at least, as a small sphere (Fig. 8.25). Imagine 
that the E$-field in the crystal is everywhere tangent to the wave-
let. When that field is parallel to the optic axis the wavelet travels 
at vi; when it’s perpendicular, it travels at v#. But vi 7 v#, so 
that the wavelet will elongate in all directions normal to the optic 
axis. We therefore speculate, as Huygens did, that the secondary 
wavelets associated with the e-wave are ellipsoids of revolution 
about the optic axis. The envelope of all the ellipsoidal wavelets 
is essentially a portion of a plane wave parallel to the incident 
wave. This plane wave, however, will evidently undergo a side-
wise displacement in traversing the crystal. The beam moves in 
a direction parallel to the lines connecting the origin of each 
wavelet and the point of tangency with the planar envelope. This 
is known as the ray direction and corresponds to the direction in 
which energy propagates. Clearly, in an anisotropic crystal the 
direction of the ray is not normal to the wavefront.

If the incident beam is natural light, the two situations depict-
ed in Figs. 8.23 and 8.24 will exist simultaneously, with the result 
that the beam will split into two orthogonal linearly polarized 
beams (Fig. 8.22). You can actually see the two diverging beams 
within a crystal by using a properly oriented narrow laserbeam  
(E$ neither normal nor parallel to the principal plane, which is 

Figure 8.26  The relationship between H$, B$, E$, D$, k$, and S$ in an anisotropic 
medium.

E�

S�

Ray

D�

B�
H� k�k�

*In the oscillator model, the general case corresponds to the situation in which E$ 
is not parallel to any of the spring directions. The field will drive the charge, but 
its resultant motion will not be in the direction of E$ because of the anisotropy of 
the binding forces. The charge will be displaced most, for a given force compo-
nent, in the direction of weakest restraint. The induced field will thus not have the 
same orientation as E$.
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356 Chapter 8 Polarization

an effectively isotropic medium and thus be spherical, having 
S$o and k$ colinear. In contrast, the e-wavelets will have S$e and 
k$, or equivalently E$  and D$ , parallel only in directions along or 
normal to the optic axis. At all other points on the wavelet it is 
D$  that is tangent to the ellipsoid, and therefore it is always D$  
that ends up in the envelope or composite planar wavefront 
within the crystal (Fig. 8.27).

8.4.2 Birefringent Crystals

Cubic crystals, such as sodium chloride (i.e., common salt), have 
their atoms arranged in a relatively simple and highly symmetri-
cal form. (There are four 3-fold symmetry axes, each running 
from one corner to an opposite corner, unlike calcite, which has 
one such axis.) Light emanating from a point source within such 
a crystal will propagate uniformly in all directions as a spherical 
wave. As with amorphous solids like glass, there will be no pre-
ferred directions in the material. It will have a single index of 
refraction and be optically isotropic (see photo). In that case all 
the springs in the oscillator model will evidently be identical.

Crystals belonging to the hexagonal, tetragonal, and  trigonal 
systems have their atoms arranged so that light propagating in 
some general direction will encounter an asymmetrical struc-
ture. Such substances are optically anisotropic and birefringent. 
The optic axis corresponds to a direction about which the atoms 
are arranged symmetrically. Crystals like these, for which there 
is only one such direction, are known as uniaxial. 

A point source of natural light embedded within one of these 
specimens gives rise to both spherical o-wavelets and ellipsoidal 

O
ptic axis

e-wave

o-wave

E�
E�

S�

S�

k�

D�

D�

k�

Figure 8.27  Orientations of the E$-, D$-, S$-, and k$-vectors.
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Figure 8.28  Wavelets in a negative uniaxial crystal (their differences 
much exaggerated). The arrows and dots represent the E$-fields of the 
extraordinary and ordinary waves, respectively. The E$-field of the o-wave is 
everywhere perpendicular to the optic axis. At these particular locations on 
the wavelets the E$- and D$-fields are parallel. A line from the center point to 
the ellipse corresponds to a ray in that direction whose length indicates the 
wave’s speed in that direction. A tangent to the ellipse at the point where 
that ray intersects the e-wave is the direction of D$. And the same is true 
for the o-wave where E$ and D$ are parallel and perpendicular to the plane 
of the drawing.

Crystals of potassium chloride, calcium carbonate (calcite), and sodium chlo-
ride (table salt). Only the calcite produces a double image. It’s because of 
this that calcite is said to be birefringent. (E.H.)

e-wavelets. It is the orientation of the field with respect to the 
optic axis that determines the speeds with which these wavelets 
expand. The E$-field of the o-wave is everywhere normal to the 
optic axis, as is the D$ -field, so the wave moves at a speed v# in 
all directions. Similarly, the e-wave has a speed v# only in the 
direction of the optic axis (Fig. 8.25), along which it is always 
tangent to the o-wave. Normal to this direction, both E$ and D$  are 
parallel to the optic axis, and that portion of the wavelet expands 
at a speed vi (Fig. 8.28). Uniaxial materials have two principal 
 indices of refraction, no K c>v# and ne K c>vi in orthogonal 
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Figure 8.29  Wavelets in a positive uniaxial crystal (their differences much 
exaggerated). The arrows and dots represent the E$-fields of the extraordinary 
and ordinary waves, respectively. The E$-field of the o-wave is everywhere 
perpendicular to the optic axis. At these particular locations on the wavelets 
the E$- and D$-fields are parallel. A line from the center point to either wavelet 
has a length corresponding to the speed of that wavelet in that direction. 
Thus the o-wave has the same speed in every direction.

TABLE 8.1  Refractive Indices of Some Uniaxial 
Birefringent Crystals (l0 = 589.3 nm)

Crystal no ne

Calcite 1.6584 1.4864

Ice 1.309 1.313

KDP 1.51 1.47

Lithium niobate 2.30 2.21

Quartz 1.5443 1.5534

Rutile (TiO2) 2.616 2.903

Sodium nitrate 1.5854 1.3369

Tourmaline 1.669 1.638

directions (Problem 8.36) as indicated in Table 8.1. For all such 
crystals there is a single direction, the optic axis, along which the 
two wavelets share a common tangent. Thus all plane waves trav-
eling in that direction preserve their state of polarization.

The difference ∆n = (ne - no) is a measure of the birefrin-
gence, and it’s often called the birefringence. In calcite vi 7 v#, 
(ne - no) is -0.172, and it is negative uniaxial. In comparison, 
there are other crystals, such as quartz (crystallized silicon diox-
ide) and ice, for which v# 7 vi. Consequently, the ellipsoidal 
e-wavelets are enclosed within the spherical o-wavelets, as shown in 
Fig. 8.29. (Quartz is optically active and therefore actually a bit 
more complicated.) In that case, (ne - no) is positive, and the crys-
tal is positive uniaxial. Among the modern-day electro-optical 

crystals, lithium tantalate (LiTaO3) is positive birefringent, 
whereas lithium niobate (LiNbO3), potassium dihydrogen phos-
phate (KH2PO4), or KDP, and ammonium dihydrogen phos-
phate (NH4H2PO4), or ADP, are all negative birefringent.

The remaining crystallographic systems, namely, orthorhom-
bic, monoclinic, and triclinic, have two optic axes and are biaxial. 
Such substances, for example, mica, have three different principal 
indices of refraction. Each set of springs in the oscillator model 
would then be different. The birefringence of biaxial crystals is 
measured as the numerical difference between the largest and 
smallest of these indices. For mica (e.g., muscovite at 589.3 nm) 
these indices are 1.561, 1.590, and 1.594, the last two being close 
enough so that mica can usually be treated as uniaxial.

The configuration of the three-dimensional wavefront in a 
biaxial crystal is fairly complex. Figure 8.30 illustrates the 
 structure across one coordinate-plane slice of the wavefront. 
Rather than having two orthogonal principal indices of refrac-
tion as in the case of the uniaxial system, the biaxial crystal has 
three: two associated with the elliptical segment and one with 
the circle. But here the two wavelets intermingle and should not 
be viewed as if they were independent. The wavefront is a three-
dimensional continuous complicated surface.

An optic axis again corresponds to a direction along which 
plane waves can propagate with a single fixed velocity indepen-
dent of the direction of D$  within the wavefront. In the diagram 
there are four locations where a single plane is tangent to both 
the elliptical and circular figures. The two directions passing 
through the coordinate center (i.e., the imagined imbedded point 
source), perpendicular to these tangent planes are the two optic 
axes of the specimen. In these directions all plane waves would 
travel at the same speed regardless of the orientations of their  
D$ -fields. Such waves would preserve their polarization states as 
they moved through the crystal. Fortunately, biaxial crystals are 
generally not of great practical concern, so we needn’t study 
them any further.

Figure 8.30  The intersection of one coordinate plane with the complex 
 continuous wavefront propagating within a biaxial crystal.
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358 Chapter 8 Polarization

e-wavefront after a time ∆t. The line from A to the point of tan-
gency is the e-ray, the direction of flow of energy, the direction 
of the Poynting vector S$e; it’s not perpendicular to the e-wavefront 
and the little arrows along its length depict the D$ -field, which is 
in the plane of the wavefront. Alternatively, had we drawn little 
arrows representing the E$-field they would have been perpen-
dicular to S$e, which itself corresponds to the e-ray. As a rule, an 
e-wave does not travel through a birefringent crystal at the 
same speed in all directions and so an e-ray does not gener-
ally obey Snell’s Law.

It is possible, however, to cut and polish a uniaxial crystal 
such that its optic axis is everywhere parallel to the field of the 
e-wave. For example, consider a crystal cube whose edges 
correspond to the x-, y-, and z-axes, with x and y horizontal, 
and z vertical, such that the crystal’s left vertical face is the 
xz-plane. Now suppose that the crystal’s optic axis is vertical 
in the z-direction, and light propagates in the y-direction. The 
electric field of the incident light wave can be thought of as 
having two orthogonal components, one oscillating horizon-
tally and one vertically. The horizontal field is everywhere 
perpendicular to the vertically optic axis. This is the ordinary 
wave and, as ever, it obeys Snell’s Law. By contrast, the verti-
cal component corresponds to the extraordinary wave and in 
this particular case it’s everywhere parallel to the optic axis. 
The e-wave “sees” an effectively isotropic medium, propa-
gates at the same speed in all directions in the horizontal 
plane, and obeys Snell’s Law.

EXAMPLE 8.5

A calcite crystal (no = 1.658 4, ne = 1.486 4) is cut and pol-
ished so that the optic axis is perpendicular to the plane of the 
drawing, as shown in the accompanying diagram.

40.0°

Air
u1

u2

Calcite

Ray-1

Ray-2

(a) Which ray is the ordinary one and which is the extraordinary 
one? Explain your answer. (b) Which of the two will have its 
electric field perpendicular to the optic axis? (c) Determine the 
angle between the two refracted rays.

SOLUTION
(a) Because of the way the crystal is cut, one of the field com-
ponents will everywhere be parallel to the optic axes while the 
other will everwhere be perpendicular to it. Each will “see” an 
isotropic medium. Hence Snell’s Law applies to both waves and 
determines both angles of refraction. Since the larger the index 
is, the smaller will be ut, it follows that because no 7 ne it must 
be that uo 6 ue and hence uo = u2 and ue = u1. Therefore ray-1 
is the extraordinary ray, and ray-2 is the ordinary ray. (b) The 

Wavefronts and Rays in Uniaxial Crystals

We are now in a position to construct a graphical procedure to 
demonstrate how plane waves propagate into uniaxial crystals. 
Huygens provided the method, which we illustrated earlier in 
Fig. 4.31 at the interface between two isotropic materials. The 
scheme is equivalent to that of Fig. 4.19, which we used to 
 derive Snell’s Law, and it works nicely for anisotropic media as 
well. Imagine a planar wavefront AB obliquely incident on the 
flat surface of a negative uniaxial crystal in air (Fig. 8.31). For 
simplicity, the plane of the diagram is taken to be a principal 
section and hence the optic axis is in that plane as shown. 

Let’s first deal with the o-wave. The incoming wave 
 advances in air and its endpoint B travels to Q in a time 
∆t = BQ>c. This is the same time it takes from the circular 
o-wavelet, emitted at A, to advance in the crystal to C, at a 
speed v# = c>no. Accordingly, construct a circular wavelet of 
radius AC = v#∆t = v#(BQ>c) = BQ>no centered at A. Now 
draw a line from Q tangent to that o-wavelet. As the incoming 
wave sweeps across the interface, all the scattered circular  
o-wavelets that are successively generated will be tangent to 
that same line, which corresponds to the o-wavefront. The line 
from A to the point of tangency is the o-ray, the direction of 
flow of energy, the direction of the Poynting vector S$o. It’s 
perpendicular to the o-wavefront because that portion of the 
EM disturbance behaves as if the crystal medium were isotro-
pic. For the same reason the black dots on the o-ray show the 
up and down oscillatory directions of both E$  and D$ , which 
are parallel to each other and perpendicular to the plane of the 
drawing. As a rule, an o-ray comports with Snell’s Law 
 because it travels at the same speed in every direction as if 
the medium were isotropic.

Next we construct an elliptical e-wavelet centered on A such 
that its semi-major axis, that is, its maximum elongation, is  
AD = BQ>ne. For a negative crystal AD 7 AC and the e-wavelet 
is tangent to the o-wavelet on the optic axis. Now draw a line 
from Q tangent to that e-wavelet. This line corresponds to the 

Figure 8.31  A plane wave incident on a negative uniaxial crystal.
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 8.4 Birefringence 359

the optic axis. The two rays traverse the first calcite section with-
out any deviation. (We’ll come back to this point later on when 
we talk about retarders in Section 8.7.1.) If the angle-of-incidence 
on the calcite–air interface is u, one need only arrange things so 
that ne 6 1>sin u 6 no in order for the o-ray, and not the e-ray, 
to be totally internally reflected. The transmitted light is 100% 
linearly polarized, but the reflected beam isn’t.

If the two prisms are now cemented together (glycerine or 
mineral oil is used in the ultraviolet) and the interface angle is 
changed appropriately, the device is known as a Glan– Thompson 
polarizer. Its field of view is roughly 30°, in comparison to 
about 10° for the Glan–Foucault, or Glan–Air, as it is often 

ordinary ray has its electric field everywhere perpendicular to 
the optic axis. Thus the field must be in the plane of the draw-
ing perpendicular to ray-2. (c) From Snell’s Law, which here 
applies to both rays,

 sin u1 =  sin ue =
1.00 sin 40.0°

1.486 4
sin u1 = 0.432 4

and

u1 = ue = 25.62°

whereas

 sin u2 =  sin uo =
1.00 sin 40.0°

1.658 4
sin u2 = 0.387 6

and

u2 = uo = 22.80°

Therefore

u1 - u2 = ue - uo = 2.82°

8.4.3 Birefringent Polarizers

It will now be an easy matter, at least conceptually, to make 
some sort of linear birefringent polarizer. Any number of 
schemes for separating the o- and e-waves have been employed, 
all of them relying on the fact that ne Z n

 o.
The most renowned birefringent polarizer was introduced in 

1828 by the Scottish physicist William Nicol (1768–1851). The 
Nicol prism is now mainly of historical interest, having long 
been superseded by other, more effective polarizers. Putting it 
rather succinctly, the device is made by first grinding and pol-
ishing the ends (from 71° to 68°; see Fig. 8.23) of a suitably 
long, narrow calcite rhombohedron; after cutting the rhomb 
 diagonally, the two pieces are polished and cemented back 
 together with Canada balsam (Fig. 8.32). The balsam cement is 
transparent and has an index of 1.55 almost midway between ne 
and no. The incident beam enters the “prism.” The o- and e-rays 
are refracted; they separate and strike the balsam layer. The 
critical angle at the calcite–balsam interface for the o-ray is 
about 69° (Problem 8.37). The o-ray (entering within a narrow 
cone of roughly 28°) will be totally internally reflected and 
thereafter absorbed by a layer of black paint on the sides of the 
rhomb. The e-ray emerges laterally displaced but otherwise 
 essentially unscathed, at least in the optical region of the spec-
trum. (Canada balsam absorbs in the ultraviolet.)

The Glan–Foucault polarizer (Fig. 8.33a) is constructed of 
nothing other than calcite, which is transparent from roughly 
5000 nm in the infrared to about 230 nm in the ultraviolet. It 
therefore can be used over a broad spectral range. The incoming 
ray strikes the surface normally, and E$ can be resolved into com-
ponents that are either completely parallel or perpendicular to 

Optic axis
68°

68°

o-ray

e-ray

68°

68°

Figure 8.32  The Nicol prism. The little flat on the blunt corner locates 
the optic axis. (E.H.)
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Figure 8.34  The Wollaston prism.

Most of the polarizing prisms are now being produced using 
the new birefrigent crystals alpha-barium borate (a-BBO) and 
yttrium orthovanadate (YVO4). These crystals can provide a  
tenfold increase in extinction ratio over that for quartz or calcite.

called. The latter, however, has the advantage of being able to 
handle the considerably higher power levels often encountered 
with lasers. For example, whereas the maximum irradiance for 
a Glan–Thompson could be about 1 W>cm2 (continuous wave 
as opposed to pulsed), a typical Glan–Air might have an upper 
limit of 100 W>cm2  (continuous wave). The difference is due 
to deterioration of the interface cement (and the absorbing 
paint, if it’s used). The Glan–Taylor prism (Fig. 8.33b) has 
 better transmission than the Glan-Foucault, and therefore the 
 reflected light is more highly polarized. Accordingly, it can be 
used as a polarizing beamsplitter.

The Wollaston prism is a polarizing beamsplitter because it 
passes both orthogonally polarized components. It can be made 
of calcite or quartz in the form indicated in Fig. 8.34. The two 
component rays separate at the diagonal interface. There, the 
e-ray becomes an o-ray, changing its index accordingly. In 
 calcite ne 6 no, and the emerging o-ray is bent toward the 
 normal. Similarly, the o-ray, whose field is initially perpendicu-
lar to the optic axis, becomes an e-ray in the right-hand section. 
This time, in calcite the e-ray is bent away from the normal 
to  the interface (see Problem 8.38). The deviation angle be-
tween the two emerging beams is determined by the prism’s 
wedge angle, u. Prisms providing deviations ranging from 
about 2° to roughly 45° are available commercially. They can be 
purchased cemented (e.g., with castor oil or glycerine) or not 
cemented at all (i.e., optically contacted), depending on the 
 frequency and power  requirements.

Absorbing paint
or glass plate

Optic axis

Calcite

Optic axis

38.5°

Mostly o-ray

e-ray

v⊥

v∣∣

Figure 8.33  (a) The Glan–Foucault prism. 
(b) The Glan–Taylor prism. (E.H.)

Mostly
o-ray
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 8.5 Scattering and Polarization 361

Moon repeatedly appeared green or blue, and sunrises and sun-
sets were abnormally colored.

8.5.1 Polarization by Scattering

Imagine a linearly polarized plane wave incident on an air 
 molecule, as pictured in Fig. 8.36. The orientation of the  electric 
field of the scattered radiation (i.e., E$s) follows the dipole pat-
tern such that E$s, the Poynting vector S$, and the oscillating 
 dipole are all coplanar (Fig. 3.37). The vibrations induced in the 
atom are parallel to the E$-field of the incoming lightwave and 
so are perpendicular to the propagation direction. Observe once 
again that the dipole does not radiate in the direction of its axis. 
Now if the incident wave is unpolarized, it can be represented 
by two orthogonal, incoherent �-states, in which case the scat-
tered light (Fig. 8.37) is equivalent to a superposition of the 
conditions shown in Fig. 8.36, a and b. Evidently, the scattered 
light in the forward direction is completely unpolarized; off that 
axis it is partially polarized, becoming increasingly more polar-
ized as the angle increases. When the direction of observation is 
normal to the primary beam, the light is completely linearly 
 polarized.

You can easily verify these conclusions with a piece of 
 Polaroid. Locate the Sun and then examine a region of the sky 
at roughly 90° to the solar rays. That portion of the sky will be 
partially polarized normal to the rays (see photo). It’s not 
 completely polarized mainly because of molecular  anisotropies, 
the presence of large particles in the air, and the depolarizing 
effects of multiple scattering. The latter condition can be 
 illustrated by placing a piece of waxed paper between crossed 
Polaroids (see photo). Because the light undergoes a good deal 

8.5 Scattering and Polarization

Sunlight streaming into the atmosphere from one direction is 
scattered in all directions by the air molecules (see Section 4.2). 
Without an atmosphere, the daytime sky would be as black as 
the void of space, a point well made in the Apollo lunar photo-
graphs. You would then see only light that shone directly at you. 
With an atmosphere, the red end of the spectrum is, for the most 
part, undeviated, whereas the blue or high-frequency end is sub-
stantially scattered. This high-frequency scattered light reaches 
the observer from many directions, making the entire sky ap-
pear bright and blue (Fig. 8.35).

The smoke rising from the end of a lighted cigarette is made 
up of particles that are smaller than the wavelength of light, 
making it appear blue when seen against a dark background. In 
contrast, exhaled smoke contains relatively large water droplets 
and appears white. Each droplet is larger than the constituent 
wavelengths of light and thus contains so many oscillators that 
it is able to sustain the ordinary processes of reflection and 
 refraction. These effects are not preferential to any one frequency 
component in the incident white light. 

The light reflected and refracted several times by a droplet 
and then finally returned to the observer is therefore also white. 
This accounts for the whiteness of small grains of salt and 
 sugar, fog, clouds, paper, powders, ground glass, and, more 
ominously, the typical pallid, polluted city sky.

Particles that are approximately the size of a wavelength 
 (remember that atoms are roughly a fraction of a nanometer 
across) scatter light in a very distinctive way. A large distribu-
tion of such equally sized particles can give rise to a whole 
range of transmitted colors. In 1883 the volcanic island Kraka-
toa, located in the Sunda Strait west of Java, blew apart in a 
fantastic conflagration. Great quantities of fine volcanic dust 
were spewed high into the atmosphere and drifted over vast 
 regions of the Earth. For a few years afterward the Sun and 

Figure 8.35  Scattering of skylight.

A half-Earth hanging in the black Moon sky. (NASA)
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S�

E�

E�s

Figure 8.37  Scattering of unpolarized light by a molecule.

A pair of crossed polarizers. The upper polaroid is noticeably darker than the 
lower one, indicating the partial polarization of sky light. (E.H.)

(a)

S�

E�

E�s

(b)

S�

E�

E�s

Figure 8.36  Scattering of polarized light by a molecule.

A piece of waxed paper between crossed polarizers. (E.H.)

of scattering and multiple reflections within the waxed paper, a 
given oscillator may “see” the superposition of many  essentially 
unrelated E$-fields. The resulting emission is almost completely 
depolarized.

As a final experiment, put a few drops of milk in a glass of 
water and illuminate it (perpendicular to its axis) using a bright 
flashlight. The solution will appear bluish white in scattered 
light and orange in direct light, indicating that the operative 
mechanism is Rayleigh Scattering. The scattered light will also 
be partially polarized.

Using very much the same ideas, Charles Glover Barkla 
(1877–1944) in 1906 established the transverse wave nature of 
X-ray radiation by showing that it could be polarized in certain 
directions as a result of scattering off matter.
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 8.6 Polarization by Reflection 363

Fig. 8.38b. Observe that a rather interesting thing is happen-
ing to the reflected wave. Its flux density is now relatively 
low because the reflected ray direction makes a small angle u 
with the dipole axis. If we could arrange things so that u = 0, 
or equivalently ur + ut = 90°, the reflected wave would 
 vanish  entirely. Under those circumstances, for an incoming 
 unpolarized wave made up of two incoherent orthogonal  
�-states, only the component polarized normal to the  incident 
plane and therefore parallel to the surface will be reflected. 
The particular angle-of-incidence for which this situation 
 occurs is designated by up and referred to as the polarization 
angle or Brewster’s angle, whereupon up + ut = 90°. Hence, 
from Snell’s Law

ni sin up = nt sin ut

and the fact that ut = 90° - up, it follows that

ni sin up = nt cos up

and tan up = nt>ni  (8.29)

This is known as Brewster’s Law after the man who discov-
ered it empirically, Sir David Brewster (1781–1868), professor 
of physics at St. Andrews University and, of course, inventor of 
the kaleidoscope.

When the incident beam is in air ni = 1, and if the transmit-
ting medium is glass, in which case nt ≈ 1.5, the polarization 
angle is ≈ 56°. Similarly, if an unpolarized beam strikes the 
surface of a pond (nt ≈ 1.33 for H2O) at an angle of 53°, the 
reflected beam will be completely polarized with its E$-field 
perpendicular to the plane-of-incidence or, if you like, parallel 
to the water’s surface. This suggests a rather handy way to 
 locate the transmission axis of an unmarked polarizer; one just 
needs a piece of glass or a pond.

The problem immediately encountered in utilizing this 
 phenomenon to construct an effective polarizer lies in the fact 
that the reflected beam, although completely polarized, is weak, 
and the transmitted beam, although strong, is only partially 
 polarized. One scheme, illustrated in Fig. 8.39, is often referred 
to as a pile-of-plates polarizer. It was invented by Dominique 
F. J. Arago in 1812. Devices of this kind can be fabricated with 
glass plates in the visible, silver chloride plates in the infrared, 
and quartz or Vycor in the ultraviolet. It’s an easy matter to 
 construct a crude arrangement of this sort with a dozen or so 
microscope slides. (The beautiful colors that may appear when 
the slides are in contact are discussed in the next chapter.)

The beamsplitter cube uses the same idea to create two 
 orthogonal linearly polarized beams that are conveniently 
 separated by 90° (Fig. 8.40). The diagonal face of one of the 

8.6 Polarization by Reflection

One of the most common sources of polarized light is the ubiq-
uitous process of reflection from dielectric media. The glare 
spread across a window pane, a sheet of paper, or a balding 
head, the sheen on the surface of a telephone, a billiard ball, or 
a book jacket are all generally partially polarized.

The effect was first studied by Étienne Malus in 1808. The 
Paris Academy had offered a prize for a mathematical theory 
of double refraction, and Malus undertook a study of the 
 problem. He was standing at the window of his house in the 
Rue d’Enfer one evening, examining a calcite crystal. The Sun 
was setting, and its image reflected toward him from the 
 windows of the Luxembourg Palace not far away. He held up 
the crystal and looked through it at the Sun’s reflection. To his 
 astonishment, he saw one of the double images disappear as he 
rotated the calcite. After the Sun had set, he continued to verify 
his  observations into the night, using candlelight reflected 
from the surfaces of water and glass.* The significance of 
 birefringence and the  actual nature of polarized light were first 
becoming clear. At that time no satisfactory explanation of 
 polarization existed within the context of the wave theory. 
 During the next 13 years the work of many people, principally 
Thomas Young and Augustin Fresnel, finally led to the 
 representation of light as some sort of transverse vibration. 
(Keep in mind that all this predates the electromagnetic theory 
of light by roughly 40 years.)

The electron-oscillator model provides a remarkably sim-
ple picture of what happens when light is polarized on reflec-
tion. Unfortunately, it’s not a complete description, since it 
does not account for the behavior of magnetic nonconducting 
 materials.** Nonetheless, consider an incoming plane wave 
linearly  polarized so that its E$-field is perpendicular to the 
plane of incidence (Fig. 8.38). The wave is refracted at the 
interface, entering the medium at some transmission angle ut. 
Its electric field drives the bound electrons, in this case nor-
mal to the plane-of-incidence, and they in turn reradiate. A 
portion of that reemitted energy  appears in the form of a re-
flected wave. It should be clear then from the geometry and 
the dipole radiation pattern that both the reflected and re-
fracted waves must also be in �-states normal to the incident 
plane.† In contradistinction, if the incoming E$-field is in the 
incident plane, the electron-oscillators near the surface will 
vibrate under the influence of the refracted wave, as shown in 

*Try it with a candle flame and a piece of glass. Hold the glass at up ≈ 56° for 
the most pronounced effect. At near glancing incidence both of the images will be 
bright, and neither will vanish as you rotate the crystal—Malus apparently lucked 
out at a good angle to the palace window.

**W. T. Doyle, “Scattering approach to Fresnel’s Equations and Brewster’s Law,” 
Am. J. Phys. 53, 463 (1985).

†The angle of reflection is determined by the scattering array, as discussed in 
Section 10.2.7. The scattered wavelets in general combine constructively in only 
one direction, yielding a reflected ray at an angle equal to that of the incident ray.
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Figure 8.38  (a) A wave reflecting and refracting at an interface. (b) Electron-oscillators 
and Brewster’s Law. (c) The dipole radiation pattern. (d) The polarization of light that 
occurs on reflection from a dielectric, such as glass, water, or plastic. At up, the reflected 
beam is a �-state  perpendicular to the plane-of-incidence. The transmitted beam is strong 
in �-state light parallel to the plane-of-incidence and weak in �-state light  perpendicular 
to the plane-of-incidence—it’s partially polarized.

Light reflecting off a puddle is partially polarized. 
(a) When viewed through a Polaroid filter whose 
transmission axis is parallel to the ground, the 
glare is passed and visible. (Martin Seymour) (b) When 
the Polaroid’s transmission axis is perpendicular to  
the water’s surface, most of the glare vanishes. 
(Martin Seymour)

(a) (b)
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 8.6 Polarization by Reflection 365

two prisms is coated with multiple layers of different transpar-
ent dielectric films. Because there’s little or no absorption, the 
device is well suited for laserbeam applications in which you 
would want a high damage threshold and low transmitted 
 wavefront distortion. 

8.6.1 An Application of the Fresnel Equations

In Section 4.6.2 we obtained a set of formulas known as the 
Fresnel Equations, which describe the effects of an incoming 
electromagnetic plane wave falling on the interface between two 
different dielectric media. These equations relate the reflected 
and transmitted field amplitudes to the incident amplitude by 
way of the angles-of-incidence ui and transmission ut. For linear 
light having its E$-field parallel to the plane-of- incidence, we de-
fined the amplitude reflection coefficient as r i K [E0r>E0i]i, that 
is, the ratio of the reflected to incident electric-field amplitudes. 
Similarly, when the electric field is normal to the incident plane, 
we have r # K [E0r>E0i]#. The corresponding irradiance ratio 
(the incident and reflected beams have the same cross-sectional 
area) is known as the reflectance, and since irradiance is propor-
tional to the square of the  amplitude of the field,

Ri = r i
2 = [E0r>E0i]i

2 and R# = r#
2 = [E0r>E0i]

2
#

Squaring the appropriate Fresnel Equations yields

 Ri =
tan2 (ui - ut)

tan2 (ui + ut)
 (8.30)

and R# =
sin2 (ui - ut)

sin2 (ui + ut)
 (8.31)

Whereas R# can never be zero, Ri is indeed zero when the 
 denominator is infinite, that is, when ui + ut = 90°. The reflec-
tance, for linear light with E$  parallel to the plane-of-incidence, 
thereupon vanishes; Eri = 0 and the beam is completely 
 transmitted. This is the essence of Brewster’s Law.

If the incoming light is unpolarized, we can represent it by 
two now familiar orthogonal, incoherent, equal-amplitude  
�-states. Incidentally, the fact that they are equal in amplitude 
means that the amount of energy in one of these two polariza-
tion states is the same as that in the other (i.e., Iii = Ii# = Ii>2), 
which is quite reasonable. Thus

Iri = IriIi>2Iii = RiIi>2
and in the same way Ir# = R#Ii>2. The reflectance in natural 
light, R = Ir>Ii, is therefore given by

 R =
Iri + Ir#

Ii
= 1

2 (Ri + R#) (8.32)

Figure 8.41 is a plot of Eqs. (8.30), (8.31), and (8.32) for the par-
ticular case when ni = 1 and nt = 1.5. The middle curve, which 
corresponds to incident natural light, shows that only about 7.5% 
of the incoming light is reflected when ui = up. The transmitted 
light is then evidently partially polarized. When ui Z up both the 
transmitted and reflected waves are partially polarized.

Figure 8.40  A polarizing cube contains a mutilayer dielectric thin film 
structure on its diagonal face. Reflection from that structure polarizes the 
incident light, much as would a pile-of-plates.

up up

Figure 8.39  The pile-of-plates polarizer.
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Figure 8.41  Reflectance versus incident angle.

M08_HECH6933_05_GE_C08.indd   365 26/08/16   2:17 PM



366 Chapter 8 Polarization

EXAMPLE 8.6

Suppose that 200 W>m2 of natural light is incident on a block 
of glass at its polarization angle. Further, imagine that the  total 
transmittance across the air–glass interface is then 92.5%. 
 Determine the amount of light that is reflected in a �-state 
 normal to the plane-of-incidence, at that surface.

SOLUTION 

We are given that 

T = 1
2 (Ti + T#) = 92.5%

At the polarization angle all the light parallel to the incident 
plane is transmitted, i.e., Ti = 1. Hence

T = 1
2(1 + T# ) = 0.925

1
2T# = 0.925 - 0.50 = 0.425

and T# = 0.850 or 85.0%. This means that 85.0% of the 
 incoming light perpendicular to the plane-of-incidence is 
 transmitted. From Eq. (4.66)

R# + T# = 1

and R# = 1 - T# = 0.150. In other words, 15.0% of the in-
coming light polarized perpendicular to the plane-of-incidence 
is reflected. None of the light parallel to the plane-of-incidence 
is reflected. Hence, since 

R = 1
2 (Ri + R#) = 1

2 (0 + 0.150)

the total reflectance is 7.50%. Therefore, the reflected irradi-
ance is (0.075)(200 W>m2) = 15.0 W>m2.

It is often desirable to make use of the concept of the degree 
of polarization V, defined as

 V =
Ip

Ip + In
 (8.33)

in which Ip and In are the constituent flux densities of polarized 
and “unpolarized” or natural light. For example, if Ip = 4 W>m2

and In = 6 W>m2, then V = 40% and the beam is partially 
 polarized. With “unpolarized” light Ip = 0 and obviously 
V = 0, whereas at the opposite extreme, if In = 0, V = 1 and the 
light is completely polarized; thus 0 … V … 1. One frequently 
deals with partially polarized, linear, quasimonochromatic 
light. In that case, if we rotate an analyzer in the beam, there 
will be an orientation at which the transmitted irradiance is 
maximum (Imax), and perpendicular to this, a direction where it 
is minimum (Imin). Clearly Ip = Imax - Imin, and so

 V =
Imax - Imin

Imax + Imin
 (8.34)

Note that V is actually a property of the beam, which may be 
partially or even completely polarized before encountering any 
sort of polarizer.

8.7 Retarders

We now consider a class of optical elements known as  retarders, 
which serve to change the polarization of an  incident wave. In 
principle, the operation of a retarder is quite simple. One of the 
two constituent coherent �-states is  somehow caused to have 
its phase lag behind that of the other by a predetermined amount. 
Upon emerging from the retarder, the relative phase of the two 
components is different than it was initially, and thus the polar-
ization state is different as well. Once we have developed the 
concept of the retarder, it will be possible to convert any given 
polarization state into any other and in so doing create circular 
and elliptic polarizers as well.

The term “retarder” is something of a misnomer, since such 
a device can just as well be thought of as an “advancer.” What 
it actually is, is a “relative phase shifter”; it advances or  retards 
the phase of one of the two orthogonal electric fields by some 
desired amount. Recall Fig. 8.9, which displayed a sequence 
of polarization states and their relative phases. A more useful 
version of that diagram is Fig. 8.42, which makes it clear that 
the pattern is endless; the sequence simply repeats itself. As 
shown, Ex leads Ey by the indicated positive amount, or lags 
Ey by the negative amount. The phase shifter will  always have 
two specified perpendicular axes, the fast and the slow. If its 
fast axis is in the x-direction (horizontal) it  advances Ex by a 
fixed amount, leaving Ey unaffected. If its fast axis is in the 

Figure 8.42  The resulting polarization states when Ex leads or lags Ey by 
the indicated positive or negative amount e.
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 8.7 Retarders 367

y-direction (vertical) it advances Ey by a specified amount, 
leaving Ex unaffected. 

To go clockwise from any one polarization state in Fig. 8.42 
to the next, we introduce a phase shift of +p>4. To travel coun-
terclockwise, one position at a time, we introduce a shift of 
-p>4, and eight such shifts (+  or -2p) take the light back to 
where it started. For example, when linear light in the first and 
third quadrant (Ex leads Ey by 0) is sent through a retarder 
whose fast axis is horizontal it will shift the light clockwise in 
the diagram. With an introduced phase difference of p>4, or 
p>2, or p, . . . the light will emerge left-handed  elliptical (Ex 
leads Ey by p>4), left-circular (Ex leads Ey by p>2), linear in the 
second and fourth quadrants (Ex leads Ey by p), and so forth. 
Alternatively, if right-circular light (Ex leads Ey by 3p>2) is 
passed through a retarder whose fast axis is vertical, one that 
introduces a shift of -p, left-circular light [Ex leads Ey by 
(3p>2) - p = p>2] will emerge.

8.7.1 Wave Plates and Rhombs

Recall that a plane monochromatic wave incident on a uniaxial 
crystal, such as calcite, is generally divided in two, emerging as 
an ordinary and an extraordinary beam. In contrast, we can cut 
and polish a calcite crystal so that its optic axis will be normal 
to both the front and back surfaces (Fig. 8.43). A normally 
incident plane wave can only have its E$-field perpendicular to 
the optic axis. The E-field component in the plane of the dia-
gram does not remain everywhere perpendicular to the optic 
axis as it, the extraordinary wave, spreads out in all directions 
into the crystal. If therefore elongates into an ellipsoid. The 
E-field component perpendicular to the diagram remains 
 everywhere perpendicular as it spreads out as the spherical 
ordinary wave. The secondary spherical and ellipsoidal  wavelets 
will be tangent to each other in the direction of the optic axis. 
The o- and e-waves, which are envelopes of these wavelets, will 

*If you have a calcite rhomb, find the blunt corner and orient the crystal until you 
are looking along the direction of the optic axis through one of the faces. The two 
images will converge until they completely overlap.

Optic
axis Optic axisA

A

B

B

Figure 8.43  A calcite plate cut perpendicular to the optic axis.
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v∣∣

Figure 8.44  A calcite plate cut parallel to the optic axis.

be coincident, and a single undeflected plane wave will pass 
through the crystal; there are no relative phase shifts and no 
double images.*

Now suppose that the direction of the optic axis is ar-
ranged to be parallel to the front and back surfaces, as shown 
in Fig. 8.44. If the E$-field of an incident monochromatic 
plane wave has components parallel and perpendicular to the 
optic axis, two separate plane waves will propagate through 
the crystal. Since vi 7 v#, no 7 ne, and the e-wave will move 
across the specimen more rapidly than the o-wave. After tra-
versing a plate of thickness d, the resultant electromagnetic 
wave is the superposition of the e- and o-waves, which now 
have a relative phase  difference of ∆w. Keep in mind that 
these are harmonic waves of the same frequency whose  
E$-fields are orthogonal. The relative optical path length 
 difference is given by

 Λ = d( 0 no - ne 0) (8.35)

and since ∆w = k0Λ, the phase difference, in radians, is

 ∆w =
2p
l0

 d( 0 no - ne 0)  (8.36)

where l0, as always, is the wavelength in vacuum. (The form 
containing the absolute value of the index difference is the most 
general statement.) The state of polarization of the emergent 
light evidently depends on the amplitudes of the incoming 
 orthogonal field components and of course on ∆w.
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368 Chapter 8 Polarization

as  the complementary color to that which was extinguished. 
If,   instead, the analyzer is positioned with its transmission axis 
 parallel to the transmission axis of the first polarizer, with the 
 full-wave plate between them, the system acts as a filter. Stacking 
several such arrangements produces a narrow-wavelength filter. It 
is a common error to assume that a full-wave plate behaves as if it 
were isotropic at all frequencies; it obviously doesn’t.

Recall that in calcite, the wave whose E$-field vibrations are 
parallel to the optic axis travels fastest, that is, vi 7 v#. The 
direction of the optic axis in a negative uniaxial retarder is 
therefore often referred to as the fast axis, and the direction 
perpendicular to it is the slow axis. For positive uniaxial 
 crystals, such as quartz, these principal axes are reversed, with 
the slow axis corresponding to the optic axis.

The full-wave retarder is often used to eliminate inadvertent 
changes in the polarization state of light passing through an 
 optical system. For example, linear light reflected from a metal-
surfaced mirror will have phase shifts introduced that cause it to 
emerge as elliptical light. This can be corrected by passing the 
beam through a full-wave plate that has been tilted slightly 
about either its fast or slow axis.

The Half-Wave Plate

A retardation plate that introduces a relative phase difference of 
p radians, or 180°, between the o- and e-waves is known as a 
half-wave plate or half-wave retarder. Suppose that the plane-
of-vibration of an incoming beam of linear light makes some 
arbitrary angle u with the fast axis, as shown in Fig. 8.45. In a 

EXAMPLE 8.7

A plate of calcite, as shown in the accompanying figure, has its 
optic axis perpendicular to the plane of the diagram (i.e., in the 
z-direction).

y

x

d

Explain what’s happening, and write an expression for the 
phase difference introduced as the light traverses the crystal.

SOLUTION 

E$y corresponds to the o-wave, since it is everywhere perpen-
dicular to the optic axis. As usual, the o-wavelets are spherical 
because they “see” an isotropic medium. On the other hand, 
E$z corresponds to the e-wave. It is everywhere parallel to the 
optic axis and therefore also expands as a spherical wavelet. In 
calcite vi 7 v# and the e-wave advances more swiftly than the 
o-wave. Equivalently, no 7 ne and the optical path length differ-
ence across the plate will be d(no - ne). Consequently,

∆w =
 2p
l0

 d(no - ne)

matching Eq. (8.36). Note that it is only when the E$-field of 
the e-wave has components both parallel and perpendicular to 
the optic axis that it will propagate as an ellipsoid.

The Full-Wave Plate

If ∆w is equal to 2p, the relative retardation is one wavelength; 
the e- and o-waves are back in-phase, and there is no observable 
effect on the polarization of the incident monochromatic beam. 
When the relative retardation ∆w, which is also known as the 
 retardance, is 360° the device is called a full-wave plate or 
 full-wave retarder. (This does not mean that d = l.) In general, 
the quantity 0 no - ne 0  in Eq. (8.36) changes little over the optical 
range, so that ∆w varies effectively as 1>l0. Evidently, a full-wave 
plate can function only in the manner discussed for a  particular 
wavelength, and retarders of this sort are thus said to be chromatic. 
If such a device is placed at some arbitrary orientation between 
crossed linear polarizers, all the light entering it (in this case let it 
be white light) will be linear. Only the one wavelength that  satisfies 
Eq. (8.36) with ∆w = 2p will pass through the  retarder  unaffected, 
thereafter to be absorbed in the analyzer. All other wavelengths 
will undergo some retardance and will accordingly emerge from 
the wave plate as various forms of  elliptical light. Some portion 
of this light will proceed through the analyzer, finally emerging 

Optic
axis

e-wave

o-wave

u

E�

u

Figure 8.45  A half-wave plate showing how a net phase shift accumulates 
with the retarder.
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half-wave plate is about 60 microns. Crystalline quartz, single 
crystal magnesium fluoride (for the IR range from 3000 nm to 
about 6000 nm), and cadmium sulfide (for the IR range from 
6000 nm to about 12,000 nm) are also widely used for wave 
plates.

Retarders are also made from sheets of polyvinyl alcohol 
that have been stretched so as to align their long-chain organic 
molecules. Because of the evident anisotropy, electrons in the 
material do not experience the same binding forces along and 
perpendicular to the direction of these molecules. Substances of 
this sort are therefore permanently birefringent, even though 
they are not crystalline.

A rather nice half-wave plate can be made by just attaching 
a strip of old-fashioned glossy cellophane tape over the sur-
face of a microscope slide. (Not all varieties work—the best is 
 LePage’s “Transparent Tape.”) The fast axis, that is, the vibra-
tion direction of the faster of the two waves, corresponds to 
the transverse direction across the tape’s width, and the slow 
axis is along its length. During its manufacture, cellophane 
(which is made from regenerated cellulose extracted from cot-
ton or wood pulp) is formed into sheets, and in the process its 
molecules become aligned, leaving it birefringent. If you put 
your half-wave plate between crossed linear polarizers, it will 
show no effect when its principal axes coincide with those of 
the polarizers. If, however, it is set at 45° with respect to the 
polarizer, the E$-field emerging from the tape will be flipped 
90° and will be parallel to the transmission axis of the ana-
lyzer. Light will pass through the region covered by the tape as 
if it were a hole cut in the black background of the crossed 
polarizers (see photo). A piece of cellophane wrapping will 
generally also function as a half-wave plate. See if you can 
determine the  orientation of each of its principal axes using 
the tape retarder and crossed Polaroids. (Notice the fine paral-
lel ridges on the sheet  cellophane.)

u

uFast
axis

Half-wave

retarder

Figure 8.46  A half-wave plate rotates light initially linearly polarized at 
an angle u through a total angle of 2u. Here light was incident oscillating 
in the first and third quadrants, and it emerged oscillating in the second 
and fourth quadrants.

negative material the e-wave will have a higher speed (same n) 
and a longer wavelength than the o-wave. When the waves 
emerge from the plate, there will be a relative phase shift of 
l0>2 (that is, 2p>2 radians), with the effect that E$  will have 
rotated through 2u (Fig. 8.46). In fact, half-wave retarders are 
sometimes called polarization rotators for just that reason. 
 Going back to Fig. 8.9, it should be evident that a half-wave 
plate will similarly flip elliptical light. In addition, it will invert 
the handedness of circular or elliptical light, changing right to 
left and vice versa. A half-wave plate shifts the polarization 
states halfway around in Fig. 8.42.

As the e- and o-waves progress through any retardation plate, 
their relative phase difference ∆w increases, and the state of po-
larization of the wave therefore gradually changes from one 
point in the plate to the next. Figure 8.9 can be envisioned as a 
sampling of a few of these states at one instant in time taken at 
different locations. Evidently, if the thickness of the material is 
such that

 d( 0 no - ne 0) = (2m + 1)l0>2 (8.37)

where m = 0, 1, 2, . . . , it will function as a half-wave plate 
(∆w = p, 3p, 5p, etc.).

Although its behavior is simple to visualize, calcite is not 
often used to make retardation plates. It is brittle and difficult 
to handle in thin slices, but more than that, its birefringence, 
the difference between ne and no, is a bit too large for conve-
nience. On the other hand, quartz with its much smaller bire-
fringence is frequently used, but it has no natural cleavage 
planes and must be cut, ground, and polished, making it rather 
expensive. The biaxial crystal mica is used most often. Sev-
eral forms of mica serve the purpose admirably, for example, 
fluorophlogopite, biotite, or muscovite. The most commonly 
occurring variety is the pale brown muscovite. It is very easily 
cleaved into strong, flexible, and exceedingly thin large-area 
sections. Moreover, its two principal axes are almost exactly 
parallel to the cleavage planes. Along those axes the indices 
are about 1.599 and 1.594 for sodium light, and although these 
numbers vary slightly from one sample to the next, their dif-
ference is fairly constant. The minimum thickness of a mica 

A hand holding a piece of clear cellophane stuck to a microscope slide 
between two crossed polaroids. (E.H.)
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370 Chapter 8 Polarization

through a rotating analyzer. Keep adding one layer at a time 
until the irradiance stays roughly constant as the analyzer 
turns; at that point you will have circular light and a quarter-
wave plate. This is easier said than done in white light, but it’s 
well worth trying.

EXAMPLE 8.8

Wave plates are often made from mica because it easily cleaves 
into thin sheets. For yellow light of wavelength 589 nm inci-
dent normally on such a sheet, the two orthogonally oscillating 
lightwave components could encounter indices of 1.599  7 and 
1.594 1—there can be some variation in these values from one 
geological source to another. What is the minimum thickness of 
a mica sheet that would serve as a quarter-wave plate?

SOLUTION 

For a quarter-wave plate the optical path difference has to be an 
odd whole-number multiple of l0>4:

OPD = d1 �no - ne�2 = (4m + 1)l0>4
where m = 0, 1, 2, . . . . Therefore

d =
(4m + 1)l0

1 �no - ne�24

and with m = 0

d =
589 nm

(1.599   7 - 1.594  1)4

Hence d = 2.63 * 10-5m, or 26.3 mm.

Commercial wave plates are generally designated by their 
 linear retardation, which might be, for example, 140 nm for a 
quarter-wave plate. This simply means that the device has a 90° 
retardance only for green light of wavelength 560 nm (i.e., 
4 * 140). The linear retardation is usually not given quite that 
precisely; 140 ± 20 nm is more realistic. The retardation of a 
wave plate can be increased or decreased from its specified value 
by tilting it somewhat. If the plate is rotated about its fast axis, the 
retardation will increase, whereas a rotation about the slow axis 
has the  opposite effect. In this way a wave plate can be tuned to a 
 specific frequency in a region about its nominal value.

Retarders (Wave Plates)—Some General 
Considerations

In addition to birefringent plate retarders there are also variable 
liquid crystal (see Section 8.12) retarders. These typically can 
produce an electrically controlled retardance up to l0>2. An 
ordinary plate retarder can be one of three general types: zero-
order, multiple-order, or compound zero-order. A zero- order 
retarder has the minimum thickness necessary to produce  
the required phase difference. For example, consider a quartz 

The Quarter-Wave Plate

The quarter-wave plate is an optical element that introduces a 
relative phase shift of ∆w = p>2 between the constituent 
 orthogonal o- and e-components of a wave. It follows once 
again from Fig. 8.9 that a phase shift of 90° will convert linear 
to elliptical light (or circular light if E0x = E0y) and vice versa. 
It should be apparent that linear light incident parallel to either 
principal axis will be unaffected by any sort of retardation plate. 
You can’t have a relative phase difference without having two 
components. With incident natural light, the two constituent  
�-states are incoherent; that is, their relative phase difference 
changes randomly and rapidly. The introduction of an  additional 
constant phase shift by any form of retarder will still result in a 
random phase difference and thus have no  noticeable effect. 

When linear light at 45° to either principal axis is incident on a 
quarter-wave plate, its o- and e-components have equal amplitudes. 
Under these special circumstances, a 90° phase shift  converts the 
wave into circular light (Fig. 8.47). Similarly, an incoming circular 
beam will emerge linearly polarized. Whenever linear light is con-
verted to either elliptical or circular light by a quarter-wave plate, 
the resulting handedness corresponds to the same direction it 
would take to rotate the initial linear light into alignment with the 
slow axis, through the smallest angle. A quarter-wave plate shifts 
the polarization state one quarter of the way around Fig. 8.42.

Quarter-wave plates are also usually made of quartz, mica, 
or organic polymeric plastic. In any case, the thickness of the 
birefringent material must satisfy the expression 

 d( 0 no - ne 0) = (4m + 1)l0>4 (8.38)

where m = 0, 1, 2, . . . .
You can make a crude quarter-wave plate using household 

plastic food wrap, the thin stretchy stuff that comes on rolls. 
Like cellophane, it has ridges running in the long direction, 
which coincides with a principal axis. Overlap about a half 
dozen layers, being careful to keep the ridges parallel. Position 
the plastic at 45° to the axes of a polarizer and examine it 

45°

Fast
axis

Quarter-wave

retarder

�

Figure 8.47  After passing through the retarder E$y leads E$x by p>4. Thus 
(from Fig. 8.9) the quarter-wave plate transforms light initially  linearly 
polarized at an angle 45° (oscillating in the first and third  quadrants) into 
right-circular light (rotating clockwise looking toward the source). Notice 
that the linear light would have to be rotated clockwise to come into 
 alignment with the slow axis (through the smallest angle). Therefore the 
emergent light rotates clockwise.
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Birefringent polymers have a small birefringence and so can 
conveniently be made into zero-order retarders. They have a 
wide field-of-view and can be made with large apertures. 

The phasor technique for treating orthogonal waves can be 
applied to retarders.* We’ll begin with linear light vibrating in 
the first and third quadrants at an arbitrary angle u above the x-
axis, as indicated in Fig. 8.48. The length of the electric field 
vector E$  is its specified amplitude E$0. Now suppose this wave 
is passed through a quarter-wave plate, and for the sake of gen-
erality, imagine that the retarder’s fast axis is up from the x-axis 
at, say, 30°. In Fig. 8.48 we draw a reference line corresponding 
to the fast axis, 30° above the x-axis, passing through the origin 
of the xy-coordinate system. This line and its perpendicular 
form a new x′y′-coordinate system. In that frame construct a 
rectangle using the projections of E$  onto the fast and slow axes. 
That will produce E0x′ and E0y′, the two field amplitudes in the 
x′y′-system. These amplitudes, along and perpendicular to 
the fast axis, allow us to form a rectangular box into which the 
 resultant polarization state will fit, just as it did in Fig. 8.10. 
Extend the boundaries of the box and draw two circles that have 
the amplitudes (i.e., radii) E0x′ and E0y′. 

quarter-wave plate with a birefringence of only 0.009  2 at 550 
nm. Equation (8.36) with ∆w = p>2 tells us that a zero-order 
quarter-wave retarder will be only 15 mm thick, and therefore 
will be rather fragile and difficult to fabricate. It does, however, 
have a large angular field-of-view. 

A multiple-order retarder would have a thickness that cor-
responded to a whole number of 2p phase shifts plus the desired 
∆w, whether that’s 2p, p, or p>2. These devices are easier to 
make and less expensive, but they tend to be very sensitive to 
wavelength, incident angle, and temperature, and have a narrow 
field-of-view.

By combining two multiple-order retarders whose retar-
dance difference yields the desired value of ∆w, we arrive at the 
compound zero-order wave plate (see Example 8.9 below). 
That’s accomplished by aligning the fast axis of one with the 
slow axis of the other.  This compensates for temperature varia-
tions that tend to cancel, but it, too, has a narrow field-of-view.

EXAMPLE 8.9

Imagine a uniaxial birefringent crystal plate of thickness d1 with 
its optic axis in the x-direction. It is followed by a similar plate 
of thickness d2 whose optic axis is in the y-direction. The com-
bination is to form a compound zero-order wave plate. Write 
an expression for its retardance and compare it with Eq. (8.36).

SOLUTION 

Let’s follow the same analysis that led to Eq. (8.36). According-
ly, we write expressions for the optical path length encountered 
by both the Ex-field component, namely, OPLx, and the Ey-field 
component, namely, OPLy, as the wave travels in the z-direction 
passing through both plates. Since Ex is parallel to the optic axis 
in the first plate it’s associated with the e-wave. Thus for the 
first plate only, OPLx1 = ned1 and OPLy1 = nod1. The o- and 
e-waves switch in the second plate, where OPLx2 = nod2 and 
OPLy2 = ned2. Hence for both plates together 

OPLx = ned1 + nod2

and

OPLy = nod1 + ned2

The optical path length difference, Λ, is then

Λ = OPLy - OPLx = d1(no - ne) + d2(ne - no)

and so 

 ∆w =
2p
l0

 (d1 - d2)(no - ne) (8.39)

Compared with Eq. (8.36) this expression depends not on the 
thickness of the plate, but on the difference in the  thicknesses of 
the two component plates, each of which can now be appreciable.

*For a more complete, well-developed treatment, see K. Iizuka, Elements of 
Photonics, Vol. 1, Wiley-Interscience, 2002.

Figure 8.48  Left-handed elliptical light titled at the angle of the fast axis 
results when linear light (E$ ) passes through a quarter-wave plate. Here the 
fast axis of the retarder is at +30°.
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372 Chapter 8 Polarization

8.7.2 Compensators and Variable Retarders

A compensator is an optical device that is capable of im-
pressing a controllable retardance on a wave. Unlike a wave 
plate where ∆w is fixed, the relative phase difference arising 
from a compensator can be varied continuously. Of the many 
different kinds of compensators, we shall consider only two of 
those that are used most widely. The Babinet compensator, 
depicted in Fig. 8.51, consists of two independent calcite, or 
more commonly quartz, wedges whose optic axes are indi-
cated by the lines and dots in the figure. A ray passing verti-
cally downward through the device at some arbitrary point 
will traverse a thickness of d1 in the upper wedge and d2 in the 
lower one. The relative phase difference imparted to the wave 
by the first crystal is 2pd1( 0 no - ne 0)>l0, and that of the second 
crystal is -2pd2( 0 no - ne 0)>l0. As in the Wollaston prism, 
which this system closely resembles but which has larger angles 
and is much thicker, the o- and e-rays in the upper wedge become 
the e- and o-rays, respectively, in the bottom wedge.

The compensator is thin (the wedge angle is typically about 
2.5°), and thus the separation of the rays is negligible. The total 
phase difference, or retardance, is then

 ∆w =
2p
l0

 (d1 - d2)( 0 no - ne 0) (8.40)

If the compensator is made of calcite, the e-wave leads the o-wave 
in the upper wedge, and therefore if d1 7 d2, ∆w corresponds to 

Because the fast axis is the x′-axis, the phasor corresponding 
to the smaller circle is E$y′ and it starts revolving on the y′-axis 
at its vertical position-0. Similarly, the phasor E$x′ in the larger 
circle would have started on the x′-axis pointing to the right, but 
for the fact that it leads E$y′ by 90°. Consequently, we advance 
E$x′ by 90° clockwise, so its position-0 is along the y′-axis and 
pointing downward. The resultant polarization is left-handed 
 elliptical light tilted at 30°, that is, tilted at the arbitrary angle of 
the fast axis of the retarder.

The Fresnel Rhomb

We saw in Chapter 4 that the process of total internal reflection 
introduced a relative phase difference between the two orthogo-
nal field components. The components parallel and perpendicu-
lar to the plane-of-incidence were shifted in-phase with respect 
to each other. In glass (n = 1.51) a shift of 45° accompanies 
internal reflection at the particular incident angle of 54.6°  
(Fig. 4.52e). The Fresnel rhomb shown in Fig. 8.49 utilizes this 
effect by causing the beam to be internally reflected twice, 
thereby imparting a 90° relative phase shift to its components. If 
the incoming plane wave is linearly polarized at 45° to the 
plane-of-incidence, the field components [Ei]i and [Ei]# will 
initially be equal. After the first reflection, the wave within the 
glass will be elliptically polarized. After the second reflection, 
it will be circular. Since the retardance is almost independent of 
frequency over a large range, the rhomb is essentially an achro-
matic 90° retarder. By combining two rhombs end-to-end, we 
can produce l0>2 retardation over a broad wavelength band 
(≈2000 nm). The Mooney rhomb (n = 1.65) shown in Fig. 8.50 
is similar in principle, although its operating characteristics are 
different in some respects.

54.6°

Figure 8.49  The Fresnel rhomb.

60°
Figure 8.50  The Mooney rhomb.

d1

d2

Figure 8.51  The Babinet compensator.
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8.8 Circular Polarizers

Earlier we concluded that linear light whose E$-field is at 45° 
to the principal axes of a quarter-wave plate will emerge from 
that plate circularly polarized. Any series combination of an 
 appropriately oriented linear polarizer and a 90° retarder will 
therefore perform as a circular polarizer. The two elements 
function completely independently, and whereas one might be 
birefringent, the other could be of the reflection type. The hand-
edness of the emergent circular light depends on whether the 
transmission axis of the linear polarizer is at +45° or -45° to 
the fast axis of the retarder. Either circular state, ℒ or ℛ, can be 
generated quite easily. In fact, if the linear polarizer is situated 
between two retarders, one oriented at +45° and the other at  
-45°, the combination will be “ambidextrous.” In short, it will 
yield an ℛ-state for light entering from one side and an ℒ-state 
when the input is on the other side.

CP-HN is the commercial designation for a popular one-
piece circular polarizer. It is a laminate of an HN Polaroid and a 
stretched polyvinyl alcohol 90° retarder. The input side of such 
an arrangement is evidently the face of the linear polarizer. If 
the beam is incident on the output side (i.e., on the retarder), it 
will thereafter pass through the H-sheet and can only emerge 
linearly polarized.

A circular polarizer can be used as an analyzer to deter-
mine the handedness of a wave that is already known to be 
circular. To see how this might be done, imagine that we have 
the four elements labeled A, B, C, and D in Fig. 8.53. The first 
two, A and B, taken together form a circular polarizer, as do C 
and D. The precise handedness of these polarizers is unim-
portant now, as long as they are both the same, which is tanta-
mount to saying that the fast axes of the retarders are parallel. 
Linear light coming from A receives a 90° retardance from B, 
at which point it is circular. As it passes through C, another 
90° retardance is added on, resulting once more in a linearly 
polarized wave. In effect, B and C together form a half-wave 
plate, which merely flips the linear light from A through a 
spatial angle of 2u, in this case 90°. Since the linear wave from 
C is parallel to the transmission axis of D, it passes through it 
and out of the system.

the total angle by which the e-component leads the o-component. 
The converse is true for a quartz compensator; in other words, if 
d1 7 d2, ∆w is the angle by which the o-wave leads the e-wave. 
At the center, where d1 = d2, the effect of one wedge is exactly 
canceled by the other, and ∆w = 0 for all wavelengths. The retar-
dation will vary from point to point over the surface, being con-
stant in narrow regions running the width of the compensator 
along which the wedge thicknesses are themselves constant. If 
light enters by way of a slit parallel to one of these regions and if 
we then move either wedge horizontally with a micrometer screw, 
we can get any desired ∆w to emerge.

When the Babinet is positioned at 45° between crossed 
 polarizers, a series of parallel, equally spaced, dark  extinction 
fringes will appear across the width of the compensator. These 
mark the positions where the device acts as if it was a full-wave 
plate. In white light the fringes will be colored, with the excep-
tion of the black central band (∆w = 0). The retardance of an 
unknown plate can be found by placing it on the compensator 
and examining the fringe shift it produces. Because the fringes 
are narrow and difficult to “read” electronically, the Babinet has 
become less popular than it once was. It can be modified to 
produce a uniform retardation over its surface by merely rotat-
ing the top wedge 180° about the vertical, so that its thin edge 
rests on the thin edge of the lower wedge. This configuration 
will, however, slightly deviate the beam. 

Another variation of the Babinet, which has the advantage 
of producing a uniform retardance over its surface and no 
beam deviation, is the Soleil compensator shown in Fig. 8.52. 
Generally made of quartz (although MgF2 and CdS are used 
in the infrared), it consists of two wedges and one plane-
parallel slab whose optic axes are oriented as indicated. The 
quantity d1  corresponds to the total thickness of both wedges, 
which is  constant for any setting of the positioning microm-
eter screw.

d1

d2

Figure 8.52  The Soleil compensator.

A

Linear
polarizer

Linear
polarizer

B

90°
retarder 90°

retarder

C
D

45°

45°

Figure 8.53  Two linear polarizers and two quarter-wave plates.
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374 Chapter 8 Polarization

 Assume for the moment that its polarization state is essentially 
constant for a duration of the order of the coherence time ∆tc 
(which, as you recall, corresponds to the temporal extent of the 
wavetrain, i.e., ∆lc>c). A typical source generally consists of a 
large collection of such radiating atoms, which can be envi-
sioned as oscillating with different phases at some dominant 
frequency n. Suppose then that we examine the light coming 
from a very small region of the source, such that the emitted 
rays arriving at a point of observation are essentially parallel. 
During a time that is short in comparison with the average co-
herence time, the amplitudes and phases of the wavetrains 
from the individual atoms will be essentially constant. This 
means that if we were to look toward the source in some direc-
tion, we would, at least for an instant, “see” a coherent super-
position of the waves emitted in that direction. We would “see” 
a resultant wave having a given polarization state. That state 
would last only for an interval less than the coherence time 
before it changed, but even so it would correspond to a great 
many oscillations at the frequency n. Clearly, if the bandwidth 
∆n is broad, the coherence time (∆tc ≈ 1>∆n) will be small, 
and any polarization state will be short-lived. Evidently the 
concepts of polarization and coherence are related in a funda-
mental way.

Now consider a wave whose bandwidth is very small in 
comparison with its mean frequency, a quasimonochromatic 
wave. It can be represented by two orthogonal harmonic  
�-states, as in Eqs. (8.1) and (8.2), but here the amplitudes 
and initial phase angles are functions of time. Furthermore, the 
frequency and propagation number correspond to the mean val-
ues of the spectrum present in the wave, namely, v and k. Thus

 E$x  (t) = îE0x  (t) cos [kz - vt + ex  (t)] (8.41a)

and E$y (t) = ĵE0y 

(t) cos [kz - vt + ey (t)] (8.41b)

The polarization state, and accordingly E0x(t), E0y(t), ex(t), and 
ey (t), will vary slowly, remaining essentially constant over a 
large number of oscillations. Keep in mind that the narrow 
bandwidth implies a relatively large coherence time. If we 
watch the wave during a much longer interval, the amplitudes 
and phase angles will vary somehow, either independently or in 
some correlated fashion. If the variations are completely uncor-
related, the polarization state will remain constant only for an 
interval that is small compared to the coherence time. In other 
words, the ellipse describing the polarization state may change 
shape, orientation, and handedness. Since, speaking practically, 
no existing detector could discern any one particular state 
 lasting for so short a time, we would conclude that the wave was 
unpolarized.

Antithetically, if the ratio E0x (t)>E0y (t) was constant even 
though both terms varied, and if e = ey (t) - ex (t) was constant 
as well, the wave would be polarized. Here the necessity for 
correlation among these different functions is obvious. Yet we 
can actually impress these conditions on the wave by merely 

In this simple process we’ve actually proved something that 
is rather subtle. If the circular polarizers A + B and C + D are 
both left-handed, we’ve shown that left-circular light entering a 
left-circular polarizer from the output side will be transmitted. 
Furthermore, it should be apparent, at least after some thought, 
that right-circular light will produce a �-state perpendicular to 
the transmission axis of D and so will be absorbed. The con-
verse is true as well; that is, of the two circular forms, only light 
in an ℛ-state will pass through a right-circular polarizer hav-
ing entered from the output side.

8.9 Polarization of Polychromatic Light

8.9.1  Bandwidth and Coherence Time  
of a Polychromatic Wave

By its very nature purely monochromatic light, which is of 
course not a physical reality, must be polarized. The two or-
thogonal components of such a wave have the same frequency, 
and each has a constant amplitude. If the amplitude of either 
sinusoidal component varied, it would be equivalent to the pres-
ence of other additional frequencies in the Fourier-analyzed 
spectrum. Moreover, the two components have a constant rela-
tive phase difference; that is, they are coherent. A monochro-
matic disturbance is an infinite wavetrain whose properties 
have been fixed for all time; whether it is in an ℛ-, ℒ-, �-, or  
ℰ-state, the wave is completely polarized.

Actual light sources are polychromatic; they emit radiant 
energy having a range of frequencies. Let’s now examine what 
happens on a submicroscopic scale, paying particular atten-
tion to the polarization state of the emitted wave. Envision an 
electron-oscillator that has been excited into vibration (possi-
bly by a collision) and thereupon radiates. Depending on its 
precise motion, the oscillator will emit some form of polar-
ized light. 

As in Section 7.4.3, we picture the radiant energy from a 
single atom as a wavetrain having a finite spatial extent ∆lc. 

A crumpled piece of 
 cellophane placed between 
two crossed Polaroids 
shows a rainbow of colors. 
Depending on its thickness 
and the frequency of the 
light, the cellophane rotates 
the E-field by  different 
amounts. Rotating either 
one of the Polaroids will 
shift the colors to their 
complements. (E.H.)

M08_HECH6933_05_GE_C08.indd   374 26/08/16   2:17 PM



 8.10 Optical Activity 375

which are in the direction of the transmission axis of the 
 analyzer, will pass through it and on to the observer.

Now these components, which also have a phase difference 
of ∆w, are coplanar and can thus interfere. When ∆w = p, 3p, 
5p, . . . , they are completely out-of-phase and tend to cancel 
each other. When ∆w = 0, 2p, 4p, . . . , the waves are in-phase 
and reinforce each other. Suppose then that the retardance aris-
ing at some point-P1 on g  for blue light (l0 = 435 nm) is 4p. 
In that case blue will be strongly transmitted. It follows from 
Eq. (8.36) that l0∆w = 2pd( 0 no - ne 0) is essentially a constant 
 determined by the thickness and the birefringence. At the point 
in question, therefore, l0∆w = 1740p for all wavelengths. If 
we now change to incident yellow light (l0 = 580 nm), 
∆w ≈ 3p and the light from P1 is completely canceled. Under 
white-light illumination that particular point on g  will seem as 
if it had removed yellow completely, passing on all the other 
colors, but none as strongly as blue. Another way of saying this 
is that the blue light emerging from the region about P1 is linear 
(∆w = 4p) and parallel to the analyzer’s transmission axis. In 
contrast, the yellow light is linear (∆w = 3p) and along the 
 extinction axis; the other colors are elliptical. The region about 
P1 behaves like a half-wave plate for yellow and full-wave plate 
for blue. If the analyzer were rotated 90°, the yellow would be 
transmitted, and the blue extinguished. 

By definition two colors are said to be complementary when 
their combination yields white light. Thus when the analyzer  
is rotated through 90° it will alternately transmit or absorb 
complementary colors. In much the same way there might be a 
point-P2 somewhere else on g  where ∆w = 4p for red 
(l0 = 650 nm). Then, l0∆w = 2600p, whereupon bluish green 
light (l0 =520 nm) will have a retardance of 5p and be extin-
guished. Clearly, if the retardance varies from one region to the 
next over the specimen, so too will the color of the light trans-
mitted by the analyzer.

8.10 Optical Activity

The manner in which light interacts with material substances 
can yield a great deal of valuable information about their 
 molecular structures. The process to be examined next,  although 
of specific interest in the study of Optics, has had and is 
 continuing to have far-reaching effects in the sciences of chem-
istry and biology.

In 1811 the French physicist Dominique F. J. Arago first 
observed the rather fascinating phenomenon now known as 
optical activity. It was then that he discovered that the plane 
of vibration of a beam of linear light underwent a continuous 
 rotation as it propagated along the optic axis of a quartz plate 
(Fig. 8.55). At about the same time Jean Baptiste Biot (1774–
1862) saw this same effect while using both the vaporous and 
liquid forms of various natural substances like turpentine. 
Any material that causes the E$-field of an incident linear 

passing it through a polarizer, thereby removing any undesired 
constituents. The time interval over which the wave thereafter 
maintains its polarization state is no longer dependent on the 
bandwidth because the wave’s components have been appropri-
ately correlated. The light could be polychromatic (even white), 
yet completely polarized. It will behave very much like the 
 idealized monochromatic waves treated in Section 8.1.

Between the two extremes of completely polarized and 
 unpolarized light is the condition of partial polarization. In fact, 
it can be shown that any quasimonochromatic wave can be 
 represented as the sum of a polarized and an unpolarized wave, 
where the two are independent and either may be zero.

8.9.2 Interference Colors

Insert a crumpled sheet of cellophane between two Polaroids 
illuminated by white light. Alternatively, take an ordinary plas-
tic bag (polyethylene), which shows nothing special between 
crossed Polaroids, and stretch it. That will align its molecules, 
making it birefringent. Now crumple it up and examine it again. 
The resulting pattern will be a profusion of multicolored regions, 
which vary in hue as either Polaroid rotates. These interference 
colors arise from the wavelength dependence of the retardation. 
The usual variegated nature of the patterns is due to local varia-
tions in thickness, birefringence, or both.

The appearance of interference colors is commonplace and 
can easily be observed in any number of substances. For  example, 
the effect can be seen with a piece of multilayered mica, a chip 
of ice, a stretched plastic bag, or finely crushed particles of an 
ordinary white (quartz) pebble. To appreciate how the phenom-
enon occurs, examine Fig. 8.54. A narrow beam of monochro-
matic linear light is schematically shown passing through some 
small region of a birefringent plate g . Over that area the bire-
fringence and thickness are both assumed to be constant. The 
transmitted light is generally elliptical. Equivalently, envision 
the light emerging from g  as composed of two orthogonal lin-
ear waves (i.e., the x- and y-components of the total E$-field), 
which have a relative phase difference ∆w, determined by 
Eq.  (8.36). Only the components of these two disturbances, 

u

Ey Ex

Ex sin u

Ey cos u

E

Σ

xy

Figure 8.54  The origin of interference colors.
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associated with the structural distribution of the molecules as a 
whole. There are many substances, both organic and inorganic 
(e.g., benzil and NaBrO3, respectively), which, like quartz, 
 exhibit optical activity only in crystal form. In contrast, many 
naturally occurring organic compounds, such as sugar, tartaric 
acid, and turpentine, are optically active in solution or in the 
liquid state. Here the rotatory power, as it is often referred to, is 
evidently an attribute of the individual molecules. There are 
also more complicated substances for which optical activity is 
associated with both the molecules themselves and their 
 arrangement within the various crystals. An example is  rubidium 
tartrate. A d-rotatory solution of that compound will change to 
l-rotatory when crystallized.

In 1825 Fresnel, without addressing the actual mechanism 
involved, proposed a simple phenomenological description 
of optical activity. Since the incident linear wave can be 
 represented as a superposition of ℛ- and ℒ-states, he sug-
gested that these two forms of circular light propagate at 
 different speeds. An  active material shows circular birefrin-
gence; that is, it possesses two indices of refraction, one for 
ℛ-states (nℛ) and one for ℒ-states (nℒ). In traversing an 
 optically active specimen, the two circular waves would get 
out-of-phase, and the resultant linear wave would appear 
to have rotated. We can see how this is  possible analytically 
by returning to Eqs. (8.8) and (8.9), which  described mono-
chromatic right- and left-circular light propagating in the  
z-direction. It was seen in Eq. (8.10) that the sum of these two 
waves is indeed linearly polarized. We now alter these 
 expressions slightly in order to remove the factor of two in 
the amplitude of Eq. (8.10), in which case

 E$ℛ =
E0

2
 [î cos (kℛz - vt) + ĵ sin (kℛz - vt)] (8.42a)

and

 E$ℒ =
E0

2
 [î cos (kℒz - vt) - ĵ sin (kℒz - vt)] (8.42b)

represent the right- and left-handed constituent waves. Since 
v  is constant, kℛ = k0nℛ and kℒ = k0nℒ. The resultant distur-
bance is given by E$ = E$ℛ + E$ℒ, and after a bit of trigonometric 
manipulation, it becomes

E$ = E0 cos [(kℛ + kℒ)z>2 - vt][î cos (kℛ - kℒ)z>2

 + ĵ sin (kℛ - kℒ)z>2] (8.43)

At the position where the wave enters the medium (z = 0) it  
is linearly polarized along the x-axis, as shown in Fig. 8.57;  
that is,

 E$ = E0 î cos vt (8.44)

Notice that at any point along the path, the two components have 
the same time dependence and are therefore in-phase. This just 

plane wave to appear to rotate is said to be optically active. 
 Moreover, as Biot found, one must distinguish between right- 
and  left-handed rotation. If while looking in the direction of 
the source, the plane-of-vibration appears to have revolved 
clockwise, the substance is referred to as dextrorotatory, or 
d-rotatory (from the Latin dextro, meaning right). Alterna-
tively, if E$   appears to have been displaced counterclockwise, 
the material is levorotatory, or l-rotatory (from the Latin 
levo, meaning left).

In 1822 the English astronomer Sir John F. W. Herschel 
(1792–1871) recognized that d-rotatory and l-rotatory behavior 
in quartz actually corresponded to two different  crystallographic 
structures. Although the molecules are identical (SiO2), crystal 
quartz can be either right- or left-handed, depending on the 
 arrangement of those molecules. As shown in Fig. 8.56, the 
 external appearances of these two forms are the same in all 
 respects, except that one is the mirror image of the other; they 
are said to be enantiomorphs of each other. All transparent 
 enantiomorphic substances are optically active. Furthermore, 
molten quartz and fused quartz, neither of which is crystalline, 
are not optically active. Evidently, in quartz optical activity is 
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Figure 8.56  Right- and left-handed quartz crystals.
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Figure 8.55  Optical activity displayed by quartz.
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In sodium light the specific rotatory power, which is  
defined as b>d, is found to be 21.7°>mm for quartz. It follows 
that 0 nℒ - nℛ 0 = 7.1 * 10-5 for light propagating along the 
optic axis. In that particular direction ordinary double refraction 
 vanishes. However, with the incident light propagating normal 
to the optic axis (as is frequently the case in polarizing prisms, 
wave plates, and compensators), quartz behaves like any 
 optically  inactive, positive, uniaxial crystal. There are other 
 birefringent, optically active crystals, both uniaxial and biaxial, 
such as  cinnabar, HgS (no = 2.854, ne = 3.201), which has a 
 rotatory power of 32.5°>mm. In contrast, the substance NaClO3 
is optically active (3.1°>mm) but not birefringent. The rotatory 
power of liquids, in comparison, is so relatively small that it is 
usually specified in terms of 10-cm path lengths; for example, 
in the case of turpentine (C10H6) it is only -37°>10 cm (10°C 
with l0 = 589.3 nm). The rotatory power of solutions varies 
with the concentration. This fact is particularly helpful in deter-
mining, for example, the amount of sugar present in a urine 
sample or a commercial sugar syrup.

You can observe optical activity rather easily using colorless 
corn syrup, the kind available in any grocery store. You won’t 
need much of it, since b>d is roughly +30°>inch. Put about an 
inch of syrup in a glass container between crossed Polaroids 
and illuminate it with a flashlight. The beautiful colors that 
 appear as the analyzer is rotated arise from the fact that b is a 

means that anywhere along the z-axis the resultant is linearly 
polarized (Fig. 8.58), although its orientation is certainly a func-
tion of z. Moreover, if nℛ 7 nℒ or, equivalently, kℛ 7 kℒ, E$  will 
rotate counterclockwise, whereas if kℒ 7 kℛ, the rotation is 
clockwise (looking toward the source). Traditionally, the angle b 
through which E$  rotates is defined as positive when it is clock-
wise. Keeping this sign convention in mind, it should be clear 
from Eq. (8.43) that the field at point z makes an angle of 
b = -(kℛ - kℒ)z>2 with respect to its original orientation. If 
the medium has a thickness d, the angle through which the 
plane-of-vibration rotates is then

 b =
pd
l0

 (nℒ - nℛ) (8.45)

where nℒ 7 nℛ is d-rotatory and nℛ 7 nℒ is l-rotatory  
(Fig. 8.59).

Fresnel was actually able to separate the constituent ℛ- 
and ℒ-states of a linear beam using the composite prism of 
Fig. 8.60. It consists of a number of right- and left-handed 
quartz segments cut with their optic axes as shown. The  
ℛ-state propagates more rapidly in the first prism than in 
the second and is thus refracted toward the normal to the 
oblique boundary. The opposite is true for the ℒ-state, and 
the two circular waves  increase in angular separation at 
each interface.

(a)
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Figure 8.57  The super-
position of an ℛ@ and an 
ℒ@state at z = 0.
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Figure 8.58  The superposi-
tion of an ℛ@ and an ℒ@state 
at z = z′ (kℒ 7 kℛ).
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378 Chapter 8 Polarization

basis for the development of the stereochemistry of organic 
and inorganic compounds, where one is concerned with the 
three- dimensional spatial distribution of atoms within a given 
molecule.

8.10.1 A Useful Model

The phenomenon of optical activity is extremely complicated, 
and although it can be treated in terms of classical Electromag-
netic Theory, it actually requires a quantum-mechanical 
 solution.** Despite this, we will consider a simplified model, 
which will yield a qualitative, yet plausible, description of the 
process. Recall that we represented an optically isotropic 
 medium by a homogeneous distribution of isotropic electron-
oscillators that vibrated parallel to the E$-field of an incident 
wave. An optically anisotropic medium was similarly depicted 
as a distribution of anisotropic oscillators that vibrated at some 
angle to the driving E$-field. We now imagine that the electrons 
in optically active substances are constrained to move along 
twisting paths that, for simplicity, are assumed to be helical. 
Such a molecule is pictured much as if it were a conducting 
helix. The silicon and oxygen atoms in a quartz crystal are 
known to be arranged in either right- or left-handed spirals 
about the optic axis, as indicated in Fig. 8.61. In the present 
representation this crystal would correspond to a parallel array 
of helices. In comparison, an active sugar solution would be 
analogous to a distribution of randomly oriented helices, each 
having the same handedness.†

In quartz we might anticipate that the incoming wave would 
interact differently with the specimen, depending on whether it 
“saw” right- or left-handed helices. Thus we could expect 
 different indices for the ℛ- and ℒ-components of the wave. The 
detailed treatment of the process that leads to circular 
 birefringence in crystals is by no means simple, but at least the 
necessary asymmetry is evident. How, then, can a random 
 array  of helices, corresponding to a solution, produce optical 
 activity? Let us examine one such molecule in this simplified 
 representation, for example, one whose axis happens to be 
 parallel to the harmonic E$-field of the electromagnetic wave. 
That field will drive charges up and down along the length of the 
molecule, effectively producing a time-varying electric  dipole 
moment p (t), parallel to the axis. In addition, we now have a 

function of l0, an effect known as rotatory dispersion. Using a 
filter to get roughly monochromatic light, you can readily deter-
mine the rotatory power of the syrup.*

The first great scientific contribution made by Louis Pasteur 
(1822–1895) came in 1848 and was associated with his doc-
toral research. He showed that racemic acid, which is an opti-
cally inactive form of tartaric acid, is actually composed of a 
mixture containing equal quantities of right- and left-handed 
constituents. Substances of this sort, which have the same 
 molecular formulas but differ somehow in structure, are called 
isomers. He was able to crystallize racemic acid and then sepa-
rate the two different types of mirror-image crystals (enantio-
morphs) that resulted. When dissolved separately in water, 
they formed d-rotatory and l-rotatory solutions. This implied 
the  existence of molecules that, although chemically the same, 
were themselves mirror images of each other; such molecules 
are now known as optical stereoisomers. These ideas were the 

*A gelatin filter works well, but a piece of colored cellophane will also do nicely. 
Just remember that the cellophane will act as a wave plate (see Section 8.7.1), so 
don’t put it between the Polaroids unless you align its principal axes appropriately.
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–(k�d – vt)

–(kℛ – k�)d�2

(kℛd – vt)

Figure 8.59  The superposition of an ℛ@ and an ℒ@state at z = d 
(kℒ 7 kℛ, lℒ 6 lℛ, and vℒ 6 vℛ).
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Figure 8.60  The Fresnel composite prism.

**The review article “Optical activity and molecular dissymmetry,” by S. F. Mason, 
Contemp. Phys. 9, 239 (1968), contains a fairly extensive list of  references for 
further reading.

†In addition to these solid and liquid states, there is a third classification of sub-
stances, which is useful because of its remarkable optical properties. It is known 
as the mesomorphic or liquid crystal state. Liquid crystals are organic compounds 
that can flow and yet maintain their characteristic molecular orientations. In 
particular, cholesteric liquid crystals have a helical structure and therefore exhibit 
extremely large rotatory powers, of the order of 40 000°>mm. The pitch of the 
screwlike molecular arrangement is considerably smaller than that of quartz.
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current associated with the spiraling motion of the  electrons. 
This in turn generates an oscillating magnetic dipole moment  
m (t), which is also along the helix axis (Fig. 8.62). In contrast, if 
the molecule was parallel to the B$-field of the wave, there would 
be a time-varying flux and thus an induced electron current cir-
culating around the molecule. This would again yield oscillating 
axial electric and magnetic dipole moments. In either case p (t) 
and m (t) will be parallel or antiparallel to each other, depending 

O

Si
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O
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Figure 8.61  Right-handed quartz.
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Figure 8.62  The radiation from helical molecules.

on the sense of the particular molecular  helix. Clearly, energy 
has been removed from the field, and both oscillating dipoles 
will scatter (i.e.,  reradiate) electromagnetic waves. The electric 
field E$p emitted in a given direction by an electric dipole is per-
pendicular to the electric field E$m emitted by a magnetic dipole. 
The sum of these, which is the resultant field E$s scattered by a 
helix, will not be parallel to the incident field E$i along the direc-
tion of propagation. (The same is of course true for the magnetic 
fields.) The plane-of-vibration of the resultant transmitted light 
(E$s + E$i) will thus be rotated in a direction determined by the 
sense of the helix. The amount of the rotation will vary with the 
orientation of each molecule, but it will always be in the same 
direction for helices of the same sense.

Although this discussion of optically active molecules as 
 helical conductors is admittedly superficial, the analogy is well 
worth keeping in mind. In fact, if we direct a linear 3-cm 
 microwave beam onto a box filled with a large number of iden-
tical copper helices (e.g., 1 cm long by 0.5 cm in diameter and 
insulated from each other), the transmitted wave will undergo a 
rotation of its plane-of-vibration.*

8.10.2  Optically Active Biological Substances

Among the most fascinating observations associated with 
 optical activity are those in biology. Whenever organic mole-
cules are synthesized in the laboratory, an equal number of  
d- and l-isomers are produced, with the effect that the com-
pound is  optically inactive. One might then expect that if they 
exist at all, equal amounts of d- and l-optical stereoisomers 
will be found in natural organic substances. This is by no 
means the case. Natural sugar (sucrose, C12H22O11), no matter 
where it is grown, whether extracted from sugar cane or sugar 

*I. Tinoco and M. P. Freeman, “The optical activity of oriented copper helices,”  
J. Phys. Chem. 61, 1196 (1957).
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beets, is always d-rotatory. Moreover, the simple sugar dex-
trose or d-glucose (C6H12O6), which, as its name implies, is 
d-rotatory, is the most important carbohydrate in human 
 metabolism. Evidently, living things can somehow distinguish 
between optical isomers.

All proteins are fabricated of compounds known as amino acids. 
These in turn are combinations of carbon, hydrogen, oxygen, and 
nitrogen. There are twenty-odd amino acids, and all of them 
(with the exception of the simplest one, glycine, which is not 
enantiomorphic) are generally l-rotatory. This means that if we 
break up a protein molecule, whether it comes from an egg or an 
eggplant, a beetle or a Beatle, the constituent amino acids will be 
l-rotatory. One important exception is the group of antibiotics, 
such as penicillin, which do contain some dextro amino acids. In 
fact, this may well account for the toxic effect penicillin has on 
bacteria.

It is intriguing to speculate about the possible origins of life 
on this and other planets. For example, did life on Earth origi-
nally consist of both mirror-image forms? Five amino acids 
were found in a meteorite that fell in Victoria, Australia, on 
 September 28, 1969, and analysis has revealed the existence of 
roughly equal amounts of the optically right- and left-handed 
forms. This is in marked contrast to the overwhelming predom-
inance of the left-handed form found in terrestrial rocks. The 
implications are many and marvelous.*

8.11  Induced Optical Effects—Optical 
Modulators

A number of different physical effects involving polarized 
light  all share the single common feature of somehow being 
externally induced. In these instances, one exerts an external 
influence (e.g., a mechanical force, a magnetic or electric field) 
on the optical medium, thereby changing the manner in which 
it transmits light.

8.11.1 Photoelasticity

In 1816 Sir David Brewster discovered that normally transparent 
isotropic substances could be made optically anisotropic by the 
application of mechanical stress. The phenomenon is known as 
mechanical birefringence, photoelasticity, or stress birefringence. 
Under compression or tension, the material takes on the properties 
of a negative or positive uniaxial crystal, respectively. In either 
case, the effective optic axis is in the direction of the stress, and the 

*See Physics Today, Feb. 1971, p. 17, for additional discussion and references for 
further reading.

A clear plastic triangle between polaroids. Those fringes are multicolored. (E.H.)

induced birefringence is proportional to the stress. If the stress is 
not uniform over the sample, neither is the birefringence or the 
 retardance imposed on a transmitted wave.

Photoelasticity serves as the basis of a technique for studying 
the stresses in both transparent and opaque mechanical struc-
tures (see photo). Improperly annealed or carelessly mounted 
glass, whether serving as an automobile windshield or a 
 telescope lens, will develop internal stresses that can easily be 
detected. Information concerning the surface strain on opaque 
objects can be obtained by bonding photoelastic coatings to the 
parts under study. More commonly, a transparent scale model of 
the part is made out of a material optically sensitive to stress, 
such as epoxy, glyptol, or modified polyester resins. The model 
is then subjected to the forces that the actual component would 
experience in use. Since the birefringence varies from point to 
point over the surface of the model, when it is placed between 
crossed polarizers, a complicated variegated fringe pattern will 
reveal the internal stresses. Examine almost any piece of clear 
plastic or even a block of unflavored gelatin between two 
 Polaroids; try stressing it further and watch the pattern change 
accordingly (see photos).

The retardance at any point on the sample is proportional 
to the principal stress difference; that is, (s1 - s2), where the 
sigmas are the orthogonal principal stresses. For example, if 
the sample were a plate under vertical tension, s1 would be 
the maximum principal stress in the vertical direction and s2 
would be the minimum principal stress, in this case zero, 
horizontally. In more complicated situations, the principal 
stresses, as well as their differences, will vary from one re-
gion to the next. Under white-light illumination, the loci of 
all points on the specimen for which (s1 - s2) is constant are 
known as isochromatic  regions, and each such region corre-
sponds to a particular color. Superimposed on these colored 
fringes will be a separate  system of black bands. At any point 
where the E$-field of the incident linear light is parallel to ei-
ther local principal stress axis, the wave will pass through the 
sample unaffected, regardless of wavelength. With crossed 
polarizers, that light will be absorbed by the analyzer, yield-
ing a black region known as an isoclinic band (Problem 8.72). 
In addition to being beautiful to look at, the fringes also pro-
vide both a qualitative map of the stress  pattern and a basis 
for quantitative calculations.
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where B is the static magnetic flux density (usually in gauss), 
d is the length of medium traversed (in cm), and � is a factor 
of proportionality known as the Verdet constant. The Verdet 
 constant for a particular medium varies with both frequency 
(dropping off rapidly as n decreases) and temperature. It is 
roughly of the order of 10-5 min of arc gauss-1 cm-1 for gases 
and 10-2 min of arc gauss-1 cm-1 for solids and liquids (see 
Table 8.2). You can get a better feeling for the meaning of 
these numbers by imagining, for example, a 1-cm-long 
 sample of H2O in the moderately large field of 104 gauss. 
(The Earth’s field is about one-half gauss.) In that particular 
case, a rotation of 2°11′ would result, since � = 0.0131.

By convention, a positive Verdet constant corresponds to a 
(diamagnetic) material for which the Faraday Effect is l-rotatory  
when the light moves parallel to the applied B$-field and  
d- rotatory when it propagates antiparallel to B$ . No such rever-
sal of handedness occurs in the case of natural optical activity. 
For a convenient mnemonic, imagine the B$-field to be generated 
by a solenoidal coil wound about the sample. The plane-of- 
vibration, when � is positive, rotates in the same direction as the 
current in the coil, regardless of the beam’s propagation direction 
along its axis. Consequently, the effect can be amplified by 
 reflecting the light back and forth a few times through the sample.

The theoretical treatment of the Faraday Effect involves the 
quantum-mechanical theory of dispersion, including the effects 
of B$  on the atomic or molecular energy levels. It will suffice 
here merely to outline the limited classical argument for 
 nonmagnetic materials.

Suppose the incident light to be circular and monochromatic. 
An elastically bound electron will take on a steady-state circu-
lar orbit being driven by the rotating E$-field of the wave. (The 
effect of the wave’s B$-field is negligible.) The introduction of a 
large constant applied magnetic field perpendicular to the plane 

8.11.2 The Faraday Effect

Michael Faraday in 1845 discovered that the manner in which 
light propagated through a material medium could be influenced 
by the application of an external magnetic field. In particular, he 
found that the plane-of-vibration of linear light incident on a 
piece of glass rotated when a strong magnetic field was applied 
in the propagation direction. The Faraday Effect was one of the 
earliest indications of the interrelationship between electromag-
netism and light. Although it is reminiscent of optical activity, 
there is an important distinction.

The angle b (measured in minutes of arc) through which the 
plane-of-vibration rotates is given by the empirically deter-
mined expression

 b = �Bd (8.46)

(a) A permanently stressed piece of clear plastic between crossed Polaroids. (E.H.) (b) The fringe pattern 
changes with the application of a force. (E.H.)

(a) (b)

The back windows of most cars are heat treated so that if broken they would 
shatter into small, less dangerous pieces. This photo was taken through a 
 linear polarizer and shows the internal stress pattern. (E.H.)
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382 Chapter 8 Polarization

since each constituent has a characteristic magnetic rotation. 
When utilized in spectroscopic studies, it yields information 
about the properties of energy states above the ground level. 
Interestingly, the Faraday Effect has been used to make optical 
modulators. An infrared version, constructed by R. C. LeCraw, 
utilized the synthetic magnetic crystal yttrium–iron garnet 
(YIG), to which has been added a quantity of gallium. YIG has 
a structure similar to that of natural gem garnets. The device is 
depicted schematically in Fig. 8.63. A linear infrared laserbeam 
enters the crystal from the left. A transverse dc magnetic field 
saturates the magnetization of the YIG crystal in that direction. 
The total magnetization vector (arising from the constant field 
and the field of the coil) can vary in direction, being tilted 
 toward the axis of the crystal by an amount proportional to the 
modulating current in the coil. Since the Faraday rotation 
 depends on the axial component of the magnetization, the coil 
current controls b. The analyzer then converts this polarization 
modulation to amplitude modulation by way of Malus’s Law 
[Eq. (8.24)]. In short, the signal to be transmitted is introduced 
across the coil as a modulating voltage, and the emerging 
 laserbeam carries that information in the form of amplitude 
variations.

There are actually several other magneto-optic effects. We 
shall consider only two of these, and rather succinctly at that. 
The Voigt and Cotton–Mouton Effects both arise when a con-
stant magnetic field is applied to a transparent medium perpen-
dicular to the direction of propagation of the incident lightbeam. 
The former occurs in vapors, whereas the latter, which is con-
siderably stronger, occurs in liquids. In either case the medium 
displays birefringence similar to that of a uniaxial crystal whose 
optic axis is in the direction of the dc magnetic field, that is, 
normal to the lightbeam [Eq. (8.36)]. The two indices of refrac-
tion now correspond to the situations in which the plane-of- 
vibration of the wave is either normal or parallel to the constant 
magnetic field. Their difference ∆n (i.e., the birefringence) is 
proportional to the square of the applied magnetic field. It arises 

of the orbit will result in a radial force FM on the electron. That 
force can point either toward or away from the circle’s center, 
depending on the handedness of the light and the direction of 
the constant B$-field. The total radial force (FM plus the elastic 
restoring force) can therefore have two different values, and so 
too can the radius of the orbit. Consequently, for a given mag-
netic field there will be two possible values of the electric di-
pole moment, the polarization, and the permittivity, as well as 
two values of the index of refraction, nℛ and nℒ. The discussion 
can then proceed in precisely the same fashion as that of Fres-
nel’s treatment of optical activity. As before, one speaks of two 
normal modes of propagation of electromagnetic waves through 
the medium, the ℛ- and ℒ-states.

For ferromagnetic substances things are somewhat more 
complicated. In the case of a magnetized material b is propor-
tional to the component of the magnetization in the direction of 
propagation rather than the component of the applied dc field.

There are a number of practical applications of the Faraday 
Effect. It can be used to analyze mixtures of hydrocarbons, 

TABLE 8.2  Verdet Constants for Some Selected 
Substances

  � (min of arc  
Material Temperature (°C) gauss-1 cm-1)

Light flint glass 18 0.031 7

Water 20 0.013 1

NaCl 16 0.035 9

Quartz 20 0.016 6

NH4Fe(SO4)2.12H2O 26 -0.000 58

Air* 0 6.27 * 10-6

CO2* 0 9.39 * 10-6

*l = 578 nm and 760 mm Hg. 
More extensive listings are given in the usual handbooks.

Polarizer

Polarizer

Constant
magnetic �eld

Modulating
magnetic �eld

Modulating
voltage

E

E

YIG

Figure 8.63  A Faraday Effect 
modulator.
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the shutter is closed. The application of a modulating voltage 
generates a field, causing the cell to function as a variable wave 
plate and thus opening the shutter proportionately. The great 
value of such a device lies in the fact that it can respond effectively 
to frequencies roughly as high as 1010 Hz. Kerr cells, usually con-
taining nitrobenzene or carbon disulfide, have been used for a 
number of years in a variety of applications. They serve as shut-
ters in high-speed photography and as lightbeam choppers to 
replace rotating toothed wheels. As such, they have been uti-
lized in measurements of the speed of light. Kerr cells are also 
used as Q-switches in pulsed laser systems.

If the plates functioning as the electrodes have an effective 
length of / cm and are separated by a distance d, the retardation 
is given by

 ∆w = 2pK/V2>d2 (8.48)

where V is the applied voltage. Thus a nitrobenzene cell in which 
d is 1 cm and / is several centimeters will require a rather large 
voltage, roughly 3 * 104 V, in order to respond as a half-wave 
plate. This is a characteristic quantity known as the half-wave 
voltage, Vl>2. Another drawback is that nitrobenzene is both 
 poisonous and explosive. Transparent solid substances, such as 
the mixed crystal potassium tantalate niobate (KTa0.65Nb0.35O3), 
KTN for short, or barium titanate (BaTiO3), which show a Kerr 
Effect, are therefore of interest as electro-optical modulators.

There is another very important electro-optical effect known 
as the Pockels Effect, after the German physicist Friedrich Carl 
Alwin Pockels (1865–1913), who studied it extensively in 1893. 
It is a linear electro-optical effect, inasmuch as the induced bire-
fringence is proportional to the first power of the applied E$-field 
and therefore the applied voltage. The Pockels Effect exists only 
in certain crystals that lack a center of symmetry—in other 
words, crystals having no central point through which every 
atom can be reflected into an identical atom. There are 32 crystal 
symmetry classes, 20 of which may show the Pockels Effect. 
Incidentally, these same 20 classes are also piezoelectric. Thus, 
many crystals and all liquids are excluded from displaying a lin-
ear electro-optic effect.

in liquids from an aligning of the optically and magnetically 
anisotropic molecules of the medium with that field. If the in-
coming light propagates at some angle to the static field other 
than 0 or p>2, the Faraday and Cotton–Mouton Effects occur 
concurrently, with the former generally being much the larger 
of the two. The Cotton–Mouton is the magnetic analogue of the 
Kerr (electro-optic) Effect, to be considered next.

8.11.3 The Kerr and Pockels Effects

The first electro-optic effect was discovered by the Scottish 
physicist John Kerr (1824–1907) in 1875. He found that an iso-
tropic transparent substance becomes birefringent when placed 
in an electric field E$ . The medium takes on the characteristics 
of a uniaxial crystal whose optic axis corresponds to the direc-
tion of the applied field. The two indices, ni and n#, are associ-
ated with the two orientations of the plane-of-vibration of the 
wave, namely, parallel and perpendicular to the applied electric 
field, respectively. Their difference, ∆n, is the birefringence, 
and it is found to be

 ∆n = l0KE2 (8.47)

where K is the Kerr constant. When K is positive, as it most 
often is, ∆n, which can be thought of as ne - no, is positive, and 
the substance behaves like a positive uniaxial crystal. Values of 
the Kerr constant (Table 8.3) are often listed in electrostatic  
cgs units, so that one must remember to enter E in Eq. (8.47) in 
statvolts per cm (one statvolt ≈ 300 V). Observe that, as with 
the Cotton–Mouton Effect, the Kerr Effect is proportional to 
the square of the field and is often referred to as the quadratic 
electro-optic effect. The phenomenon in liquids is attributed to 
a partial alignment of anisotropic molecules by the E$-field. In 
solids the situation is considerably more complicated.

Figure 8.64 depicts an arrangement known as a Kerr shutter 
or optical modulator. It consists of a glass cell containing two 
electrodes, which is filled with a polar liquid. This Kerr cell, as 
it is called, is positioned between crossed linear polarizers 
whose transmission axes are at ±45° to the applied E$-field. 
With zero voltage across the plates, no light will be transmitted; 

TABLE 8.3  Kerr Constants for Some Selected Liquids 
(20°C, l0 = 589.3 nm)

  K (in units of 
 Substance 10-7 cm statvolt-2)

Benzene C6H6 0.6

Carbon disulfide CS2 3.2

Chloroform CHCl3 -3.5

Water H2O 4.7

Nitrotoluene C5H7NO2 123

Nitrobenzene C6H5NO2 220

Polarizer

Polarizer

Modulating
voltage

Plate electrodes

Figure 8.64  A Kerr cell.

M08_HECH6933_05_GE_C08.indd   383 26/08/16   2:17 PM



384 Chapter 8 Polarization

it is aligned such that its optic axis is along the beam’s propaga-
tion direction. For such an arrangement the retardance is given by

 ∆w = 2pn3
o r63V>l0 (8.49)

where r63 is the electro-optic constant in m>V, no is the ordinary 
index of refraction, V is the potential difference in volts, and l0 
is the vacuum wavelength in meters.* Since the crystals are 
anisotropic, their properties vary in different directions, and 
they must be described by a group of terms referred to collec-
tively as the second-rank electro-optic tensor rij. Fortunately, 
we need only concern ourselves here with one of its compo-
nents, namely, r63, values of which are given in Table 8.4. The 
half-wave voltage corresponds to a value of ∆w = p, in which 
case

 ∆w = p 
V

Vl>2
 (8.50)

and from Eq. (8.49)

 Vl>2 =
l0

2n3
o r63

 (8.51)

As an example, for KDP, r63 = 10.6 * 10-12 m>V, no = 1.51, 
and we obtain Vl>2 ≈ 7.6 * 103 V at l0 = 546.1 nm.

Pockels cells have been used as ultra-fast shutters, Q-switches 
for lasers, and dc to 30-GHz light modulators.†

8.12 Liquid Crystals

In 1888 the Austrian botanist Friedrich Reintzer observed that 
cholesteryl benzoate seemed to have two distinct transition  
points, one at which the crystal changed into a cloudy liquid and 

The first practical Pockels cell, which could perform as a 
shutter or modulator, was not made until the 1940s, when suit-
able crystals were finally developed. The operating principle 
for such a device is one we’ve already discussed. In brief, the 
birefringence is varied electronically by means of a controlled 
applied electric field. The retardance can be altered as desired, 
thereby changing the state of polarization of the incident linear 
wave. In this way, the system functions as a polarization modu-
lator. Early devices were made of ammonium dihydrogen 
phosphate (NH4H2PO4), or ADP, and potassium dihydrogen 
phosphate (KH2PO4), known as KDP; both are still in use. A 
great improvement was provided by the introduction of single 
crystals of potassium dideuterium phosphate (KD2PO4), or 
KD*P, which yields the same retardation with voltages less 
than half of those needed for KDP. This process of infusing 
crystals with deuterium is accomplished by growing them in a 
solution of heavy water. Cells made with KD*P or CD*A  
(cesium dideuterium arsenate) have been produced commercially 
for some time.

A Pockels cell is simply an appropriate noncentrosymmetri-
cal, oriented, single crystal immersed in a controllable electric 
field. Such devices can usually be operated at fairly low  voltages 
(roughly 5 to 10 times less than that of an equivalent Kerr cell); 
they are linear, and of course there is no problem with toxic 
liquids. The response time of KDP is quite short, typically less 
than 10 ns, and it can modulate a lightbeam at up to about 
25 GHz (i.e., 25 * 109 Hz).

There are two common cell configurations, referred to as 
transverse and longitudinal, depending on whether the applied  
E$-field is perpendicular or parallel to the direction of propaga-
tion, respectively. The longitudinal type is illustrated, in its most 
basic form, in Fig. 8.65. Since the beam traverses the electrodes, 
these are usually made of transparent metal-oxide coatings (e.g., 
SnO, InO, or CdO), thin metal films, grids, or rings. The crystal 
itself is generally uniaxial in the absence of an applied field, and 

*This expression, along with the appropriate one for the transverse mode, is 
derived rather nicely in A. Yariv, Quantum Electronics. Even so, the treatment is 
sophisticated and not recommended for casual reading.

Polarizer

Polarizer

Modulating
voltage

Crystal

Transparent
electrode

Figure 8.65  A Pockels cell.

TABLE 8.4  Electro-optic Constants (Room 
Temperature, l0 = 546.1 nm)

 r63 no Vl>2 
Material (units of 10-12 m>V) (approx.) (in kV)

ADP (NH4H2PO4) 8.5 1.52 9.2

KDP (KH2PO4) 10.6 1.51 7.6

KDA (KH2AsO4) ∼13.0 1.57 ∼6.2

KD*P (KD2PO4) ∼23.3 1.52 ∼3.4

†The reader interested in light modulation in general should consult D. F. Nelson, 
“The modulation of laser light,” Scientific American (June 1968). Also see Chapter 
14, Vol. II of Handbook of Optics (1995).
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windows. Electric dipoles are either present or induced, and the 
LC molecules experience torques that cause them to try to ro-
tate into alignment with the field. As the voltage increases the 
molecules (except for those anchored to the inner surfaces of 
the windows), more and more turn toward the direction of the 
field, decreasing the birefringence, ∆n = (ne - no), and the re-
tardance ∆w as well. Since the birefringence (usually from 0.1 
to 0.3) is a function of the voltage, temperature (decreasing 
about 0.4% per °C increase), and wavelength (decreasing as l0 
increases)

∆w(V, T, l0) =
2p
l0

 d ∆n (V, T, l0)

Maximum retardance (typically≈l0>2) obtains when the 
 applied voltage is zero. The retardance when V is large (say, 20 V) 
is a minimum of around 30 nm (or zero, when a compensator is 
used to cancel the residual retardance of the anchored layers). 

When the incident light is polarized parallel to the slow 
axis, the device can be used as a voltage-controlled phase 
 modulator. It can change the phase delay the light will experi-
ence in  traversing the cell. Alternatively, when the light has 
 components parallel and perpendicular to the slow axis, the LC 
cell  functions as a continuously variable retarder over a broad 
range of  frequencies. By placing the cell between crossed po-
larizers (at ±45°), it becomes a voltage-controlled irradiance 
modulator.

The Liquid Crystal Display

Imagine that one of the windows of the parallel LC cell in  
Fig. 8.67a is now rotated 90° in its own plane. This drags 
around the nematic liquid so that its molecular layers spiral a 
quarter of a turn about the twist axis normal to the windows 
(much like putting a deck of cards between your two hands and 

another where it became transparent. Known today as liquid 
crystal, he had discovered a new phase of matter that possessed 
physical properties between those of ordinary liquids and solids. 
Liquid crystals (LCs) have long cigar-shaped molecules that can 
move about, and consequently, like ordinary liquids, they lack 
positional order. Nonetheless, like crystals, their molecules 
strongly interact to sustain a large-scale orientational order. 
There are three types of liquid crystal distinguished by the ways 
in which their molecules align. We’ll focus on the nematic vari-
ety, in which the molecules tend to be more or less parallel, even 
though their positions are fairly random (Fig. 8.66).

To prepare a parallel nematic cell, we first coat one face of 
each of two pieces of flat glass with a transparent electrically 
conducting metallic film, such as indium tin oxide (which has 
maximum transmission from 450 to 1800 nm). These two win-
dows will also serve as the electrodes, between which we’ll place 
the liquid crystal and across which we’ll apply a controlling volt-
age. We want the LC molecules in contact with the windows to be 
oriented in a direction that is both parallel to the glass and to each 
other. To accomplish that, it’s necessary to create a template of 
parallel ridges along which the LC molecules can align. There are 
several ways to do that, the simplest being to just carefully rub 
the indium tin oxide surface (or a thin dielectric layer covering 
it), thereby producing parallel microgrooves. 

When the thin space (from just a few microns up to about  
10 mm) between two such prepared glass windows is filled with 
nematic LC, the molecules in contact with the microgrooves 
 anchor themselves parallel to the ridges. The LC molecules then 
essentially drag each other into alignment, and soon the entire 
 liquid is similarly oriented (Fig. 8.67a). The direction in which the 
molecules of a liquid crystal are aligned is known as the director.

Because of their elongated shape and ordered orientation, 
the liquid crystal molecules behave en masse as an anisotropic 
dielectric, one that’s positive uniaxial birefringent. The long 
axis of the molecules defines the direction of the extraordinary 
index or slow axis. A ray of light linearly polarized parallel to 
the LC director will be an extraordinary ray and will experience 
an ongoing phase change as it traverses the cell. By contrast, a 
ray linearly polarized at 45° to the director will suffer a retar-
dance ∆w just as if it had passed through a birefringent crystal. 

The Liquid Crystal Variable Retarder

Now suppose we apply a voltage (V) across the cell (Fig. 8.67b), 
thereby creating an electric field perpendicular to the glass  

Figure 8.66  The long cigar-shaped 
molecules of a nematic liquid crystal 
align themselves in a random but  
parallel formation.

(a)

(b)

Figure 8.67  (a) A nematic liquid crystal between two transparent 
 electrodes. The long molecules align parallel to a set of microgrooves on 
the inside faces of the two electrodes. (b) When a voltage is applied, the 
molecules rotate into alignment with the field.
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plane of polarization of incident light. When the E-field is  
removed, the cell reverts back to its twisted configuration and can 
again rotate light. If the cell is now placed between crossed linear 
polarizers (Fig. 8.69), it becomes a voltage- controlled switch 
that can transmit or absorb an incident  beam of light.

The simplest liquid crystal display (LCD), the kind found in 
digital watches, clocks, cameras, calculators, and so forth, is 
illuminated by ambient light. Therein lies its principal virtue: it 
consumes very little electrical power because it isn’t self- 
luminous. 

To make an LCD, we just put a flat mirror beyond the last 
polarizer on the right in Fig. 8.69. Ambient light enters from the 
left and is immediately linearly polarized, in this case horizon-
tally. With no voltage on the electrodes the light emerges from 
the twisted LC cell oscillating vertically. It passes through the 
second polarizer—unaffected by it—strikes the mirror, and 
 reflects off to the left still oscillating vertically. It then retraces 
its path back through the LC cell, from which it exits traveling 
to the left, horizontally polarized. Looking into the first polar-
izer, we see a relatively bright field of emerging light. 

When a voltage is applied across the cell, the liquid crystal 
reorients itself and loses its ability to rotate the plane of polar-
ization. Horizontal light enters and leaves the cell, only to be 
completely absorbed by the second polarizer; the entrance win-
dow is now black, and no light emerges.

By properly configuring the front transparent electrode, the 
black nonreflecting region can be confined to the shape of a 
number or letter, or anything you like. Usually the numbers on 
your calculator are produced using seven small bar electrodes 
(Fig. 8.70) that are activated independently (by the decoder-
driver in an integrated circuit) to create all the digits from 0 to 9. 
These bars are formed as isolated regions on the front indium 
tin oxide film. When a voltage is put across a given bar and the 

fanning it around). The result is a so-called twisted nematic cell 
(Fig. 8.68a). The molecules are aligned vertically on one window, 
and gradually they’re rotated, layer upon layer, until they are 
horizontal on the other window. The cell will rotate the plane 
of polarization as if it were an optically active medium.* For 
 example, a beam of linear light traveling normal to the entrance 
window and polarized parallel to the anchored molecules in 
Fig. 8.68a, that is horizontally, will be rotated through 90° and 
emerge vertically polarized. 

Upon putting a voltage across the cell, an electric field  parallel 
to the twist axis is set up throughout the liquid crystal. Conse-
quently, the LC molecules (except for those anchored to the win-
dows) turn into alignment with the field (Fig. 8.68b). The twisted 
structure of the cell vanishes, and it loses its ability to rotate the 

*For a proof of this, see B. E. A. Saleh and M. C. Teich, Fundamentals of 
Photonics, p. 228.

(a) (b)

Figure 8.68  (a) A twisted nematic cell. The LC molecules are  
aligned horizontally on the left window and vertically on the right window, 
and they gradually twist (plane upon plane) from one to the other.  
(b) When a voltage is applied across the cell, the molecules align  
with the electric field.

(a) (b)

Figure 8.69  (a) A twisted nematic cell between crossed linear polarizers. Light polarized  
vertically emerges from the device. (b) When a voltage is applied across the cell it no longer  
rotates the plane of polarization; light polarized horizontally enters and leaves the LC cell.  
That light is subsequently absorbed by the second polarizer and no light emerges from the device.
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large continuous back electrode, the E-field just behind the bar 
destroys the LC twist in that small region and that segment 
turns black.

8.13  A Mathematical Description 
of Polarization

Until now we’ve considered polarized light in terms of the 
 electric field component of the wave. The most general repre-
sentation was, of course, that of elliptical light. The endpoint of 
the vector E$  was envisioned continuously sweeping along the 
path of an ellipse having a particular shape—the circle and line 
being special cases. The period over which the ellipse was tra-
versed equaled that of the lightwave (i.e., roughly 10-15 s) and 
was far too short to be detected. In contrast, measurements 
made in practice are generally averages over comparatively 
long time intervals.

Clearly, it would be advantageous to formulate an alternative 
description of polarization in terms of convenient observables, 

A B C D E  F  G

Figure 8.70  A seven-bar electrode array used to display numerals.  
For example, to form the number 9, a voltage is applied between all  
of the following segments and the large back electrode, D, E, F, G, A, and B.

namely, irradiances. Our motives are far more than the ever- 
present combination of aesthetics and pedagogy. The formalism to 
be considered has far-reaching significance in other areas of study, 
for example, particle physics (the photon is, after all an elementary 
particle) and Quantum Mechanics. It serves in some respects to 
link the classical and quantum-mechanical pictures. But even more 
demanding of our present attention are the considerable practical 
advantages to be gleaned from this alternative description.

We shall evolve an elegant procedure for predicting the ef-
fects of complex systems of polarizing elements on the ultimate 
state of an emergent wave. The mathematics, written in the 
compressed form of matrices, will require only the simplest 
manipulation of those matrices. The complicated logic associ-
ated with phase retardations, relative orientations, and so forth, 
for a tandem series of wave plates and polarizers is almost all 
built in. One need only select appropriate matrices from a chart 
and drop them into the mathematical mill.

8.13.1 The Stokes Parameters

The modern representation of polarized light actually had its 
origins in 1852 in the work of G. G. Stokes. He introduced four 
quantities that are functions only of observables of the electro-
magnetic wave and are now known as the Stokes parameters.* 
The polarization state of a beam of light (either natural or to-
tally or partially polarized) can be described in terms of these 
quantities. We will first define the parameters operationally and 
then relate them to electromagnetic theory.

(a) (b)

By rotating a linear polarizer in front of a liquid crystal display we can see the numbers appear and  
disappear. Try it with your calculator. (E.H.)

*Much of the material in this section is treated more extensively in Shurcliff’s 
Polarized Light: Production and Use, which is something of a classic on the sub-
ject. You might also look at M. J. Walker, “Matrix calculus and the stokes param-
eters of polarized radiation,” Am. J. Phys. 22, 170 (1954); and W. Bickel and W. 
Bailey, “Stokes vectors, Mueller matrices, and polarized scattered light,” Am. J. 
Phys. 53, 468 (1985).
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388 Chapter 8 Polarization

Here e = ey - ex and we’ve dropped the constant P0c>2, so that 
the parameters are now proportional to irradiances. For the 
 hypothetical case of perfectly monochromatic light, E0x(t), 
E0y(t), and e(t) are time-independent, and one need only drop 
the 8 9 brackets in Eq. (8.53) to get the applicable Stokes 
 parameters. Interestingly enough, these same results can be 
 obtained by time averaging Eq. (8.14), which is the general 
equation for elliptical light.*

If the beam is unpolarized, 8E2
0x9T = 8E2

0y9T; neither aver-
ages to zero because the amplitude squared is always positive. 
In that case 0 = 8E2

0x9T + 8E2
0y9T, but 1 = 2 = 3 = 0. The 

latter two parameters go to zero, since both cos e and sin e 
 average to zero independently of the amplitudes. It is often con-
venient to normalize the Stokes parameters by dividing each 
one by the value of 0. This has the effect of using an incident 
beam of unit irradiance. The set of parameters ( 0, 1, 2, 3) 
for natural light in the normalized representation is then (1, 0, 
0, 0). If the light is horizontally polarized, it has no vertical 
 component, and the normalized parameters are (1, 1, 0, 0). 
 Similarly, for vertically polarized light we have (1, -1, 0, 0). 
Representations of a few other polarization states are listed in 
Table 8.5. (The parameters are displayed vertically for reasons 
to be discussed later.) Notice that for completely polarized light 
it follows from Eq. (8.53) that

 2
0 = 2

1 + 2
2 + 2

3 (8.54)

Moreover, for partially polarized light it can be shown that the 
degree of polarization [Eq. (8.29)] is given by

 V = ( 2
1 + 2

2 + 2
3)1>2> 0 (8.55)

Imagine now that we have two quasimonochromatic waves de-
scribed by ( ′0, ′1, ′2, ′3) and ( ″0, ″1, ″2, ″3), which are super-
imposed in some region of space. As long as the waves are inco-
herent, any one of the Stokes parameters of the resultant will be 
the sum of the corresponding parameters of the constituents  
(all of which are proportional to irradiance). In other words,  
the set of parameters describing the resultant is ( ′0 + ″0, 

′1 + ″1, ′2 + ″2, ′3 + ″3). For example, if a unit-flux density 
vertical �-state (1, -1, 0, 0) is added to an incoherent ℒ-state (see 
Table 8.5) of flux density   2, (2, 0, 0, -2), the composite wave has 
parameters (3, -1, 0, -2). It is an ellipse of flux density 3, more 
nearly vertical than horizontal ( 1 6 0), left-handed ( 3 6 0), 
and having a degree of polarization of 15>3.

The set of Stokes parameters for a given wave can be 
 envisaged  as a vector; we have already seen how two such 
 (incoherent) vectors add.** Indeed, it will not be the usual 

Imagine that we have a set of four filters, each of which, 
under natural illumination, will transmit half the incident 
light, the other half being discarded. The choice is not a unique 
one, and a number of equivalent possibilities exist. Suppose 
then that the first filter is simply isotropic, passing all states 
equally, whereas the second and third are linear polarizers 
whose transmission axes are horizontal and at +45° (diagonal 
along the first and third quadrants), respectively. The last filter 
is a circular polarizer opaque to ℒ-states. Each of these four 
filters is positioned alone in the path of the beam under inves-
tigation, and the transmitted irradiances I0, I1, I2, I3 are mea-
sured with a type of meter that is insensitive to polarization 
(not all of them are). The operational definition of the Stokes 
parameters is then given by the relations

 0 = 2I0 (8.52a)

 1 = 2I1 - 2I0 (8.52b)

 2 = 2I2 - 2I0 (8.52c)

 3 = 2I3 - 2I0 (8.52d)

Notice that 0 is simply the incident irradiance, and 1, 2, 
and 3 specify the state of polarization. Thus 1 reflects a ten-
dency for the polarization to resemble either a horizontal  
�-state (whereupon 1 7 0) or a vertical one (in which case 

1 6 0). When the beam displays no preferential orientation 
with respect to these axes ( 1 = 0), it may be elliptical at ±45°, 
circular, or unpolarized. Similarly, 2 implies a tendency for the 
light to resemble a �-state oriented in the direction of +45° 
(when 2 7 0) or in the direction of -45° (when 2 6 0) or 
neither ( 2 = 0). In the same way 3 reveals a tendency of the 
beam toward right-handedness ( 3 7 0), left-handedness 
( 3 6 0), or neither ( 3 = 0).

Now recall the expressions for quasimonochromatic light,

 E$x(t) = îE0x(t) cos [(kz - vt) + ex(t)] [8.41a]

and

 E$y(t) = ĵE0y(t) cos [(kz - vt) + ey(t)] [8.41b]

where E$(t) = E$x(t) + E$y(t). Using these in a fairly straightfor-
ward way, we can recast the Stokes parameters* as

 0 = 8E0x
2 9T + 8E2

0y9T (8.53a)

 1 = 8E0x
2 9T - 8E2

0y9T (8.53b)

 2 = 82E0xE0y cos e9T (8.53c)

 3 = 82E0xE0y sin e9T (8.53d)

*For the details, see E. Hecht, “Note on an operational definition of the Stokes 
parameters,” Am. J. Phys. 38, 1156 (1970).

*E. Collett, “The Description of Polarization in Classical Physics,” Am. J. Phys. 36, 
713 (1968).

**The detailed requirements for a collection of objects to form a vector space 
and themselves be vectors in such a space are discussed in, for example, Davis, 
Introduction to Vector Analysis.
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where Ex(t) and Ey(t) are the instantaneous scalar components 
of E$ . Obviously, knowing E$ , we know everything about the 
polarization state. And if we preserve the phase information, we 
will be able to handle coherent waves. With this in mind,  rewrite 
Eq. (8.57) in complex form:

 Ẽ = cE0xe
iwx

E0ye
iwy
d  (8.58)

where wx and wy are the appropriate phases. Horizontal and 
 vertical �-states are thus given by

 Eh
˜   = cE0xe

iwx

0
d  and Ẽv = c  0

E0ye
iwy
d  (8.59)

respectively. The sum of two coherent beams, as with the Stokes 
vectors, is formed by a sum of the corresponding components. 
Since Ẽ = Ẽh + Ẽv, when, for example, E0x = E0y and wx = wy,  
Ẽ is given by

 Ẽ = cE0xe
iwx

E0xe
iwx
d  (8.60)

or, after factoring, by

 Ẽ = E0xe
iwx c1

1
d  (8.61)

which is a �-state at +45°. This is the case, since the ampli-
tudes are equal and the phase difference is zero.

In many applications it is not necessary to know the exact 
amplitudes and phases. In such instances we can normalize the 
irradiance to unity, thereby forfeiting some information but 
gaining much simpler expressions. This is done by dividing 
both elements in the vector by the same scalar (real or complex) 
quantity, such that the sum of the squares of the components is 1. 
For example, dividing both terms of Eq. (8.60) by 12 E0xe

iwx 
leads to

 E$45 =
112

 c1
1
d  (8.62)

Similarly, in normalized form

 E$h = c1
0
d and E$v = c0

1
d  (8.63)

Right-circular light has E0x = E0y, and the y-component leads 
the x-component by 90°. Since we are using the form (kz - vt), 
we will have to add -p>2 to wy; thus 

 Ẽℛ = c E0xe
iwx

E0xe
i(wx -p>2)d  

kind of  three-dimensional vector, but this sort of representation 
is widely used in physics to great advantage. More specifically, 
the parameters ( 0, 1, 2, 3) are arranged in the form of what 
is called a column vector,

 = ≥
0

1

2

3

¥  (8.56)

8.13.2 The Jones Vectors

Another representation of polarized light, which complements 
that of the Stokes parameters, was invented in 1941 by the 
American physicist R. Clark Jones. The technique he evolved 
has the advantages of being applicable to coherent beams and at 
the same time being extremely concise. Yet unlike the previous 
formalism, it is applicable only to polarized waves. In that case 
it would seem that the most natural way to represent the beam 
would be in terms of the electric vector itself. Written in column 
form, this Jones vector is

 E$ = cEx(t)
Ey(t)

d  (8.57)

TABLE 8.5  Stokes and Jones Vectors for Some 
Polarization States

State of polarization Stokes vectors Jones vectors

Horizontal �-state ≥
1
1
0
0

¥  c1
0
d

Vertical �-state ≥
1

-1
0
0

¥  c0
1
d

�-state at +45° ≥
1
0
1
0

¥  
112

 c1
1
d

�-state at -45° ≥
1
0

-1
0

¥  
112

 c 1
-1

d

ℛ-state ≥
1
0
0
1

¥  
112

 c 1
- i
d

ℒ-state ≥
1
0
0

-1

¥  
112

 c1
i
d
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390 Chapter 8 Polarization

8.13.3 The Jones and Mueller Matrices

Suppose that we have a polarized incident beam represented by 
its Jones vector Ẽi, which passes through an optical element, 
emerging as a new vector Ẽt corresponding to the  transmitted 
wave. The optical element has transformed Ẽi into Ẽt, a process 
that can be described mathematically using a 2 * 2 matrix. 
 Recall that a matrix is just an array of numbers that has pre-
scribed addition and multiplication operations. Let � � represent 
the transformation matrix of the optical element in question. 
Then

 Ẽt = � �Ẽi (8.66)

where � � = ca11 a12

a21 a22
d  (8.67)

and the column vectors are to be treated like any other matrices. 
As a reminder, write Eq. (8.66) as

 cE  
˜
tx

E  ˜ty
d = ca11 a12

a21 a22
d cE  

˜
ix

E  ˜iy
d  (8.68)

and, upon expanding,

 E  ˜tx = a11E  ˜ix + a12E  ˜iy 

E  ˜ty = a21E  ˜ix + a22E  ˜iy

Table 8.6 contains a brief listing of Jones matrices for various 
optical elements. To appreciate how these are used let’s exam-
ine a few applications. Suppose that Ẽi represents a �-state at 
+45°, which passes through a quarter-wave plate whose fast 
axis is vertical (i.e., in the y-direction). The polarization state of 
the emergent wave is found as follows, where we drop the con-
stant-amplitude factors for convenience:

 c1 0
0 - i

d c1
1
d = cE  

˜
tx

E  ˜ty
d  

and thus Ẽt = c 1
- i
d  

The beam, as you well know, is right-circular. If the wave passes 
through a series of optical elements represented by the matrices 
� �1, � �2, . . . , � �n, then

 Ẽt = � �n g � �2� �1Ẽi 

The matrices do not commute; they must be applied in the 
proper order. The wave leaving the first optical element in the 
series is � �1Ẽi; after passing through the second element, it 
becomes � �2� �1Ẽi, and so on. To illustrate the process, return 
to the wave considered above (i.e., a �-state at +45°), but now 
have it pass through two quarter-wave plates, both with their 

Dividing both components by E0xe
iwx yields

 c 1
e-ip>2d = c 1

- i
d  

Hence the normalized complex Jones vector is*

 Ẽℛ =
112

 c 1
- i
d and similarly Ẽℒ =

112
 c1

i
d  (8.64)

The sum Ẽℛ + Ẽℒ is

 
112

 c 1 + 1
- i + i

d =
212

 c1
0
d  

This is a horizontal �-state having an amplitude twice that 
of either component, a result in agreement with our earlier cal-
culation of Eq. (8.10). The Jones vector for elliptical light can 
be obtained by the same procedure used to arrive at Ẽℛ and Ẽℒ, 
where now E0x may not be equal to E0y, and the phase difference 
need not be 90°. In essence, for vertical and horizontal ℰ-states, 
all we need to do is stretch out the circular form into an ellipse 
by multiplying either component by a scalar. Thus

 
115

 c 2
- i
d  (8.65)

describes one possible form of horizontal, right-handed, 
 elliptical light.

Two vectors A$  and B$ are said to be orthogonal when 
A$ · B$ = 0; similarly, two complex vectors are orthogonal when 
Ã · B̃* = 0. One refers to two polarization states as being 
 orthogonal when their Jones vectors are orthogonal. For example,

Ẽℛ · Ẽ*
ℒ = 1

2[(1)(1)* + (- i)(i)*] = 0

or Ẽh · Ẽ*
v = [(1)(0)* + (0)(1)*] = 0 

where taking the complex conjugates of real numbers obviously 
leaves them unaltered. Any polarization state will have a corre-
sponding orthogonal state. Notice that

 Ẽℛ · Ẽℛ = Ẽℒ · Ẽ*
ℒ = 1 

and Ẽℛ · Ẽ*
ℒ = Ẽℒ · Ẽ*

ℛ = 0 

Such vectors form an orthogonal set, as do Ẽh
 and Ẽv. As we 

have seen, any polarization state can be described by a linear 
combination of the vectors in either one of the orthonormal sets. 
These same ideas are of considerable importance in Quantum 
Mechanics, where one deals with orthonormal wavefunctions.

*Had we used (vt - kz) for the phase, the terms in E$ℛ would have been inter-
changed. The present notation, although possibly a bit more difficult to keep 
straight (e.g.,-p>2 for a phase lead), is more often used in modern works. Be 
wary when consulting references (e.g., Shurcliff).
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optical elements is used to examine various states, it becomes desir-
able to replace the product � �n g � �2� �1 by the single 2 * 2 sys-
tem matrix obtained by carrying out the multiplication. (The order 
in which it is calculated should be � �2� �1, then � �3� �2� �1, etc.)

In 1943 Hans Mueller, then a professor of physics at the 
Massachusetts Institute of Technology, devised a matrix method 
for dealing with the Stokes vectors. Recall that the Stokes 
 vectors have the attribute of being applicable to both polarized 
and partially polarized light. The Mueller method shares this 
quality and thus serves to complement the Jones method. The 
latter, however, can easily deal with coherent waves, whereas 
the former cannot. The Mueller, 4 * 4, matrices are applied in 
much the same way as are the Jones matrices. There is therefore 
little need to discuss the method at length; a few simple exam-
ples, augmented by Table 8.6, should suffice. Imagine that we 
pass a unit-irradiance unpolarized wave through a linear hori-
zontal polarizer. The Stokes vector of the emerging wave t is

t =
1
2
≥

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

¥ ≥
1
0
0
0

¥ = ≥

1
2
1
2

0
0

¥

The transmitted wave has an irradiance of 12 (i.e., 0 = 1
2) and is 

linearly polarized horizontally ( 1 7 0). As another example, 
suppose we have a partially polarized elliptical wave whose 
Stokes parameters have been determined to be, say, (4, 2, 0, 3). 
Its irradiance is 4; it is more nearly horizontal than vertical 
( 1 7 0), it is right-handed ( 3 7 0), and it has a degree of po-
larization of 90%. Since none of the parameters can be larger 
than 0, a value of 3 = 3 is fairly large, indicating that the  
ellipse resembles a circle. If the wave is now made to traverse a 
quarter-wave plate with a vertical fast axis, then

 t = ≥
1 0 0 0
0 1 0 0
0 0 0 -1
0 0 1 0

¥ ≥
4
2
0
3

¥  

and thus

 t = ≥
4
2

-3
0

¥  

The emergent wave has the same irradiance and degree of 
 polarization but is now partially linearly polarized.

We have only touched on a few of the more important  aspects 
of the matrix methods. The full extent of the subject goes far 
beyond these introductory remarks.*

TABLE 8.6  Jones and Mueller Matrices

Linear optical element Jones matrix Mueller matrix

Horizontal linear 
  polarizer                4  

c1 0
0 0

d  
1
2

 ≥
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

¥

Vertical linear  
  polarizer              D  

c0 0
0 1

d  
1
2

 ≥
1 -1 0 0

-1 1 0 0
0 0 0 0
0 0 0 0

¥

Linear polarizer 
  at +45°               D  

1
2

 c1 1
1 1

d  
1
2

 ≥
1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

¥

Linear polarizer  
  at -45°               D  

1
2

 c 1 -1
-1 1

d  
1
2

 ≥
1 0 -1 0
0 0 0 0

-1 0 1 0
0 0 0 0

¥

Quarter-wave plate,  
  fast axis vertical  

eip>4 c1 0
0 - i

d  ≥
1 0 0 0
0 1 0 0
0 0 0 -1
0 0 1 0

¥

Quarter-wave plate, 
  fast axis horizontal 

eip>4 c1 0
0 i

d  ≥
1 0 0 0
0 1 0 0
0 0 0 1
0 0 -1 0

¥

Homogeneous circular  
  polarizer right        

U 
1
2

 c 1 i
- i 1

d  
1
2

 ≥
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

¥

Homogeneous circular  
  polarizer left           

V
 

1
2

 c1 - i
i 1

d  
1
2

 ≥
1 0 0 -1
0 0 0 0
0 0 0 0

-1 0 0 1

¥

fast axes vertical. Thus, again discarding the amplitude factors, 
we have

 Ẽt = c1 0
0 - i

d c1 0
0 - i

d c1
1
d  

whereupon

 Ẽt = c1 0
0 - i

d c 1
- i
d    

and finally

 Ẽt = c 1
-1

d  

The transmitted beam is a �-state at -45°, having essentially been 
flipped through 90° by a half-wave plate. When the same series of 

*One can weave a more elaborate and mathematically satisfying development in 
terms of something called the coherence matrix. For further, but more advanced, 
reading, see O’Neill, Introduction to Statistical Optics.
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392 Chapter 8 Polarization

PROBLEMS

Complete solutions to all problems—except those with an asterisk— 
can be found in the back of the book.

8.1* Two light waves Ex = E0 cos (kz - vt) and Ey = -E0 cos (kz - vt) 
overlap in space. Show that the resultant is linear light and determine 
its amplitude and tilt angle u.

8.2* Two waves Ez = 4 sin (ky - vt) and Ex = 3 sin (ky - vt), both in 
SI units, overlap in space. Describe completely the state of polarization 
of the resultant.

8.3* Consider the following two waves expressed in SI units: Ex =
8 sin (ky - vt + p>2) and Ez = 8 sin (ky - vt). Which wave leads, 
and by how much? Describe the resultant wave. What is the value of its 
amplitude?

8.4 Describe completely the state of polarization of each of the fol-
lowing waves:

(a) E$ = îE0 cos (kz - vt) - ĵE0 cos (kz - vt)

(b) E$ = îE0 sin 2p(z>l - nt) - ĵE0 sin 2p(z>l - nt)

(c) E$ = îE0 sin (vt - kz) + ĵE0 sin (vt - kz - p>4)

(d) E$ = îE0 cos (vt - kz) + ĵE0 cos (vt - kz + p>2).

8.5 Consider the disturbance given by the expression E$(z, t) =
[ î cos vt + ĵ cos (vt - p>2)]E0 sin kz. What kind of wave is it? Draw a 
rough sketch showing its main features.

8.6 Analytically, show that the superposition of an ℛ- and an ℒ-state 
having different amplitudes will yield an ℰ-state, as shown in Fig. 8.11. 
What must e be to duplicate that figure?

8.7 Write an expression for a �-state lightwave of angular frequency 
v and amplitude E0 propagating along the x-axis with its plane-of-
vibration at an angle of 30° to the xy-plane. The disturbance is zero at 
t = 0 and x = 0.

8.8* Write an expression for a �-state lightwave of angular frequency 
v and amplitude E0 propagating along a line in the xy-plane at 60° to 
the x-axis and having its plane-of-vibration corresponding to the 
xy-plane. At t = 0, x = 0, and y = 0 the field is zero.

8.9 Write an expression for an ℛ-state lightwave of frequency v 
propagating in the positive x-direction such that at t = 0 and x = 0 the 
E$-field points in the negative z-direction.

8.10* A beam of linearly polarized light with its electric field vertical 
impinges perpendicularly on an ideal linear polarizer with a vertical 
transmission axis. If the incoming beam has an irradiance of  
100 W>m2, what is the irradiance of the transmitted beam?

8.11* Given that 250 W>m2 of light from an ordinary tungsten bulb 
arrives at an ideal linear polarizer, what is its radiant flux density on 
emerging? 

8.12* A beam of vertically polarized linear light is perpendicularly 
incident on an ideal linear polarizer. Show that if the transmission axis 
makes an angle of 45° with the vertical, the polarizer will transmit only 
50% of the irradiance.

8.13* The transmittance of a real linear polarizer illuminated by lin-
ear light making an angle of u with its transmission axis is given by

Tl = (T0 - T90) cos 2u + T90

where T0 and T90 are the maximum and minimum values of transmit-
tance, respectively. Show that this expression is equivalent to Eq. (8.25).

8.14* Suppose 800 W>m2 of natural light is incident perpendicularly 
on a sheet of HN-22 polarizer. Describe the light leaving the filter. 
What is its irradiance?

8.15 If natural light of flux density Ii passes through two sheets of 
HN-38 whose transmission axes are parallel, what will be the flux den-
sity of the emerging beam?

8.16* What will be the irradiance of the emerging beam if the ana-
lyzer of the previous problem is rotated 45°?

8.17* Two sheets of HN-38S linear polarizer are in series one behind 
the other with their transmission axes aligned. The first is illuminated 
by 800 W>m2 of natural light. Determine the approximate emerging 
irradiance.

8.18* The irradiance of a beam of natural light is 500 W>m2. It im-
pinges on the first of two consecutive ideal linear polarizers whose 
transmission axes are 40° apart. How much light emerges from the sec-
ond polarizer?

8.19* Imagine four HN-32 Polaroids one behind the other with their 
transmission axes all parallel. If the irradiance of natural light incident 
on the first filter is Ii, what is the transmitted irradiance emerging from 
the stack?

8.20* Natural light of irradiance Ii is incident normally on an HN-32 
polarizer. (a) How much light emerges from it? (b) A second identical 
polarizer is placed parallel to and behind the first. How much light 
emerges when the two transmission axes are at 45°?

8.21* Natural light of irradiance Ii is incident normally on three iden-
tical sheet linear polarizers aligned with parallel transmission axes. If 
each has a principal transmittance of 64% and a high extinction ratio, 
show that the transmitted irradiance is about 13% Ii.

8.22* As we saw in Section 8.10, substances such as sugar and insulin 
are optically active; they rotate the plane of polarization in proportion 
to both the path length and the concentration of the solution. A glass 
vessel is placed between a pair of crossed HN-50 linear polarizers, and 
50% of the natural light incident on the first polarizer is transmitted 
through the second polarizer. By how much did the sugar solution in 
the cell rotate the light passed by the first polarizer?
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8.23* The light from an ordinary flashlight is passed through a linear 
polarizer with its transmission axis vertical. The resulting beam, 
having an irradiance of 300 W>m2, is incident normally on a vertical 
HN-50 linear polarizer whose transmission axis is tilted at 30° above 
the horizontal. How much light is transmitted?

8.24* Linearly polarized light (with an irradiance of 300 W>m2) 
aligned with its electric-field vector at 155° from the vertical impinges 
perpendicularly on an ideal sheet polarizer whose transmission axis is 
at 110° from the vertical. What fraction of the incoming light emerges?

8.25* Two ideal sheet polarizers are arranged with respect to the ver-
tical with their transmission axis at 20° and 45°, respectively. If a lin-
early polarized beam of light with its electric field at 40° enters the first 
polarizer, what fraction of its irradiance will emerge?

8.26* Imagine a pair of crossed polarizers with transmission axes ver-
tical and horizontal. The beam emerging from the first polarizer has 
flux density I1, and of course no light passes through the analyzer (i.e., 
I2 = 0). Now insert a perfect linear polarizer (HN-50) with its trans-
mission axis at 60° to the vertical between the two elements—compute 
I2. Think about the motion of the electrons that are radiating in each 
polarizer.

8.27* Imagine that you have two identical perfect linear polarizers 
and a source of natural light. Place them one behind the other and posi-
tion their transmission axes at 0° and 50°, respectively. Now insert 
between them a third linear polarizer with its transmission axes at 25°. 
If 800 W>m2 of light is incident, how much light will emerge with and 
without the middle polarizer in place?

8.28* Given that 300 W>m2 of randomly polarized light is incident 
normally on a stack of ideal linear polarizers that are positioned one 
behind the other with the transmission axis of the first vertical, the 
second at 30°, the third at 60°, and the fourth at 90°. How much light 
emerges?

8.29* Two ideal HN-50 linear polarizers are positioned one behind 
the other. What angle should their transmission axes make if an inci-
dent unpolarized 200 W>m2 beam is to be reduced to 30.0 W>m2 on 
emerging from the pair?

8.30 An ideal polarizer is rotated at a rate v between a similar pair of 
stationary crossed polarizers. Show that the emergent flux density will 
be modulated at four times the rotational frequency. In other words, 
show that

I =
I1

8
 (1 - cos 4vt)

where I1 is the flux density emerging from the first polarizer and I is 
the final flux density.

8.31 Figure P.8.31 shows a ray traversing a calcite crystal at near-
ly normal incidence, bouncing off a mirror, and then going through 
the crystal again. Will the observer see a double image of the spot 
on ^?

Calcite
Mirror

Figure P.8.31

8.32* A pencil mark on a sheet of paper is covered by a calcite crys-
tal. With illumination from above, isn’t the light impinging on the pa-
per already polarized, having passed through the crystal? Why then do 
we see two images? Test your solution by polarizing the light from a 
flashlight and then reflecting it off a sheet of paper. Try specular 
 reflection off glass; is the reflected light polarized?

8.33 Discuss in detail what you see in Fig. P.8.33. The crystal in the 
photograph is calcite, and it has a blunt corner at the upper left. The 
two Polaroids have their transmission axes parallel to their short edges.
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Figure P.8.33 (E.H.)

8.34 The calcite crystal in Fig. P.8.34 is shown in three different ori-
entations. Its blunt corner is on the left in (a), the lower left in (b), and 
the bottom in (c). The Polaroid’s transmission axis is horizontal.  
Explain each photograph, particularly (b).

Figure P.8.34a (E.H.)
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z

x

y

Figure P.8.36

8.40 The prism shown in Fig. P.8.40 is known as a Rochon polarizer. 
Sketch all the pertinent rays, assuming

(a) that it is made of calcite.

(b) that it is made of quartz.

(c)  Why might such a device be more useful than a dichroic polarizer 
when functioning with high–flux density laser light?

(d)  What valuable feature of the Rochon is lacking in the Wollaston 
polarizer?

Figure P.8.40

8.37 Compute the critical angle for the ordinary ray, that is, the angle 
for total internal reflection at the calcite–balsam layer of a Nicol prism.

8.38* Draw a quartz Wollaston prism, showing all pertinent rays and 
their polarization states.

8.39* A Wollaston prism is made of two 45° quartz prisms much like 
Fig. 8.34. Given that l0 = 589.3 nm, determine the angle separating 
the two emerging rays. [Hint: As compared to a calcite Wollaston, the 
e-ray and o-ray are interchanged.]

Figure P.8.34b (E.H.)

Figure P.8.34c (E.H.)

8.35 In discussing calcite, we pointed out that its large birefringence 
arises from the fact that the carbonate groups lie in parallel planes (nor-
mal to the optic axis). Show in a sketch and explain why the polariza-
tion of the group will be less when E$  is perpendicular to the CO3 plane 
than when E$  is parallel to it. What does this mean with respect to v# 
and vi, that is, the wave’s speeds when E$  is linearly polarized perpen-
dicular or parallel to the optic axis?

8.36 A beam of light enters a calcite prism from the left, as shown in 
Fig. P.8.36. There are three possible orientations of the optic axis of 
particular interest, and these correspond to the x-, y-, and z-directions. 
Imagine that we have three such prisms. In each case sketch the enter-
ing and emerging beams, showing the state of polarization. How can 
any one of these be used to determine no and ne?

8.41* Imagine we have a transmitter of microwaves, which radiates a 
linearly polarized wave whose E$-field is known to be parallel to the 
dipole direction. We wish to reflect as much energy as possible off the 
surface of a pond (having an index of refraction of 8.0). Find the neces-
sary incident angle and comment on the orientation of the beam.

8.42* At what angle will the reflection of the sky coming off the 
surface of a pond (n = 1.28) completely vanish when seen through a 
Polaroid filter?

8.43* What is Brewster’s angle for reflection of light from the surface 
of a piece of glass (ng = 1.65) immersed in water (nw = 1.36)?

8.44* Given that the critical angle for a transparent material in air is 
45.0°, determine its polarization angle.

8.45* A beam of light is reflected off the surface of some unknown 
liquid, and the light is examined with a linear sheet polarizer. It is 
found that when the central axis of the polarizer (that is, the perpen-
dicular to the plane of the sheet) is tilted down from the vertical at an 
angle of 54.30°, the reflected light is completely passed, provided the 
transmission axis is parallel to the plane of the interface. From this 
information, compute the index of refraction of the liquid.

8.46* Light reflected from a glass plate (ng = 1.60) immersed in ethyl 
alcohol (ne = 1.36) is found to be completely linearly polarized. At what 
angle will the partially polarized beam be transmitted into the plate.

8.47* A beam of natural light is incident on an air–glass interface 
(nti = 1.5) at 40°. Compute the degree of polarization of the reflected light.

8.48* Prove that the degree of polarization (Vr) of reflected light can 
be expressed as 

Vr =
R# - Ri

R# + Ri

[Hint: For unpolarized reflected light Iri = Ir#, whereas for polarized 
reflected light Ip = Ir# - Iri.]
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8.62* Linear light oscillating at 60° above the horizontal x-axis in the 
first and third quadrants passes through a quarter-wave plate with its 
fast axis horizontal. Explain why the light emerges as left elliptical 
with its major axis vertical.

8.63* Linear light oscillating along the x-axis is passed through a 
quarter-wave plate whose fast axis is 45° above the x-axis. Use the pha-
sor method to graphically show that the emerging light is right-circular. 
[Hint: First draw the x′-axis at 45° above the x-axis; position-O for the 
Ey′ phasor is downward off in the negative y′-direction.]

8.64* Linear light polarized horizontally passes through a quarter-
wave plate whose fast axis is p>8 rad above the horizontal. Use the 
phasor method to graphically determine the polarization state of the 
emerging light. [Hint: E$  is along the x-axis below the x′-axis, and so 
the phasor Ey′ starts pointing downward.]

8.65* Left-circular light of wavelength 590 nm traveling in the  
z-direction is to be converted into right-circular light by passing per-
pendicularly through a plate of quartz. The quartz has been cut  
and polished so that the optic axis is in the y-direction 
(no = 1.544 3, ne = 1.553 4) and the face of the plate is the xy-plane. 
(a) What is the direction of the fast axis? (b) How thick, at minimum, 
should the plate be? Explain your reasoning in detail and draw a 
 diagram.

8.66* An ℒ-state traverses an eighth-wave plate having a horizontal 
fast axis. What is its polarization state on emerging?

8.67* Figure P.8.67 shows two Polaroid linear polarizers and between 
them a microscope slide to which is attached a piece of cellophane tape. 
Explain what you see.

8.49* A beam of natural light incident in air on a glass (n = 1.5) in-
terface at 70° is partially reflected. Compute the overall reflectance. 
How would this compare with the case of incidence at, say, 56.3°? 
Explain.

8.50* A narrow beam of natural light is incident at 56.0° on a glass 
plate (n = 1.50) in air. The reflected light is partially polarized. Deter-
mine the degree of polarization. [Hint: Look at Problem 8.48.]

8.51* A narrow beam of light strikes the surface of a block of clear 
material and it is determined that the reflected light is totally polarized. 
If the total reflectance is 10% find the transmittance at the air–block 
interface.

8.52 A ray of yellow light is incident on a calcite plate at 50°. The 
plate is cut so that the optic axis is parallel to the front face and perpen-
dicular to the plane-of-incidence. Find the angular separation between 
the two emerging rays.

8.53* A beam of light is incident normally on a quartz plate whose 
optic axis is perpendicular to the beam. If l0 = 550.0 nm, compute the 
wavelengths of both the ordinary and extraordinary waves. What are 
their frequencies?

8.54 The electric-field vector of an incident �-state makes an angle 
of +30° with the horizontal fast axis of a quarter-wave plate. Describe, 
in detail, the state of polarization of the emergent wave.

8.55* Take two ideal Polaroids (the first with its axis vertical and the 
second, horizontal) and insert between them a stack of 10 half-wave 
plates, the first with its fast axis rotated p>40 rad from the vertical, and 
each subsequent one rotated p>40 rad from the previous one. Deter-
mine the ratio of the emerging to incident irradiance, showing your 
logic clearly.

8.56* Suppose you were given a linear polarizer and a quarter-wave 
plate. How could you determine which was which, assuming you also 
had a source of natural light?

8.57* Linear light at 135° to the horizontal, oscillating in the second 
and fourth quadrants, passes through a p>2 retarder having its fast axis 
vertical. Describe the polarization state of the emerging light. How 
must the linear light be rotated (clockwise or counterclockwise) if it is 
to be aligned with the slow axis?

8.58* Right-circular light passes through a l>4 retarder whose fast 
axis is vertical. Describe the emerging polarization state. Did the 
polarization state shift one quarter of the way around the circle in 
Fig. 8.42?

8.59* Right-circular light passes through a quarter-wave plate with a 
horizontal fast axis. Explain why you can expect the light to emerge 
linearly polarized at 45° in the first and third quadrants.

8.60* Linear light oscillating at 135° in the second and fourth 
 quadrants passes through a half-wave plate whose fast axis is vertical. 
Explain why you can expect the emerging light to be linear in the first 
and third quadrants.

8.61* Right-circular light passes through a half-wave plate whose fast 
axis is vertical. Describe the emerging polarization state.

 Problems 395

Figure P.8.67 (E.H.)

8.68 Imagine that we have randomly polarized room light incident 
almost normally on the glass surface of a radar screen. A portion of it 
would be specularly reflected back toward the viewer and would thus 
tend to obscure the display. Suppose now that we cover the screen with 
a right-circular polarizer, as shown in Fig. P.8.68. Trace the incident 
and reflected beams, indicating their polarization states. What happens 
to the reflected beam?

8.69 A Babinet compensator is positioned at 45° between crossed lin-
ear polarizers and is being illuminated with sodium light. When a thin 
sheet of mica (indices 1.599 and 1.594) is placed on the compensator, 
the black bands all shift by one quarter of the space separating them. 
Compute the retardance of the sheet and its thickness.
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(a) Describe in detail the polarization states of each of these.

(b)  Determine the resulting Stokes parameters of the combined beam 
and describe its polarization state.

(c) What is its degree of polarization?

(d)  What is the resulting light produced by overlapping the incoherent 
beams (1, 1, 0, 0) and (1, -1, 0, 0)? Explain.

8.78* Show by direct calculation, using Mueller matrices, that a unit-
irradiance beam of natural light passing through a vertical linear polar-
izer is converted into a vertical �-state. Determine its relative irradi-
ance and degree of polarization.

8.79* Show by direct calculation, using Mueller matrices, that a unit-
irradiance beam of natural light passing through a linear polarizer with 
its transmission axis at +45° is converted into a �-state at +45°.  
Determine its relative irradiance and degree of polarization.

8.80* Show by direct calculation, using Mueller matrices, that a beam 
of horizontal �-state light passing through a 14l-plate with its fast axis 
horizontal emerges unchanged.

8.81* Confirm that the matrix

≥
1 0 0 0
0 0 0 -1
0 0 1 0
0 1 0 0

¥

will serve as a Mueller matrix for a quarter-wave plate with its fast axis 
at +45°. Shine linear light polarized at 45° through it. What happens? 
What emerges when a horizontal �-state enters the device?

8.82* The Mueller matrix 

≥
1 0 0 0
0 C2 + S2 cos ∆w CS(1 - cos ∆w) -S sin ∆w
0 CS(1 - cos ∆w) S2 + C2 cos ∆w C sin ∆w
0 S sin ∆w -C sin ∆w cos ∆w

¥

in which C = cos 2a and S = sin 2a, represents an arbitrary wave 
plate having a retardance ∆w and a fast axis at an angle a measured 
with respect to the horizontal. Use it to derive the matrix given in the 
previous problem.

8.83* Beginning with the Mueller matrix for an arbitrary retarder pro-
vided in the previous problem, show that it agrees with the matrix in 
Table 8.6 for a quarter-wave plate with a vertical fast axis.

8.84 Derive the Mueller matrix for a quarter-wave plate with its fast 
axis at -45 °. Check that this matrix effectively cancels the one in 
Problem 8.81, so that a beam passing through the two wave plates suc-
cessively remains unaltered.

8.85* Pass a beam of horizontally polarized linear light through each 
one of the 1

4l-plates in the two previous questions and describe the 
states of the emerging light. Explain which field component is leading 
which and how Fig. 8.9 compares with these results.

Glass screen

Polarizer

Quarter-wave plate

Right circular polarizer

Figure P.8.68

8.70 Is it possible for a beam to consist of two orthogonal incoherent 
�-states and not be natural light? Explain. How might you arrange to 
have such a beam?

8.71* The specific rotatory power for sucrose dissolved in water at 
20°C (l0 = 589.3 nm) is +66.45° per 10 cm of path traversed through 
a solution containing 1 g of active substance (sugar) per cm3 of solu-
tion. A vertical �-state (sodium light) enters at one end of a 1.2-m tube 
containing 1000 cm3 of solution, of which 10 g is sucrose. At what 
orientation will the �-state emerge?

8.72 On examining a piece of stressed photoelastic material between 
crossed linear polarizers, we would see a set of colored bands (isochro-
matics) and, superimposed on these, a set of dark bands (isoclinics). 
How might we remove the isoclinics, leaving only the isochromatics? 
Explain your solution. Incidentally, the proper arrangement is indepen-
dent of the orientation of the photoelastic sample.

8.73* Consider a Kerr cell whose plates are separated by a distance d. 
Let / be the effective length of those plates (slightly different from the 
actual length because of fringing of the field). Show that

 ∆w = 2pK/V2>d2 [8.48]

8.74 Compute the half-wave voltage for a longitudinal Pockels cell 
made of ADA (ammonium dihydrogen arsenate) at l0 ≈ 500 nm 
where r63 = 5.5 * 10-12 and no = 1.58.

8.75* The Jones vector for an arbitrary linearly polarized state at an 
angle u with respect to the horizontal is

ccos u
sin u

d
Prove that this matrix is in agreement with the one in Table 8.5 for a  
�-state at +45°.

8.76 Find a Jones vector Ẽ2 representing a polarization state orthog-
onal to

Ẽ1 = c 1
-2i

d
Sketch both of these.

8.77* Two incoherent lightbeams represented by (1, 1, 0, 0) and  
(3, 0, 0, 3) are superimposed.
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8.92* An optical filter can be described by a Jones matrix

c cos a sin a
-sin a cos a

d
Obtain the form of the emerging light for each of the following inci-
dent beams:

(a)  A plane polarized beam polarized at angle u to the horizontal (see  
Problem 8.75).

(b) A left-circularly polarized beam.

(c) A right-circularly polarized beam.

(d)  From the above, identify the filter and explain how it could be  
constructed.

8.93 An optical filter can be described by a Jones matrix

c cos2 a cos a sin a
cos a sin a sin2 a

d

(a)  Obtain the form of the emerging beam when the incident light is 
plane polarized at angle u to the horizontal (see Problem 8.75).

(b) Deduce from the result of part (a) the nature of the filter.

(c) Confirm your deduction above with at least one other test.

8.94* Two linear optical filters have Jones matrices

� �1 =
112

 e-ip>4 c1 i
i 1

d

and  � �2 =
112

 eip>4 c 1 - i
- i 1

d . 

Identify these filters.

8.95* A liquid cell containing an optically active sugar solution has a 
Jones matix given by

1

212
 c1 + 13 -1 + 13

1 - 13 1 + 13
d

(a)  Determine the polarization of the emerging light if the incident 
beam is a horizontal �-state.

(b)  Determine the polarization of the emerging light if the incident 
beam is a vertical �-state.

(c)  Determine the angle of rotation produced by the optically active 
material.

8.86 Use Table 8.6 to derive a Mueller matrix for a half-wave plate 
having a vertical fast axis. Utilize your result to convert an ℛ-state into 
an ℒ-state. Verify that the same wave plate will convert an ℒ- to an  
ℛ-state. Advancing or retarding the relative phase by p>2 should have 
the same effect. Check this by deriving the matrix for a half-wave plate 
with a horizontal fast axis.

8.87 Construct one possible Mueller matrix for a right-circular polar-
izer made out of a linear polarizer and a quarter-wave plate. Such a de-
vice is obviously an inhomogeneous two-element train and will differ 
from the homogeneous circular polarizer of Table 8.6. Test your matrix 
to determine that it will convert natural light to an ℛ-state. Show that it 
will pass ℛ-states, as will the homogeneous matrix. Your matrix should 
convert ℒ-states incident on the input side to ℛ-states, whereas the 
homogeneous polarizer will totally absorb them. Verify this.

8.88* If the Pockels cell modulator shown in Fig. 8.65 is illuminated 
by light of irradiance Ii, it will transmit a beam of irradiance It such that

It = Ii sin2 (∆w>2)

Make a plot of It>Ii versus applied voltage. What is the significance of 
the voltage that corresponds to maximum transmission? What is the 
lowest voltage above zero that will cause It to be zero for ADP (l0 =  
546.1 nm)? How can things be rearranged to yield a maximum value of 
It>Ii for zero voltage? In this new configuration what irradiance results 
when V = Vl>2?

8.89 Construct a Jones matrix for an isotropic plate of absorbing ma-
terial having an amplitude transmission coefficient of t. It might some-
times be desirable to keep track of the phase, since even if t = 1, such 
a plate is still an isotropic phase retarder. What is the Jones matrix for 
a region of vacuum? What is it for a perfect absorber?

8.90 Construct a Mueller matrix for an isotropic plate of absorbing 
material having an amplitude transmission coefficient of t. What Muel-
ler matrix will completely depolarize any wave without affecting its 
irradiance? (It has no physical counterpart.)

8.91 Keeping Eq. (8.33) in mind, write an expression for the ran-
domly polarized flux density component (In) of a partially polarized 
beam in terms of the Stokes parameters. To check your result, add a 
randomly polarized Stokes vector of flux density 4 to an ℛ-state of 
flux density 1. Then see if you get In = 4 for the resultant wave.
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9
The intricate color patterns shimmering across an oil slick on a 
wet asphalt pavement (see photo) result from one of the more 
common manifestations of the phenomenon of interference.* 
On a macroscopic scale we might consider the related problem 
of the interaction of surface ripples on a pool of water. Our ev-
eryday experience with this kind of situation allows us to envi-
sion a complex distribution of disturbances (as shown, e.g., in 
Fig. 9.1). There might be regions where two (or more) waves 
have overlapped, partially or even completely canceling each 
other. Still other regions might exist in the pattern, where the 
resultant troughs and crests are even more pronounced than 
those of any of the constituent waves. After being superim-
posed, the individual waves separate and continue on, com-
pletely unaffected by their previous encounter.

Although the subject could be treated from the perspective 
of QED (p. 149), we’ll take a much simpler approach. The wave 
theory of the electromagnetic nature of light provides a natural 
basis from which to proceed. Recall that the expression describ-
ing the optical disturbance is a second-order, homogeneous, 
linear, partial, differential equation [Eq. (3.22)]. As we have 
seen, it therefore obeys the important Superposition Principle. 
Accordingly, the resultant electric-field intensity E$ , at a point in 
space where two or more lightwaves overlap, is equal to the 
vector sum of the individual constituent disturbances. Briefly 
then, optical interference corresponds to the interaction of two 
or more lightwaves yielding a resultant irradiance that devi-
ates from the sum of the component irradiances.

Out of the multitude of optical systems that produce interfer-
ence, we will choose a few of the more important to examine. 
Interferometric devices will be divided, for the sake of discus-
sion, into two groups: wavefront splitting and amplitude split-
ting. In the first instance, portions of the primary wavefront are 
used either directly as sources to emit secondary waves or in 
conjunction with optical devices to produce virtual sources of 
secondary waves. These secondary waves are then brought to-
gether, thereupon to interfere. In the case of amplitude splitting, 
the primary wave itself is divided into two segments, which 
travel different paths before recombining and interfering.

Interference

*The layer of water on the asphalt allows the oil film to assume the shape of a 
smooth planar surface. The black asphalt absorbs the transmitted light, preventing 
back reflection, which would tend to obscure the fringes.

These roughly circular interference fringes are due to an oil film on wet 
pavement. They are fringes of equal thickness (see p. 420) and so don’t 
change when viewed at different angles. Of course, they appear in a 
 rainbow of colors. (E.H.)

9.1 General Considerations

We have already examined the problem of the superposition of 
two scalar waves (Section 7.1), and in many respects those re-
sults will again be applicable. But light is, of course, a vector 
phenomenon; the electric and magnetic fields are vector fields. 
An appreciation of this fact is fundamental to any kind of 
 intuitive understanding of interference. Still, there are many 
 situations in which the particular optical system can be so con-
figured that the vector nature of light is of little practical signifi-
cance. We will derive the basic interference equations within the 
context of the vector model, thereafter delineating the conditions 
under which the scalar treatment is applicable.

In accordance with the Principle of Superposition, the elec-
tric field intensity E$ , at a point in space, arising from the sepa-
rate fields E$1, E$2, . . . of various contributing sources is given by

 E$ = E$1 + E$2 + g (9.1)

The optical disturbance, or light field E$ , varies in time at an 
exceedingly rapid rate, roughly

4.3 * 1014 Hz  to  7.5 * 1014 Hz

398
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are therefore quite general (Problem 9.1). For the sake of sim-
plicity, however, consider two point sources, S1 and S2, emitting 
monochromatic waves of the same frequency in a homogeneous 
medium. Let their separation a be much greater than l. Locate 
the point of observation P far enough away from the sources so 
that at P the wavefronts will be planes (Fig. 9.2). For the mo-
ment, consider only linearly polarized waves of the form

 E$1( r$, t) = E$01  cos (k$1 · r$ - vt + e1) (9.2a)

and E$2( r$, t) = E$02  cos (k$2 · r$ - vt + e2) (9.2b)

We saw in Chapter 3 that the irradiance at P is given by

I = Pv8E$29T

Inasmuch as we will be concerned only with relative irradiances 
within the same medium, we will, for the time being at least, 
simply neglect the constants and set 

I = 8E$29T

What is meant by  8E$29T is of course the time average of the 
magnitude of the electric-field intensity squared, or  8E$ · E$9T. 
Accordingly 

E$2 =  E$ · E$

where now

E$2 = (E$1 + E$2) · (E$1 + E$2)

and thus

 E$2 = E$1
2 + E$2

2 + 2E$1 · E$2 (9.3)

Taking the time average of both sides, we find that the irradi-
ance becomes

 I = I1 +  I2 +  I12 (9.4)

making the actual field an impractical quantity to detect. On the 
other hand, the irradiance I can be measured directly with a 
wide variety of sensors (e.g., photocells, bolometers, photo-
graphic emulsions, or eyes). The study of interference is there-
fore best approached by way of the irradiance.

Much of the analysis to follow can be performed without 
specifying the particular shape of the wavefronts, and the results 

Figure 9.1  Water waves from two in-phase point sources in a ripple  
tank. In the middle of the pattern the wave peaks (thin bright bands), and 
troughs (thin black bands) lie within long wedge-shaped areas (maxima) 
separated by narrow dark regions of calm (minima). Although the superim-
posed nodal lines look straight, they’re really hyperbolic. The optical equiv-
alent is the electric field distribution depicted in Fig. 9.3c. (PSCC College 

Physics, 1968. Educational Development Center, Inc.)
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Figure 9.2  Waves from two point sources overlapping in space.
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400 Chapter 9 Interference

and I2 = 8E$2
29T =

E2
02

2
 (9.13)

The interference term becomes

I12 = 21I1I2 cos d

whereupon the total irradiance is

 I = I1 + I2 + 21I1I2 cos d (9.14)

At various points in space, the resultant irradiance can be 
greater, less than, or equal to I1 + I2, depending on the value of 
I12, that is, depending on d. A maximum irradiance is obtained 
when cos d = 1, so that

 Imax = I1 + I2 + 21I1I2 (9.15)

when d = 0,±2p,±4p, . . . 

In this case of total constructive interference, the phase difference 
between the two waves is an integer multiple of 2p, and the 
disturbances are in-phase. When 0 6 cos d 6 1 the waves are 
out-of-phase, I1 + I2 6 I 6 Imax, and the result is constructive 
interference. At d = p>2, cos d = 0, the optical disturbances 
are 90° out-of-phase, and I = I1 + I2. For 0 7 cos d 7 -1 we 
have the condition of destructive interference,  I1 + I2 7 I 7 Imin. 
A minimum irradiance results when the waves are 180° out- 
of-phase, troughs overlap crests, cos d = -1, and

 Imin = I1 + I2 - 21I1I2 (9.16)

This occurs when d = ±p, ±3p, ±5p, . . . , and it is referred 
to as total destructive interference.

Another somewhat special yet very important case arises 
when the amplitudes of both waves reaching P in Fig. 9.2 are 
equal (i.e., E$01 = E$02). Since the irradiance contributions from 
both sources are then equal, let I1 = I2 = I0. Equation (9.14) 
can now be written as

 I = 2I0(1 + cos d) = 4I0 cos2 
d

2
 (9.17)

from which it follows that Imin = 0 and Imax = 4I0. For an analy-
sis in terms of the angle between the two beams, see Problem 9.3.

Equation (9.14) holds equally well for the spherical waves 
emitted by S1 and S2. Such waves can be expressed as

 E$1(r1, t) = E$01(r1) exp [i(kr1 - vt + e1)] (9.18a)

and E$2(r2, t) = E$02(r2) exp [i(kr2 - vt + e2)] (9.18b)

The terms r1 and r2 are the radii of the spherical wavefronts 
overlapping at P; they specify the distances from the sources to P. 
In this case

 d = k(r1 - r2) + (e1 - e2) (9.19)

provided that

 I1 = 8E$2
19T (9.5)

 I2 = 8E$2
29T (9.6)

and I12 = 28E$1 · E$29T (9.7)

The latter expression is known as the interference term. To eval-
uate it in this specific instance, we form

E$1 · E$2 = E$01 · E$02 cos (k$1 · r$ - vt + e1)

 *  cos (k$2 · r$ - vt + e2) (9.8)

or equivalently

E$1 · E$2 =

E$01 · E$02 [cos (k$1 · r$ + e1) cos vt + sin (k$1 · r$ + e1) sin vt]

  * [cos (k$2 · r$ + e2) cos vt + sin (k$2 · r$ + e2) sin vt] (9.9)

Recall that the time average of some function ƒ(t), taken over an 
interval T, is

 8ƒ(t)9T =
1
T

 3t + T

t
ƒ(t′) dt′ (9.10)

The period t of the harmonic functions is 2p>v, and for our 
present concern T 7 7  t. In that case the 1>T  coefficient in 
front of the integral has a dominant effect. After multiplying out 
and averaging Eq. (9.9) we have

8E$1 · E$29T = 1
2E$01 · E$02 cos (k$1 · r$ + e1 - k$2 · r$ - e2)

where use was made of the fact (p. 58) that 8cos2 vt9T = 1
2, 

8sin2 vt9T = 1
2, and 8cos vt sin vt9T = 0. The interference term 

is then

 I12 = E$01 · E$02 cos d (9.11)

and d, equal to (k$1 · r$ - k$2 · r$ + e1 - e2), is the phase difference 
arising from a combined path length and initial phase-angle  
difference. Notice that if E$01 and E$02 (and therefore E$1 and E$2) 
are perpendicular, I12 = 0 and I = I1 + I2. Two such orthogonal 
�-states will combine to yield an ℛ-, ℒ-, �-, or ℰ-state, but the 
flux-density distribution will be unaltered.

The most common situation in the work to follow corre-
sponds to E$01 parallel to E$02. In that case, the irradiance  
reduces to the value found in the scalar treatment of Section 7.1. 
Under those conditions

I12 = E01E02 cos d

This can be written in a more convenient way by noticing that

 I1 = 8E$2
19T =

E2
01

2
 (9.12)
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 9.1 General Considerations 401

The flux density in the region surrounding S1 and S2 will cer-
tainly vary from point to point as (r1 - r2) varies. None theless, 
from the principle of conservation of energy, we expect the spatial 
average of I to remain constant and equal to the average of I1 + I2. 
The space average of I12 must therefore be zero, a property veri-
fied by Eq. (9.11), since the average of the cosine term is, in fact, 
zero. (For further discussion of this point, see Problem 9.2.)

Equation (9.17) will be applicable when the separation between 
S1 and S2 is small in comparison with r1 and r2 and when the inter-
ference region is also small in the same sense. Under these circum-
stances, E$01 and E$02 may be considered independent of position, 
that is, constant over the small region examined. If the emitting 
sources are of equal strength, E$01 = E$02, I1 = I2 = I0 and we have

I = 4I0 cos2 12[k(r1 - r2) + (e1 - e2)]

Irradiance maxima occur when

[maxima] d = 2pm 

provided that m = 0,±1, ±2, . . .   Similarly, minima, for which 
I = 0, arise when

[minima] d = pm′ 

where m′ = ±1, ±3, ±5, . . . , or if you like, m′ = 2m + 1. 
Using Eq. (9.19) these two expressions for d can be rewritten 

(a)

m = –1

m = 0

m = 1

m = 2

P

S1

S2

PS1

S2

(b)

r�1

r�1

r�2

r�2

such that maximum irradiance occurs when

 (r1 - r2) = [2pm + (e2 - e1)]>k (9.20a)

and minimum when

 (r1 - r2) = [pm′ + (e2 - e1)]>k (9.20b)

Either one of these equations defines a family of surfaces, each of 
which is a hyperboloid of revolution. The vertices of the hyperbo-
loids are separated by distances equal to the right-hand sides of 
Eqs. (9.20a) and (9.20b). The foci are located at S1 and S2.  
If the waves are in-phase at the emitter, e1 - e2 = 0, and  
Eqs. (9.20a) and (9.20b) can be simplified to

[maxima] (r1 - r2) = 2pm>k = ml (9.21a)

[minima] (r1 - r2) = pm′>k = 1
2m′l (9.21b)

for maximum and minimum irradiance, respectively. Figure 9.3a 
shows a few of the surfaces over which there are irradiance maxi-
ma. The dark and light zones that would be seen on a screen placed 
in the region of interference are known as interference fringes 
(Fig. 9.3b). When the screen is moved perpendicularly, keeping it 
parallel to itself, out far from the point sources, the fringes will 
appear much straighter. Notice that the central bright band, equi-
distant from the two sources, is the so-called zeroth-order fringe 
(m = 0), which is straddled by the m′ = ±1 minima, and these, 
in turn, are bounded by the first-order (m = ±1) maxima, which 
are straddled by the m′ = ±3 minima, and so forth.

Since the wavelength l for light is very small, a large number 
of surfaces corresponding to the lower values of m will exist 
close to, and on either side of, the plane m = 0. A number of 
fairly straight parallel fringes will therefore appear on a distant 
screen placed perpendicular to that (m = 0) plane and in the vi-
cinity of it, and for this case the approximation r1 ≈ r2 will hold. 
If S1 and S2 are then displaced in the vertical plane of  Fig. 9.3b  

Figure 9.3  (a) Hyperboloidal surfaces of maximum irradiance for two 
point sources. The quantity m is positive where r1 7 r2. (b) Here we see  
how the irradiance maxima are distributed on a plane containing S1 and S2. 
(c) The electric-field distribution in the plane shown in part (b). The tall 
peaks are the point sources S1 and S2. Note that the spacing of the  
sources is different in (b) and (c). (Optics Project, Mississippi State University)

(c)

M09_HECH6933_05_GE_C09.indd   401 09/09/16   1:14 PM



402 Chapter 9 Interference

normal to the S1S2 line, the fringes will merely be displaced 
parallel to themselves. Thus two narrow slits will generate a 
large number of exactly aligned fringes, thereby increasing the 
irradiance, leaving the central region of the two-point source 
pattern otherwise essentially unchanged.

9.1.1 Near Field / Far Field

To ensure mathematical simplicity, the analysis of the fringe 
pattern is usually carried out for a location at a substantial dis-
tance from the two point sources. In that region the interfering 
waves can be taken to be planar. There the cosine-squared irra-
diance distribution is established, and one sees a series of fairly 
straight, parallel, bright and dark fringes (Fig. 9.4). The overall 
pattern keeps its shape and simply expands as the viewing 
screen is moved still farther away from the sources. This is the 
domain on which most introductory treatments focus and it’s 
called the far field.

The two waves were initially spherical and only came to re-
semble plane waves far from their sources. Of course, the am-
plitudes of spherical waves fall off with distance traveled. Having 
reached the far field, the waves have progressed enough that 
any small differences in their paths traveled, (r1 - r2), are, as 
regards their amplitudes, of no consequence. In other words, 
when P is far away the two waves arrive there with pretty much 
the same amplitude. If one wave travels 1 000 000 * l and the 
other 1 000 000.5 * l their amplitudes will hardly differ, even 
though the waves will be p rad out-of-phase. Thus, it’s exclu-
sively the relative phase of the two waves that determines the 
interference pattern in the far field [Eq. (9.21)], and so we just 
take the amplitudes to be equal there. 

This will not be the case in the region closer to the sources. 
In that near field, the two waves can arrive at some arbitrary 
point with both a phase-angle difference and an appreciable am-
plitude difference. That makes for a more complicated analysis, 
and a more varied interference pattern, as illustrated in Fig. 9.5. 
There we see a representation of the irradiance filling a small 
portion of the space beyond two point sources separated by 
a = 4l. Notice that at distances of 2l, and 4l, which are quite 
close to the emitters, the patterns are significantly different 

Figure 9.4  Cosine-squared fringes associated with far-field double-beam  
interference. The oscillating curve is a bit of an idealization, since the  
fringes actually lose contrast at both right and left extremes.

S1

S2

Figure 9.5  A schematic representation of the fringe patterns (irradiance 
mappings) in the vicinity of two point sources S1 and S2, separated by a 
distance a, where a = 4l. The curves correspond to distances from the 
vertical aperture plane of a>2, a, 2a, 4a, and 8a.

from the far-field cosine-squared distribution. We’ll soon come 
back to this issue when we examine Young’s Experiment.

9.2 Conditions for Interference

If two beams are to interfere to produce a stable pattern, they 
must have very nearly the same frequency. A significant frequency 
difference would result in a rapidly varying, time-dependent 
phase difference, which in turn would cause I12 to average to 
zero during the detection interval (see Section 7.1). Still, if the 
sources both emit white light, the component reds will interfere 
with reds, and the blues with blues. A great many fairly similar, 
slightly displaced, overlapping monochromatic patterns will 
produce one total white-light pattern. It will not be as sharp or 
as extensive as a quasimonochromatic pattern, but white light 
will produce observable interference.

The clearest patterns exist when the interfering waves have 
equal or nearly equal amplitudes. The central regions of the 
dark and light fringes then correspond to complete destructive 
and constructive interference, respectively, yielding maximum 
contrast.

For a fringe pattern to be observed, the two sources need not 
be in-phase with each other. A somewhat shifted but otherwise 
identical interference pattern will occur if there is some initial 
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phase difference between the sources, as long as it remains con-
stant. Such sources (which may or may not be in step, but are 
always marching together) are coherent.* 

9.2.1 Temporal and Spatial Coherence

Remember that because of the granular nature of the emission 
process, conventional quasimonochromatic sources produce 
light that is a mix of photon wavetrains. At each illuminated 
point in space there is a net field that oscillates nicely (through 
roughly a million cycles) for less than 10 ns or so before it ran-
domly changes phase. This interval over which the lightwave 
resembles a sinusoid is a measure of its temporal coherence. 
The average time interval during which the lightwave oscillates 
in a predictable way we have already designated as the coher-
ence time of the radiation. The longer the coherence time, the 
greater the temporal coherence of the source.

As observed from a fixed point in space, the passing light-
wave appears fairly sinusoidal for some number of oscillations 
between abrupt changes of phase. The corresponding spatial 
extent over which the lightwave oscillates in a regular, predict-
able way is the coherence length [Eq. (7.64)]. Once again, it 
will be convenient to picture the lightbeam as a progression of 
well-defined, more or less sinusoidal, wavegroups of average 
length ∆lc, whose phases are uncorrelated to one another. Bear 
in mind that temporal coherence is a manifestation of spectral 
purity. If the light were ideally monochromatic, the wave would 
be a perfect sinusoid with an infinite coherence length. All real 
sources fall short of this, and all actually emit a range of fre-
quencies, albeit sometimes quite narrow. For instance, an ordi-
nary laboratory discharge lamp has a coherence length of sev-
eral millimeters, whereas certain kinds of lasers routinely 
provide coherence lengths of tens of kilometers.

Figure 9.6 summarizes some of these ideas. In (a) the wave, 
which arises from a point source, is monochromatic and has 
complete temporal coherence. What happens at P′1 will, a mo-
ment later, happen at P′2 and still later at P′3—all totally predict-
ably. In fact, by watching P′4 we can determine what the wave 
will be doing at P′1 at any time. Every point on the wave is cor-
related; its coherence time is unlimited. By contrast, Fig. 9.6b 
shows a point source that changes frequency from moment to 
moment. Now there’s no correlation of the wave at points that 
are far apart like P′1 and P′4. The waves lack the total temporal 
coherence displayed in (a), but they’re not completely unpre-
dictable; the behavior at points that are close together such as P′2 
and P′3 are somewhat correlated. This is an instance of partial 
temporal coherence, a measure of which is the coherence 
length—the shortest distance over which the disturbance is sinu-
soidal, that is, the distance over which the phase is predictable.

Notice, in both parts of Fig. 9.6, that the behavior of the 
waves at points-P1, -P2, and -P3 is completely correlated. Each of 
the two wavestreams arises from a single point source and P1, P2, 

*Chapter 12 is devoted to the study of coherence, so here we’ll merely touch on 
those aspects that are immediately pertinent.

P1

P2

P3

P '4 

P1

P2

(b)

(a)

P '2

P '3

P '1

P '4

P3

∆lc

P '1

P '2

P '3

Figure 9.6  Temporal and spatial coherence. (a) Here the waves display 
both forms of coherence perfectly. (b) Here there is complete spatial 
 coherence but only partial temporal coherence.

and P3 lie on the same wavefront in both cases; the disturbance 
at each of these laterally separated points is in-phase and stays 
in-phase. Both waves therefore exhibit complete spatial coherence. 
By contrast, suppose the source is broad, that is, composed of 
many widely spaced point sources (monochromatic ones of pe-
riod t), as in Fig. 9.7. If we could take a picture of the wave 
pattern in Fig. 9.7 every t seconds, it would be the same; each 
wavefront would be replaced by an identical one, one wave-
length behind it. The disturbances at P′1, P′2, and P′3 are corre-
lated, and the wave is temporally coherent.

Now we insert a little realism; suppose each point source 
changes phase rapidly and randomly, emitting 10-ns-long sinu-
soidal wavetrains. The waves in Fig. 9.7 would randomly 
change phase, shifting, combining, and recombining in a fren-
zied tumult. The disturbances at P′1, P′2, and P′3 would only be 
correlated for a time less than 10 ns. And the wave field at two, 
even modestly spaced, lateral points such as P1 and P2 would be 
almost completely uncorrelated, depending on the size of the 
source. The beam from a candle flame or a shaft of sunlight is a 
multifrequency mayhem much like this.
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404 Chapter 9 Interference

observed and photographed.* The most common means of 
overcoming this problem with ordinary thermal sources is to make 
one source serve to produce two coherent secondary sources.

9.2.2 The Fresnel–Arago Laws

In Section 9.1 it was assumed that the two overlapping optical 
disturbance vectors were linearly polarized and parallel. None-
theless, the formulas apply as well to more complicated situa-
tions; indeed, the treatment is applicable regardless of the polar-
ization state of the waves. To appreciate this, recall that any 
polarization state can be synthesized out of two orthogonal 
�-states. For natural light these �-states are mutually incoher-
ent, but that represents no particular difficulty.

Suppose that every wave has its propagation vector in the same 
plane, so that we can label the constituent orthogonal �-states, 
with respect to that plane, for example, E$ ‘ and EE$#, which are 
parallel and perpendicular to the plane, respectively (Fig. 9.8a). 
Thus any plane wave, whether polarized or not, can be written 
in the form (E$ ‘ + E$#). Imagine that the waves (E$ ‘1 + E$#1) 
and (E$ ‘2 + E$#2) emitted from two identical coherent sources 
superimpose in some region of space. The resulting flux-density 

P2

P1

P'3P'2P'1

Figure 9.7  With multiple (here four) widely spaced point sources,  
the resultant wave is still coherent. But if those sources change phase  
rapidly and randomly, both the spatial and temporal coherence  
diminish accordingly.

*G. Magyar and L. Mandel, “Interference fringes produced by superposition of 
two independent maser light beams,” Nature 198, 255 (1963); F. Louradour, 
F. Reynaud, B. Colombeau, and C. Froehly, “Interference fringes between two 
separate lasers,” Am. J. Phys. 61, 242 (1993); L. Basano and P. Ottonello, 
“Interference fringes from stabilized diode lasers,” Am. J. Phys. 68, 245 (2000);  
E. C. G. Sudarshan and T. Rothman, “The two-slit interferometer reexamined,”  
Am. J. Phys. 59, 592 (1991).
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Figure 9.8  Interference  
of polarized light.

Two ordinary sources, two lightbulbs, can be expected to 
maintain a constant relative phase for a time no greater than 
∆tc, so the interference pattern they produce will randomly 
shift around in space at an exceedingly rapid rate, averaging 
out and making it quite impractical to observe. Until the ad-
vent of the laser, it was a working principle that no two indi-
vidual sources could ever produce an observable interference 
pattern. The coherence time of lasers, however, can be appre-
ciable, and interference via independent lasers has been  
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distribution will consist of two independent, precisely overlapping 
interference patterns 8(E$ ‘1 + E$#2)29T and 8(E$#1 + E$#2)29T. 
Therefore, although we derived the equations of the previous sec-
tion specifically for linear light, they are applicable to any polar-
ization state, including natural light.

Notice that even though E$#1, and E$#2 are always parallel to 
each other, E$ ‘1 and E$ ‘2, which are in the reference plane, need 
not be. They will be parallel only when the two beams are them-
selves parallel (i.e., k$1 = k$2). The inherent vector nature of the 
interference process as manifest in the dot-product representa-
tion [Eq. (9.11)] of I12 cannot be ignored. There are many prac-
tical situations in which the beams approach being parallel, and 
in these cases the scalar theory will do nicely. Even so, (b) and 
(c) in Fig. 9.8 are included as an urge to caution. They depict the 
imminent overlapping of two coherent linearly polarized waves. 
In Fig. 9.8b the optical vectors are parallel, even though the 
beams aren’t, and interference would nonetheless result. In Fig. 
9.8c the optical vectors are perpendicular, and I12 = 0, which 
would be the case here even if the beams were parallel.

Fresnel and Arago made an extensive study of the conditions 
under which the interference of polarized light occurs, and their 
conclusions summarize some of the above considerations. The 
Fresnel–Arago Laws are as follows:

1.  Two orthogonal, coherent �-states cannot interfere in the 
sense that I12 = 0 and no fringes result.

2.  Two parallel, coherent �-states will interfere in the same 
way as will natural light.

3.  The two constituent orthogonal �-states of natural light can-
not interfere to form a readily observable fringe pattern even 
if rotated into alignment. This last point is understandable, 
since these �-states are incoherent.

9.3 Wavefront-Splitting Interferometers

The main problem in producing sustained interference is the 
sources: they must be coherent. And yet separate, independent, 
adequately coherent sources, other than the laser, don’t exist! 
That dilemma was first solved two hundred years ago by Thomas 
Young in his classic double-beam experiment. He brilliantly 
took a single wavefront, split off from it two coherent portions, 
and had them interfere.

9.3.1 Young’s Experiment

In 1665 Grimaldi described an experiment he had performed to 
examine the interaction between two beams of light. He admit-
ted sunlight into a dark room through two close-together pin-
holes in an opaque screen. Like a camera obscura (p. 228), each 
pinhole cast an image of the Sun on a distant white surface. The 
idea was to show that where the circles of light overlapped, 
darkness could result. Although at the time he couldn’t possibly 

Figure 9.9  The pinhole scatters a wave that is spatially coherent, even 
though it’s not temporally coherent.

understand why, the experiment failed because the primary 
source, the Sun’s disk (which subtends about 32 minutes of 
arc), was too large and therefore the incident light didn’t have 
the necessary spatial coherence in order to properly simultane-
ously illuminate the two pinholes. To do that, the Sun would 
have had to subtend only a few seconds of arc.

A hundred and forty years later, Dr. Thomas Young (guided by 
the phenomenon of beats, which was understood to be produced 
by two overlapping sound waves) began his efforts to establish 
the wave nature of light. He redid Grimaldi’s experiment, but this 
time the sunlight passed through an initial pinhole, which became 
the primary source (Fig. 9.9). This had the effect of creating a 
spatially coherent beam that could identically illuminate the 
two apertures. The arrangement is pictured schematically in 
Fig. 9.10; there, with sunlight hitting the first opaque screen, a 
cone of light emerged from the circular hole. The smaller the 

Aperturescreen

Viewingscreen

Figure 9.10  Young’s Experiment employing cones of light from two 
small circular holes. Waves of illumination impinge from the left on a 
screen containing a single circular hole.
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406 Chapter 9 Interference

light areas. Today, aware of the physics involved, we generally 
replace the pinholes with narrow slits that let through much 
more light (Fig. 9.11a).

Consider a hypothetical monochromatic plane wave illumi-
nating a long narrow slit. From that primary slit light will be dif-
fracted out in the forward direction and a cylindrical wave will 
emerge. Suppose that this wave, in turn, falls on two parallel, 
narrow, closed spaced slits, S1 and S2. This is shown in a three-
dimensional view in Fig. 9.11a. When symmetry exists, the seg-
ments of the primary wavefront arriving at the two slits will be 
exactly in-phase, and the slits will constitute two coherent sec-
ondary sources. We expect that wherever the two waves coming 

hole, the more the light spread, and the larger was the illumi-
nated disk that formed the base of the cone. Additionally, the 
smaller the hole, the more spatially coherent was the light fall-
ing on the second or “aperture screen.” That disk of light was 
made large enough so that expanding segments of spherical 
waves simultaneously illuminated both circular holes. Two co-
herent cones of light then streamed out from those holes toward 
the “viewing screen.” The closer together the two apertures 
were, the more the disks of light overlapped on the viewing 
screen. In that region of overlap, the two waves interfered and 
created dark and light bands — fringes. Energy was, of course, 
conserved; it was essentially shifted from the dark areas to the 

Figure 9.11  Young’s Experiment. (a) Cylindrical waves superimposed in the region beyond the aperture  
screen. (b) Overlapping waves showing peaks and troughs. The maxima and minima lie along nearly  
straight hyperbolas. (c) The geometry of Young’s Experiment. (d) A path length difference of one wave- 
length corresponds to m = ±1 and the first-order maximum. (e) (M. Cagnet, M. Francon, and J. C. Thierr: Atlas optischer  

Erscheinungen, Berlin–Heidelberg–New York: Springer, 1962.)
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In accordance with Section 9.1, constructive interference 
will occur when

 r1 - r2 = ml (9.26)

Thus, from the last two relations we obtain

[mth bright fringe] ym ≈
s
a

 ml (9.27)

where m = 0, ±1, ±2, . . . .
This gives the position of the mth bright fringe on the screen, 

if we count the maximum at 0 as the zeroth fringe. The angular 
position of the fringe is obtained by substituting the last expres-
sion into Eq. (9.24); thus

 um =
ml

a
 (9.28)

This relationship can be obtained directly by inspecting  
Fig. 9.11c. For the mth-order interference maximum, m whole 
wavelengths should fit within the distance r1 - r2. Therefore, 
from the triangle S1S2B,

 a sin um = ml (9.29)

or um ≈ ml>a 

The spacing of the fringes on the screen can be gotten read-
ily from Eq. (9.27). The difference in the positions of two con-
secutive maxima is

ym + 1 - ym ≈
s
a

 (m + 1)l -
s
a

 ml

or ∆y ≈
s
a

 l (9.30)

Evidently, red fringes are broader than blue ones.
Since this pattern is equivalent to that obtained for two over-

lapping spherical waves (at least in the r1 ≈ r2 region), we can 
apply Eq. (9.17). Using the phase difference

d = k(r1 - r2)

we can rewrite Eq. (9.17) as

I = 4I0 cos2k(r1 - r2)

2

provided, of course, that the two beams are coherent and have 
equal irradiances I0. With

r1 - r2 ≈ ya>s
the resultant irradiance becomes

 I = 4I0 cos2 
yap

sl
 (9.31)

As shown in Fig. 9.12, consecutive maxima are separated by the 
∆y given in Eq. (9.30). 

from S1 and S2 overlap, interference will occur (provided that the 
optical path difference is less than the coherence length, c∆tc).

Figures 9.11a, b, and c correspond to the classic arrange-
ment of Young’s Experiment, although there are other varia-
tions. Nowadays the first screen is usually dispensed with, and 
plane waves from a laser directly illuminate the aperture screen 
(Fig. 9.11d). In a realistic physical situation, the distance be-
tween each of the screens (ga and go) in Fig. 9.11c would be 
very large in comparison with the distance a  between the two 
slits, several thousand times as much, and all the fringes would 
be fairly close to the center O of the screen. The optical path 
difference between the rays along S1P and S2P can be deter-
mined, to a good approximation, by dropping a perpendicular 
from S2 onto S1P. This path difference is given by

 (S1B) = (S1P) - (S2P) (9.22)

or (S1B) = r1 - r2 

Continuing with this approximation (see Problem 9.21), 
(r1 - r2) = a sin u and so 

 r1 - r2 ≈ au (9.23)

since u ≈ sin u. Notice that

 u ≈
y
s
 (9.24)

and so r1 - r2 ≈
a
s
 y (9.25)

m=+1

m=0

m=–1

P

l

r1 –  r2 = 1l

B

l

u1

y1

S1

S2

(d)

(e)
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408 Chapter 9 Interference

EXAMPLE 9.1

Two parallel narrow horizontal slits in an opaque vertical screen 
are separated center-to-center by 2.644 mm. These are directly 
illuminated by yellow plane waves from a filtered discharge 
lamp. Horizontal fringes are formed on a vertical viewing 
screen 4.500 m from the aperture plane. The center of the fifth 
bright band is 5.000 mm above the center of the zeroth or central 
bright band. (a) Determine the wavelength of the light in air. (b) 
If the entire space is filled with clear soybean oil (n = 1.472 9), 
where would the fifth fringe now appear?

Figure 9.12  (a) Idealized irradiance versus distance curve. (b) The fringe 
separation ∆y varies inversely with the slit separation, as one might expect 
from Fourier considerations; remember the inverse nature of spatial inter-
vals and spatial frequency intervals. (c) Increasing slit separation decreases 
fringe size. Increasing wavelength also increases fringe size. (Source for b: A.B. 

Bartlett, University of Colorado, and B. Mechtly, Northeast Missouri State University, reproduced  

with permission from Am. J. Phys 62, 6 (1994). Copyright 1994, American Association of Physics 

Teachers.)
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Figure 9.13  A laserbeam expander. This sort of arrangement can be 
used to illuminate all sorts of apertures in order to demonstrate interfer-
ence and diffraction in a confined space.

SOLUTION 

(a) The problem states that y5 = 5.000 mm and from Eq. 9.27 
we know that in air

ym ≈
s
a

 ml0

where here s = 4.500 m,  a = 2.644 mm, and l0 is to be found. 
Hence

l0 =
ay5

s5
=

(2.644 * 10-3 m)(5.000 * 10-3 m)

(4.500 m)5

and l0 = 587.56 nm 

or to four significant figures

l0 = 587.6 nm

(b) When the space is filled with oil the wavelength will de-
crease, whereupon the new fringe location ( y′m) will be closer  
to the center of the apparatus. Thus 

y′m =
s
a

 m al0

n
b =

ym

n

and y′m =
5.000 * 10-3 m

1.472 9
 

Finally,  y′5 = 3.395 mm 

A practical issue arises when the experiment is actually to be 
set up. If a laser is shined directly onto the slits, the beam will 
be narrow and the resulting fringe system will appear more like 
a row of cosine-squared bright spots than extended bands. That 
can be improved upon by letting the beam spread naturally over 
a distance of tens of meters before fully illuminating the slits. In 
a smaller space, one can use two lenses to form a laserbeam 
expander (a backward Galilean telescope), as depicted in Fig. 9.13. 
Laser light is so wonderfully coherent that every fingerprint or 
speck of dirt on a lens can produce distracting fringes of its 

M09_HECH6933_05_GE_C09.indd   408 26/08/16   3:35 PM



 9.3 Wavefront-Splitting Interferometers 409

Discharge
lamp

Filter
Lens 1

L1 L2

Lens 2
Aperture
screen

Viewing
screen

Figure 9.14  A convenient setup for observing 
interference fringes with a nonlaser source.

own. That can be avoided using the traditional arrangement 
shown in Fig. 9.14. It’s probably the best way to go if you want 
to see near-perfect fringes like those of Fig. 9.11e. 

Electric-Field Amplitude via Phasors

Let’s examine how the EM wavelets add to form a resultant elec-
tric field that varies from point to point on the observation 
screen. Figure 9.15a depicts wavelets/rays leaving the two slits 
at some angle u. They subsequently either pass through a large 
positive lens and converge on a screen at the focal plane, or meet 
on a very distant viewing screen at some point-P. In either case, 
we assume that the wavelets, having traveled the same optical 
path length (OPL), arrive together at P with, if any, a negligible 
difference in amplitude. That is to say, their amplitudes, E01 and 
E02, are essentially equal. Thus the resultant will be determined 
only by differences in the phases of the superimposed wavelets. 
The path-length difference for the two wavelets (as in Fig. 9.11c) 
is (a sin u), and that corresponds to a number of wavelengths 
 difference of (a sin u)>l and a double-slit phase-angle difference 
of d2 = 2p (a sin u)>l. This is the phase difference between the 
two phasors. Keep in mind that even though u might be small the 
phase-angle difference between the wavelets can be large.

To graph the field amplitude, we will have to determine the 
magnitude of the E-field, as well as whether it’s positive or 
negative. To that end, take the OPL from the center of the aper-
ture screen to P as the reference; were a wavelet to travel that 
OPL its phasor would be positive. In the forward direction 
(u = 0) the two wavelets arrive at the screen in-phase, having 
traveled the same OPL. The two corresponding phasors add tip-
to-tail and a maximum results (Fig. 9.15c) of amplitude 2E01 
(Fig. 9.15b). This is the largest possible value of the resultant 
amplitude and it is positive. 

Now consider the off-axis beam (Fig. 9.15a) at some arbi-
trary small angle u. Wavelet-1 traveling at angle u goes a longer 
OPL than the reference path; it lags behind the reference by 
d2>2; that is, it’s phasor is rotated clockwise from the positive 

Figure 9.15  The electric field generated in two-slit interference. (a) The 
two-slit geometry. (b) The electric-field curve. (c)–(g) Phasor addition. 
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reference direction. Meanwhile wavelet-2 traveling at u now 
goes a shorter OPL to the screen than the reference path, and so 
phasor-2 leads by d2>2. In other words, phasor-2 is rotated 
counterclockwise (with respect to the reference) by d2>2, as 
phasor-1 is rotated clockwise (with respect to the reference) by 
d2>2. The consequence is a phase shift of d2>2 = p(a sin u)>l 
from the reference for each of the two phasors. These phasors 
are then added tip-to-tail. Because of the symmetry, the resultant 
phasor amplitude (E0 drawn in grey) will always point either to 

M09_HECH6933_05_GE_C09.indd   409 26/08/16   3:35 PM



410 Chapter 9 Interference

As discussed earlier (Fig. 9.5), the near-field fringe pattern 
is more complicated than just a cosine-squared distribution. That 
raises the issue of the efficacy of the approximation 
(r1 - r2) = a sin u close by the emitters. It turns out† that it’s 
actually remarkably good. The approximation holds, referring to 
Fig. 9.11, provided that r 7 7  0.354a, and it results in an 
 accuracy of better than 1% for r 7  3.54a. The hyperbolas of 
Fig. 9.3 asymptotically approach straight lines and do so close to 
the sources. That can be seen in the water waves of Fig. 9.1.

Manifestations of Diffraction

Figure 9.10 depicts two cones of radiant energy emerging from 
circular holes in an opaque screen. That sort of straight-line pro-
jection is a simplification of what really happens beyond any 
coherently illuminated object. The actual distribution of light is 
called a diffraction pattern and we’ll study several such distri-
butions in some detail in the next chapter. Here it will suffice to 
just point out that although each individual circular aperture 
will project a circular disk onto the viewing screen, that disk 
will be brightest at its center, gradually falling off to zero irradi-
ance at its periphery. Moreover, the disk will be surrounded by 
a number of narrow, increasingly faint, concentric rings of light, 
with only the first one or two likely to be visible. Consequently, 
when the source in Young’s Experiment consists of two small 
circular apertures very close together (or a lens is used, as in 
Fig. 9.14, to cause the disks to overlap on the viewing screen), 
the “cosine-squared” pattern will appear within the diffraction 
envelope (Fig. 9.16).

In like fashion, a coherently illuminated, single long slender, 
vertical slit will project a vertical rectangular band of light onto 
the viewing screen; the narrower the slit, the wider the resulting 
band. That rectangle of light, possessing most of the diffracted 
energy, will be brightest at its center, gradually falling off to 

the right (+) or to the left (-). Note that it’s customary to talk 
about a “negative amplitude” when a phasor points in the op-
posite direction to the positive reference, even though the word 
“amplitude” is usually defined as a positive quantity.

In Fig. 9.15d, d2>2 = p>4 and so phasor-1 is rotated p>4 
clockwise relative to the reference direction, and phasor-2 is 
rotated p>4 counterclockwise (with respect to the refer-
ence). The resultant phasor is then positive and equal to 
1.414E01. It is plotted at 45° in Fig. 9.15b.

When not colinear, the phasors form isosceles triangles 
and E0 = E01 cos d2>2 + E02 cos d2>2 and since E01 = E02 
generally,

E0 = 2E01 cos d2>2
With d2>2 = p(a sin u)>l, for small u ≈ sin u—where from 
Eq. (9.24), u = y>s—we have d>2 = yap>sl and 

E0 = 2E01 cos (yap>sl)

Because irradiance is proportional to the amplitude of the electric 
field squared, squaring this expression for E0 yields Eq. (9.31); 
see Fig. 9.12 as well.

In Fig. 9.15e the angle u is such that the phase shift from the 
reference (d2>2) for each phasor is ±p>2. This means that the 
wavelet from the top slit leads the one from the bottom slit by 
d2 = p. The phasors end up opposed; wavelet-1 lags the central 
reference by a quarter wavelength, while wavelet-2 leads by a 
quarter wavelength, and the resultant field amplitude is now 
zero. The wavelets are p out-of-phase with respect to each 
 other, and cancel. 

In Fig. 9.15f, where u is still larger, d2>2 = 3p>4 = 135°, 
the resultant phasor is 1.414E01, and it’s negative. Whereas 
when the path-length difference between wavelet-1 and wavelet-2 
is one wavelength (i.e., d2 = 2p), each phasor is rotated through 
d2>2 = p with respect to the reference (Fig. 9.15g), and the 
resultant is negative and again maximum (2E01).

In this way the electric-field amplitude oscillates cosinusoi-
dally as the point of observation on the screen is moved farther 
away from the central axis. The square of the amplitude pic-
tured in Fig. 9.15b is proportional to the irradiance pictured in 
Fig. 9.12. Recall that the peak amplitude squared (2E01)2, for-
getting the constants, equals the peak irradiance 4I0, where I0 is 
the irradiance from each slit (i.e., the irradiance due to each 
wavelet).

It should be remembered that we effectively assumed that 
each slit was infinitesimally wide, and so the cosine-squared 
fringes of Fig. 9.12 are really an unattainable idealization.* The 
actual pattern, Fig. 9.11e, drops off with distance on either side 
of O because of diffraction.

†D. C. H. Poon, “How good is the approximation ‘path difference ≈ d sin u’?” 
Phys. Teach. 40, 460–462 (Nov. 2002).

Figure 9.16  Double-beam interference fringes from a pair of circular 
apertures. (E.H.)*Modifications of this pattern arising as a result of increasing the width of either 

the primary S or secondary-source slits will be considered in detail in later 
 chapters (10 and 12). In the latter case, fringe contrast will be used as a mea-
sure of the degree of coherence (Section 12.1). In the former, diffraction effects 
become significant.

M09_HECH6933_05_GE_C09.indd   410 08/09/16   8:49 PM



 9.3 Wavefront-Splitting Interferometers 411

(Fig. 9.18b). Since a white-light source will have a coherence 
length of less than about three wavelengths, it follows from Eq. 
(9.27) that only about three fringes will be seen on either side of 
the central maximum.

Under white light (or with broad bandwidth illumination), 
all the constituent colors will arrive at y = 0 in-phase, having 
traveled equal distances from each aperture (Fig. 9.19). The 
zeroth-order fringe will be essentially white, but all other 
 higher-order maxima will show a spread of wavelengths, since 
ym is a function of l, according to Eq. (9.27). Thus in white 

zero irradiance at its vertical edges. Moreover, it will be accom-
panied, right and left, by a number of increasingly faint narrow 
vertical bands (Fig.10.15b). 

Making the two rectangular slits in Young’s Experiment very 
slender causes the central band of each of the two single-slit 
diffraction patterns to become quite broad. By positioning the 
slits very close to one another (or using a lens) those wide cen-
tral bands can be made to overlap and thereby interfere. The 
resulting cosine-squared fringe pattern will be modulated by the 
envelope of the broad central band of the single-slit diffraction 
pattern (Fig. 9.17). In other words, using slit sources we get a 
pattern that resembles cosine-squared fringes, but for the fact 
that they fall off in irradiance on either side of the central maxi-
mum (Fig. 9.11e).

The Effects of Finite Coherence Length

As P in Fig. 9.11c is taken farther above or below the axis, S1B 
(which is less than or equal to S1S2) increases. If the primary 
source has a short coherence length, as the optical path differ-
ence increases, identically paired wavegroups will no longer be 
able to arrive at P exactly together. There will be an increasing 
amount of overlap in portions of uncorrelated wavegroups, and 
the contrast of the fringes will degrade. It is possible for ∆lc to 
be less than S1B. In that case, instead of two correlated portions 
of the same wavegroup arriving at P, only segments of different 
wavegroups will overlap, and the fringes will vanish. 

As depicted in Fig. 9.18a, when the path length difference 
exceeds the coherence length, wavegroup-E1 from source S1 ar-
rives at P with wavegroup-D2 from S2. There is interference, but it 
lasts only a short time before the pattern shifts as wavegroup-D1 
begins to overlap wavegroup-C2, since the relative phases are 
different. If the coherence length was larger or the path differ-
ence smaller, wavegroup-D1 would more or less interact with 
its clone wavegroup-D2, and so on for each pair. The phases 
would then be correlated, and the interference pattern stable 

I

x

Figure 9.17  Double-slit fringes fade off on either side of the central  
maximum. The cosine-squared pattern is modulated by the single-slit  
diffraction envelope.
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Figure 9.18  A schematic representation of how light, composed of a 
progression of wavegroups with a coherence length ∆lc, produces interfer-
ence when (a) the path length difference exceeds ∆lc and (b) the path 
length difference is less than ∆lc.

m = –1 m = 0 m = +1

White Blue
Green

Red

Figure 9.19  The cosine-squared irradiance distribution for Young’s 
Experiment in white light. Notice that the red fringes are wider than the 
green, which are wider than the blue. At the center they all overlap and 
produce a white band. Higher-order fringes are multicolored.
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412 Chapter 9 Interference

we’ll see that in Fig. 11.14. To the extent that the slits can be 
considered infinitesimally narrow, the amplitude of the electric 
field in the diffraction pattern will be cosinusoidal, and the irradi-
ance distribution will vary as the cosine squared, as in Fig. 9.12.

Particle Interference Many physicist believe, as Einstein 
did, that light is a stream of photons, though it’s not at all clear 
what photons are. To be sure, light is electromagnetic and oscil-
latory, and an ordinary beam of it manifests wave behavior. It’s 
therefore natural to speak about the wavelengths of light and, 
perforce, the wavelengths of photons. Similarly, we know that 
all material entities, electrons, neutrons, atoms, and even fire 
engines have de Broglie wavelengths that are inversely propor-
tional to their momenta. So it shouldn’t be too surprising to 
learn that electrons passing through a pair of slits a mere 90 nm 
wide have generated Young’s interference fringes (Fig. 9.21).

In an analogous way, a beam of light can be made so dim that 
only a single photon at a time impinges on the aperture screen, 
and still, after a while—one flash at a time—the modulated 
cosine-squared pattern emerges. When either one, and only one, 
of the two apertures is opened, the broad peak of a single-slit 
diffraction pattern appears; both such peaks, each centered on 
its corresponding slit, can be seen in Fig. 9.22. When the two 

light we can think of the mth maximum as the mth-order band 
of wavelengths—a notion that will lead directly to the diffrac-
tion grating in the next chapter.

The fringe pattern can be observed by punching two small 
pinholes in a thin card. The holes should be approximately the 
size of the type symbol for a period on this page, and the separa-
tion between their centers about three radii. A street lamp, car 
headlight, or traffic signal at night, located a few hundred feet 
away, will serve as a plane-wave source. The card should be 
positioned directly in front of and very close to the eye. The 
fringes will appear perpendicular to the line of centers. The pat-
tern is much more readily seen with slits, as discussed in Sec-
tion 10.2.2, but you should give the pinholes a try.

Microwaves, because of their long wavelength, also offer an 
easy way to observe double-slit interference. Two slits (e.g., 
l>2 wide by l long, separated by 2l) cut in a piece of sheet metal 
or foil will serve quite well as secondary sources (Fig. 9.20).

The Fourier Perspective When the plane waves in  
Fig. 9.11b illuminated the first narrow slit, light spilled out 
(i.e., was diffracted) beyond the opaque screen in a form re-
sembling a cylindrical wave; the narrower the slit, the more 
nearly cylindrical the wave. Beyond the screen the light 
spread over a very wide range of angles, or equivalently a 
wide range of spatial frequencies. From a Fourier perspec-
tive, this happened because an infinitesimally narrow source 
(i.e., narrow in space) generates a light field that is infinitely 
broad (i.e., broad in spatial frequency). The transform of a 
point source, an ideal one-dimensional signal spike (known 
as a Dirac delta function, p. 547), is a continuous constant 
spectrum containing all spatial frequencies, a spherical wave. 
In the same way, an ideal line source results in a disturbance 
resembling a  cylindrical wave.

In practice, Young’s Experiment usually consists of two  
in-phase slit sources arranged such that s 7 7  a. As a rule, s is 
so large that the resulting fringe system corresponds to a 
Fraunhofer diffraction pattern (p. 473). The two very thin slits 
re semble two line sources, two ideally narrow signal spikes, 
and the transform of two delta functions is a cosine function—

2l
l

Transmitter

Detector

l
2

Figure 9.20  A microwave interferometer.

Figure 9.21  Young’s double-slit fringes produced by a narrow electron 
beam. The slits were 90 nm wide (1540 nm tall) separated by 450 nm. The 
cosine-squared fringes are modulated by the diffraction envelope of each 
single 90-nm-wide slit. The faint fringes above and below the center line 
are due to diffraction at the top and bottom edges of the slits. (S. Frabboni,  

C. Frigeri, G.C. Gazzadi, and G. Pozzi, Am. J. Phys. 79,  615–618 [June, 2011], American Association 

of Physics Teachers.)
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Figure 9.22  Young’s Experiment using single photons. (Source: Diagram from 

TEACHSPIN, Inc.)
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process can be described in quantum mechanical terms, how it 
actually unfolds is one of the great marvels of physics.

Don’t pine for the classical EM-wave interpretation of the ex-
periment; it has its magical moments as well. Remember, accord-
ing to it, two continuous EM waves each carrying energy, travel 
out to some distant point-P, where they discover, for instance, 
that they must cancel one another. What then happens to the en-
ergy those waves arrived with? How does it get redistributed lat-
erally into adjacent maxima? Perhaps Eq. (9.31) should have 
been interpreted as a photon probability distribution at the outset. 

Several Other Interferometers

The same physical and mathematical considerations applied to 
Young’s Experiment relate directly to a number of other wavefront-
splitting interferometers. Most common among these are Fresnel’s 
double mirror, Fresnel’s double prism, and Lloyd’s mirror.

The Fresnel Double Mirror Fresnel’s double mirror con-
sists of two plane front-silvered mirrors inclined to each other at 
a very small angle (u), as shown in Fig. 9.23. The line of inter-
section of the mirrors is parallel to the source slit. One portion 
of the cylindrical wavefront coming from slit S is reflected from 
the first mirror, and another portion of the wavefront is reflected 
from the second mirror. An interference field exists in space in 
the region where the two reflected waves are superimposed. 
The images (S1 and S2) of the slit S in the two mirrors can be 

slits are opened at once, photons, passing one at a time through 
the apertures, gradually build up the bright and dark bands of 
the classic double-slit pattern. That remarkable observation has 
raised all sorts of issues about photons (or any other particles) 
presumably passing through both slits at once and interfering 
with themselves. 

Adding to the confusion of imagery was the somewhat sim-
plistic, and now legendary, 1930 comment by the renowned phys-
icist P. A. M. Dirac: “Each photon then interferes only with itself. 
Interference between two different photons can never occur.” 
Whatever that means, it gets to be problematic when two separate 
laserbeams generate interference patterns. It makes little or no 
sense to speak about one sodium atom “interfering” with another, 
or with itself, for that matter. So we would do well not to take 
literally the notion of photons interfering. The issue was best 
clarified by Roy J. Glauber, winner of the 2005 Nobel Prize: “The 
things that interfere in quantum mechanics are not particles. They 
are probability amplitudes for certain events. It is the fact that 
probability amplitudes add up like complex numbers that is re-
sponsible for all quantum mechanical interference.”* Though the 

*Keep in mind that to some physicists the photon is merely the quantum of the 
radiation field and has no separate particle existence. Be that as it may, see  
R. J. Glauber, “Dirac’s famous dictum on interference: one photon or two,”  
Am. J. Phys. 63 (1), 12 (Jan. 1995). For a fascinating development, see S. Kocsis, 
B. Braverman, S. Ravets, M. Stevens, R. Mirin, L. Krister Shalm, and A. Steinberg, 
“Observing the average trajectories of single photons in a two-slit interferometer,” 
Science 332 (6034), 1170–1173 (June 2011). 

Figure 9.23  (a) Fresnel’s double mirror. The angle u
between the two mirrors is here greatly exaggerated. (b) Two 
waves, one reflected from each mirror, interfere. (c) These 
fringes were obtained at a wavelength of only 13.9 nm using 
radiation from the LURE synchrotron at Orsay, France.  
(D. Joyeux, Institut d’Optique.)
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414 Chapter 9 Interference

considered as separate coherent sources, placed at a distance a 
apart. It follows from the Laws of Reflection, as illustrated in 
Fig. 9.23a, that SA = S1A and SB = S2B so that  SA + AP = r1 
and SB + BP = r2. The optical path length difference between 
the two rays is then r1 - r2. The various maxima occur at 
r1 - r2 = ml, as they do with Young’s Interferometer. Again, 
the separation of the fringes is given by

∆y ≈
s
a
l

where s is the distance between the plane of the two virtual 
sources (S1, S2) and the screen. The arrangement in Fig. 9.23 
has been deliberately exaggerated to make the geometry some-
what clearer. The angle u between the mirrors must be quite 
small if the electric-field vectors for each of the two beams are 
to be parallel, or nearly so. Let E$1 and E$2 represent the light-
waves emitted from the coherent virtual sources S1 and S2. At 
any instant in time at the point-P in space, each of these vectors 
can be resolved into components, parallel and perpendicular to 
the plane of the figure. With k$1 and k$2 parallel to AP and BP, 
respectively, it should be apparent that the components of E$1 

and E$2 in the plane of the figure will approach being parallel 
only for small u. As u decreases, a decreases and the fringes 
broaden.

EXAMPLE 9.2

Considering the double mirror in Fig. 9.23a, show that the 
fringe separation is given by

∆y ≈
(R + d)l

a

where l is the wavelength of the illumination in the surround-
ing medium. (b) Prove that

∆y ≈
(R + d)l

2R u

SOLUTION 

(a) From Young’s Experiment

∆y ≈
s
a

 l

and the same is true here where s = DP ≈ R + d. Accordingly,

∆y ≈
(R + d)l

a

(b) To get u involved notice that in triangle S1CD
a
2

= R sin u ≈ R u

and so

∆y ≈
(R + d)l

2R u
*For a discussion of the effects of a finite slit width and a finite frequency band-
width, see R. N. Wolfe and F. C. Eisen, “Irradiance distribution in a Lloyd mirror 
interference pattern,” J. Opt. Soc. Am. 38, 706 (1948).

The Fresnel Double Prism The Fresnel double prism or  
biprism consists of two thin prisms joined at their bases, as shown 
in Fig. 9.24. A single cylindrical wavefront impinges on both 
prisms. The top portion of the wavefront is refracted downward, 
and the lower segment is refracted upward. In the region of super-
position, interference occurs. Here, again, two virtual sources S1 
and S2 exist, separated by a distance a, which can be expressed in 
terms of the prism angle a (Problem 9.27), where s 7 7  a. The 
expression for the separation of the fringes is the same as before.

Lloyd’s Mirror The last wavefront-splitting interferometer 
that we will  consider is Lloyd’s mirror, shown in Fig. 9.25. It 
consists of a flat piece of either dielectric or metal that serves as 
a mirror, from which is reflected a portion of the cylindrical 
wavefront coming from slit S. Another portion of the wavefront 
proceeds directly from the slit to the screen. For the separation 
a, between the two coherent sources, we take the distance be-
tween the actual slit and its image S1 in the mirror. The spacing 
of the fringes is once again given by (s>a)l. The distinguishing 
feature of this device is that at glancing incidence (ui = p>2) 
the reflected beam undergoes a 180° phase shift. (Recall that 
the amplitude-reflection coefficients are then both equal to -1.) 
With an additional phase shift of ±p,

d = k(r1 - r2) ± p

and the irradiance becomes

I = 4I0 sin2 apay

sl
b

The fringe pattern for Lloyd’s mirror is complementary to 
that of Young’s Interferometer; the maxima of one pattern exist 
at values of y that correspond to minima in the other pattern. 
The top edge of the mirror is equivalent to y = 0 and will be the 
center of a dark fringe rather than a bright one, as in Young’s 
device. The lower half of the pattern will be ob structed by the 
presence of the mirror itself. Consider what would happen if a 
thin sheet of transparent material were placed in the path of the 
rays traveling directly to the screen. The transparent sheet 
would have the effect of increasing the number of wavelengths 
in each direct ray. The entire pattern would accordingly move 
upward, where the reflected rays would travel a bit farther 
 before interfering. Because of the obvious inherent simplicity 
of this device, it has been used over a very wide region of the 
electromagnetic spectrum. The actual reflecting surfaces have 
ranged from crystals for X-rays, ordinary glass for light, and 
wire screening for microwaves to a lake or even Earth’s iono-
sphere for radiowaves.*
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 9.3 Wavefront-Splitting Interferometers 415

EXAMPLE 9.3

A line source of 600 nm light is 5.00 mm above and parallel to 
a Lloyd’s mirror (in air). Fringes are observed on a screen 5.00 
m from the source. Locate the first irradiance maximum above 
the mirror’s surface.

SOLUTION 

The mirror’s surface bisects the central dark fringe. Thus the center 
of the first bright fringe will be a distance ∆y/2 above the mirror.

Since

∆y =
s
a

 l =
(5.00 m)

2(5.00 * 10-3 m)
  600 * 10-9 m

and  ∆y = 3.00 * 10-4 m 

the first maximum will be 0.150 mm above the mirror.

Establishing The Wave Theory of Light

Now that we’ve studied both Young’s Experiment and Fresnel’s 
double mirror, we can appreciate an interesting piece of  history. 
When Thomas Young, a medical doctor, published his work  
in 1804, the most widely accepted understanding of the nature 
of light was Newton’s corpuscular theory; light was a stream 
of particles that could agitate the aether and, in turn, be influ-
enced by waves set up in that all-pervading medium. These 
light particles were thought to interact with material objects 

S1

S

d

s

a

S2

(a)

~1°

a

u

(b)

Figure 9.24  Fresnel’s biprism. (a) The biprism creates two image sources. 
(b) With a slit source the fringes are bright bands. (c) Interference fringes 
observed with an electron biprism arrangement by G. Möllenstedt. Once 
again electrons behave like photons. (Handbuch der Physik, edited by S. Flugge, 

Springer-Verlag, Heidelberg. Springer-Verlag, New York)(c)
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min

max

min

s

a

S1

Figure 9.25  Lloyd’s mirror.

via attractive and repulsive forces. At the time, most people 
interested in Optics followed Newton, embracing the so-called 
emission theory. A few visionaries like Young in England, and 
D. F. J. Arago and his protégé Augustin-Jean Fresnel in France, 
were wave theorists. For them light was an elastic wave in the 
aether.

One might expect that Young’s Experiment was so compel-
ling that it would have promptly convinced the emissionists that 
light was really a wave, pure and simple. But that was not the 
case. Young had “little mathematical training” and his papers 
were stylistically rather obscure and not widely read. Beyond 
that, the light in his setup passed through two narrow slits and it 
could be argued that the particles composing it had interacted 
mechanically with the material of the slits’ edges, thereby being 
bent off their straight-line paths (i.e., diffracted). 
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416 Chapter 9 Interference

ideas when we consider coherence theory in more detail. 
For the moment the discussion is restricted, for the most 
part, to those cases for which the path difference is less than 
the coherence length.

9.4.1  Dielectric Films—Double-Beam Interference

Interference effects are observable in sheet transparent materi-
als, the thicknesses of which vary over a very broad range, from 
films less than the length of a lightwave (e.g., for green light l0 
equals about 1

150 the thickness of this printed page) to plates 
several centimeters thick. A layer of material is referred to as a 
thin film for a given wavelength of electromagnetic radiation 
when its thickness is of the order of that wavelength. Before the 
early 1940s, interference phenomena associated with thin di-
electric films, although well known, had fairly limited practical 
value. The rather spectacular color displays arising from oil 
slicks and soap films, however pleasing aesthetically and theo-
retically, were mainly curiosities.

With the advent of suitable vacuum deposition techniques in 
the 1930s, precisely controlled coatings could be produced on a 
commercial scale, and that, in turn, led to a rebirth of interest in 
dielectric films. During the Second World War, both sides were 
finding the enemy with a variety of coated optical devices, and 
by the 1960s multilayered coatings were in widespread use.

Fringes of Equal Inclination

Consider the simple case of a transparent parallel plate of dielec-
tric material having a thickness d (Fig. 9.27). Suppose that the 
film is nonabsorbing and that the amplitude-reflection coeffi-
cients at the interfaces are so low that only the first two reflected 
beams E1r and E2r (both having undergone only one reflection) 
need be considered (Fig. 9.28). In practice, the amplitudes of the 
higher-order reflected beams (E3r, etc.) generally decrease very 
rapidly, as can be shown for the air–water and air–glass inter-
faces (Problem 9.33). For the moment, consider S to be a mono-
chromatic point source. 

The film serves as an amplitude-splitting device, so that E1r 

and E2r may be considered as arising from two coherent virtual 
sources lying behind the film; that is, the two images of S 
formed by reflection at the first and second interfaces. The  
reflected rays are parallel on leaving the film and can be brought 
together at a point P on the focal plane of a telescope objective 
or on the retina of the eye when focused at infinity. From  
Fig. 9.28, the optical path length difference for the first two  
reflected beams is given by

Λ = nƒ[(AB) + (BC)] - n1(AD)

and since (AB) = (BC) = d>cos ut,

Λ =
2nƒd

cos ut
- n1(AD)

Without knowing anything about Young’s efforts, Fresnel, a 
former engineer, created his double-mirror experiment some-
time around 1816. It had the great virtue of doing away with 
diffracting apertures altogether. As he put it in 1819: “If we 
raise one of the mirrors or intercept the light which it reflects 
either before or after reflection, the fringes disappear. . . . This 
furnishes still further evidence that the fringes are produced, not 
by the action of the edges of the mirrors, but by the meeting of 
two pencils of light.” Supported by the outstanding theoretical 
and experimental work of Fresnel, the wave theory of light 
gradually gained preeminence, and by 1830 or so, it was recog-
nized as the more powerful of the two hypotheses.

All the above wavefront-splitting interferometers can be dem-
onstrated either using a laser or a discharge lamp or, for white light, 
something a bit more old-fashioned like a carbon arc (Fig. 9.26).

9.4 Amplitude-Splitting Interferometers

Suppose that a lightwave is incident on a half-silvered mirror,* 
or simply on a sheet of glass. Part of the wave is transmitted and 
part reflected. Both the transmitted and reflected waves have 
lower amplitudes than the original one. It can be said figura-
tively that the amplitude has been “split.” 

If the two separate waves could be brought to gether again at 
a detector, interference would result, as long as the  original  
coherence between the two had not been destroyed. If the 
path lengths differed by a distance greater than that of the 
wavegroup (i.e., the coherence length), the portions reunit-
ed at the detector would correspond to different waveg-
roups. No unique phase relationship would exist between 
them in that case, and the fringe pattern would be unstable 
to the point of being unobservable. We will get back to these 

*A half-silvered mirror is one that is semitransparent, because the metallic coating 
is too thin to be opaque. You can look through it, and at the same time you can see 
your reflection in it. Beamsplitters, as devices of this kind are called, can also be 
made of thin stretched plastic films, known as pellicles, or even uncoated glass plate.

Carbon
arc and lens

Single
slit

Fringe-producing
system

Condensing
lens

Screen

Water cell
Filter

Figure 9.26  A traditional bench setup to study wavefront-splitting 
arrangements with a white-light carbon-arc source. The water cell is needed 
to keep things cool. This arrangement is rather old-fashioned but it’s  
effective in large lecture halls.
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 9.4 Amplitude-Splitting Interferometers 417

or finally

 Λ = 2nƒd cos ut (9.33)

The corresponding phase difference associated with the opti-
cal path length difference is then just the product of the free-
space propagation number and Λ, that is, k0Λ. If the film is im-
mersed in a single medium, the index of refraction can simply be 
written as n1 = n2 = n. Realize that n may be less than nf , as in 
the case of a soap film in air, or greater than nf , as with an air 
film between two sheets of glass. In either case there will be an 
additional phase shift arising from the reflections themselves. 
Recall that for incident angles up to about 30°, regardless of the 
polarization of the incoming light, the two beams, one internally 
and one externally reflected, will experience a relative phase 
shift of p radians (Fig. 4.52 and Section 4.3). Accordingly,

d = k0Λ ± p

and more explicitly

 d =
4pnf

l0
 d cos ut ± p (9.34)

or d =
4pd
l0

 (n2
f - n2 sin2 ui)

1>2 ± p (9.35)

The sign of the phase shift is immaterial, so we will choose the 
negative sign to make the equations a bit simpler. In re flected 
light an interference maximum, a bright spot, appears at P when 

Now, to find an expression for (AD), write

(AD) = (AC) sin ui

Using Snell’s Law, this becomes

(AD) = (AC) 
nf

n1
 sin ut

where

 (AC) = 2d tan ut (9.32)

The expression for Λ now becomes

Λ =
2nƒd

cos ut
 (1 - sin2 ut)

Figure 9.27  The wave and ray representations of thin-film interference. 
Light reflected from the top and bottom of the film interferes to create  
a fringe pattern.
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Figure 9.28  Fringes of equal inclination.
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418 Chapter 9 Interference

Interference minima in reflected light (maxima in transmit-
ted light) result when d = (2m ± 1)p, that is, odd multiples of 
p. For such cases Eq. (9.34) yields

[minima] d cos ut = 2m 
lf

4
 (9.37)

The appearance of odd and even multiples of lf>4 in Eqs. 
(9.36) and (9.37) is significant, as we will see presently. We 
could, of course, have a situation in which n1 7 nf 7 n2 or 
n1 6 nf 6 n2, as with a fluoride film deposited on an optical 
element of glass immersed in air. The p phase shift would then 
not be present, and the above equations would simply be modi-
fied appropriately.

EXAMPLE 9.5

A thin film of water (n = 1.333) floats on the surface of a bea-
ker of monochlorobenzene (n = 1.524 8). The arrangement is 
illuminated perpendicularly by 647-nm light and a large region 
of the film appears bright red. At minimum, how thick might 
the film be?

SOLUTION 

Because at both interfaces the reflections are external there will 
be no additional relative phase shift. Hence from Eq. (9.34),

d =
4pnf

l0
 d cos ut

Here ut = 0 and so

d =
4pnf

l0
 d

But we want constructive interference, which means d = 2p 
and therefore

d =
l0

2nf
=

647 * 10-9 m
2(1.333)

Consequently,

d = 243 nm

This is the minimum thickness; increasing it by whole-number 
multiples of lƒ>2 will produce more maxima.

If the lens used to focus the rays has a small aperture, inter-
ference fringes will appear on a small portion of the film. 
Only the rays leaving the point source that are reflected di-
rectly into the lens will be seen (Fig. 9.29). For an extended 
source, light will reach the lens from various directions, and 
the fringe pattern will spread out over a large area of the film 
(Fig. 9.30).

d = 2mp—in other words, an even multiple of p. In that case 
Eq. (9.34) can be rearranged to yield

[maxima] d cos ut = (2m + 1) 
lf

4
 (9.36)

where m = 0, 1, 2, . . . and use has been made of the fact that 
lf = l0>nf . This also corresponds to minima in the transmitted 
light. 

EXAMPLE 9.4

The yellow D1 line from a sodium discharge lamp has a vacuum  
wavelength of 5895.923Å. Suppose such light falls at 30.00° 
on the surface of a film of soybean oil (n = 1.472 9) suspended 
(within a wire frame) in air. What minimum thickness should the 
film have in some region if that area is to strongly reflect the light?

SOLUTION 

Equation 9.36 pertains to reflected maxima:

d cos ut = (2m + 1) 
lf

4

Here we want the minimum thickness, which corresponds to 
the minimum value of m, namely, zero. Hence

d cos ut =
lf

4

We’ll need to compute both lf  and ut. Using Snell’s Law

ni sin ui = nt sin ut

it follows that

sin ut =
sin 30.00°
1.472 9

= 0.339 5

and ut = 19.844°. Consequently,

d =
lf

4
 

1
cos 19.844°

At this point we need to use the fact lf = l0 /nf, whereupon

d =
l0

4nf
 

1
cos 19.844°

Hence

d =
589.59 * 10-9

4(1.472 9)
 

1
0.940 62

and  d = 1.064 * 10-7 m 

The minimum thickness is a mere

d = 106.4 nm
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The angle ui or equivalently ut, determined by the position of 
P, will in turn control d. The fringes appearing at points-P1  

and -P2 in Fig. 9.31 are known as fringes of equal inclination. 
(Problem 9.39 discusses some easy ways to see these fringes.) 
Keep in mind that each source point on the extended source is 
incoherent with respect to the others. When the image of the 
extended source is reflected in the surface, it will be seen to be 
banded with bright and dark fringes. Each of these is an arc of 
a circle centered on the intersection of a perpendicular drop ped 
from the eye to the film.

As the film becomes thicker, the separation AC between E1r
and E2r also increases, since

 AC = 2d tan ut [9.32]

When only one of the two rays is able to enter the pupil of 
the eye, the interference pattern will disappear. The larger lens 
of a telescope can then be used to gather in both rays, once 
again making the pattern visible. The separation can also be 
reduced by reducing ut and therefore ui, that is, by viewing  
the film at nearly normal incidence. The equal-inclination fringes 
that are seen in this manner for thick plates are known as 
Haidinger fringes, after the Austrian physicist Wilhelm 
Karl Haidinger (1795–1871). With an extended source, the 
symmetry of the setup requires that the interference pattern 
consists of a series of concentric circular bands centered on 
the perpendicular drawn from the eye to the film (Fig. 9.32). 
As the observer moves, the interference pattern follows along.

E1r

E

Hg lamp

Lens
Filter

Pinhole

n2 n1nf

E2r

Figure 9.29  Fringes seen on a small portion of the film.

E1r
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n2 n1nf

E2r

P3

P2

P1

Extended source

Figure 9.30  Fringes seen on a large region of the film.
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n2 n1
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Figure 9.31  All rays inclined at the same angle arrive at the same point.
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420 Chapter 9 Interference

a constant. In general, nƒ does not vary, so that the fringes cor-
respond to regions of constant film thickness. As such, they can 
be quite useful in determining the surface features of optical 
elements (lenses, prisms, etc.). For example, a surface to be ex-
amined may be put into contact with an optical flat.* The air in 
the space between the two generates a thin-film interference 
pattern. If the test surface is flat, a series of straight, equally 
spaced bands indicates a wedge-shaped air film, usually result-
ing from dust between the flats. Two pieces of plate glass sepa-
rated at one end by a strip of paper will form a satisfactory 
wedge with which to observe these bands.

Haidinger fringes can be seen in the ordinary window glass 
of a store front. Find one with a neon sign in the window and 
look out at the street, at night, very close to the glowing tube. 
You’ll see circular fringes centered on your eye floating off in 
the distance.

Fringes of Equal Thickness

A whole class of interference fringes exists for which the 
optical thickness, nƒd, is the dominant parameter rather than 
ui. These are referred to as fringes of equal thickness. Un-
der white-light illumination the iridescence of soap bubbles, 
oil slicks (a few wavelengths thick), and even oxidized metal 
surfaces is the result of variations in film thickness. Interfer-
ence bands of this kind are analogous to the constant-height 
contour lines of a topographical map. Each fringe is the lo-
cus of all points in the film for which the optical thickness is 

*A surface is said to be optically flat when it deviates by not more than about l>4 
from a perfect plane. In the past, the best flats were made of clear fused quartz. 
Now glass-ceramic materials (e.g., CERVIT) having extremely small thermal coef-
ficients of expansion (about one-sixth that of quartz) are available. Individual flats 
of l>200 or a bit better can be made.

Lens

Viewing
screen (retina, ground glass)

Circular fringes

Extended source

Beam-
splitter

Black background
Dielectric �lm

Figure 9.32  Circular Haidinger fringes centered 
on the lens axis.
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The centers of the bright fringes, the maxima, occur at distances 
from the apex given by lƒ>4a, 3lƒ>4a, and so on, and consecu-
tive fringes are separated by a distance ∆x, given by

 ∆x = lƒ>2a (9.40)

The larger a is, the finer are the fringes (Fig. 9.34).
Notice that the difference in film thickness between adjacent 

maxima is simply lƒ>2. Since the beam reflected from the  lower  
surface traverses the film twice (ui ≈ ut ≈ 0), adjacent maxima 
differ in optical path length by lf ·  Note, too, that the film thick-
ness at the various maxima is given by

 dm = (m + 1
2) 
lƒ

2
 (9.41)

which is an odd multiple of a quarter wavelength. Traversing 
the film twice yields a phase shift of p, which, when added to 
the shift of p resulting from reflection, puts the two rays back 
in-phase.

EXAMPLE 9.6

A wedge-shaped air film, as in Fig. 9.33, is illuminated by  
yellow sodium light (l0 = 589.3 nm, the center of the doublet). 
The center of the 173rd maximum will be how far from the apex 
if the wedge angle is 0.50°?

SOLUTION 

We could use either

xm =
(m + 1

2)lf

2a
where m = 0, 1, 2, cor

xm′ =
(m′ - 1

2)lf

2a

where m′ = 1, 2, 3, c. In both cases we’ll need a in radians:

a = ap rad
180°

b 0.50° = 8.727 * 10-3 rad

When viewed at nearly normal incidence in the manner il-
lustrated in Fig. 9.33, the contours arising from a nonuniform 
film are called Fizeau fringes. For a thin wedge of small angle 
a, the optical path length difference between two reflected rays 
may be approximated by Eq. (9.33), where d is the thickness at 
a particular point, that is,

 d = xa (9.38)

For small values of ui the condition for an interference maxi-
mum becomes

(m + 1
2)l0 = 2nƒdm

or (m + 1
2)l0 = 2axmnƒ 

Here, m = 0, 1, 2, 3, . . . , and the first bright fringe is the zeroth 
(m = 0) maximum. It lies adjacent to the dark fringe at the 
apex, where a film of zero thickness reflects no light. If you 
like, you can rewrite this last equation as (m′ - 1

2)l0 = 2axm′nƒ, 
where now m′ = 1, 2, 3, c. Although not traditional, this for-
mulation has the virtue that the 200th fringe occurs when 
m′ = 200 rather than when m = 199.

Since nƒ = l0>lƒ, xm may be written as 

 xm = am + 1
2

2a
b lƒ (9.39)

E2r

n1

n2

nf

a

E1r

E

x

Extended
source Beamsplitter

Spacer

Figure 9.33  Fringes from a wedge-shaped film.

a

∆x

Figure 9.34  Fringes caused by a wedge-shaped film between two sheets 
of flat glass at an angle a. The seperation between successive maxima is 
∆ x = lƒ>2a. As a S 0 there are fewer fringes and these get wider and 
wider until they vanish altogether.

Continued
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422 Chapter 9 Interference

Consequently,

xm = x172 =
(172 + 1

2) 589.3 * 10-9

2(8.727 * 10-3)
= 5.8 mm

or

xm′ = x173 =
(173 - 1

2) 589.3 * 10-9

2(8.727 * 10-3)
= 5.8 mm

The accompanying photo shows a soap film held vertically 
so that it settles into a wedge shape under the influence of grav-
ity. When illuminated with white light, the bands are various 
colors. The black region at the top is a portion where the film is 
less than lƒ>4 thick. Twice this, plus an additional shift of lƒ>2 
due to the reflection, is less than a whole wavelength. The re-
flected rays are therefore out-of-phase. As the thickness de-
creases still further, the total phase difference approaches p. 
The irradiance at the observer goes to a minimum (Eq. 9.16), 
and the film appears black in reflected light.*

Press two well-cleaned microscope slides together. The en-
closed air film will usually not be uniform. In ordinary room 
light a series of irregular, colored bands (fringes of equal thick-
ness) will be clearly visible across the surface. The thin glass 
slides distort under pressure, and the fringes move and change 
accordingly. Tape two slides together with transparent (matt-
surfaced) tape. It will scatter light and make the reflected fringes 
more easily seen.

If the two pieces of glass are forced together at a point, as 
might be done by pressing on them with a sharp pencil, a series 
of concentric, nearly circular, fringes is formed about that 

Fringes created by an air film between two microscope slides. (E.H.)

†Robert Hooke (1635–1703) and Isaac Newton independently studied a whole 
range of thin-film phenomena, from soap bubbles to the air film between lenses. 
Quoting from Newton’s Opticks:

I took two Object-glasses, the one a Planoconvex for a fourteen Foot 
Telescope, and the other a large double Convex for one of about fifty Foot; 
and upon this, laying the other with its plane side downwards, I pressed 
them slowly together to make the Colours successfully emerge in the 
middle of the Circles.

Newton’s rings with two microscope slides. The thin film of air between the 
slides creates the interference pattern. (E.H.)

*The relative phase shift of p between internal and external reflection is required 
if the reflected flux density is to go to zero smoothly, as the film gets thinner and 
finally disappears.

A wedge-shaped film made of liquid dishwashing soap. (E.H.)

point. Known as Newton’s rings†, this pattern is more pre-
cisely examined with the arrangement of Fig. 9.35. Here a lens 
is placed on an optical flat and illuminated at normal incidence 
with quasimonochromatic light. The amount of uniformity in 
the concentric circular pattern is a measure of the degree of 
perfection in the shape of the lens. With R as the radius of 
curvature of the convex lens, the relation between the distance 
x and the film thickness d is given by

x2 = R2 - (R - d)2

or more simply by

x2 = 2Rd - d2

Since R 7 7  d, this becomes

x2 = 2Rd
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Assume that we need only examine the first two reflected 
beams E1r and E2r. The mth-order interference maximum will 
occur in the thin film when its thickness is in accord with the 
relationship

2nƒdm = (m + 1
2)l0

The radius of the mth bright ring is therefore found by combin-
ing the last two expressions to yield

[bright rings] xm = [(m + 1
2)lƒR]1>2 (9.42)

Here, m = 0, 1, 2, 3, . . . and the first, innermost, bright ring 
corresponds to m = 0. If you’d like the first maximum to arise 
when m′ = 1 you can write Eq. (9.42) as 

xm′ = [(m′ - 1
2)lf R]

1
2

Interference from the thin air film between a convex lens and the flat sheet 
of glass it rests on. The illumination was quasimonochromatic and the fringes 
were in transmitted light. Such fringes were first studied in depth by Newton 
and are known as Newton’s rings. (E.H.)

(a)

Figure 9.35  (a) Newton’s rings in reflected light. (b) A standard setup to 
observe Newton’s rings in reflected light. 

E

Quasimonochromatic
point source

Beamsplitter
(glass plate)Collimator lens

Optical 	at

Black surface

(b)

nf dx

E2r
E1r

R
(R – d)

Similarly, the radius of the mth dark ring is

[dark rings] xm = (mlƒR)1>2 (9.43)

where m = 0, 1, 2, . . . , and the central dark circle (in reflected 
light) corresponds to m = 0. Then the first dark ring arises for 
m = 1, the second for m = 2, and so forth.

If the two pieces of glass are in good contact (no dust), the 
central fringe at that point (x0 = 0) will clearly be a minimum 
in irradiance, an understandable result, since d goes to zero at 
that point. In transmitted light, the observed pattern will be 
the complement of the reflected one discussed above, so that 
the center will now appear bright (as in the accompanying 
photo).

As the fringe circles get larger—that is, as xm gets larger—
the fringes become narrower and closer. To see that, form 
dxm>dm:

2xm 
dxm

dm
= Rlƒ  or  

dxm

dm
=

Rlƒ

2xm

Thus, the bigger xm is, the faster it changes with m.
Newton’s rings, which are Fizeau fringes, can be distin-

guished from the circular pattern of Haidinger’s fringes by the 
manner in which the diameters of the rings vary with the order m. 
The central region in the Haidinger pattern corresponds to the 
maximum value of m (Problem 9.38), whereas just the opposite 
applies to Newton’s rings.
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424 Chapter 9 Interference

As in Figs. 9.26b and 9.31, rays reflect back from the top and 
bottom of the film, and since that’s wasted light we’d like those 
rays to emerge 180° out-of-phase and cancel. The simplest possi-
bility is to arrange things so that ns 7 nf 7 n0 whereupon all the 
reflections are external and there will not be any additional phase 
shifts. We make the film a quarter of a wavelength (h = lf>4) 
thick, and the two reflected waves will then, to some extent, can-
cel. Of course, only if the amplitudes of the two reflected waves 
are nearly equal will they come close to completely canceling. For 
that to be the case, assuming the light is not multiply reflected in 
the film, Eq. (4.47) tells us that (nf - n0)>(nf + n0) must equal 
(ns -  nf)>(ns + nf). And so the second condition that should be 
met by our antireflection film is that

nf = (n0 ns)
1>2

[This is the equivalent of Eq. (9.102).]
Accordingly, for a substrate of glass (ns = 1.50) in air 

(n0 = 1.00) the film should have an index of nƒ = 1.22. Then 
from Eq. (4.47) the reflectance from each film interface will be 
≈0.98%, or in total ≈2%, compared to the bare glass top-surface 
reflectance of ≈4%. Alas, there is no suitable dielectric with an 
index of precisely 1.22, so we usually make do with magnesium 
fluoride (MgF2), which is a wear-resistant, easily vapor depos-
ited, transparent material of index 1.38.

EXAMPLE 9.8 

A spectacle lens made of ophthalmic crown glass has an index 
of 1.532 in 555 nm yellow-green light. It is to be front-coated 
with a single-layer antireflection film of magnesium fluoride of 
index 1.38 so it efficiently passes that wavelength. What mini-
mum thickness should the film have? What color will the lens 
appear in reflection when illuminated by white light?

SOLUTION 

The film thickness h is determined by 

h = lf>4

where lf = l0>nf  and so

h = l0>4nf = (555 nm)>4(1.38) = 101 nm

The film will reflect the complementary color to the one it passes, 
and that’s a blue-rich magenta.

9.4.2 Mirrored Interferometers

The Michelson Interferometer

There are a good number of amplitude-splitting interferometers 
that utilize arrangements of mirrors and beamsplitters. By far the 
best known and historically the most important of these is the 
Michelson Interferometer. Its configuration is illustrated in 
Fig. 9.36. An extended source (e.g., a diffusing ground-glass 

EXAMPLE 9.7

A convex lens rests on an optical flat in a dust-free setup in 
air. It is illuminated by green light from a mercury discharge at 
546.07 nm. If the radius of curvature of the lens is 20.0 cm, how 
far from its center will we find the 10th bright fringe?

SOLUTION 

We know that

xm = [(m + 1
2)lf R]1>2

or better still

xm′ = [(m′ - 1
2)lf R]1>2

where m′ = 10. Thus

xm′ = [(10 - 1
2)(546.07 * 10-9)(20.0 * 10-2)]1>2

and

xm′ = 1.02 mm

An optical shop, in the business of making lenses, will have a 
set of precision spherical test plates or gauges. A designer can 
specify the surface accuracy of a new lens in terms of the num-
ber and regularity of the Newton rings that will be seen with a 
particular test gauge. The use of test plates in the manufacture of 
high-quality lenses, however, is giving way to far more sophisti-
cated techniques involving laser interferometers (Section 9.8.2).

A Single-Layer Antireflection Coating

Today most lenses, from camera lenses to eyeglasses, are coat-
ed with one or more layers of thin transparent dielectrics in or-
der to control surface reflections. These films are commonly 
referred to as antireflection coatings. Invented at the Carl Zeiss 
Corporation in 1935, antireflection coats are so effective at im-
proving the efficiency of multielement visual devices—like 
telescopic sights, binoculars, and periscopes—that, at the time, 
the German military tried to keep the technique secret for as 
long as they could. We’ll treat the subject in considerable detail 
later in Section 9.7.2. Here, as an introduction for those likely to 
skip that more mathematical analysis, we explore the simpler 
case of a single antireflection coating.

Consider a dielectric film of index nƒ layered on top of a 
substrate (of glass or some other optical material) of index ns. 
Assume the surrounding medium (usually air) has an index of 
n0, and limit the treatment to the common case of near-normal 
incidence, that is, light coming, more or less, straight into the 
device. Recall from the Fresnel Equations, and Eq. (4.47) in 
particular, that the greater the substrate index is—compared to 
the index of air—the greater will be the amount of light reflect-
ed from the bare air–glass interface. So, high-index lenses are 
especially in need of coating. 
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To understand how fringes are formed, refer to the con-
struction shown in Fig. 9.37, where the physical components 
are represented more as mathematical surfaces. An observer at 
the position of the detector will simultaneously see both mir-
rors M1 and M2 along with the source g  in the beamsplitter. 
We can redraw the interferometer as if all the elements were in 
a straight line. Here M1′ corresponds to the image of mirror 
M1 in the beamsplitter, and g  has been swung over in line 
with O and M2. The positions of these elements in the diagram 
depend on their relative distances from O (e.g., M1′ can be in 
front of, behind, or coincident with M2 and can even pass 
through it). The surfaces g1 and g2 are the images of the 
source g  in mirrors M1 and M2, respectively. Now consider a 
single point-S on the source emitting light in all directions; 
let’s follow the course of one emerging ray. In actuality a wave 
from S will be split at O, and its segments will thereafter be 
reflected by M1 and M2. In our schematic diagram we repre-
sent this by reflecting the ray off both M2 and M1′. To an ob-
server at D, the two reflected rays will appear to have come 
from the image points-S1 and -S2. [ Note that all rays shown in 
(a) and (b) of Fig. 9.37 share a common plane-of-incidence.] 
For all practical purposes, S1 and S2 are coherent point sources, 
and we can anticipate a flux-density distribution obeying  
Eq. (9.14). 

plate illuminated by a discharge lamp) emits a wave, part of 
which travels to the right. The beamsplitter at O divides the 
wave into two, one segment traveling to the right and one up 
into the background. The two waves are reflected by mirrors-M1 
and -M2 and return to the beamsplitter. Part of the wave coming 
from M2 passes through the beamsplitter going downward, and 
part of the wave coming from M1 is deflected by the beamsplit-
ter toward the detector. The two waves are united, and interfer-
ence can be expected.

Notice that one beam passes through O three times, whereas 
the other traverses it only once. Consequently, each beam will 
pass through equal thicknesses of glass only when a compensator 
plate C is inserted in the arm OM1. The compensator is an exact 
duplicate of the beamsplitter, with the exception of any possible 
silvering or thin film coating on the beamsplitter. It is positioned 
at an angle of 45°, so that O and C are parallel to each other. With 
the compensator in place, any optical path difference arises from 
the actual path difference. In addition, because of the dispersion 
of the beamsplitter, the optical path is a function of l. Accord-
ingly, for quantitative work, the interferometer without the com-
pensator plate can be used only with a quasimonochromatic 
source. The inclusion of a compensator negates the effect of dis-
persion, so that even a source with a very broad bandwidth will 
generate discernible fringes.

(b)

G
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M1
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M2

(a)

Figure 9.36  The Michelson Interferometer. (a) Circular fringes are cen-
tered on the lens. (b) Top view of the interferometer showing the path of 
the light. (c) A wedge fringe pattern was distorted when the tip of a hot 
soldering iron was placed in one arm. Observe the interesting perceptual 
phenomenon whereby the region corresponding to the iron’s tip appears 
faintly yellow. (E.H.)

(c)
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426 Chapter 9 Interference

fringe system of its own. Note, too, that since 2d cos um must be 
less than the coherence length of the source, it follows that laser 
light will be particularly easy to use in demonstrating the inter-
ferometer (see Section 9.5). This point would be made strik-
ingly evident were we to compare the fringes produced by laser 
light with those generated by “white” light from an ordinary 
tungsten bulb or a candle. In the latter case, the path difference 
must be very nearly zero, if we are to see any fringes at all, 
whereas in the former instance a difference of 10 cm has little 
noticeable effect.

As the figure shows, the optical path difference for these rays 
is nearly 2d cos u, which represents a phase difference of 
k02d cos u. There is an additional phase term arising from the 
fact that the wave traversing the arm OM2 is internally reflected 
in the beamsplitter, whereas the OM1-wave is externally reflected 
at O. If the beamsplitter is simply an uncoated glass plate, the 
relative phase shift resulting from the two reflections will be p 
radians. Destructive, rather than constructive, interference will 
then exist when

 2d cos um = ml0 (9.44)

where m is an integer. If this condition is fulfilled for the point-S, 
then it will be equally well fulfilled for any point on g  that lies 
on the circle of radius O′S, where O′ is located on the axis of 
the detector. If the embedding medium is not vacuum, l0 in  
Eq. (9.44) must be replaced by l for that material. 

As illustrated in Fig. 9.38, an observer will see a circular 
fringe system concentric with the central axis of her eye’s lens. 
Because of the small aperture of the eye, the ob server will not 
be able to see the entire pattern without the use of a large lens 
near the beamsplitter to collect most of the emergent light.

If we use a source containing a number of frequency compo-
nents (e.g., a mercury discharge lamp), the dependence of um on 
l0, in Eq. (9.44) requires that each such component generate a 

(a)

(b)
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Figure 9.37  A conceptual  
rearrangement of the Michelson 
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Figure 9.38  Formation of circular fringes.
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Since um K up, both are just the half-angle subtended at the de-
tector by the particular ring, and since m = m0 - p, Eq. (9.47) is 
equivalent to Eq. (9.44). The new form is somewhat more conve-
nient, since (using the same example as above) with d = 10 cm, 
the sixth dark ring can be specified by stating that p = 6, or in 
terms of the order of the pth ring, that m = 399 994. If up is small,

cos up = 1 -
u2

p

2

and Eq. (9.47) yields

 up = apl0

d
b

1>2
 (9.48)

for the angular radius of the pth fringe.
The construction of Fig. 9.37 represents one possible con-

figuration, the one in which we consider only pairs of parallel 
emerging rays. Since these rays do not actually meet, they can-
not form an image without a condensing lens of some sort. In-
deed, that lens is most often provided by the observer’s eye fo-
cused at infinity. The resulting fringes of equal inclination 
(um = constant) located at infinity are also Haidinger fringes. 
A comparison of Figs. 9.37b and 9.3a, both showing two coher-
ent point sources, suggests that in addition to these (virtual) 
fringes at infinity, there might also be (real) fringes formed by 
converging rays. These fringes do in fact exist. Hence, if you 
illuminate the interferometer with a broad source and shield out 
all extraneous light, you can easily see the projected pattern on 
a screen in a darkened room (see Section 9.5). The fringes will 
appear in the space in front of the interferometer (i.e., where the 
detector is shown), and their size will increase with increasing 
distance from the beamsplitter. We will consider the (real) 
fringes arising from point-source illumination a little later on.

When the mirrors of the interferometer are inclined with re-
spect to each other, making a small angle (i.e., when M1 and M2 
are not quite perpendicular), Fizeau fringes are observed. The 
resultant wedge-shaped air film between M2 and M1′ creates a 
pattern of straight parallel fringes. The interfering rays appear to 
diverge from a point behind the mirrors. The eye would have to 
focus on this point in order to make these localized fringes ob-
servable. It can be shown analytically* that by appropriate ad-
justment of the orientation of the mirrors-M1 and -M2, fringes 
can be produced that are straight, circular, elliptical, parabolic, 
or hyperbolic—this holds as well for the real and virtual fringes.

The Michelson Interferometer can be used to make extremely 
accurate length measurements. As the moveble mirror is displaced 
by l0>2, each fringe will move to the position previously occupied 
by an adjacent fringe. Using a microscope arrangement, one 
need only count the number of fringes N, or portions thereof, 
that have moved past a reference point to determine the distance 
traveled by the mirror ∆d, that is,

∆d = N(l0>2)

An interference pattern in quasimonochromatic light typi-
cally consists of a large number of alternatively bright and dark 
rings. A particular ring corresponds to a fixed order m. As M2 is 
moved toward M′1, d decreases, and according to Eq. (9.44), 
cos um increases while um therefore decreases. The rings shrink 
toward the center, with the highest-order one disappearing 
whenever d decreases by l0>2. Each remaining ring broadens 
as more and more fringes vanish at the center, until only a few 
fill the whole screen. By the time d = 0 has been reached, the 
central fringe will have spread out, filling the entire field of 
view. With a phase shift of p resulting from reflection off the 
beamsplitter, the whole screen will then be an interference min-
imum. (Lack of perfection in the optical elements can render 
this unobservable.) Moving M2 still farther causes the fringes to 
reappear at the center and move outward.

Notice that a central dark fringe for which um = 0 in Eq. 
(9.44) can be represented by

 2d = m0l0 (9.45)

(Keep in mind that this is a special case. The central region 
might correspond to neither a maximum nor a minimum.) Even 
if d is 10 cm, which is fairly modest in laser light, and  
l0 = 500 nm, m0 will be quite large, namely, 400 000. At a fixed 
value of d, successive dark rings will satisfy the expressions

2d cos u1 = (m0 - 1)l0

2d cos u2 = (m0 - 2)l0

f

 2d cos up = (m0 - p)l0 (9.46)

The angular position of any ring, for example, the pth ring, is 
determined by combining Eqs. (9.45) and (9.46) to yield

 2d(1 - cos up) = pl0 (9.47)

*See, for example, Valasek, Optics, p. 135. 
Circular fringes created by a Michelson Interferometer using laser light.  
(J. Mavroudes, S. Ho, Dr. A. Karpf, and Professor G. N. Rao, Physics Department, Adelphi University.)
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428 Chapter 9 Interference

thereupon form interference fringes. The accompanying photo 
shows fringes produced by interfering sodium atoms first cooled 
to a few millionths of a kelvin above absolute zero. Because an 
atom’s de Broglie wavelength is a mere hundredth of a nanome-
ter or so, differences in path length of as little as a picometer can 
be detected.

Measuring Coherence Length

The Michelson Interferometer can also be used to determine the 
coherence length of a light source. Examine Fig. 9.39, in which 
three consecutive wavetrains (leading a long series of such 
trains that are not shown) head toward the beamsplitter. Each 
has a coherence length of around ∆lc but they are out-of-phase 
with one another by arbitrary amounts. These three trains will 
each be split (into primed and double-primed parts), with half 
their energy going toward M1 and half going toward M2. There-
after they’ll be reflected back to the beamsplitter and then sent 
on to the observer. When the two mirrors are about the same 
distance from the beamsplitter, d is roughly zero. The two 
streams of light arrive at the observer with wavetrain-A′ more or 
less completely overlapping wavetrain-A″, wavetrain-B′ more or 
less completely overlapping wavetrain-B″, and so on. Each pair 
of wavetrains (e.g., -A′ and -A″) has a sustained relative phase 
relationship, and consequently wavetrain-A′ very effectively in-
terferes with wavetrain-A″, -B′ with -B″, and so forth. What re-
sults is a bright, sustained fringe pattern with plenty of contrast. 

As d is made to increase, wavetrain-A″ falls behind wavetrain-A′ 
and begins to partially overlap wavetrain-B′, just as B″ partially 
overlaps C′, and so forth all the way down the line back to the source. 
Any two trains (e.g., -A″ and -B′) can interfere, but since their rela-
tive phase-angle difference is arbitrary and different from that of 
wavetrain-A″ and -A′, their fringe pattern will differ, and the overall 
irradiance distribution will fade, losing contrast. When 2d equals 

Nowadays this can be done fairly easily by electronic means. 
Michelson used the method to measure the number of wave-
lengths of the red cadmium line corresponding to the standard 
meter in Sèvres near Paris.*

EXAMPLE 9.9

Imagine that a thin glass (ng = 1.520) sheet 0.050 mm thick is 
inserted into one arm of a Michelson Interferometer illuminated 
by yellow helium light (l0 = 587.56 nm). How many fringe-
pairs will thereupon be displaced?

SOLUTION 

A shift in path of l0>2 corresponds, because the apparatus is in 
air, to a shift in OPL of l0>2, and a displacement of one fringe-
pair. By inserting glass of thickness D—thereby replacing a 
sheet of air—we change the OPL by an amount 
Dng - Dnair = D(ng - 1). That’s traversed twice and corre-
sponds to a distance of Nl0, where N is the number of fringe-
pairs. Thus

2D(ng - 1) = Nl0

and

N =
2D(ng - 1)

l0
=

2(0.050 * 10-3)(0.520)

587.56 * 10-9

finally  N = 88.5 

The Michelson Interferometer can be used along with a few 
polaroid filters to verify the Fresnel–Arago Laws. A polarizer 
inserted in each arm will allow the optical path length differ-
ence to remain fairly constant, while the vector field directions 
of the two beams are easily changed.

A microwave Michelson Interferometer can be constructed 
with sheet-metal mirrors and a chicken-wire beamsplitter. With the 
detector located at the central fringe, it can easily measure shifts 
from maxima to minima as one of the mirrors is moved, thereby 
determining l. A few sheets of plywood, plastic, or glass inserted 
in one arm will change the central fringe. Counting the number of 
fringe shifts yields a value for the index of refraction, and from that 
we can compute the dielectric constant of the material.

Atomic Interferometers

In the early 1990s researchers in Germany and the United States 
developed the first atomic interferometers. Streams of atoms can 
be sheared in two using a laserbeam. Following different paths 
these streams are subsequently made to converge, overlap, and 

*A discussion of the procedure he used to avoid counting the 3 106 327 fringes 
directly can be found in Strong, Concepts of Classical Optics, p. 238, or Williams, 
Applications of Interferometry, p. 51.

Fringes formed by two overlapping beams of sodium atoms. (National Institute of 

Standards and Technology)
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used, in a somewhat altered yet conceptually similar form, to 
obtain electron interference fringes.*

An object interposed in one beam will alter the optical path 
length difference, thereby changing the fringe pattern. A com-
mon application of the device is to observe the density varia-
tions in gas-flow patterns within research chambers (wind tun-
nels, shock tubes, etc.). One beam passes through the optically 
flat windows of the test chamber, while the other beam traverses 
appropriate compensator plates. The beam within the chamber 
will propagate through regions having a spatially varying index 
of refraction. The resulting distortions in the wavefront gener-
ate the fringe contours. A particularly nice application is shown 
in Fig. 9.41, which depicts the magnetic compression device 

∆lc, the average wavetrain length, the interference pattern will van-
ish altogether.

The Mach–Zehnder Interferometer

The Mach–Zehnder Interferometer is another amplitude-splitting 
device. As shown in Fig. 9.40, it consists of two beamsplitters 
and two totally reflecting mirrors. The two waves within the ap-
paratus travel along separate paths. A difference between the 
optical paths can be introduced by a slight tilt of one of the 
beamsplitters. Since the two paths are separated, the interferom-
eter is relatively difficult to align. For the same reason, however, 
the interferometer finds myriad applications. It has even been 
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Figure 9.40  The Mach–Zehnder Interferometer.
*L. Marton, J. Arol Simpson, and J. A. Suddeth, Rev. Sci. Instr. 25, 1099 (1954), 
and Phys. Rev. 90, 490 (1953).

Scylla IV, an early setup for studying plasma. (University of California, U.S. 

Department of Energy)
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Figure 9.41 Schematic of Scylla IV.

Figure 9.39  How coherence length (∆lc) can be measured with a 
Michelson Interferometer.
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Interferogram without plasma. (University of California, Los Alamos National Security, LLC. 

All rights reserved.)

Interferogram with plasma. (University of California, Los Alamos National Security, LLC. 

All rights reserved.)

Mirror

Mirror

Detector
Detector

Beamsplitter

Source

(a) (b)

Figure 9.42  (a) A Sagnac Interferometer. (b) Another variation of the Sagnac Interferometer.

known as Scylla IV. It was used to study controlled thermonu-
clear reactions at the Los Alamos Scientific Laboratory.  
In this case, the Mach–Zehnder Interferometer appears in the 
form of a parallelogram. The two ruby laser interferograms, as 
these photographs are called, show the background pattern 
without a plasma in the tube and the density contours within the 
plasma during a reaction.

Sagnac Interferometer

Another amplitude-splitting device, which differs from the pre-
vious instrument in many respects, is the Sagnac Interferome-
ter. It is very easy to align and quite stable. An interesting ap-
plication of the device is discussed in the last section of this 
chapter, where we consider its use as a gyroscope. One form of 
the Sagnac Interferometer is shown in Fig. 9.42a and another in 

Fig. 9.42b; still others are possible. Notice that the main feature 
of the device is that there are two identical but oppositely di-
rected paths taken by the beams and that both form closed loops 
before they are united to produce interference. A deliberate 
slight shift in the orientation of one of the mirrors will produce 
a path length difference and a resulting fringe pattern. Since the 
beams are superimposed and therefore inseparable, the interfer-
ometer cannot be put to any of the conventional uses. These in 
general depend on the possibility of imposing variations on 
only one of the constituent beams.

Real Fringes

Before we examine the creation of real, as opposed to virtual, 
fringes, let’s first consider another amplitude-splitting interfer-
ometric device, the Pohl fringe-producing system, illustrated 
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source
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Figure 9.43  The Pohl Interferometer.

in Fig. 9.43. It is simply a thin transparent film illuminated by 
the light coming from a point source. In this case, the fringes 
are real and can accordingly be intercepted on a screen 
placed anywhere in the vicinity of the interferometer without a 
condensing-lens system. A convenient light source to use is a 
mercury lamp covered with a shield having a small hole (≈1

4 
inch diameter) in it. As a thin film, use a piece of ordinary mica 
taped to a dark-colored book cover, which serves as an opaque 
backing. If you have a laser, its remarkable coherence length 
and high flux density will allow you to perform this same ex-
periment with almost anything smooth and transparent. Expand 
the beam to about an inch or two in diameter by passing it 
through a lens (a focal length of 50 to 100 mm will do). Then 
just reflect the beam off the surface of a glass plate (e.g., a mi-
croscope slide), and the fringes will be evident within the illu-
minated disk wherever it strikes a screen.

The underlying physical principle involved with point-
source illumination for all four of the interferometric devices 
considered above can be appreciated with the help of a con-
struction, variations of which are shown in Figs. 9.44 and 

9.45.* The two vertical lines in Fig. 9.44, or the inclined ones 
in Fig. 9.45, represent either the positions of the mirrors or the 
two sides of the thin sheet in the Pohl Interferometer. Let’s as-
sume that point-P in the surrounding medium is a point at 
which there is constructive interference. A screen placed at that 
point would intercept this maximum, as well as a whole fringe 
pattern, without any condensing system. The coherent virtual 
sources emitting the interfering beams are mirror imag es S1 
and S2 of the actual point source S. It should be noted that this 
kind of real fringe pattern can be observed with both the  
Michelson and Sagnac Interferometers. If either device is illu-
minated with an expanded laserbeam, a real fringe pattern will 
be generated directly by the emerging waves. This is an  
extremely simple and beautiful demonstration.

S2 S1 S
2d d

u

B

P

Figure 9.44  Point-source illumination of parallel surfaces.
*A. Zajac, H. Sadowski, and S. Licht, “The Real Fringes in the Sagnac and the 
Michelson Interferometers,” Am. J. Phys. 29, 669 (1961).

S1

S2

S

B

P

Figure 9.45  Point-source illumination of inclined surfaces.
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432 Chapter 9 Interference

those that can be seen on a screen without the use of an addi-
tional focusing system. The rays forming these fringes converge 
to the point of observation, all by themselves. Virtual fringes 
cannot be projected onto a screen without a focusing system. In 
this case the rays obviously do not converge.

Nonlocalized fringes are real and exist everywhere within an 
extended (three-dimensional) region of space. The pattern is lit-
erally nonlocalized, in that it is not restricted to some small re-
gion. Young’s Experiment, as illustrated in Fig. 9.11, fills the 
space beyond the secondary sources with a whole array of real 
fringes. Nonlocalized fringes of this sort are generally produced 
by small sources, that is, point or line sources, be they real or 
virtual. In contrast, localized fringes are clearly observable only 
over a particular surface. The pattern is literally localized, 
whether near a thin film or at infinity. This type of fringe will 
always result from the use of extended sources but can be gen-
erated with a point source as well.

The Pohl Interferometer (Fig. 9.43) is particularly useful 
in illustrating these principles, since with a point source it 
will produce both real nonlocalized and virtual localized 
fringes. The real nonlocalized fringes (Fig. 9.46, upper half) 
can be intercepted on a screen almost anywhere in front of 
the mica film.

For the nonconverging rays, realize that since the aperture 
of the eye is quite small, it will intercept only those rays that 
are directed almost exactly at it. For this small pencil of rays, 
the eye, at a particular position, sees either a bright or dark 
spot but not much more. To perceive an extended fringe pat-
tern formed by parallel rays of the type shown in the bottom 
half of Fig. 9.46, a large lens will have to be used to gather in 

9.5  Types and Localization  
of Interference Fringes

Often it is important to know where the fringes produced in a 
given interferometric system will be located, since that is the 
region where we need to focus our detector (eye, camera, tele-
scope). In general, the problem of locating fringes is character-
istic of a given interferometer; that is, it has to be solved for 
each individual device.

Fringes can be classified, first, as either real or virtual and, 
second, as either nonlocalized or localized. Real fringes are 

Real Michelson fringes using He–Ne laser light. (E.H.)

S2 S S

P

P�

Figure 9.46  A parallel film. The rays are 
drawn neglecting refraction.

M09_HECH6933_05_GE_C09.indd   432 26/08/16   3:36 PM



 9.6 Multiple-Beam Interference 433

light entering at other orientations. In practice, however, the 
source is usually somewhat extended, and fringes can gener-
ally be seen by looking into the film with the eye focused at 
infinity. These virtual fringes are localized at infinity and are 
equivalent to the equal-inclination fringes of Section 9.4. 
Similarly, if the mirrors-M1 and -M2 in the Michelson Interfer-
ometer are parallel, the usual circular, virtual, equal-inclination 
fringes localized at infinity will be seen. We can imagine a 
thin air film between the surfaces of the mirrors-M2 and -M1 
acting to generate these fringes. As with the configuration of 
Fig. 9.43 for the Pohl device, real nonlocalized fringes will 
also be present.

The geometry of the fringe pattern seen in reflected light 
from a transparent wedge of small angle a is shown in Fig. 9.47. 
The fringe location P will be determined by the direction of 
incidence of the incoming light. Newton’s rings have this same 
kind of localization, as do the Michelson, Sagnac, and other 
interferometers for which the equivalent interference system 
consists of two reflecting planes inclined slightly to each other. 
The wedge setup of the Mach–Zehnder Interferometer is dis-
tinctive in that by rotating the mirrors, one can localize the re-
sulting virtual fringes on any plane within the region generally 
occupied by the test chamber (Fig. 9.48).

P

P

Region of
localization
(real fringes)

Region of localization
(virtual fringes)

S

a

Figure 9.47  Fringes formed by a wedge-shaped film.

Region of
localization

Figure 9.48  Fringes in the Mach–Zehnder Interferometer.

9.6 Multiple-Beam Interference

Thus far we have examined a number of situations in which 
two coherent beams are combined under diverse conditions to 
produce interference patterns. There are, however, circumstanc-
es under which a much larger number of mutually coherent 
waves are made to interfere. In fact, whenever the amplitude-
reflection coefficients, the r’s, for the parallel plate illustrated in 
Fig. 9.28 are not small, as was previously the case, the higher-
order reflected waves E$3r, E$4r, . . . become quite significant.  
A glass plate, slightly silvered on both sides so that the r’s ap-
proach unity, will generate a large number of multiply inter-
nally reflected rays. For the moment, we will consider only 
situations in which the film, substrate, and surrounding medi-
um are transparent dielectrics. This avoids the more compli-
cated phase changes resulting from metal-coated surfaces.

To begin the analysis as simply as possible, let the film be 
nonabsorbing and let n1 = n2. The notation will be in accord 
with that of Section 4.10; the amplitude-transmission coeffi-
cients are represented by t, the fraction of the amplitude of a 
wave transmitted on entering into the film, and t′, the fraction 
transmitted when a wave leaves the film. The rays are actually 
lines drawn perpendicular to the wavefronts and therefore are 
also perpendicular to the optical fields E$1r, E$2r, and so forth. 
Since the rays will remain nearly parallel, the scalar theory will 
suffice as long as we are careful to account for any possible 
phase shifts. 

As shown in Fig. 9.49, the scalar amplitudes of the reflected 
waves E$1r, E$2r, E$3r, . . . , are, respectively, E0r, E0tr′t′, 
E0tr′3t′, . . . , where E0 is the amplitude of the initial incoming 
wave and r = -r′ via Eq. (4.89). The minus sign indicates a 
phase shift, which we will consider later. Similarly, the trans-
mitted waves E$1t, E$2t, E$3t, . . . will have amplitudes E0tt′, 
E0tr′2t′, E0tr′4t′, . . . . Consider the set of parallel reflected 
rays. Each ray bears a fixed phase relationship to all the other 
reflected rays. The phase differences arise from a combination 
of optical path length differences and phase shifts occurring at 
the various reflections. Nonetheless, the waves are mutually 
coherent, and if they are collected and brought to focus at a 
point-P by a lens, they will all interfere. The resultant irradi-
ance  expression has a particularly simple form for two special 
cases.

The difference in optical path length between adjacent rays 
is given by

 Λ = 2nƒ d cos ut [9.33]

All the waves except for the first, E$1r, undergo an odd num-
ber of reflections within the film. It follows from Fig. 4.49 
that at each internal reflection the component of the field par-
allel to the plane-of-incidence changes phase by either 0 or p, 
de pend ing on the internal incident angle ui 6 uc. The compo-
nent of the field perpendicular to the plane-of-incidence suf-
fers no change in-phase on internal reflection when ui 6 uc. 
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Clearly, then, no relative change in-phase among these waves 
results from an odd number of such reflections (Fig. 9.50). 
As the first special case, if Λ = ml, the second, third, fourth, 
and successive waves will all be in-phase at P. The wave E$1r, 
however, because of its reflection at the top surface of the 
film, will be out-of-phase by 180° with respect to all the other 
waves. The phase shift is embodied in the fact that r = -r′ 
and r′ occurs only in odd powers. The sum of the scalar am-

n2 = n1 n1

E0

E0r

nf

P�

P

E0tr�t�

E0tr�

E0t

E0tt�
E0tr�3t�

E0tr�5t�
E0tt�r�2

E0tr�2

E0tr�3

E0tr�4
E0tr�5

E0tt�r�4

Figure 9.49  Multiple-beam interference from a parallel film.
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Figure 9.50  Phase shifts arising purely from the reflections  
(internal ui 6 up

′ ).

plitudes, that is, the total reflected amplitude at point-P, is 
then

E0r = E0r - (E0trt′ + E0tr3t′ + E0tr5t′ + g)

or E0r = E0r - E0trt′(1 + r2 + r4 + g) 

where since Λ = ml, we’ve just replaced r′ by -r. The geomet-
ric series in parentheses converges to the finite sum 1>(1 - r2) 
as long as r2 6 1, so that

 E0r = E0r -
E0trt′

(1 - r2)
 (9.49)

It was shown in Section 4.10, when we considered Stokes’s 
treatment of the principle of reversibility (Eq. 4.86), that 
tt′ = 1 - r2, and it follows that

E0r = 0

Thus when Λ = ml the second, third, fourth, and successive 
waves exactly cancel the first reflected wave, as shown in  
Fig. 9.51. In this case no light is reflected; all the incoming  
energy is transmitted. The second special case arises when 
Λ = (m + 1

2)l. Now the first and second rays are in-phase, and 
all other adjacent waves are l>2 out-of-phase; that is, the sec-
ond is out-of-phase with the third, the third is out-of-phase with 
the fourth, and so on. The resultant scalar amplitude is then

E0r = E0r + E0trt′ - E0tr3t′ + E0tr5t′ - g

or E0r = E0r + E0rtt′(1 - r2 + r4 - g) 
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The terms d, 2d, . . . , (N - 1)d are the contributions to the 
phase arising from an optical path length difference between 
adjacent rays (d = k0Λ). There is an additional phase contribution 
arising from the optical distance traversed in reaching point-P, but 
this is common to each ray and has been omitted. The relative 
phase shift undergone by the first ray as a result of the reflection 
is embodied in the quantity r′. The resultant reflected scalar 
wave is then

E  ˜r = E  ˜1r + E  ˜2r + E  ˜3r +  g + E  ˜Nr

or upon substitution (Fig. 9.53)

 E ˜r = E0reivt + E0tr′t′ei(vt -d) +  g + E0tr′(2N - 3)t′

 * ei[vt - (N - 1)d]

This can be rewritten as

E  ˜r = E0eivt5r + r′tt′e-id[1 + (r′2e-id)

+ (r′2e-id)2 + g +  (r′2e-id)N - 2]6
If � r′2e-id � 6 1, and if the number of terms in the series ap-
proaches infinity, the series converges. The resultant wave becomes

 E  ˜r = E0eivt cr +
r′tt′e-id

1 - r′2e-idd  (9.51)

In the case of zero absorption, no energy being taken out of the 
waves, we can use the relations r = -r′ and tt′ = 1 - r2 to 
rewrite Eq. (9.51) as

E  ˜r = E0eivt cr (1 - e-id)

1 - r2e-id d

The reflected flux density at P is then Ir = E ˜rE ˜r*>2, that is,

Ir =
E2

0r2(1 - e-id)(1 - e+id)

2(1 - r2e-id)(1 - r2e+id)

which can be transformed into

 Ir = Ii 
2r2(1 - cos d)

(1 + r4) - 2r2 cos d
 (9.52)

The series in parentheses is equal to 1>(1 + r2), in which case

E0r = E0r c1 +
tt′

(1 + r2)
d

Again, tt′ = 1 - r2; therefore, as illustrated in Fig. 9.52,

E0r =
2r

(1 + r2)
 E0

Since this particular arrangement results in the addition of the 
first and second waves, which have relatively large amplitudes, 
it should yield a large reflected flux density. The irradiance is 
proportional to E2

0r>2, so from Eq. (3.44)

 Ir =
4r2

(1 + r2)2 aE2
0

2
b (9.50)

That this is in fact the maximum, (Ir)max, will be shown later.
We will now consider the problem of multiple-beam inter-

ference in a more general fashion, making use of the complex 
representation. Again let n1 = n2, thereby avoiding the need to 
introduce different reflection and transmission coefficients at 
each interface. The optical fields at point-P are given by

E  ˜1r = E0reivt

E  ˜2r = E0tr′t′ei(vt -d)

E  ˜3r = E0tr′3t′ei(vt - 2d)

f

E  ˜Nr = E0tr′(2N - 3)t′ei[vt - (N - 1)d]

where E0eivt is the incident wave.

E0r = 0 (Resultant amplitude)

6

5
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2

1

Figure 9.51  Phasor diagram.

(Resultant amplitude)      E0r

6

7

5

4

3

2

1

Figure 9.52  Phasor diagram.
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Figure 9.53  Phasor diagram.
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Under these conditions, Eq. (9.52) indicates that

(Ir)min = 0

as we would expect from Eq. (9.57). Again, from Eq. (9.54) it is 
clear that a minimum transmitted flux density will exist when 
the denominator is a maximum, that is, when cos d = -1. In 
that case d = (2m + 1)p and

 (It)min = Ii 
(1 - r2)2

(1 + r2)2 (9.58)

The corresponding maximum in the reflected flux density is

 (Ir)max = Ii 
4r2

(1 + r2)2 (9.59)

Notice that the constant-inclination fringe pattern has its maxima 
when d = (2m + 1)p or

4pnf

l0
 d cos ut = (2m + 1)p

which is the same as the result we arrived at previously, in 
Eq. (9.36), by using only the first two reflected waves. Note, 
too, that Eq. (9.59) verifies that Eq. (9.50) was indeed a 
maximum.

The form of Eqs. (9.55) and (9.56) suggests that we intro-
duce a new quantity, the coefficient of finesse F, such that

 F K a 2r

1 - r2b
2

 (9.60)

whereupon these equations can be written as

 
Ir

Ii
=

F sin2 (d>2)

1 + F sin2 (d>2)
 (9.61)

and 
It

Ii
=

1

1 + F sin2 (d>2)
 (9.62)

The term [1 + F sin2 (d>2)]-1 K �(u) is known as the Airy 
function. It represents the transmitted flux-density distribu-
tion and is plotted in Fig. 9.54. The complementary function 
[1 - �(u)], that is, Eq. (9.61), is plotted as well, in Fig. 9.55. 
When d>2 = mp, the Airy function is equal to unity for all 
values of F and therefore r. When r approaches 1, the trans-
mitted flux density is very small, except within the sharp 
spikes centered about the points d>2 = mp. Multiple-beam 
interference has resulted in a redistribution of the energy den-
sity in comparison to the sinusoidal two-beam pattern (of 
which the curves corresponding to a small reflectance are 
reminiscent). This effect will be further demonstrated when 
we consider the diffraction grating. At that time we will see 
this same peaking effect, resulting from an increased number 

The symbol Ii = E0
2>2 represents the incident flux density, 

since, of course, E0 was the amplitude of the incident wave. 
Similarly, the amplitudes of the transmitted waves given by

E  ˜1t = E0tt′eivt

E  ˜2t = E0tt′r′2ei(vt -d)

E ˜3t = E0tt′r′4ei(vt - 2d)

f

E  ˜Nt = E0tt′r′2(N - 1)ei[v- (N - 1)d]

can be added to yield

 E  ˜t = E0 

eivt c tt′
1 - r2e-idd  (9.53)

(Because we are interested in the irradiance, a common factor 
of e-id>2, arising from the transmission through the film, was 
omitted. It contributes to the fact that there is a phase difference 
of p>2 between the reflected and transmitted waves, but that is 
of no concern here.)

Multiplying Eq. (9.53) by its complex conjugate yields 
(Problem 9.53) the irradiance of the transmitted beam

 It =
Ii(tt′)2

(1 + r4) - 2r2 cos d
 (9.54)

Using the trigonometric identity cos d = 1 - 2 sin2 (d>2),  
Eqs. (9.52) and (9.54) become

 Ir = Ii 
[2r>(1 - r2)]2 sin2 (d>2)

1 + [2r>(1 - r2)]2 sin2 (d>2)
 (9.55)

and It = Ii 
1

1 + [2r>(1 - r2)]2 sin2 (d>2)
  (9.56)

where energy is not absorbed, that is, tt′ + r2 = 1. If indeed 
none of the incident energy is absorbed, the flux density of the 
incoming wave should exactly equal the sum of the flux density 
reflected off the film and the total transmitted flux density 
emerging from the film. It follows from Eqs. (9.55) and (9.56) 
that this is indeed the case, namely,

 Ii = Ir - It (9.57)

This will not be true, however, if the dielectric film is coated 
with a thin layer of semitransparent metal. Surface currents in-
duced in the metal will dissipate a portion of the incident elec-
tromagnetic energy.

Consider the transmitted waves as described by Eq. (9.54). A 
maximum will exist when the denominator is as small as pos-
sible, that is, when cos d = 1, in which case d = 2pm and

(It)max = Ii
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This is the simplest configuration, and as we shall see, other 
forms are also widely in use. In practice, two semisilvered or 
aluminized glass optical flats form the reflecting boundary 
surfaces. The enclosed air gap generally ranges from several 
millimeters to several centimeters when the apparatus is used 
interferometrically, and often to considerably greater lengths 
when it serves as a laser resonant cavity. If the gap can be 
mechanically varied by moving one of the mirrors, it’s re-
ferred to as an interferometer. When the mirrors are held fixed 
and adjusted for parallelism by screwing down on some sort of 
spacer (invar or quartz is commonly used), it’s said to be an 
etalon (although it is still an interferometer in the broad 
sense). If the two surfaces of a single quartz plate are appro-
priately polished and silvered, it too will serve as an etalon; 
the gap need not be air. The unsilvered sides of the plates are 
often made to have a slight wedge shape (a few minutes of arc) 
to reduce the interference pattern arising from reflections off 
these sides. 

The etalon in Fig. 9.56 is shown illuminated by a broad 
source, which might be a mercury arc or a He–Ne laserbeam 
spread out in diameter to several centimeters. This can be done 
rather nicely by sending the beam into the back end of a tele-
scope focused at infinity. The light can then be made diffuse by 
passing it through a sheet of ground glass. Only one ray emitted 
from some point-S1 on the source is traced through the etalon. 
Entering by way of the partially silvered plate, it is multiply 
reflected within the gap. The transmitted rays are collected by a 
lens and brought to a focus on a screen, where they interfere to 
form either a bright or dark spot. Consider this particular plane-
of-incidence, which contains all the reflected rays. Any other 
ray emitted from a different point-S2, parallel to the original ray 
and in that plane-of-incidence, will form a spot at the same 
point-P on the screen. As we shall see, the discussion of the 
previous section is again applicable, so that Eq. (9.54) deter-
mines the transmitted flux density It. 

The multiple waves generated in the cavity, arriving at P 
from either S1 or S2, are coherent among themselves. But the 
rays arising from S1 are completely incoherent with respect to 
those from S2, so that there is no sustained mutual interference. 
The contribution to the irradiance It at P is just the sum of the 
two irradiance contributions.

of coherent sources contributing to the interference pattern. 
Remember that the Airy function is, in fact, a function of ut or 
ui by way of its dependence on d, which follows from Eqs. 
(9.34) and (9.35), ergo the notation �(u). Each spike in the 
flux-density curve corresponds to a particular d and therefore 
a particular ui. For a plane-parallel plate, the fringes, in trans-
mitted light, will consist of a series of narrow bright rings on 
an almost completely dark background. In reflected light, the 
fringes will be narrow and dark on an almost uniformly bright 
background.

Constant-thickness fringes can also be made sharp and nar-
row by applying a light silver coating to the relevant reflecting 
surfaces to produce multiple-beam interference.

9.6.1 The Fabry–Perot Interferometer

The multiple-beam interferometer, first constructed by Charles 
Fabry and Alfred Perot in the late 1800s, is of considerable con-
temporary interest. Besides being a spectroscopic device of ex-
tremely high resolving power, it serves as the basic laser reso-
nant cavity. In principle, the device consists of two plane, 
parallel, highly reflecting surfaces separated by some distance d. 
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Figure 9.54  Airy function.
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438 Chapter 9 Interference

One further complication introduced by the metallic films is an ad-
ditional phase shift f(ui), which can differ from either zero or p. 
The phase difference between two successively transmitted 
waves is then

 d =
4pnƒ

l 0
 d cos ut + 2f (9.64)

For the present conditions, ui is small and f may be considered 
to be constant. In general, d is so large, and l0 so small, that f 
can be neglected. We can now express Eq. (9.54) as

It

Ii
=

T2

1 + R2 - 2R cos d

or equivalently

 
It

Ii
= a T

1 - R
b

2 1

1 + [4R>(1 - R)2] sin2 (d>2)
 (9.65)

Making use of Eq. (9.63) and the definition of the Airy func-
tion, we obtain

 
It

Ii
= c1 -

A
(1 - R)

d
2

 �(u) (9.66)

All the rays incident on the gap at a given angle will result in 
a single circular fringe of uniform irradiance (Fig. 9.57). With a 
broad diffuse source, the interference bands will be narrow con-
centric rings, corresponding to the multiple-beam transmission 
pattern.

The fringe system can be observed visually by looking di-
rectly into the etalon, while focusing at infinity. The job of the 
focusing lens, which is no longer needed, is done by the eye. At 
large values of d, the rings will be close together, and a tele-
scope might be needed to magnify the pattern. A relatively in-
expensive monocular will serve the same purpose and will al-
low for photographing the fringes localized at infinity. As 
might be expected from the considerations of Section 9.5, it is 
possible to produce real nonlocalized fringes using a bright 
point source.

The partially transparent metal films that are often used to 
increase the reflectance (R = r2) will absorb a fraction A of the 
flux density; this fraction is referred to as the absorptance.

The expression

tt′ + r2 = 1

or T + R = 1 [4.60]

where T is the transmittance, must now be rewritten as

 T + R + A = 1 (9.63)

Screen

Source

(a)

Lens

Etalon

Lens

Figure 9.57  (a) Fabry–Perot etalon. (b) The axially symmetrical 
fringes seen looking into the etalon. (E.H.)

(b)
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Since F is generally rather large, sin-1 (1>1F) ≈ 1>1F, and 
therefore the half-width, g = 2d1>2, becomes

 g = 4>2F (9.69)

Recall that F = 4R>(1 - R)2, so that the larger R is, the sharper 
the transmission peaks will be.

Another quantity of particular interest is the ratio of the sep-
aration of adjacent maxima to the half-width. Known as the  
finesse, ℱ K 2p>g or, from Eq. (9.69),

 ℱ =
p2F

2
 (9.70)

Over the visible spectrum, the finesse of most ordinary Fabry–
Perot instruments is about 30. The physical limitation on ^ is 
set by deviations in the mirrors from plane parallelism. Keep in 
mind that as the finesse increases, the half-width decreases, but 
so too does the peak transmission. Incidentally, a finesse of 
about 1000 is attainable with curved-mirror systems using di-
electric thin-film coatings.*

Fabry–Perot Spectroscopy

The Fabry–Perot Interferometer is frequently used to examine the 
detailed structure of spectral lines. We will not attempt a complete 
treatment of interference spectroscopy, but rather will define the 
relevant terminology, briefly outlining appropriate derivations.**

As we have seen, a hypothetical, purely monochromatic 
lightwave generates a particular circular fringe system. But d is 
a function of l0, so that if the source were made up of two such 
monochromatic components, two superimposed ring systems 
would result. When the individual fringes partially overlap, a 
certain amount of ambiguity exists in deciding when the two 
systems are individually discernible, that is, when they are said 
to be resolved. Lord Rayleigh’s† criterion for resolving two 
equal-irradiance overlapping slit images is well accepted, even 
if somewhat arbitrarily in the present application. Its use, how-
ever, will allow a comparison with prism or grating instruments. 
The essential feature of this criterion is that the fringes are just 
resolvable when the combined irradiance of both fringes at the 
center, or saddle point, of the resultant broad fringe is 8>p2 
times the maximum irradiance. This simply means that one 

as compared with the equation for zero absorption

 
It

Ii
= �(u) [9.62]

Inasmuch as the absorbed portion A is never zero, the transmit-
ted flux-density maxima (It)max will always be somewhat less 
than Ii. [Recall that for (It)max, �(u) = 1.]

Accordingly, the peak transmission is defined as (It>Ii)max:

 
(It)max

Ii
= c1 -

A
(1 - R)

d
2

 (9.67)

A silver film 50 nm thick would be approaching its maximum 
value of R (e.g., about 0.94), while T and A might be, respec-
tively, 0.01 and 0.05. In this case, the peak transmission will be 
down to 1

36. The relative irradiance of the fringe pattern will still 
be determined by the Airy function, since

 
It

(It)max
= �(u) (9.68)

A measure of the sharpness of the fringes, that is, how rap-
idly the irradiance drops off on either side of the maximum, is 
given by the half-width g. Shown in Fig. 9.58, g is the width of 
the peak, in radians, when It = (It)max>2.

Peaks in the transmission occur at specific values of the 
phase difference dmax = 2pm. Accordingly, the irradiance 
will drop to half its maximum value [i.e., �(u) = 1

2] whenever 
d = dmax ± d1>2. Inasmuch as

�(u) = [1 + F sin2(d>2)]-1

then when

[1 + F sin2 (d1>2>2)]-1 = 1
2

it follows that

d1>2 = 2 sin-1 (1>2F)

0.5

1.0

0
d

I t�
(I

t) m
ax

F = 200
R = 0.87

dmax = 2pm dmax = 2p(m + 1)

d = dmax – d1�2

g

d = dmax + d1�2

2 sin–1(1�√F)

Figure 9.58  Fabry–Perot fringes.

*The paper “Multiple beam interferometry,” by H. D. Polster, Appl. Opt. 8, 522 
(1969), should be of interest. Also look at E. Abraham, C. Seaton, and S. Smith, 
“The optical computer,” Sci. Am. (Feb. 1983), p. 85, for a discussion of the use  
of the Fabry–Perot Interfero meter as an optical transistor.

**A more complete treatment can be found in Born and Wolf, Principles of Optics, 
and in W. E. Williams, Applications of Interferometry, to name only two.

†The criterion will be reconsidered with respect to diffraction in the next chapter 
(see Fig. 10.40).

M09_HECH6933_05_GE_C09.indd   439 26/08/16   3:36 PM



440 Chapter 9 Interference

or 
l0

(∆l0)
= -  

m
(∆m)

 

The minus will be omitted, since it means only that the order 
increases when l0 decreases. When d changes by 2p, m changes 
by 1,

2p
(∆d)

=
1

(∆m)

and thus 
l0

(∆l0)
=

2pm
(∆d)

 (9.75)

The ratio of l0 to the least resolvable wavelength difference, 
(∆l0)min, is known as the chromatic resolving power ℛ of any 
spectroscope. At nearly normal incidence

 ℛ K
l0

(∆l0)min
≈ ℱ 

2nf  d

l0
 (9.76)

or ℛ ≈ ℱm 

For a wavelength of 500 nm, nf d = 10 mm, and R = 90%, the 
resolving power is well over a million, a range achieved by the 
finest diffraction gratings. It follows as well, in this example, 
that (∆l0)min is less than a millionth of l0. In terms of frequency, 
the minimum resolvable bandwidth is

 (∆n)min =
c

ℱ2nf  d
 (9.77)

inasmuch as 0∆n 0 = 0c∆l0>l2
0 0 .

As the two components present in the source become in-
creasingly different in wavelength, the peaks shown overlap-
ping in Fig. 9.59 separate. As the wavelength difference increas-
es, the mth-order fringe for one wavelength l0 will approach the 
(m + 1)th-order for the other wavelength (l0 - ∆l0). The par-
ticular wavelength difference at which overlapping takes place, 
(∆l0)fsr, is known as the free spectral range. From Eq. (9.75), 
a change in d of 2p corresponds to (∆l0)fsr = l0>m, or at near 
normal incidence,

 (∆l0)fsr ≈ l2
0>2nf  d (9.78)

and similarly

 (∆n)fsr ≈ c>2nf  d (9.79)

Continuing with the above example (i.e., l0 = 500 nm and 
nƒ d = 10 mm), (∆l0)fsr = 0.0125 nm. If we attempt to increase 
the resolving power by merely increasing d, the free spectral 
range will decrease, bringing with it the resulting confusion 
from the overlapping of orders. What is needed is that (∆l0)min 
be as small as possible and (∆l0)fsr be as large as possible. But 
lo and behold,

 
(∆l0)fsr

(∆l0)min
= ℱ (9.80)

would see a broad bright fringe with a grey central region. To be 
a bit more analytic about it, examine Fig. 9.59, keeping in mind 
the previous derivation of the half-width. Consider the case in 
which the two constituent fringes have equal irradiances, 
(Ia)max = (Ib)max. The peaks in the resultant, occurring at d = da 
and d = db, will have equal irradiances,

 (It)max = (Ia)max + I′ (9.71)

At the saddle point, the irradiance (8>p2)(It)max is the sum of 
the two constituent irradiances, so that, recalling Eq. (9.68),

 (8>p2)
(It)max

(Ia)max
= [�(u)]d  =   da + ∆d>2 + [�(u)]d  =   db + ∆d>2 (9.72)

Using (It)max given by Eq. (9.71), along with the fact that

I′
(Ia)max

= [�(u)]d  =   da + ∆d

we can solve Eq. (9.72) for ∆d. For large values of F,

 (∆d) ≈
4.21F

 (9.73)

This then represents the smallest phase increment, (∆d)min, 
separating two resolvable fringes. It can be related to equivalent 
minimum increments in wavelength (∆l0)min, frequency 
(∆n)min, and wave number (∆k)min. From Eq. (9.64), for 
d = 2pm, we have

 ml0 = 2nƒ d cos ut +
fl0

p
 (9.74)

Dropping the term fl0>p, which is clearly negligible, and then 
differentiating, yields

m(∆l0) + l0(∆m) = 0

1

8�p2

4�p2

I�

0
d

I t�
(I

t) m
ax

∆d
da db

2p

(Ia)max (Ib)max

Figure 9.59 Overlapping fringes.
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 9.7 Applications of Single and Multilayer Films 441

mirrors (color-selective beamsplitters that transmit and reflect 
particular wavelengths) can be purchased commercially. 

Figure 9.61 is a segmented diagram illustrating the use of a 
cold mirror in combination with a heat reflector to channel 
infrared radiation to the rear of a motion-picture projector. 
The intense unwanted infrared radiation emitted by the source 
is removed from the beam to avoid heating problems at the 
photographic film. The top half of Fig. 9.61 is an ordinary 
back-silvered mirror shown for comparison. Solar cells, which 
are one of the prime power-supply systems for space vehicles, 
and even the astronauts’ helmets and visors, are shielded with 
similar heat control coverings. 

Multilayer broad and narrow band-pass filters that transmit 
only over a specific spectral range can be made to span the 
region from infrared to ultraviolet. In the visible, for example, 
they play an important part in splitting up the image in color 
television cameras, and in the infrared they’re used in missile 
guidance systems, CO2 lasers, and satellite horizon sensors. 
The applications of thin-film devices are manifold, as are their 

This result should not be too surprising in view of the original 
definition of ℱ.

Both the applications and configurations of the Fabry–Perot 
Interferometer are numerous indeed. Etalons have been ar-
ranged in series with other etalons, as well as with grating and 
prism spectroscopes, and multilayer dielectric films have been 
used to replace the metallic mirror coatings.

Scanning techniques are now widely in use. These take advan-
tage of the superior linearity of photoelectric detectors over photo-
graphic plates, to obtain more reliable flux-density measurements. 
The basic setup for central-spot scanning is illustrated in Fig. 9.60. 
Scanning is accomplished by varying d, by changing nƒ or d rath-
er than cos ut. In some arrangements, nf is smoothly varied by 
altering the air pressure within the etalon. Alternatively, mechan-
ical vibration of one mirror with a displacement of l0>2 will be 
enough to scan the free spectral range, corresponding as it does to 
∆d = 2p. A popular technique for accomplishing this utilizes a 
piezoelectric mirror mount. This kind of material will change its 
length, and therefore d, as a voltage is applied to it. The voltage 
profile determines the mirror motion.

Instead of photographically recording irradiance over a 
large region in space, at a single point in time, this method re-
cords irradiance over a large region in time, at a single point in 
space.

The actual configuration of the etalon itself has also under-
gone some significant variations. Pierre Connes in 1956 first 
described the spherical-mirror Fabry–Perot Interferometer. 
Since then, curved-mirror systems have become prominent as 
laser cavities and are also finding increasing use as spectrum 
analyzers.

9.7  Applications of Single and 
Multilayer Films

The optical uses to which coatings of thin dielectric films have 
been put in recent times are many indeed. Coatings to eliminate 
unwanted reflections off a diversity of surfaces, from showcase 
glass to high-quality camera lenses, are now commonplace (see 
photo). Multilayer, nonabsorbing beamsplitters and dichroic 

Source

Detector

Pinhole
screen

Pinhole
screen

Etalon

Figure 9.60  Central spot scanning.

Visible and IR

Visible

Heat re�ector

Visible
and
IR

Back 
silvered
mirror

Cold
mirror

Source

IR

IR

Figure 9.61  A composite drawing showing an ordinary system in the top 
half and a coated one in the bottom.

This glass disk has an antireflection coating in the shape of a circle applied to 
the central region of both its sides. (E.H.)
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and HI = A P0

m 0
 (EiI - ErI)n0 cos uiI 

 HI = A P0

m 0
 (EtI - E′rII)n1 cos uiII (9.82)

where use is made of the fact that EE$  and H$  in nonmagnetic 
media are related through the index of refraction and the unit 
propagation vector:

H$ = A P0

m0
  nk̂ : E$

At boundary II

 EII = EiII + ErII = EtII (9.83)

and

HII = A P0

m0
 (EiII - ErII)n1 cos uiII

 HII = A P0

m 0
 EtIIns cos utII (9.84)

the substrate having an index ns. In accord with Eq. (9.33), a 
wave that traverses the film once undergoes a shift in-phase of 
k0(2n1d  cos ui II)>2, which will be denoted by k0h, so that

 EiII = EtIe
-ik0h (9.85)

and ErII = E′rIIe
+ik0h (9.86)

Equations (9.83) and (9.84) can now be written as

 EII = EtIe
-ik0h + E′rIIe

+ik0h (9.87)

and HII = (EtIe
-ik0h - E′rIIe

+ik0h)A P0

m0
 n1 cos uiII (9.88)

These last two equations can be solved for EtI and E′rII, which 
when substituted into Eqs. (9.81) and (9.82) yield

 EI = EII cos k0h + HII(i sin k0h)>Υ1 (9.89)

and HI = EIIΥ1i sin k0h + HII cos k0h (9.90)

where

Υ1 K A P0

m0
 n1 cos uiII

When E$  is in the plane-of-incidence, the above calculations 
result in similar equations, provided that now

Υ1 K A P0

m0
 n1>cos uiII

structures, which extend from the simplest single coatings to 
intricate arrangements of one hundred or more layers.

The treatment of multilayer film theory used here will deal 
with the total electric and magnetic fields and their boundary 
conditions in the various regions. This is a far more practical 
approach for many-layered systems than is the multiple-wave 
technique used earlier.*

9.7.1 Mathematical Treatment

Consider the linearly polarized wave shown in Fig. 9.62, im-
pinging on a thin dielectric film between two semi-infinite trans-
parent media. In practice, this might correspond to a dielectric 
layer a fraction of a wavelength thick, deposited on the surface 
of a lens, a mirror, or a prism. One point must be made clear at 
the outset: each wave ErI, E′rII, EtII, and so forth, represents the 
resultant of all possible waves traveling in that direction, at that 
point in the medium. The summation process is therefore built 
in. As discussed in Section 4.6.2, the boundary conditions re-
quire that the tangential components of both the electric (E$) and 
magnetic (H$ = B$>m) fields be continuous across the boundaries 
(i.e., equal on both sides). At boundary I

 EI = EiI + ErI = EtI + E′rII (9.81)

E� tII

k� tII

E� rII

E� iII

uiII

uiI

d

k� iI

E� iI

E� tI
E�'rII

utII

E� rI

k� rI

no

n1

ns

I

II

H� tII

H� iI H� rI

D'

Figure 9.62  Fields at the boundaries.

*For a very readable nonmathematical discussion, see P. Baumeister and  
G. Pincus, “Optical interference coatings,” Sci. Am. 223, 59 (December 1970).
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inasmuch as

r = ErI>EiI  and  t = EtII>EiI

Consequently,

 r =
Υ0m11 + Υ0Υs 

m12 - m21 - Υs 

m22

Υ0 

m11 + Υ0Υs 

m12 + m21 + Υs 

m22
 (9.97)

and t =
2Υ0

Υ0 

m11 + Υ0Υs 

m12 + m21 + Υs 

m22
 (9.98)

To find either r or t for any configuration of films, we need only 
compute the characteristic matrices for each film, multiply 
them, and then substitute the resulting matrix elements into the 
above equations.

9.7.2 Antireflection Coatings

Now consider the extremely important case of normal inci-
dence, that is,

uiI = uiII = utII = 0

which in addition to being the simplest, is also quite frequently 
approximated in practical situations. If we put a subscript on r 
to indicate the number of layers present, the reflection coeffi-
cient for a single film becomes

 r1 =
n1(n0 - ns) cos k0h + i(n0ns - n1

2) sin k0h

n1(n0 + ns) cos k0h + i(n0ns + n1
2) sin k0h

 (9.99)

Multiplying r1 by its complex conjugate leads to the re flectance

    R1 =
n1

2(n0 - ns)
2 cos2 k0h + (n0ns - n1

2)2 sin2 k0h

n1
2(n0 + ns)

2 cos2 k0h + (n0ns + n1
2)2 sin2 k0h

 (9.100)

This formula becomes particularly simple when k0h = 1
2p, which 

is equivalent to saying that the optical thickness h of the film is 
an odd multiple of 14l0. In this case d = 1

4lƒ, and

 R1 =
(n0ns - n1

2)2

(n0ns + n1
2)2 (9.101)

which, quite remarkably, will equal zero when

 n1
2 = n0 ns (9.102)

Generally, d is chosen so that h equals 1
4l0 in the yellow-

green portion of the visible spectrum, where the eye is most 
sensitive. Cryolite (n = 1.35), a sodium aluminum fluoride 
compound, and magnesium fluoride (n = 1.38) are common 
low-index films. Since MgF2 is by far the more durable, it is 
used more frequently. On a glass substrate, (ns ≈ 1.5), both 
these films have indices that are still somewhat too large to 
satisfy Eq. (9.102). Nonetheless, a single 1

4l0 layer of MgF2 

In matrix notation, the above linear relations take the form

 cEI

HI
d = c cos k0h (i sin k0h)>Υ1

Υ1 i sin k0h cos k0h
d cEII

HII
d  (9.91)

or cEI

HI
d = ℳ ℳI cEII

HII
d  (9.92)

The characteristic matrix ℳ ℳI relates the fields at the two adja-
cent boundaries. It follows, therefore, that if two overlaying 
films are deposited on the substrate, there will be three bound-
aries or interfaces, and now

 cEII

HII
d = ℳ ℳII cEIII

HIII
d  (9.93)

Multiplying both sides of this expression by ℳ ℳI, we obtain

 cEI

HI
d = ℳ ℳIℳ ℳII cEIII

HIII
d  (9.94)

In general, if p is the number of layers, each with a particular 
value of n and h, then the first and the last boundaries are related by

 cEI

HI
d = ℳ ℳIℳ ℳII g ℳ ℳp cE(p + 1)

H(p + 1)
d  (9.95)

The characteristic matrix of the entire system is the resultant of 
the product (in the proper sequence) of the individual 2 3 2 
matrices, that is,

 ℳ ℳ = ℳ ℳIℳ ℳII g ℳ ℳp = cm11 m12

m21 m22
d  (9.96)

To see how all this fits together, we will derive expressions 
for the amplitude coefficients of reflection and trans mis sion 
using the above scheme. By reformulating Eq. (9.92) in terms 
of the boundary conditions [(9.81), (9.82), and (9.84)] and 
setting

Υ0 = A P0

m0
 n0 cos u iI

and Υs = A P0

m0
 ns cos u tII 

we obtain

c (EiI + ErI)
(EiI - ErI)Υ0

d = ℳ ℳ1 c EtII

EtIIΥs
d

When the matrices are expanded, the last relation becomes

1 + r = m11t + m12Υst

and (1 - r)Υ0 = m21t + m22Υst 
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For R2 to be exactly zero at a particular wavelength, we need

 an2

n1
b

2

=
ns

n0
 (9.106)

This kind of film is referred to as a double-quarter, single-minimum 
coating. When n1 and n2 are as small as possible, the reflectance 
will have its single broadest minimum equal to zero at the chosen 
frequency. It should be clear from Eq. (9.106) that n2 7 n1; accord-
ingly, it is now common practice to designate a (glass) – (high  
index) – (low index) – (air) system as gHLa. Zirconium dioxide 
(n = 2.1), titanium dioxide (n = 2.40), and zinc sulfide (n = 2.32) 
are commonly used for H-layers, and magnesium fluoride 
(n = 1.38) and cerium fluoride (n = 1.63) often serve as L-layers.

Other double- and triple-layer schemes can be designed to sat-
isfy specific requirements for spectral response, incident angle, cost, 
and so on. The accompanying photo is a scene photographed 
through a 15-element zoom lens, with a 150-W lamp pointing di-
rectly into the camera. The lens elements were covered with a single 
layer of MgF2. When a triple-layer antireflection coating is used 
(see photo), the improved contrast and glare reduction are apparent. 

9.7.3 Multilayer Periodic Systems

The simplest kind of periodic system is the quarter-wave 
stack, which is made up of a number of quarter-wave layers. 

will reduce the reflectance of glass from about 4% to a bit 
more than 1%, over the visible spectrum. It is now common 
practice to apply antireflection coatings to the elements of 
optical instruments. On camera lenses, such coatings pro-
duce a decrease in the haziness caused by stray internally 
scattered light, as well as a marked increase in image bright-
ness. At wavelengths on either side of the central yellow-
green region, R increases and the lens surface will appear 
blue-red in reflected light.

For a double-layer, quarter-wavelength antireflection coating,

ℳ ℳ = ℳ ℳI ℳ ℳII

or more specifically

 ℳ ℳ = c 0 i>Υ1

iΥ1 0
d c 0 i>Υ2

iΥ2 0
d  (9.103)

At normal incidence this becomes

  ℳℳ = c-n2>n1 0
0 -n1>n2

d  (9.104)

Substituting the appropriate matrix elements into Eq. (9.97) 
yields r2, which, when squared, leads to the reflectance

 R2 = cn2
2n0 - nsn1

2

n2
2n0 + nsn1

2d
2

 (9.105)

Lens elements coated with a single layer of MgF2. (Optical Coating Laboratory, Inc., 

Santa Rosa CA)

Lens elements coated with a multilayer film structure. (Optical Coating Laboratory, 

Inc., Santa Rosa, CA.)

TABLE 9.1  Indices for Antireflection Coating Materials

Material  Refractive index

Na3AlF6 1.35

MgF2 1.3 – 1.4

SiO2 1.46

Glasses 1.5 – 1.7

ThF4 1.52

MgO 1.74

Al2O3 1.8 – 1.9

SiO 1.8 – 1.9

Si3N4 1.9

Zr O2 2.0

Ta2O5 2.1 – 2.3

TiO2 2.3

CeO2 2.3 – 2.4

ZnS 2.32

CdTe 2.69

Si 3.85

Ge 4.05

PbTe 5.1
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This has the effect of increasing the short-wavelength high-
frequency transmittance and is therefore known as a high-pass 
filter. Similarly, the structure

g(0.5H)L(HL)m(0.5H)a

merely corresponds to the case in which the end H-layers are 
l0>8 thick. It has a higher transmittance at the long-wavelength, 
low-frequency range and serves as a low-pass filter.

At nonnormal incidence, up to about 30°, there is quite fre-
quently little degradation in the response of thin-film coat-
ings. In general, the effect of increasing the incident angle is a 
shift in the whole reflectance curve down to slightly shorter 
wavelengths. This kind of behavior is evidenced by several 
naturally occurring periodic structures, for example, peacock 
and hummingbird feathers, butterfly wings, and the backs of 
several varieties of beetles.

The last multilayer system to be considered is the interfer-
ence, or more precisely the Fabry–Perot, filter. If the separation 
between the plates of an etalon is of the order of l, the transmis-
sion peaks will be widely separated in wavelength. It will then 
be possible to block all the peaks but one by using absorbing 
filters of colored glass or gelatin. The transmitted light corre-
sponds to a single sharp peak, and the etalon serves as a narrow 
band-pass filter. Such devices can be fabricated by depositing a 
semitransparent metal film onto a glass support, followed by a 
MgF2 spacer and another metal coating.

All-dielectric, essentially nonabsorbing Fabry–Perot filters 
have an analogous structure, two possible examples of which are

g HLH LL HLH a

and g HLHL HH LHLH a 

The characteristic matrix for the first of these is

ℳ ℳ = ℳ ℳH ℳ ℳLℳ ℳH ℳ ℳLℳ ℳLℳ ℳH ℳ ℳLℳ ℳH

but from Eq. (9.104)

ℳ ℳLℳ ℳL = c-1 0
0 -1

d

or ℳ ℳLℳ ℳL = -ℐ 

where ℐ is the unity or identity matrix. The central double layer, 
corresponding to the Fabry–Perot cavity, is a half-wavelength 
thick (d = 1

2lƒ). It therefore has no effect on the reflectance at 
the particular wavelength under consideration. Thus, it is said 
to be an absentee layer, and as a consequence,

ℳ ℳ = -ℳ ℳH ℳ ℳLℳ ℳH ℳ ℳH ℳ ℳLℳ ℳH

The same conditions prevail over and over again at the center 
and will finally result in

ℳ ℳ = c1 0
0 1

d

The periodic structure of alternately high- and low-index  
materials, illustrated in Fig. 9.63, is designated by

g(HL)3a

Figure 9.64 illustrates the general form of a portion of the 
spectral reflectance for a few multilayer filters. The width of the 
high-reflectance central zone increases with increasing values of 
the index ratio nH>nL, and its height increases with the number 
of layers. Note that the maximum reflectance of a periodic struc-
ture such as g(HL)ma can be increased further by adding another 
H-layer, so that it has the form g(HL)mHa. Mirror surfaces with 
very high reflectance can be produced using this arrangement.

The small peak on the short-wavelength side of the central 
zone can be decreased by adding an eighth-wave low-index film 
to both ends of the stack, in which case the whole arrangement 
will be denoted by

g(0.5L)(HL)mH(0.5L)a

Glass substrate

Air

Double-quarter

g HL a

ns

nL

nH
n2

n1

n0

Glass substrate

Air

Quarter-wave stack

g HL HL HL a
g (HL)3a
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nL

nH

nL

nH

nL

nH

n0

Figure 9.63 A periodic structure. Refraction has been omitted for  
simplicity.
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446 Chapter 9 Interference

in diameter over a good flashlight. Initially, stand back from the 
mirror about 3 or 4 feet; the fringes will be too fine and closely 
spaced to see if you stand much nearer. Hold the flashlight 
alongside your cheek and illuminate the mirror so that you can 
see the brightest reflection of the bulb in it. The fringes will 
then be clearly seen as a number of alternately bright and dark 
bands.

In Fig. 9.65 two coherent rays leaving the point source 
are shown arriving at point-P after traveling different routes. 
One ray is reflected from the mirror and then scattered by a 
single transparent talcum grain toward P. The second ray is 
first scattered downward by the grain, after which it crosses 
the mirror and is reflected back toward P. The resulting op-
tical path length difference determines the interference at P.  

At the special frequency for which the filter was designed, r at 
normal incidence, according to Eq. (9.97), reduces to

r =
n0 - ns

n0 + ns

the value for the uncoated substrate. In particular, for glass  
(ns = 1.5), in air (n0 = 1) the theoretical peak transmission is 
96% (neglecting reflections from the back surface of the sub-
strate, as well as losses in both the blocking filter and the films 
themselves).

9.8 Applications of Interferometry

There have been many physical applications of the princi-
ples of interferometry. Some of these are only of historical 
or pedagogical significance, whereas others are now being 
used extensively. The advent of the laser and the resultant 
availability of highly coherent quasimonochromatic light 
have made it particularly easy to create new interferometer 
configurations.

9.8.1 Scattered-Light Interference

Probably the earliest recorded study of interference fringes aris-
ing from scattered light is to be found in Sir Isaac Newton’s 
Optiks (1704, Book Two, Part IV). Our present interest in this 
phenomenon is twofold. First, it provides an extremely easy 
way to see some rather beautiful colored interference fringes. 
Second, it is the basis for a remarkably simple and highly useful 
interferometer.

To see the fringes, lightly rub a thin layer of ordinary talcum 
powder onto the surface of any common back-silvered mirror 
(dew will do as well). Neither the thickness nor the uniformity 
of the coating is particularly important. The use of a bright point 
source, however, is crucial. A satisfactory source can be made 
by taping a heavy piece of cardboard having a hole about 

1
4 inch 

In Fig. 9.27 the optical path length  
difference depends on l (i.e., the color  
of the light) and on the viewing angle.  
In a similar way the ink used to print the 
denominations on U.S. currency now  
contains structured particles that produce 
interference colors. The ink is infused  
with tiny flakes all oriented in the same 
direction. Each flake is a multilayered 
interference filter. Here the number 20 
changes from black to green as the  
viewing angle changes. (E.H.)

Silvered
surface

Mirror

Point
source

Scattering
grains

b

a

P

d

Figure 9.65  Interference of scattered light.
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 9.8 Applications of Interferometry 447

Examining the passage of light through the system in a bit 
more detail, consider the light initially incident on the scatter 
plate and assume that the wave is planar, as shown in Fig. 9.67. 
After it passes through the scatter plate, the incident plane 
wavefront E$i will be distorted into a transmitted wavefront E$T. 
We envision this wave, in turn, split into a series of Fourier 
components consisting of plane waves, that is,

 E$T = E$1 + E$2 + g  (9.107)

Two of these constituents are shown in Fig. 9.67a. Now suppose 
we attach a specific meaning to these components; namely, E$1  
is taken to represent the light traveling to point-A in Fig. 9.67, 
and E$2 that traveling toward B. The analysis of the stages that 
follow could be continued in the same way. Let the portion of the 

At normal incidence, the pattern is a series of concentric 
rings of radius*

r ≈ c nmla2b2

d(a2 - b2)
d

1>2

Now consider a related device, which is very useful in test-
ing optical systems. Known as a scatter plate, it generally con-
sists of a slightly rough-surfaced, transparent sheet. In an ar-
rangement such as the one shown in Fig. 9.66, it serves as an 
amplitude-splitting element. In this application it must have a 
center of symmetry; that is, each scattering site is re quired to 
have a duplicate, symmetrically located about a central point.

In the system under consideration, a point source of qua-
simonochromatic light S is imaged, by means of lens-L1 on the 
surface, at point A of the mirror being tested. A portion of the 
light coming from the source is scattered by the scatter plate 
and thereafter illuminates the entire surface of the mirror. The 
mirror, in turn, reflects light back to the scatter plate. This 
wave, as well as the light forming the image of the pinhole at 
point-A, passes through the scatter plate again and finally 
reaches the image plane (either on a screen or in a camera). 
Fringes are formed on this latter plane. The interference pro-
cess, which is manifest in the formation of these fringes, oc-
curs because each point in the final image plane is illuminated 
by light arriving via two dissimilar routes, one originating at A 
and the other at some point-B, which reflects scattered light. 
Indeed, as strange as they may look at first sight, well-defined 
fringes do result (see photo).

Image
plane

Camera
lens L2

Beam-
splitter

Scatter
plate

Test mirror

A

B

Quasimonochromatic
point source

S

P0

L1

P

Figure 9.66  Scatter plate setup. (Adapted  
from R. M. Scott, Appl. Opt. 8, 531 [1969].) 
(Source: Based on R. M. Scott, Appl. Opt. 8, 531 (1969). Scott 

R. M., “Scatter Plate Interferometry,” Applied Optics, 531, 

(1969). The Optical Society.)

*For more of the details, see A. J. deWitte, “Interference in scattered light,” Am. J. 
Phys. 35, 301 (1967). Fringes in scattered light. (E.H.)
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448 Chapter 9 Interference

the small area in the vicinity of it is free of aberrations. In that 
case, the wave reflected from it serves as a reference with 
which to compare the wavefront corresponding to the entire 
mirror surface. The interference pattern will show, as a series 
of contour fringes, any deviations from perfection in the mir-
ror surface.*

9.8.2 The Twyman–Green Interferometer

The Twyman–Green is essentially a variation of the Michelson 
Interferometer. It’s an instrument of great importance in the do-
main of modern optical testing. Among its distinguishing phys-
ical characteristics (illustrated in Fig. 9.68) are a quasimono-
chromatic point source and lens-L1, to provide a source of 
incoming plane waves, and a lens-L2, which permits all the 
light from the aperture to enter the eye so that the entire field 
can be seen, that is, any portion of M1 and M2. A continuous 
laser serves as a superior source in that it provides the conve-
nience of long path length differences and, in addition, short 
photographic exposure times. These tend to minimize un want-
ed vibration effects. Laser versions of the Twyman–Green are 
among the most effective testing tools in Optics. As shown in 
the figure, the device is set up to examine a lens. The spherical 
mirror-M2 has its center of curvature coincident with the focal 
point of the lens. If the lens being tested is free of aberrations, 
the emerging reflected light returning to the beamsplitter will 
again be a plane wave. If, however, astigmatism, coma, or 
spherical aberration deforms the wavefront, a fringe pattern 
clearly manifesting these distortions can be seen and photo-
graphed. When M2 is replaced by a plane mirror, a number of 
other elements (prisms, optical flats, etc.) can be tested equally 

wavefront returning from A be represented by the wavefront E$A 
in Fig. 9.67b. The scatter plate will transform it into an irregular 
transmitted wave, denoted by E$AT in the same figure. This again 
corresponds to a complicated configuration, but it can be split 
into Fourier components consisting of plane waves, as in the 
above case. In Fig. 9.67b, two of these component wavefronts 
have been drawn, one traveling to the left, and the other inclined 
at an angle u. The latter wavefront, which is denoted by E$Au, is 
focused by lens-L2 at the point-P on the screen (Fig. 9.66).

The wavefront returning from B to the scatter plate is denoted 
by E$B in Fig. 9.67c. Upon traversing the scatter plate, it will be 
reshaped into the wave E$BT. One of the Fourier components of 
this wavefront, denoted by E$Bu, is inclined at the angle u and will 
therefore be focused at the same point-P on the screen.

Some of the waves arriving at P will be coherent in the sense 
that interference occurs. To obtain the resultant irradiance IP, 
first add the amplitudes of all the waves arriving at P, that is, E$P, 
and then square and time average E$P.

In the discussion above, only two point sources at the mirror 
were considered. Actually, of course, the whole surface of the 
mirror is illuminated by the ongoing light, and every point of it 
will serve as a secondary source of returning waves. All the 
waves will be deformed by the scatter plate, and these, in turn, 
can be split into plane-wave components. In each series of com-
ponent waves, there will be one inclined at an angle u, and all of 
these will be focused at the same point-P on the screen. The 
resultant amplitude will then have the form

E$P = E$Au + E$Bu + g

The light reaching the image plane can be envisioned as 
made up in part of two optical fields of special interest. One 
of these results from light that was scattered only on its pas-
sage through the plate toward the mirror, and the other results 
from light that was scattered only on the way toward the im-
age plane. The former broadly illuminates the test mirror and 
ultimately results in an image of it on the screen. The latter, 
which was initially focused to the region about A, scatters a 
diffuse blur across the screen. The point-A is chosen so that 
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Figure 9.67  Wavefronts passing through the scatter plate.

*For further discussion of the scatter plate, the reader might consult the rather 
succinct papers by J. M. Burch, Nature 171, 889 (1953), and J. Opt. Soc. Am.  
52, 600 (1962). Reference should be made to J. Strong, Concepts of Classical 
Optics, p. 383. Also see R. M. Scott, “Scatter plate interferometry,” Appl. Opt.  
8, 531 (1969), and J. B. Houston, Jr., “How to make and use a scatterplate inter-
ferometer,” Optical Spectra (June 1970), p. 32.
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where R is half the diagonal of the square. Using classical rea-
soning, we find that the time of travel of light along AB is

tAB =
R12

c - v>12

or tAB =
2R12c - vR

 

The time of travel of the light from A to D is

tAD =
2R12c + vR

The total time for counterclockwise and clockwise travel is 
given respectively by

t =
8R12c + vR

well. The optician interpreting the fringe pattern can then mark 
the surface for further polishing to correct high or low spots. In 
the fabrication of the finest optical systems, telescopes, high-
altitude cameras, and so forth, the interferograms may even be 
scanned electronically, and the resulting data analyzed by com-
puter. Computer-controlled plotters can then automatically pro-
duce surface contour maps or perspective “three-dimensional” 
drawings of the distorted wavefront generated by the element 
being tested. These procedures can be used throughout the fabri-
cation process to ensure the highest-quality optical instruments. 
Complex systems with wavefront aberrations in the fractional-
wavelength range are the result of what might be called the new 
technology.

9.8.3 The Rotating Sagnac Interferometer

The Sagnac Interferometer is widely used to measure rotational 
speed. In particular, the ring laser, which is essentially a  
Sagnac Interferometer containing a laser in one or more of its 
arms, was designed specifically for that purpose. The first ring 
laser gyroscope was introduced in 1963, and work is continuing 
on various devices of this sort (see photo). The initial experi-
ments that gave impetus to these efforts were performed by  
Sagnac in 1911. At that time he rotated the entire interferometer, 
mirrors, source, and detector, about a perpendicular axis passing 
through its center (Fig. 9.69). Recall, from Section 9.4.2, that two 
overlapping beams traverse the interferometer, one clockwise, 
the other counterclockwise. The rotation effectively shortens the 
path taken by one beam in comparison to that of the other. In the 
interferometer, the result is a fringe shift proportional to the angu-
lar speed of rotation v. In the ring laser, it is a frequency differ-
ence between the two beams that is proportional to v.

Consider the arrangement depicted in Fig. 9.69. The corner 
A (and every other corner) moves with a linear speed v = Rv, 

Plane mirror

Spherical
mirror

Beam-
splitter

Test lens

Wavefronts

M1

M2
L2

L1

Pinhole
Figure 9.68  The Twyman–Green  
interferometer. (E.H.)

An early ring laser gyro. (Autonetics, a Division of Boeing North America, Inc.)
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450 Chapter 9 Interference

Relativity would prevail. In fact, these formalisms yield the 
same results.

9.8.4 Radar Interferometry

In February 2000 the Space Shuttle Endeavour completed a 
mission to create a “three-dimensional” map of the Earth cover-
ing 119 million square kilometers. The feat was accomplished 
using synthetic aperture radar (SAR). In general, the larger the 
aperture of a viewing system, the greater the resolution (p. 492) 
and the more details one can see. SAR is a technique for using 
the motion of an airplane or spacecraft along with signal pro-
cessing methods to simulate a large antenna. 

Using a phased array antenna (p. 106), the Shuttle swept a 
radar beam back and forth perpendicular to its line of motion 
painting a 225-km wide swath over the Earth’s surface (Fig. 9.70). 
Orbiting upside-down, Endeavour extended a 60-m mast with 
two receiving antennas at its end (Fig. 9.71). The SAR then sent 
out a stream of about 1700 high-powered electromagnetic pulses 
per second from its main antenna in the cargo bay, which was 
both a transmitter and receiver. Actually, the mission utilized 
two different radars: a C-band system operating at a wavelength 
of 5.6 cm that provided most of the coverage, and a higher-
resolution X-band 3-cm system that gave a detailed view of a 
narrow 50-km swath (Fig. 9.70). A radar image is made up of 
countless tiny uniform dots known as pixels (p. 495). The pixel 
is the smallest bit of information in the picture—nothing can be 
seen that’s smaller than a single pixel. For the main C-band 
system, each pixel is about 12.5 m in diameter, and the smallest 
object that can be resolved is about 30 m across.

Ordinarily, a radar system sends out a pulse (with a pulsewidth 
of 10-50 ms), and then, picking up the backscattered wave, it re-
cords both the amplitude and round-trip time. That gives a rough 

and t =
8R12c - vR

 

For vR 6 6  c the difference between these two intervals is

∆t = t - t

or, using the Binomial Series,

∆t =
8R2v

c2

This can be expressed in terms of area A = 2R2 of the square 
formed by the beams of light as

∆t =
4Av

c2

Let the period of the monochromatic light used be t = l>c; 
then the fractional displacement of the fringes, given by  
∆N = ∆t>t, is

∆N =
4Av
cl

a result that has been verified experimentally. In particular, 
Michelson and Gale* used this method to determine the angu-
lar velocity of the Earth.

The preceding classical treatment is obviously lacking, inas-
much as it assumes speeds in excess of c, an assumption that is 
contrary to the dictates of Special Relativity. Furthermore, it 
would appear that since the system is accelerating, General 
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Figure 9.69  The rotating Sagnac Interferometer. Originally it was  
1 m * 1 m with v = 120 rev>min.

*Michelson and Gale, Astrophys. J. 61, 140 (1925).

C-band swath High resolution
X-band swath

Figure 9.70  As the Shuttle orbited, its two radar systems swept out a 
swath across the surface of the Earth.
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idea of the size and location of the target. However, in order to 
gather data about the elevation of surface features on the Earth, 
the Shuttle Radar Topography Mission (SRTM) utilized interfer-
ometry—in a way that suggests Young’s Experiment run back-
wards (p. 405). In any event, similar interferometric techniques 
are of growing importance in radio and optical astronomy. 

The SAR is a coherent imaging system, and it retains infor-
mation about both the amplitude and phase of the radar echo 
during data acquisition and processing. A signal is emitted from 
the Shuttle (much like the flash from an ordinary camera but 
spectrally more controlled); it strikes the ground (Fig. 9.72) and 

C-band
outboard
antenna

C-band
main antenna

X-band
outboard
antenna

X-band
main antenna

Mast
canister

Mast

Figure 9.71  The Shuttle Endeavour carried the main C-band transmitter-
receiver antenna in its cargo bay and a second receiver at the end of a 
60-m-long mast.

Figure 9.72  A radar pulse emitted from the Shuttle strikes the ground 
and reflects back. The echo is picked up by both the outboard and inboard 
antennas.
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Figure 9.73  The basic geometry of the SAR interferometer. The source 
point-S is the spot on the ground that reflects the radar pulse back to the 
Shuttle. Points-P1 and -P2 correspond to the two receivers, one on the 
mast and the other in the cargo bay of the Shuttle.

returns to the two antennas, one in the cargo bay (P1), the oth-
er on the boom (P2). These are separated by a 60-m baseline a. 
The two radar echoes are converted into digital data, which 
are recorded for later processing and display as an image. It’s 
left for Problem 9.62 (Fig. 9.73) to show that the topography 
in the form of the function z(x) can be expressed in terms of 

Synthetic aperture radar was used to produce this interferogram arising  
from the June 1992 earthquake in Landers, California. Images taken by  
the ERS-1 satellite before and after the quake were combined to generate 
this fringe pattern, which reveals the shift in the ground that took place.  
The picture covers an area of about 125 by 175 km. (Centre National d’Etudes 

Spatiales)
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9.3* Return to Fig. 2.25 and prove that if two electromagnetic plane 
waves making an angle u have the same amplitude, E0, the resulting 
interference pattern on the yx-plane is a cosine-squared irradiance dis-
tribution given by 

I(y) = 4E0
2 cos2 ap

l
 y sin ub

Locate the zeros of irradiance. What is the value of the fringe separa-
tion? What happens to the separation as u increases? Compare your 
analysis with that leading to Eq. (9.17). [Hint: Begin with the wave 
expressions given in Section 2.7, which have the proper phases already 
worked out, and write them as exponentials.]

9.4 Will we get an interference pattern in Young’s Experiment  
(Fig. 9.11) if we replace the source slit S by a single long-filament 
lightbulb? What would occur if we replaced the slits S1 and S2 by these 
same bulbs?

9.5* Figure P.9.5 shows an output pattern that was measured by a tiny 
microphone when two small piezo-loudspeakers separated by 15 cm 
were pointed toward the microphone at a distance of 1.5 m away. Given 
that the speed of sound at 20°C is 343 m>s, determine the approximate 
frequency at which the speakers were driven. Discuss the nature of the 
pattern and explain why it has a central minimum.

Complete solutions to all problems— except those with an  
asterisk — can be found in the back of the book.

9.1 Returning to Section 9.1, let

Ẽ1( r$, t) = Ẽ1( r$)e-ivt

and Ẽ2( r$, t) = Ẽ2( r$)e-ivt 

where the wavefront shapes are not explicitly specified, and Ẽ1 and Ẽ2 
are complex vectors depending on space and initial phase angle. Show 
that the interference term is then given by

 I12 = 1
2(Ẽ1 · Ẽ2

* + Ẽ1
* · Ẽ2) (9.109)

You will have to evaluate terms of the form

8Ẽ1 · Ẽ2e-2ivt9T = (Ẽ1 · Ẽ2>T )3t + T

t
e-2ivt′dt′

for T 7 7  t (take another look at Problem 3.15). Show that Eq. (9.109) 
leads to Eq. (9.11) for plane waves.

9.2 In Section 9.1 we considered the spatial distribution of energy for 
two point sources. We mentioned that for the case in which the separa-
tion a 7 7  l, I12 spatially averages to zero. Why is this true? What 
happens when a is much less than l?

PROBLEMS

These are radar images of 
San Andreas, California, 
taken by the Space Shuttle 
Endeavour in 2000. The 
picture on the left (which 
looks a lot better in color) 
shows an interferogram 
overlaying the terrain; the 
picture on the right is the 
corresponding “three-
dimensional” map that 
results from the analysis  
of all of the data. (NASA)

the altitude h, the look angle of the radar u, and measured 
phase-angle difference, or interferometric phase f between the 
two signals;

 z(x) = h -
(lf>2p)2 - a2

2a sin (a - u) - (lf>2p)
 cos u (9.108)

An interferometer of this sort measures f, the difference in 
phase between the signals arriving at the ends of its baseline. It 
does this by analytically interfering those signals using a pro-
cess called cross correlation (p. 572). When the two separate 
data sets, one from each antenna, are combined on the ground 
the first thing produced is an interferogram or fringe map (see 
photo) that encodes the topography. The interferogram corre-
sponds to a collection of “fringes of equal height,” or if you 
will, contours of equal height. But the information needs further 
refining; the elevations of the contours are unknown. Based on 
accurate knowledge of the mast length and orientation, the 
height of each contour, z(x), is determined, essentially via trian-
gulation. Data collected over the oceans provide a sea-level ref-
erence for all elevations. After a considerable amount of com-
putation, pixel by pixel, a 3-D topographical map is finally 
created (see photo).
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9.12* A 3 3 5 card containing two pinholes, 0.08 mm in diameter and 
separated center to center by 0.10 mm, is illuminated by parallel rays 
of blue light from an argon ion laser (l0 = 487.99 nm). If the fringes 
on an observing screen are to be 8 mm apart, how far away should the 
screen be?

9.13* White light falling on two long narrow slits emerges and is  
observed on a distant screen. If red light (l0 = 765 nm) in the 
first-order fringe overlaps violet in the second-order fringe, what is the 
latter’s wavelength?

9.14* Consider the physical setup shown in Fig. 9.14. If the focal 
length of the second lens is ƒ, prove that maxima are located at ym, 

where ym = mƒ 
l

a
. [Hint: Draw a line from the center of the lens-2 to a 

point a height ym above the central axis; it makes an angle u with that 
axis, where u ≈ ym>s.]

9.15* Using the setup of Fig. 9.14, where the second lens has a focal 
length of ƒ, determine an expression (in terms of ƒ, l, and a) for the 
separation between the centers of the first minima above and below the 
central axis.

9.16* Considering the double-slit experiment, derive an equation 
for the distance ym′ from the central axis to the m′th irradiance 
minimum, such that the first dark bands on either side of the cen-
tral maximum correspond to m′ = ±1. Identify and justify all 
your approximations.

9.17* Two narrow slits in a thin metal sheet are 2.70 mm apart center-
to-center. When illuminated directly by plane waves (in air) a fringe 
pattern appears on a screen 4.60 m away. It is found that measuring 
from the center of any one dark fringe to the center of the minimum 
five dark fringes away is a distance of 5.00 mm. Determine the illumi-
nating wavelength.

9.18* With regard to Young’s Experiment, derive a general ex pression 
for the shift in the vertical position of the mth maximum as a result of 
placing a thin parallel sheet of glass of index n and thickness d directly 
over one of the slits. Identify your assumptions.

9.19* Plane waves of monochromatic light impinge at an angle ui on 
a screen containing two narrow slits separated by a distance a. Derive 
an equation for the angle measured from the central axis that locates 
the mth maximum.

9.20* Sunlight incident on a screen containing two long narrow slits 
0.20 mm apart casts a pattern on a white sheet of paper 1.5 m beyond. 
What is the distance separating the violet (l0 = 400 nm) in the first-
order band from the red (l0 = 600 nm) in the second-other band?

9.21 To examine the conditions under which the approximations of 
Eq. (9.23) are valid:

(a) Apply the law of cosines to triangle S1S2P in Fig. 9.11c to get

r2

r1
= c1 - 2 a a

r1
b sin u + a a

r1
b

2

d
1>2

9.6* Two 1.0-MHz radio antennas emitting in-phase are separated by 
600 m along a north-south line. A radio receiver placed 1.5 km east is 
equidistant from both the transmitting antennas and picks up a fairly 
strong signal. How far north should that receiver be moved if it is again 
to detect a signal nearly as strong?

9.7* Two parallel narrow slits in an opaque screen are separated by 
0.100 mm. They are illuminated by plane waves of wavelength 589 
nm. A cosine-squared fringe pattern wherein consecutive maxima are 
3.00 mm apart appears on a viewing screen. How far from the aperture 
screen is the viewing screen?

9.8* Suppose the separation of the narrow slits in Young’s Experiment 
is 1.000 mm and the viewing screen is 5.000 m away. Plane waves of 
monochromatic 589.3-nm light illuminate the slits and the whole setup 
is in air where n = 1.000 29. What would happen to the fringe separa-
tion if all the air was pumped out?

9.9 An expanded beam of red light from a ruby laser (l0 = 694.3 nm) 
is incident on a screen containing two very narrow horizontal slits 
separated by 0.200 mm. A fringe pattern appears on a white screen 
held 1.00 m away.

(a)  How far (in radians and millimeters) above and below the central 
axis are the first zeros of irradiance?

(b) How far (in mm) from the axis is the fifth bright band?

(c) Compare these two results.

9.10* Two pinholes in a thin sheet of aluminum are 1.00 mm apart 
and immersed in a large tank of water (n = 1.33). The holes are illumi-
nated by l0 = 589.3 nm plane waves, and the resulting fringe system 
is observed on a screen in the water, 3.00 m from the holes. Determine 
the locations of the centers of the two maxima closest to the central 
axis of the apparatus.

9.11* Red plane waves from a He–Ne laser (l0 = 632.8 nm) in air 
impinge on two parallel slits in an opaque screen. A fringe pattern 
forms on a distant wall, and we see the fourth bright band 1.0° above 
the central axis. Calculate the separation between the slits.

2.00

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00
10 20 30 40 50 60 70 80 90

Position of Microphone (cm, zero-point arbitrary)

So
un

d 
In

te
ns

ity
 a

t M
ic

ro
ph

on
e 

(a
rb

itr
ar

y 
un

its
)

Figure P.9.5  (Data from CENCO.)
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454 Chapter 9 Interference

9.31 With Lloyd’s mirror, X-ray fringes were observed, the spacing 
of which was found to be 0.002 0 cm. The wavelength used was 8.33 Å. 
If the source-screen distance was 3 m, how high above the mirror plane 
was the point source of X-rays placed?

9.32 Imagine that we have an antenna at the edge of a lake picking up 
a signal from a distant radio star (Fig. P.9.32), which is just coming up 
above the horizon. Write expressions for d and for the angular position 
of the star when the antenna detects its first maximum.

(b) Expand this in a Maclaurin series yielding

r2 = r1 - a sin u +
a2

2r1
 cos2 u + g

(c)  In light of Eq. (9.17), show that if (r1 - r2) is to equal a sin u, it is 
required that r1 7 7  a2>l.

9.22 A stream of electrons, each having an energy of 0.5 eV, impinges 
on a pair of extremely thin slits separated by 10-2 mm. What is the 
distance between adjacent minima on a screen 25 m behind the slits? 
(me = 9.108 * 10-31 kg, 1 eV = 1.602 * 10-19 J.)

9.23* It is our intention to produce interference fringes by illuminat-
ing some sort of arrangement (Young’s experiment, a thin film, the 
Michelson Interferometer, etc.) with light at a mean wavelength of 
500 nm, having a linewidth of 2.0 * 10-3 nm. At approximately what 
optical path length difference can you expect the fringes to vanish? 
[Hint: Think about the coherence length and revisit Problem 7.55.]

9.24* Imagine that you have an opaque screen with three horizontal 
very narrow parallel slits in it. The second slit is a center-to-center 
distance a beneath the first, and the third is a distance 5a>2 beneath the 
first. (a) Write a complex exponential expression in terms of d for the 
amplitude of the electric field at some point-P at an elevation u on a 
distant screen where d = ka sin u. Prove that 

I(u) =
I(0)

3
+

2I(0)

9
 (cos d + cos 3d>2 + cos 5d>2)

Verify that at u = 0, I(u) = I(0).

9.25* Imagine a Fresnel double mirror (in air) illuminated by mono-
chromatic light at 600.0 nm. The source slit is parallel to and 1.000 m 
from the line of intersection of the mirrors. If the bright fringes on a 
viewing screen 3.900 m from the mirror intersection are spaced 2.00 
mm apart, determine the approximate mirror angle u in degrees.

9.26* In the Fresnel double mirror s = 2 m, l0 = 589 nm, and the 
separation of the fringes was found to be 0.5 mm. What is the angle of 
inclination of the mirrors, if the perpendicular distance of the actual 
point source to the intersection of the two mirrors is 1 m?

9.27* Show that a for the Fresnel biprism of Fig. 9.23 is given by  
a = 2d(n - 1)a.

9.28* Fresnel biprism is used to obtain fringes from a point source 
that is placed 1.5 m from the screen, and the prism is midway between 
the source and the screen. Let the wavelength of the light be 
l0 = 500 nm and the index of refraction of the glass be n = 1.5. What 
is the prism angle, if the separation of the fringes is 0.5 mm?

9.29 What is the general expression for the separation of the fringes 
of a Fresnel biprism of index n immersed in a medium having an index 
of refraction n′?

9.30* A line source of sodium light (l0 = 589.3 nm) illuminates a 
Lloyd’s mirror 10.0 mm above its surface. A viewing screen is 5.00 m 
from the source and the whole apparatus is in air. How far apart are the 
first and third maxima?

Lake

a

a
2

Figure P.9.32

9.33* If the plate in Fig. 9.27 is glass in air, show that the amplitudes 
of E1r, E2r, and E3r are, respectively, 0.2E0i, 0.192E0i, and 0.008E0i, 
where E0i is the incident amplitude. Make use of the Fresnel coeffi-
cients at normal incidence, assuming no absorption. You might repeat 
the calculation for a water film in air.

9.34 A soap film surrounded by air has an index of refraction of 1.38. 
If a region of the film appears bright red (l0 = 633 nm) in normally 
reflected light, what is its minimum thickness there?

9.35* A thin film of ethyl alcohol (n = 1.36) spread on a flat glass 
plate and illuminated with white light shows a color pattern in reflec-
tion. If a region of the film reflects only green light (540 nm) strongly, 
how thick is it?

9.36* A soap film in air of index 1.34 has a region where it is 500.0 nm 
thick. Determine the wavelengths of the radiation not reflected when 
the film is illuminated from above with sunlight.

9.37* A thin uniform layer of water (n = 1.333) 25.0 nm thick exists 
on top of a sheet of clear plastic (n = 1.59). At what incident angle will 
the water strongly reflect blue light (l0 = 460 nm)? [Hint: Modify  
Eq. (9.34).]

9.38 Consider the circular pattern of Haidinger’s fringes resulting 
from a film with a thickness of 2.5 mm and an index of refraction of 
1.5. For monochromatic illumination of l0 = 600 nm, find the value 
of m for the central fringe (ut = 0). Will it be bright or dark?

9.39 Illuminate a microscope slide (or even better, a thin cover-glass 
slide). Colored fringes can easily be seen with an ordinary fluorescent 
lamp (although some of the newer versions don’t work well at all) 
serving as a broad source or a mercury street light as a point source. 
Describe the fringes. Now rotate the glass. Does the pattern change? 
Duplicate the conditions shown in Figs. 9.29 and 9.30. Try it again 
with a sheet of plastic food wrap stretched across the top of a cup.
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9.45* When dust gets between the glass elements of a Newton’s ring 
setup, it can cause an unknown shift in the film thickness ∆d, and a 
corresponding change in the fringe pattern. The path difference is then 
2(d + ∆d ) = mlƒ, and because of the additional relative phase shift on 
reflection, this corresponds to a dark band. Prove that the radius of 
curvature of the lens (R) given by

R =
x2

m - x2
m - 1

(mm - mm - 1)lƒ

can be determined in the lab (via adjacent dark fringes) independent of 
∆d.

9.46* Examining photos of Newton’s rings we observe that fringes at 
large values of m seem to be nearly equally spaced. To see that ana-
lytically, show that

(xm + 1 - xm)

(xm + 2 - xm + 1)
≈ 1 +

1
2m

When m is large, the spacings between consecutive fringes are  
approximately equal.

9.47 A Michelson Interferometer is illuminated with monochromatic 
light. One of its mirrors is then moved 2.25 * 10-5 m, and it is ob-
served that 94 fringe-pairs, bright and dark, pass by in the process. 
Determine the wavelength of the incident beam.

9.48* One of the mirrors of a Michelson Interferometer is moved, and 
1000 fringe-pairs shift past the hairline in a viewing telescope during 
the process. If the device is illuminated with 550-nm light, how far was 
the mirror moved?

9.49* Quasimonochromatic light with an average wavelength of 500 
nm illuminates a Michelson Interferometer. The movable mirror-M1 is 
farther from the beamsplitter than is fixed mirror-M2 by a distance d. 
Decreasing d by 0.100 mm causes a number of fringe-pairs to sweep 
past a hairline in a viewing scope. Determine that number.

9.50* Suppose we place a chamber 10.0 cm long with flat parallel 
windows in one arm of a Michelson Interferometer illuminated by 
630-nm light. If the refractive index of air is 1.000 29 and all the air is 
pumped out of the cell, how many fringe-pairs will shift by in the 
process?

9.51* Cadmium red light has a mean wavelength of l0 = 643.847 nm 
(see Fig. 7.45) and a linewidth of 0.001 3 nm. When used to illuminate 
a Michelson Interferometer it is found that increasing the mirror sepa-
ration from zero to some amount D causes the fringes to vanish. Show 
that

∆l0 =
l2

0

∆lc

and then determine D for the cadmium line.

9.52* A form of the Jamin Interferometer is illustrated in Fig. P.9.52. 
How does it work? To what use might it be put?

9.53 Starting with Eq. (9.53) for the transmitted wave, compute the 
flux density, that is, Eq. (9.54).

9.40 Fringes are observed when a parallel beam of light of wave-
length 550 nm is incident perpendicularly onto a wedge-shaped film 
with an index of refraction of 1.5. What is the angle of the wedge if the 
fringe separation is 13 cm?

9.41* Suppose a wedge-shaped air film is made between two sheets 
of glass, with a piece of paper 7.618 * 10-5 m thick used as the spacer 
at their very ends. If light of wavelength 550 nm comes down from 
directly above, determine the number of bright fringes that will be seen 
across the wedge.

9.42* A wedge-shaped air film between two flat sheets of glass is il-
luminated from above by sodium light (l0 = 589.3 nm). How thick 
will the film be at the center of the 173rd bright fringe (counted from 
the contact line of the two glass sheets).

9.43 Figure P.9.43 illustrates a setup used for testing lenses. Show 
that

d = x2(R2 - R1)>2R1R2

when d1 and d2 are negligible in comparison with 2R1 and 2R2, respec-
tively. (Recall the theorem from plane geometry that relates the prod-
ucts of the segments of intersecting chords.) Prove that the radius of 
the mth dark fringe is then

xm = [R1R2mlƒ>(R2 - R1)]1>2

How does this relate to Eq. (9.43)?

x

d1

R1

R2

Lens

Test
plate

d2 d

Figure P.9.43

9.44* Newton’s rings are observed on a film with quasi-monochro-
matic light that has a wavelength of 550 nm. If the 20th bright ring has 
a radius of 1.00 cm, what is the radius of curvature of the lens forming 
one part of the interfering system? [Hint: Be careful with the value of 
m that you use.]
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456 Chapter 9 Interference

Show that Eq. (9.72) can be rewritten as

2[�(u)]d =  ∆d>2 = 0.8151 + [�(u)]d =  ∆d6

When F is large g is small, and sin (∆d) = ∆d. Prove that Eq. (9.73) 
then follows.

9.56 Consider the interference pattern of the Michelson Interferom-
eter as arising from two beams of equal flux density. Using Eq. (9.17), 
compute the half-width. What is the separation, in d, between adjacent 
maxima? What then is the finesse?

9.57* Satisfy yourself of the fact that a film of thickness lƒ>4 and 
index n1 will always reduce the reflectance of the substrate on which 
it is deposited, as long as ns 7 n1 7 n0. Consider the simplest case 
of normal incidence and n0 = 1. Show that this is equivalent to say-
ing that the waves reflected back from the two interfaces cancel one 
another.

9.58 Verify that the reflectance of a substrate can be increased by 
coating it with a lƒ>4, high-index layer, that is, n1 7 ns. Show that  
the reflected waves interfere constructively. The quarter-wave stack 
g(HL)mHa can be thought of as a series of such structures.

9.59 Determine the refractive index and thickness of a film to be de-
posited on a glass surface (ng = 1.54) such that no normally incident 
light of wavelength 500 nm is reflected.

9.60 A glass microscope lens having an index of 1.58 is to be coated 
with a magnesium fluoride film to increase the transmission of nor-
mally incident yellow light (l0 = 500 nm). What is the minimum thick-
ness of the film to be deposited on the lens?

9.61* A glass camera lens with an index of 1.58 is to be coated with a 
cryolite film (n = 1.30) to decrease the reflection of normally incident 
green light (l0 = 500 nm). What is the thickness of the film, which 
should be deposited on the lens?

9.62* Using Fig. 9.73, which depicts the geometry of the Shuttle  
radar interferometer, show that 

z(x) = h - r1 cos u

Then use the Law of Cosines to establish that Eq. (9.108) is correct.

9.54 Given that the mirrors of a Fabry–Perot Interferometer have an 
amplitude reflection coefficient of r = 0.894 4, find

(a) the coefficient of finesse,

(b) the half-width,

(c) the finesse, and,

(d) the contrast factor defined by

C K
(It>Ii)max

(It>Ii)min

9.55 To fill in some of the details in the derivation of the smallest 
phase increment separating two resolvable Fabry–Perot fringes, that is,

 (∆d) ≈ 4.2>1F [9.73]

satisfy yourself that

[�(u)]d  =   da±∆d>2 = [�(u)]d =  ∆d>2

Figure P.9.52
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10
10.1 Preliminary Considerations

An opaque body placed midway between a screen and a point 
source casts an intricate shadow made up of bright and dark 
regions quite unlike anything one might expect from the tenets 
of Geometrical Optics (see photos).* The work of Francesco 
Grimaldi in the 1600s was the first published detailed study of 
this deviation of light from rectilinear propagation, something 
he called “diffraction.” The effect is a general characteristic of 
wave phenomena occurring whenever a portion of a wavefront, 
be it sound, a matter wave, or light, is obstructed in some way. 
If in the course of encountering an obstacle, either transparent 
or opaque, a region of the wavefront is altered in amplitude or 
phase, diffraction will occur.* The various segments of the 
wavefront that propagate beyond the obstacle interfere, causing 
the particular energy-density distribution referred to as the dif-
fraction pattern. There is no significant physical distinction be-
tween interference and diffraction. It has, however, become 
somewhat customary, if not always appropriate, to speak of in-
terference when considering the superposition of only a few 
waves and diffraction when treating a large number of waves. 
Even so, one refers to multiple-beam interference in one con-
text and diffraction from a grating in another.

It would be nice to treat diffraction from the perspective of 
the most powerful contemporary theory of light, Quantum Elec-
trodynamics (QED), but that’s impractical; the analysis is far too 
complicated and wouldn’t add much at that. What we can do is 
show qualitatively how QED applies to a few basic situations. 
For our purposes, however, the classical wave theory, which pro-

vides the simplest effective formalism, will more than suffice. 
Still, wherever it’s appropriate, the discussion will be illuminat-
ed with insights from Fourier analysis, even though the detailed 
treatment of that subject is postponed to the next chapter.

The Huygens–Fresnel Principle

As an initial approach to the problem, let’s reconsider Huygens’s 
Principle (Section 4.4.2). Each point on a wavefront can be en-
visaged as a source of secondary spherical wavelets. The prog-
ress through space of the wavefront, or any portion thereof, can 
then presumably be determined. At any particular time, the shape 

Diffraction

*The effect is easily seen, but you need a fairly strong source. A high-intensity 
lamp shining through a small hole works well. If you look at the shadow pattern 
arising from a pencil under point-source illumination, you will see an unusual 
bright region bordering the edge and even a faintly illuminated band down the 
middle of the shadow. Take a close look at the shadow cast by your hand in 
direct sunlight.

*Diffraction associated with transparent obstacles is not usually considered, 
although if you have ever driven an automobile at night with a few rain droplets 
on your eyeglasses, you are no doubt quite familiar with the effect. If you have 
not, put a droplet of water or saliva on a glass plate, hold it close to your eye, 
and look directly through it at a point source. You’ll see bright and dark fringes.

(a) The shadow of Mary’s hand holding a dime, cast directly on 4 * 5 
Polaroid A.S.A. 3000 film using a He–Ne beam and no lenses. (E.H.)  
(b) Fresnel diffraction of electrons by zinc oxide crystals. (H. Boersch, Handbuch  

der Physik, edited by S.Flügge, Springer-Verlag, Heidelberg.)

(a)

(b)

457
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458 Chapter 10 Diffraction

of the wavefront is supposed to be the envelope of the secondary 
wavelets (Fig. 4.32). The technique, however, ignores most of 
each secondary wavelet, retaining only that portion common to 
the envelope. As a result of this inadequacy, Huygens’s Principle 
by itself is unable to account for the details of the diffraction 
process. That this is indeed the case is borne out by everyday 
experience. Sound waves (e.g., n = 500 Hz, l ≈ 68 cm) easily 
“bend” around large objects like telephone poles and trees, yet 
these objects cast fairly distinct shadows when illuminated by 
light. Huygens’s Principle is independent of any wavelength con-
siderations, and would predict the same wavefront configura-
tions in both situations.

The difficulty was resolved by Fresnel with his addition 
of the concept of interference. The corresponding Huygens–
Fresnel Principle states that every unobstructed point of a 
wavefront, at a given instant, serves as a source of spherical 
secondary wavelets (with the same frequency as that of the 
primary wave). The amplitude of the optical field at any point 
beyond is the superposition of all these wavelets (considering 
their amplitudes and relative phases). 

Applying these ideas on the very simplest qualitative level, 
refer to the accompanying ripple tank photographs and the  
illustration in Fig. 10.1. If each unobstructed point on the in-
coming plane wave acts as a coherent secondary source, the 
maximum optical path length difference among them will be 
Λmax = 0AP - BP 0 , corresponding to a source point at each 
edge of the aperture. But Λmax is less than or equal to AB, the 
latter being the case when P is on the screen. When l 7 AB, as 
in Fig. 10.1b, it follows that l 7 Λmax, and since the waves 
were initially in-phase, they all interfere constructively (to vary-
ing degrees) wherever P happens to be (see ripple tank photo c). 
Thus, if the wavelength is large compared to the aperture, the 
waves will spread out at large angles into the region beyond 
the obstruction. And the smaller the aperture gets, the more 
nearly circular the diffracted waves become (recall the discus-
sion of this point from a Fourier perspective, p. 412).

The antithetic situation occurs when l 6 AB (as in ripple 
tank photo a). The area where l 7 Λmax is limited to a small 
region extending out directly in front of the aperture, and it is only 
there that all the wavelets will interfere constructively. Beyond 
this zone some of the wavelets can interfere destructively, and the 
“shadow” begins. Keep in mind that the idealized geometric shadow 
corresponds to l S 0.

Classically, the reason light goes where it does beyond the 
screen is that the multitude of wavelets emitted from the aper-
ture “interfere”; that is, they combine (as phasors) at every point 
in the region, some places enhancing, some canceling, depend-
ing on the OPL.

Quantum mechanically (Section 4.11.1), the reason light 
goes where it does beyond the screen is that the multitude of 
probability amplitudes for photons from the aperture “interfere.” 
That is, they combine (as phasors) at every point in the region, 
some places enhancing, some canceling, depending on the OPL. 
When the hole is several wavelengths wide (as in ripple tank 

photo a), the many paths to any point-P correspond to a broad 
range of phasor phases. Consider all the paths to a point in the 
forward direction such as P0. The straight-line route from S to P0 
corresponds to a minimum in OPL. Any other paths through the 
aperture to P0 are somewhat longer (depending on the size of the 
hole) and have phasors (all of which we will take to be the same 
size) that are grouped around that stationary OPL value, much 
as those in Fig. 4.80. They have small mutual phase-angle dif-
ferences (half + , half - ) and so added tip-to-tail they turn one 
way, then the other, to produce a substantial resultant probability 

Figure 10.1  Diffraction at a small aperture. (a) Huygens’s wavelets.  
(b) The classical wave picture. (c) The view via QED and probability  
amplitudes.
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 10.1 Preliminary Considerations 459

whole thing at this point is rather hypothetical. Gustav Kirchhoff 
developed a more rigorous theory based directly on the solution 
of the differential wave equation. Kirchhoff, though a contempo-
rary of Maxwell, did his work before Hertz’s demonstration (and 
the resulting popularization) of the propagation of electromag-
netic waves in 1887. Accordingly, Kirchhoff employed the older 
elastic-solid theory of light. His refined analysis lent credence to 
the assumptions of Fresnel and led to an even more precise for-
mulation of Huygens’s Principle as an exact consequence of the 
wave equation. Even so, the Kirchhoff theory is itself an approx-
imation that is valid for sufficiently small wavelengths—that is, 
when the diffracting apertures have dimensions that are large in 
comparison to l. The difficulty arises from the fact that what’s 
required is the solution of a partial differential equation that 
meets the boundary conditions imposed by the obstruction. This 
kind of rigorous solution is obtainable only in a few special cases. 
Kirchhoff’s theory works fairly well, even though it deals only 
with scalar waves and is insensitive to the fact that light is a 
transverse vector field.*

It should be stressed that the problem of determining an ex-
act solution for a particular diffracting configuration is among 
the most troublesome to be dealt with in Optics. The first such 
solution, utilizing the electromagnetic theory of light, was pub-
lished by Arnold Johannes Wilhelm Sommerfeld (1868–1951) 
in 1896. Although the problem was physically somewhat unre-
alistic, in that it involved an infinitely thin yet opaque, perfectly 
conducting plane screen, the result was nonetheless extremely 
valuable, providing a good deal of insight into the fundamental 
processes involved.

Rigorous solutions of this sort do not exist even today for 
many of the configurations of practical interest. We will there-
fore, out of necessity, rely on the approximate treatments of 
Huygens–Fresnel and Kirchhoff. In recent times, microwave 
techniques have been employed to conveniently study features 
of the diffraction field that might otherwise be almost impossible 
to examine optically. The Kirchhoff theory has held up remark-
ably well under this kind of scrutiny.* In many cases, the simpler 
Huygens–Fresnel treatment will prove adequate to our needs.

10.1.1 Opaque Obstructions

Diffraction may be envisioned as arising from the interaction of 
electromagnetic waves with some sort of physical obstruction. 
We would therefore do well to reexamine briefly the processes 

amplitude. A photon counter at P0 will see lots of light. Off the 
forward direction (where the OPL is not stationary), the phasors 
each have relatively large phase-angle differences for every path 
and all are of the same sign. Placed tip-to-tail they spiral around, 
adding up to little or nothing. A detector at P1 will record few 
counts, and one at P2 fewer still.

If the aperture is now made much smaller, the number of 
counts at P1 and P2 increases, even as the number at P0 drops 
off. With a narrow hole, all the paths to either P1 or P2 are much 
closer together and have nearly the same OPL. The phase-angle 
differences are therefore much smaller, the phasor spirals no 
longer close on themselves, and the resultant probability ampli-
tudes, though small, are appreciable everywhere.

Qualitatively, both QED and the classical Huygens–Fresnel 
Principle lead to much the same general conclusion: light dif-
fracts and interference is at the heart of the process.

The Huygens–Fresnel Principle has some shortcomings 
(which we will examine later), in addition to the fact that the 

Diffraction through an aperture with varying l as seen in a ripple tank. 
Notice how the waves to the right of the screen spread increasingly into the 
shadow region as the wavelength becomes larger. (PSSC Physics, D. C. Heath, 

Boston, 1960. Cengage Learning, D. C. Heath, Boston, 1960.)

(a)

(b)

(c)

*A vectorial formulation of the scalar Kirchhoff theory is discussed in J. D. Jackson, 
Classical Electrodynamics, p. 283. Also see Sommerfeld, Optics, p. 325. You 
might as well take a look at B. B. Baker and E. T. Copson, The Mathematical 
Theory of Huygens’s Principle, as a general reference to diffraction. None of these 
texts is easy reading.

*C. L. Andrews, Am. J. Phys. 19, 250 (1951); S. Silver, J. Opt. Soc. Am. 52, 131 
(1962).
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460 Chapter 10 Diffraction

the oscillator fields drop off with distance. In this physically 
more realistic view, the electrons within the vicinity of the aper-
ture’s edge are affected when the disk is removed. For larger 
apertures, the number of oscillators in the disk is much greater 
than the number along the edge. In such cases, if the point  
of observation is far away and in the forward direction, the 
Huygens–Fresnel Principle should, and does, work well. For 
very small apertures, or at points of observation in the vicinity 
of the aperture, edge effects become important, and we can an-
ticipate difficulties. Indeed, at a point within the aperture itself, 
the electron-oscillators on the edge are of the greatest significance 
because of their proximity. Yet these electrons were certainly not 
unaffected by the removal of the adjacent oscillators of the disk. 
In that case the deviation from the Huygens–Fresnel Principle 
should be appreciable.

10.1.2 Fraunhofer and Fresnel Diffraction

Imagine that we have an opaque screen, g , (like the one in 
Fig. 10.1) containing a single small aperture, which is being  
illuminated by plane waves from a very distant point source,  
S. The plane of observation s is a screen parallel with, and very 
close to, g . Under these conditions an image of the aperture is 
projected onto the screen, which is clearly recognizable despite 
some slight fringing around its periphery (Fig. 10.2). If the plane 
of observation is moved farther away from g , the image of the 
aperture, though still easily recognizable, becomes increasingly 
more structured as the fringes become more prominent. This 
phenomenon is known as Fresnel or near-field diffraction. If 
the plane of observation is moved out still farther, a continuous 
change in the fringes results. At a very great distance from g  
the projected pattern will have spread out considerably, bearing 
little or no resemblance to the actual aperture. Thereafter mov-
ing s essentially changes only the size of the pattern and not its 
shape. This is Fraunhofer or far-field diffraction. If at that 
point we could sufficiently reduce the wavelength of the incom-
ing radiation, the pattern would revert to the Fresnel case. If l 

involved; what actually takes place within the material of the 
opaque object?

One possible description is that a screen may be considered 
to be a continuum; that is, its microscopic structure may be ne-
glected. For a nonabsorbing metal sheet (no joule heating, there-
fore infinite conductivity) we can write Maxwell’s Equations for 
the metal and for the surrounding medium, and then match the 
two at the boundaries. Precise solutions can be obtained for very 
simple configurations. The reflected and diffracted waves then 
result from the current distribution within the sheet.

Examining the screen on a submicroscopic scale, imagine 
the electron cloud of each atom set into vibration by the electric 
field of the incident radiation. The classical model, which 
speaks of electron-oscillators vibrating and reemitting at the 
source frequency, serves quite well so that we need not be con-
cerned with the quantum-mechanical description. The ampli-
tude and phase of a particular oscillator within the screen are 
determined by the local electric field surrounding it. This in 
turn is a superposition of the incident field and the fields of all 
the other vibrating electrons. A large opaque screen with no 
apertures, be it made of black paper or aluminum foil, has one 
obvious effect: there is no optical field in the region beyond it. 
Electrons near the illuminated surface are driven into oscilla-
tion by the impinging light. They emit radiant energy, which is 
ultimately “reflected” backward, absorbed by the material, or 
both. In any case, the incident wave and the electron-oscillator 
fields superimpose in such a way as to yield zero light at any 
point beyond the screen. This might seem a remarkably special 
balance, but it actually is not. If the incident wave were not 
canceled completely, it would propagate deeper into the mate-
rial of the screen, exciting more electrons to radiate. This in turn 
would further weaken the wave until it ultimately vanished (if 
the screen were thick enough). Even an ordinarily opaque mate-
rial such as silver, in the form of a sufficiently thin sheet, is 
partially transparent (recall the half-silvered mirror).

Now, remove a small disk-shaped segment from the center 
of the screen, so that light streams through the aperture. The 
oscillators that uniformly cover the disk are removed along with 
it, so the remaining electrons within the screen are no longer 
affected by them. As a first and certainly approximate approach, 
assume that the mutual interaction of the oscillators is essen-
tially negligible; that is, the electrons in the screen are com-
pletely unaffected by the removal of the electrons in the disk. 
The field in the region beyond the aperture will then be that 
which existed before the removal of the disk, namely zero, mi-
nus the contribution from the disk alone. Except for the sign, it 
is as if the source and screen had been taken away, leaving only 
the oscillators on the disk, rather than vice versa. In other words, 
the diffraction field can be pictured as arising exclusively from 
a set of fictitious noninteracting oscillators distributed uniformly 
over the region of the aperture. This of course, is the essence of 
the Huygens–Fresnel Principle.

We can expect, however, that instead of no interaction at all 
between electron-oscillators, there is a short-range effect, since 

Ripple-tank photos. In one case, the waves are simply diffracted by a slit; in 
the other, a series of equally spaced point sources span the aperture and 
generate a similar pattern. (PSSC Physics, D. C. Heath, Boston, 1960. Cengage Learning)
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their relative strengths. When S is nearby, compared with the 
size of the aperture, a spherical wavefront will illuminate the 
hole. The distances from S to each point on the aperture will be 
different, and the strength of the incident electric field (which 
drops off inversely with distance) will vary from point to point 
over the diffracting screen. That would not be the case for 
incoming homogeneous plane waves. Much the same thing is 
true for the diffracted waves going from the aperture to P. Even 
if they are all emitted with the same amplitude, if P is nearby, 
the waves converging on it are spherical and vary in amplitude, 
because of the different distances from various parts of the 
aperture to P. Ideally, for P at infinity (whatever that means) 
the waves arriving there will be planar, and we need not worry 
about differences in field strength. That too contributes to the 
simplicity of the limiting Fraunhofer case.

As a practical rule-of-thumb, Fraunhofer diffraction will  
occur at an aperture (or obstacle) of greatest width b when

R 7 b2>l
where R is the smaller of the two distances from S to g  and g  to P (Problem 10.1). Of course, when R = ∞  the finite 
size of the aperture is of little concern. Moreover, an increase 
in l clearly shifts the phenomenon toward the Fraunhofer 
extreme.

were decreased even more, so that it approached zero, the fringes 
would disappear, and the image would take on the limiting shape 
of the aperture, as predicted by Geometrical Optics. Returning to 
the original setup, if the point source was now moved toward g , 
spherical waves would impinge on the aperture, and a Fresnel 
pattern would exist, even on a distant plane of observation.

Consider a point source S and a point of observation P, where 
both are very far from g  and no lenses are present (Problem 
10.1). As long as both the incoming and outgoing waves ap-
proach being planar (differing therefrom by a small fraction 
of a wavelength) over the extent of the diffracting apertures (or  
obstacles), Fraunhofer diffraction obtains. Another way to  
appreciate this is to realize that the phase of each contribution at 
P, due to differences in the path traversed, is crucial to the deter-
mination of the resultant field. Moreover, if the wavefronts im-
pinging on, and emerging from, the aperture are planar, then 
these path differences will be describable by a linear function of 
the two aperture variables. This linearity in the aperture vari-
ables is the definitive mathematical criterion of Fraunhofer 
diffraction. On the other hand, when S or P or both are too near g  for the curvature of the incoming and outgoing wavefronts to 
be negligible, Fresnel diffraction prevails.

Each point on the aperture is to be visualized as a source of 
Huygens wavelets, and we should be a little concerned about 

Figure 10.2  (a) A succession of diffraction patterns at increasing distance form a single slit; Fresnel 
at the  bottom (nearby), going toward Fraunhofer at the top (faraway). The gray band corresponds to 
the width of the slit. (Based on Fundamentals of Waves and Oscillations by K. U. Ingard, Cambridge University Press, 1988,  

page 323.) (b) The far-field kicks in at a distance of very roughly R, where R 7 b2>l.

(a) (b)

b
R u
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462 Chapter 10 Diffraction

meeting at some very distant point-P. If the spatial extent of the 
array is comparatively small, the separate wave amplitudes  
arriving at P will be essentially equal, having traveled nearly 
equal distances, that is,

E0(r1) = E0(r2) = g =  E0(rN) = E0(r)

The sum of the interfering spherical wavelets yields an electric 
field at P, given by the real part of

E  ˜ = E0(r)ei(kr1 -vt) + E0(r)ei(kr2 -vt) +  g +  E0(r)ei(krN -vt)

(10.1)

It should be clear, from Section 9.1, that we need not be  
concerned with the vector nature of the electric field for this 
configuration. Now then

E  ˜ = E0(r)e-ivteikr1

* [1 + eik(r2 - r1) + eik(r3 - r1) + g +  eik(rN - r1)]

The phase difference between adjacent sources is obtained from 
the expression d = k0Λ, and since Λ = nd sin u, in a medium of 
index n, d = kd sin u. Making use of Fig. 10.4, it follows that  
d = k(r2 - r1), 2d = k(r3 - r1), and so on. Thus the field at P 
may be written as

E  ˜ = E0(r)e-ivteikr1

* [1 + (eid) + (eid)2 + (eid)3 +  g +  (eid)N - 1]

(10.2)
The bracketed geometric series has the value

(eidN - 1)>(eid - 1)

which can be rearranged into the form

eiNd>2[eiNd>2 - e-iNd>2]

eid>2[eid>2 - e-id>2]

Once a Fraunhofer pattern is established, it simply enlarges 
as the screen on which it is being observed moves farther away. 
In fact, the angle subtended at the aperture screen, u, by the 
central main peak in a typical Fraunhofer pattern can be taken 
to be more-or-less constant. Figure 10.2b illustrates the simple 
case where plane waves illuminate the diffracting aperture. 
We’ll soon see that in general u ≈ l>b, since from the diagram 
Ru ≈ b, it follows that R ≈ b2>l. Roughly speaking, beyond R 
lies the far-field.

A practical realization of the Fraunhofer condition, where 
both S and P are effectively at infinity, is achieved by using an 
arrangement equivalent to that of Fig. 10.3. The point source S is 
located at F1, the principal focus of lens-L1, and the plane of ob-
servation is the second focal plane of L2. In the terminology of 
Geometrical Optics, the source plane and s are conjugate planes.

These same ideas can be generalized to any lens system 
forming an image of an extended source or object (Problem 10.4).* 
Indeed, the image would be a Fraunhofer diffraction pattern. It 
is because of these important practical considerations, as well 
as the inherent simplicity of Fraunhofer diffraction, that we will 
examine it before Fresnel diffraction, even though it is a special 
case of the latter.

10.1.3 Several Coherent Oscillators

As a simple yet logical bridge between the studies of interfer-
ence and diffraction, consider the arrangement in Fig. 10.4. The 
illustration depicts a linear array of N coherent point oscillators 
(or radiating antennas), which are all identical, even to their 
polarization. For the moment, assume that the oscillators have 
no intrinsic phase difference; that is, they each have the same 
initial phase angle. The rays shown are all almost parallel, 

*A He–Ne laser can be set up to generate magnificent patterns without any  
auxiliary lenses, but this requires plenty of space.

Figure 10.3  Fraunhofer diffraction using lenses so 
that the source and fringe pattern can both be at  
convenient distances from the aperture.

S

P

s

L1

L2

Σ
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I = 4I0  cos2(d>2), in accord with Eq. (9.17). The functional 
dependence of I on u is more apparent in the form

 I = I0 
 sin2 [N(kd>2) sin u]

 sin2 [(kd>2) sin u]
 (10.6)

The sin2 [N(kd>2) sin u] term undergoes rapid fluctuations, 
whereas the function that modulates it, 5sin [(kd>2) sin u]6-2, 
varies relatively slowly. The combined expression gives rise  
to a series of sharp principal peaks separated by small subsid-
iary maxima. The principal maxima occur in directions um, 
such that d = 2mp, wherein m = 0, ±1, ±2, . . . . Because 
d = kd sin u,

 d sin um = ml (10.7)

Since [sin2 Nd>2]>[sin2 d>2] = N2 for d = 2mp (from L’Hos-
pital’s Rule), the principal maxima have values of N2I0. This is 
to be expected, inasmuch as all the oscillators are in-phase at 
that orientation. The system will radiate a maximum in a direc-
tion perpendicular to the array (m = 0, u0 = 0 and p). As u in-
creases, d increases and I falls off to zero at Nd>2 = p, its first 
minimum. Note that if d 6 l in Eq. (10.7), only the m = 0 or 
zero-order principal maximum exists. If we were looking at an 

or equivalently

ei(N - 1)d>2 asin Nd>2
sin d>2 b

The field then becomes

 E  ˜ = E0(r)e-ivt ei[kr1 + (N - 1)d>2] asin Nd>2
sin d>2 b (10.3)

Notice that if we define R as the distance from the center of the 
line of oscillators to the point-P, that is,

R = 1
2 (N - 1)d sin u + r1

then Eq. (10.3) takes on the form

 E  ˜ = E0(r)ei(kR -vt) asin Nd>2
sin d>2 b (10.4)

Finally, then, the flux-density distribution within the diffraction 
pattern due to N coherent, identical, distant point sources in a 
linear array is proportional to E  ˜E  ˜*>2 for complex E or

 I = I0 
sin2(Nd>2)

sin2(d>2)
 (10.5)

where I0 is the flux density from any single source arriving  
at P. For N = 0, I = 0, for N = 1, I = I0, and for N = 2, 

r1

r2

(r2 − r1)

u

(a)

r3

(r3 − r1)
r4

r5

rN

d sin u (N − 1)d sin u

u

d

(b)

Figure 10.4  A linear array of in-phase coherent oscillators. (a) Note that at the angle shown  
d = p, while at u = 0, d would be zero. (b) One of many sets of wavefronts emitted from a 
line of coherent point sources.
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464 Chapter 10 Diffraction

Examine Fig. 10.5, which depicts an idealized line source of 
electron-oscillators (e.g., the secondary sources of the Huygens–
Fresnel Principle for a long slit whose width is much less than l, 
illuminated by plane waves). Each point emits a spherical wave-
let, which we write as

E = ae0

r
b sin (vt - kr)

explicitly indicating the inverse r-dependence of the amplitude. 
The quantity e0 is said to be the source strength. The present 
situation is distinct from that of Fig. 10.4, since now the sources 
are very weak; their number, N, is tremendously large; and the 
separation between them is vanishingly small. A minute but fi-
nite segment of the array ∆yi will contain ∆yi(N>D) sources, 
where D is the entire length of the array. Imagine that the array 
is divided up into M such segments (i.e., i goes from 1 to M). 
The contribution to the electric-field intensity at P from the ith 
segment is accordingly

Ei = ae0

ri
b sin (vt - kri) aN∆yi

D
b

provided that ∆yi is so small that the oscillators within it have a 
negligible relative phase difference (ri = constant), and their 
fields simply add constructively. We can cause the array to be-
come a continuous (coherent) line source by letting N approach 
infinity. This description, besides being fairly realistic on a 
macroscopic scale, also allows the use of the calculus for more 
complicated geometries. Certainly as N approaches infinity, the 
source strengths of the individual oscillators must diminish to 
nearly zero, if the total output is to be finite. We can therefore 
define a constant eL as the source strength per unit length of 
the array, that is,

 eL K
1
D

 lim
N S ∞

(e0N ) (10.8)

idealized line source of electron-oscillators separated by atom-
ic distances, we could expect only that one principal maximum 
in the light field.

An antenna array like the one in the above photo can trans-
mit radiation in the narrow beam or lobe corresponding to a 
principal maximum. (Parabolic dishes reflect in the forward di-
rection, and the radiation pattern is no longer symmetrical 
around the common axis.) Suppose that we have a system in 
which we can introduce an intrinsic phase shift of P between 
adjacent oscillators. In that case

d = kd sin u + P

The various principal maxima will occur at new angles

d sin um = ml - P>k
Concentrating on the central maximum m = 0, we can vary its 
orientation u0 at will by merely adjusting the value of P.

The Principle of Reversibility, which states that without 
absorption, wave motion is reversible, leads to the same field 
pattern for an antenna used as either a transmitter or a receiver. 
The array, functioning as a radio telescope, can therefore  
be “pointed” by combining the output from the individual  
antennas with an appropriate phase shift, P, introduced be-
tween each of them. For a given e the output of the system 
corresponds to the signal impinging on the array from a spe-
cific direction in space (see the discussion of phased array 
radar, p. 106).

The telescope in the above photograph shows the first mul-
tiple radio interferometer, designed by W. N. Christiansen and 
built in Australia in 1951. It consisted of 32 parabolic antennas, 
each 2 m in diameter, designed to function in-phase at the wave-
length of the 21-cm hydrogen emission line. The antennas are 
arranged along an east–west base line with 7 m separating each 
one. This particular array utilized the Earth’s rotation as the 
scanning mechanism.*

*See E. Brookner, “Phased-array radars,” Sci. Am. (Feb. 1985), p. 94.

An early interferometric 
radio telescope at the 
University of Sydney, 
Australia (N = 32, l = 21
cm, d = 7 m, 2 m diameter, 
700 ft. east–west base line). 
(W.N. Christiansen)

x

P
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Figure 10.5  A coherent line source.
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and finally

 E =
eLD

R
 
sin [(kD>2) sin u]

(kD>2) sin u
 sin (vt - kR) (10.13)

To simplify the appearance of things, let

 b K (kD>2) sin u (10.14)

so that

 E =
eLD

R
 asin b

b
b sin (vt - kR) (10.15)

The quantity most readily measured is the irradiance (forgetting 
the constants) I(u) = 8E29T or

 I(u) =
1
2

 aeLD

R
b

2

asin b 

b
b

2

 (10.16)

where 8sin2 (vt - kR)9T = 1
2. When u = 0, sin b>b = 1 and 

I(u) = I(0), which corresponds to the principal maximum. The 
irradiance resulting from an idealized coherent line source in 
the Fraunhofer approximation is then

 I(u) = I(0) asin b

b
b

2

 (10.17)

or, using the sinc function (see Table 1 of the Appendix and  
p. 58),

I(u) = I(0) sinc2 b

There is symmetry about the y-axis, and this expression holds 
for u measured in any plane containing that axis. Notice that 
since b = (pD>l) sin u, when D 7 7  l, the irradiance drops 
extremely rapidly as u deviates from zero. This arises from the 
fact that b becomes very large for large values of length D (a 
centimeter or so when using light). The phase of the line source 
is equivalent, by way of Eq. (10.15), to that of a point source 
located at the center of the array, a distance R from P. Finally, a 
relatively long coherent line source (D 7 7  l) can be envi-
sioned as a single-point emitter radiating predominantly in the 
forward, u = 0, direction; in other words, its emission resem-
bles a circular wave in the xz-plane. In contrast, notice that if 
l 7 7  D, b is small, sin b ≈ b, and I(u) ≈ I(0). The irradiance 
is then constant for all u, and the line source resembles a point 
source emitting spherical waves.

We can now turn our attention to the problem of Fraunhofer 
diffraction by a slit or elongated narrow rectangular hole  
(Fig. 10.6). An aperture of this sort might typically have a width 
of several hundred l and a length of a few centimeters. The 
usual procedure to follow in the analysis is to divide the slit into 
a series of long differential strips (dz by /) parallel to the y-axis, 
as shown in Fig. 10.7 on page 467. We immediately recognize, 
however, that each strip is a long coherent line source and can 
therefore be replaced by a point emitter on the z-axis. In effect, 
each such emitter radiates a circular wave in the ( y = 0 or)  

The net field at P from all M segments is

E = ^
M

i = 1

eL

ri
 sin (vt - kri)∆yi

For a continuous line source the ∆yi must become infinitesimal 
(M S ∞), and the summation is then transformed into a defi-
nite integral

 E = eL 3+D∙2

-D∙2
 
sin (vt - kr)

r
 dy (10.9)

where r = r(y). The approximation used here to evaluate  
Eq. (10.9) must depend on the position of P with respect to the 
array and will therefore make the distinction between Fraunhofer 
and Fresnel diffraction. The coherent optical line source does 
not exist as a physical entity, but we will make good use of it as 
a mathematical device.

10.2 Fraunhofer Diffraction

10.2.1 The Single Slit

Return to Fig. 10.5, where now the point of observation is very 
distant from the coherent line source and R 7 7  D. Under these 
circumstances r(y) never deviates appreciably from its midpoint 
value R, so that the quantity (eL>R) at P is essentially constant 
for all elements dy. It follows from Eq. (10.9) that the field at P 
due to the differential segment of the source dy is

 dE =
eL

R
 sin (vt - kr) dy (10.10)

where (eL>R) dy is the amplitude of the wave. Notice that the 
phase is much more sensitive to variations in r(y) than is the 
amplitude, so that we will have to be more careful about intro-
ducing approximations into it. We can expand r(y), in precisely 
the same manner as was done in Problem (9.21), to make it an 
explicit function of y; thus

 r = R - y sin u + ( y2>2R) cos2 u + g (10.11)

where u is measured from the xz-plane. The third term can be 
ignored as long as its contribution to the phase is insignificant 
even when y = ±D>2; that is, (pD2>4lR) cos2 u must be neg-
ligible. This will be true for all values of u when R is adequately 
large. We now have the Fraunhofer condition, where the dis-
tance r is linear in y: the distance to the point of observation and 
therefore the phase can be written as a linear function of the 
aperture variables. Substituting into Eq. (10.10) and integrating 
leads to

 E =
eL

R 3+D∙2

-D∙2
 sin [vt - k (R - y sin u)] dy (10.12)
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466 Chapter 10 Diffraction

It also follows from Eq. (10.19) that when

b cos b - sin b = 0

  tan b = b (10.21)

The solutions to this transcendental equation can be deter-
mined graphically, as shown in Fig. 10.8. The points of inter-
section of the curves ƒ1(b) = tan b with the straight line 
ƒ2(b) = b are common to both and so satisfy Eq. (10.21). Only 
one such extremum exists between adjacent minima [Eq. (10.20)], 
so that I(u) must have subsidiary maxima at these values of 
b (viz, ±1.430 3p, ±2.459 0p, ±3.470 7p, . . .).

There is an essentially nonmathematical way to appreciate 
what’s happening here with the aid of Fig. 10.9, which depicts 
a long narrow slit in profile (aligned perpendicular to the page). 
We envision every point across the aperture emitting Huygens’s 
wavelets. That corresponds to a flood of electromagnetic waves, 
all of the same amplitude, phase, and wavelength, since we as-
sume that the slit is illuminated perpendicularly by homogeneous 
monochromatic EM plane waves. The net wave propagating in 
the forward direction is represented by a ray bundle in Fig. 
10.9a, and it constitutes the undiffracted beam. When dealing 
with Fraunhofer diffraction for some sort of aperture illumi-
nated like this, there will always be just such a central beam. If 
the viewing screen is very far away, or equivalently, if there is a 
large positive lens near the aperture (like that in Fig. 10.7e), a 
bright region will always appear at the center of the screen 
where all the wavelets arrive in-phase and constructively inter-
fere, since they all travel equal optical path lengths (OPLs).

xz-plane. This is certainly reasonable, since the slit is long and 
the merging wavefronts are practically unobstructed in the slit 
direction. There will thus be very little diffraction parallel to the 
edges of the slit. The problem has been reduced to that of find-
ing the field in the xz-plane due to an infinite number of point 
sources extending across the width of the slit along the z-axis. 
We then need only evaluate the integral of the contribution dE 
from each element dz in the Fraunhofer approximation. But 
once again, this is equivalent to a coherent line source, so that 
the complete solution for the slit is, as we have seen,

 I(u) = I(0) asin b

b
b

2

 [10.17]

provided that

  b = (kb>2) sin u (10.18)

and u is measured from the xy-plane (see Problem 10.2). Note 
that here the line source is short, D = b, b is not large, and al-
though the irradiance falls off rapidly, higher-order subsidiary 
maxima will be observable. The extrema of I(u) occur at values 
of b that cause dI>db to be zero, that is,

 
dI
db

= I(0) 
2 sin b(b cos b - sin b)

b3 = 0 (10.19)

The irradiance has minima, equal to zero, when sin b = 0, 
whereupon

 b = ±p, ±2p, ±3p, . . . (10.20)

(a)

S

L1

L2

Figure 10.6  (a) Single-slit Fraunhofer diffrac-
tion. (b) Diffraction pattern of a single vertical 
slit under point-source illumination. (E.H.)(b) 
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one coming from just below the top, and so on; all across the 
aperture such wavelet pairs will cancel, yielding a minimum on 
the viewing screen at angle u1. In other words, the resultant 
electric-field amplitude at angle u1 will be zero on the viewing 
screen. And since the irradiance goes as the electric-field ampli-
tude squared, at the angle u1 above and below the axis, there 
will be no light, and we say that the irradiance of the central 
maximum has dropped to zero at those first minima.

As u increases further, there will again be a net electric-field 
amplitude, albeit small, and the irradiance will rise once more 
to form a secondary, or subsidiary maximum. We’ll see how that 
happens presently when we study the corresponding phasors.  

With light emerging from the slit in all directions, let’s ex-
amine the particular beam depicted in Fig. 10.9b. There is now 
a difference in OPL to the viewing screen for EM wavelets 
emitted across the aperture, and that difference depends on the 
angle of the beam, u, measured from the central axis. For the 
particular beam in Fig. 10.9b traveling at u1, the variation in 
path length between wavelets from the top and bottom of the slit 
was arranged to be equal to l. Since b is the slit width, that 
path-length difference is expressible as b sin u1 = l. Wavelets 
from the middle of the slit will arrive at the viewing screen lag-
ging wavelets from the top by 1

2l, and so cancel each other.
Similarly, a wavelet emitted from just below the center will cancel 

Figure 10.7  (a) Point-P on s is essentially infinitely far from g . (b) Huygens wavelets emitted 
across the aperture. (c) The equivalent representation in terms of rays. Each point emits rays in all 
directions. The parallel rays in various directions are seen. (d) These ray bundles correspond to plane 
waves, which can be thought of as the three-dimensional Fourier components. (e) A single slit illumi-
nated by monochromatic plane waves showing the resulting irradiance distribution.
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468 Chapter 10 Diffraction

phasors (each with the E-field amplitude of a single wavelet: 
E01, E02, E03, c, etc.). They align along a straight line, because 
they’re all in-phase (d1, the single-slit phase-angle difference, 
equals 0 and b = 0). The net electric-field amplitude at point-1 in 
Fig. 10.10a is then E0(u) = E0(0) = E01 + E02 + E03 + c, 
and this is the maximum value the resultant amplitude attains. 
Since there are N contributing wavelets, all essentially of ampli-
tude E01, it follows that E0(0) = NE01. Here N is chosen to be 9 
to illustrate the procedure.

As u increases and point-P moves up the observation screen, 
the wavelets each arrive shifted in relative phase by the same 
new amount. When P moves to point-2 in Fig. 10.10a, where 
b = p>2, there is a difference in phase between the two wave-
lets bounding the slit, equal to d1 = 2b = p, or half a wave-
length. Take the wavelet from the center of the slit as the refer-
ence. Its phasor (call it phasor-R, the one with the black dot at its 
tail) is again drawn horizontally pointing to the right in Fig. 
10.10c. The phasors for wavelets emanating from below the 
slit’s center (phasor-B1, -B2, and -B3 in Fig. 10.10c where N is 
taken to be 7) will travel longer OPLs and so lag the central one. 
On the other hand, those from above center (phasor-A1, -A2, and 
-A3, where N = 7) will lead phasor-R. Again for point-2 in 
Fig. 10.10a, b = p>2 and so d1 = 180°. Figure 10.10c starts 
with just N = 7, whereas Fig. 10.10d, goes on to make N ap-
proach an unspecified very large odd number, as it must.

In Fig. 10.10c with the central horizontal phasor-R as the 
reference, the (N - 1)>2 phasors arising from wavelets emitted 
below the slit’s center are each successively rotated clockwise 
(they lag), with respect to the preceding one, through an angle 
d1>(N - 1) = 180°>(N - 1). Similarly the (N - 1)>2 phasors 
arising from wavelets emitted above the slit’s center are each 
rotated counterclockwise through 180°>(N - 1). The result is a 
net phase shift of p; the phasors from the aperture’s edges point 
down (white tail dot) and up (white arrowhead). Accordingly, if 
N = 5, 7, 9, . . . , each phasor is rotated, respectively, through  
45°, 30°, 221

2°, and so on. The resultant for any odd N is the pha-
sor of amplitude E0(u2) drawn from the first tail (with the little 
white circle) on the left to the last tip (with the white arrow-
head) on the right; it’s parallel to the reference phasor and there-
fore positive. Moreover, it has a value E0(u2) 6 E0(0), since the 
overall length of the phasors on the circular arc is E0(0).

By symmetry the resultant will always be horizontal, whether 
positive or negative. In other words, the phasor for a wavelet 
coming from the top of the slit is shifted from the phasor com-
ing from the bottom by an amount 2b = p. Because d1 = p at 
point-2, the phasors lie on a semicircle whose center is at the 
center of the resultant. The two radii drawn to the first tail and 
the last tip subtend an angle equal to d1 = 180°.

Now suppose N is made very large, at any given value of u 
the individual phase shifts, all equal, will be correspondingly 
small, as will be the individual phasors. And as N gets still 
larger, the arc formed by the now tiny tip-to-tailed phasors 
will blend into a continuous curve known as a vibration curve 
(Fig. 10.10d). So that we can better see how it changes with u, 
we again mark the start of the vibration curve with a white 

A further increase in angle soon produces another minimum, as 
shown in Fig. 10.9c, where b sin u2 = 2l. In that case imagine 
the aperture divided into quarters. Wavelet by wavelet, the top 
quarter will cancel the one below it, and the next (the third) will 
cancel the last quarter, yielding a net zero electric-field ampli-
tude. Wavelet pairs from the same locations in adjacent seg-
ments are l>2 out-of-phase and destructively interfere.In gen-
eral, then, zeros of irradiance occur when

b sin um = ml

where m = ±1, ±2, ±3, . . . , which is equivalent to Eq. (10.20), 
since b = mp = (kb>2) sin um. Notice that the optical path-length 
difference for the two wavelets coming from the top and bottom 
of the slit is (b sin u). That’s equivalent to a number of wave-
lengths’ difference of (b sin u)>l, and a phase-angle difference 
for the single slit of d1 = 2p(b sin u)>l. Thus b corresponds to 
half the phase-angle difference (d1) between wavelets emitted 
from the top and bottom of the single slit.

Phasors and the Electric-Field Amplitude

Figure 10.10a depicts the electric field of the Fraunhofer diffrac-
tion pattern produced by a narrow slit on a distant observation 
screen. To see how the E-field amplitudes combine to generate 
that pattern, consider the phasor representation of the wavelets. 
With Figs. 10.7e, 10.9, and 10.10 in mind, suppose that the slit is 
again divided into some convenient odd number (N) of equal 
parts, each radiating an equal-amplitude wavelet in the forward 
direction. These arrive on the viewing screen at point-P on the 
central axis, in-phase. Their electric fields will all add, and we 
represent that in Fig. 10.10b by summing, tip-to-tail, all of the 

b

f(b)

f 1
(b

) 
=

 ta
n 
b

f 2(
b) =

 b

−p −p�2 p�2 3p�2 5p�22pp0

Figure 10.8  The points of intersection of the two curves are the solutions 
of Eq. (10.21).
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(c)

z

x

u2
2l

l

(b)
u1

l

1�2l

(a) b

Figure 10.9  The diffraction of light in various 
directions. Here the aperture is a single slit, as 
in Fig. 10.7. Zeros of irradiance occur when 
b sin um = ml, as in parts (b) and (c). The 
inserts depict the development of Huygens’s 
wavelets. In all cases the incident light is in the 
form of plane waves.

circle and the end with a white arrowhead. The length of the 
arc is fixed equal to the length of the string of phasors in 
Fig. 10.10b, namely, E0(0).

For each and every value of u there will be a specific con-
figuration of the vibration curve. As u increases, the OPL differ-
ence between wavelets from the aperture’s edges increases, the 
relative phase angle between individual phasors increases, and 
the vibration curve spirals around, getting tighter (the radius of 
the circular arc decreases) at each location that is farther from 
the central axis. That means the maximum possible resultant am-
plitude gets smaller as P moves away from the central axis. For 
values of b between those of point-2 and point-3 in Fig. 10.10a 
the semicircular arc of the vibration curve of Fig. 10.10d now 

bends upward a bit more, closing somewhat as the radius de-
creases, because the arc length remains constant. This is shown 
in Fig. 10.10e. The radii drawn to the first tail and the last tip 
now subtend an angle greater than 180°. The resultant is still left-
to-right and positive, but it has decreased in magnitude. 

At point-3 in Fig. 10.10a, d1 = 2b = 2p, or one wavelength, 
and we have the situation depicted in Fig. 10.9b where the 
wavelets cancel one another. The arc composed of infinitesimal 
phasors (Fig. 10.10e) rises and curls over on the left and right as 
the radius shrinks until the curve closes at the top (imagine the 
tiny reference phasor still in place at the bottom) and the resul-
tant goes to zero; the amplitude of the electric field is zero at 
point-3. The center of the arc of the vibration curve is now the 
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470 Chapter 10 Diffraction

center of the circle. This is shown in Fig.10.10ƒ. The two radii 
previously drawn to the first tail and the last tip of the string of 
phasors now overlap and subtend an angle d1 = 360°. The last 
infinitesimal phasor on the top of the circle can be imagined 
pointing to the left because as u increases thereafter, the resul-
tant will be negative.

For point-4 in Fig. 10.10a, d1 = 2b = 3p, the radius has 
shrunk a bit more and the vibration curve cycles around through 
3p (Fig. 10.10g). Measured from the infinitesimal reference pha-
sor (black dot at its tail), and staying tangent to the curve, the first 
phasor (marked with a little white circle) has rotated clockwise 
through 3p>2 and points upward. Similarly the tip of the last 
phasor (marked with a white arrowhead) has rotated counter-
clockwise through 3p>2 and points downward. The resulting 
amplitude is small and the phasor points in the opposite direction 
to the phasor for the central maximum (the reference phasor). 
This electric field is therefore negative.

For point-5 in Fig. 10.10a, 2b = 4p, the first phasor (starting at 
the reference phasor) rotates around 360° clockwise (Fig. 10.10h), 

E0(0)

E0(u2)

E0(u3)

1 42 3 5

(a)

b = 0 b = p b = 2p

b = p

2
b = 3p

2

E01 E02 E03 E09

E0(0)

(b)

d1 = 0
b = 0
N = 9

Point-1

(c) E0(u2)

d1 = p
b = p�2

N = 7

Point-2

B3 A3

B2 A2

B1 A1R

(d) E0(u2)

d1 = p
b = p�2

N very large

Point-2

(e)

d1 = 3p�2
b = 3p�4

N very large

Between points-2 and -3

Figure 10.10  Electric field for single-slit Fraunhofer diffraction. (a) A plot of the amplitude of the electric field as a func-
tion of position. (b) The maximum amplitude when b = 0. (c) The resultant amplitudes for N = 7. b1 lags R by 30° and is 
rotated clockwise through 30° from it. Similarly b2 lags b1, and b3 lags b2; b3 arises from the bottom of the slit. In the 
same way A1 leads R, A2 leads A1, and A3 leads A2, each by 30°. A3 arises from the top of the slit. (d) Here d1 = p, and 
E0(u2) is positive. (e) When d1 = 2p, the amplitude is zero. (f ) At point-4,  E0(u4) is negative. (g) When d1 = 4p, E0(u5) = 0.

(f)

d1 = 2p
b = p

N very large

Point-3E0(u3) = 0
(g)

d1 = 3p
b = 3p�2

N very large

Point-4

as the last phasor (starting at the reference phasor) rotates 
through 360° counterclockwise. The two meet, both pointing to 
the right, and the resultant electric-field amplitude is again 
zero. Since the last infinitesimal phasor is pointing to the right 
(white arrowhead) the field will again become positive as u 
increases thereafter. In this way (Fig. 10.11) the resulting elec-
tric-field amplitude oscillates in sign as it diminishes in size 
with increasing u.

Figure 10.12 depicts the general case where the amplitude is 
E0(u) = 2r sin b and the arc length is E0(0) = 2rb. Thus the 
normalized electric-field amplitude is

E0(u)

E0(0)
=

 sin b

b

the square of which yields Eq. 10.17 for the irradiance. The 
amplitude, the sinc function, has its zero values where b = ±p, 
±2p, ±3p, c. Unlike the field amplitude, which can be 
negative, irradiance—energy per unit area, per unit time—is 
never negative. Although electric-field amplitude is of great 

(h)

d1 = 4p
b = 2p

N very large

Point-5

E0(u5) = 0
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central axis (m = +1) to the first zero of irradiance on the other 
side (m = -1). Then, since b sin um = ml, and we usually deal 
with small angles where sin um ≈ um, the angular width (∆u) 
of the central maximum is, in radians,

∆u = 2u1 ≈ 2l>b
The normalized irradiance, I(u)>I(0), at the central peak (u = 0) 
is determined by (sin b)>b, where b = 0. Remembering that b  
is in radians, as b becomes small, sin b ≈ b and (sin b)>b ap-
proaches 1. The next maximum is a tiny peak located (according 
to Fig. 10.8) at b = 1.430 4p. Its relative irradiance is 

[(sin b)>b]2 = [(sin 1.430 4p)>1.430 4p]2 = 0.047  19

That fringe peaks at a mere 4.72% of the central maximum. 
Table 10.1 lists the values of b and the corresponding normal-
ized irradiances at several successive maxima and minima. The 
central, or principal maximum is twice as wide as the other 
higher-order fringes and it comprises more than 80% of the 
light arriving at the observation screen.

When the width of the slit (b) is small compared to a 
wavelength, the emerging light markedly fans out perpen-
dicular to the slit and the central irradiance peak becomes 
very broad. Figure 10.13b is a plot of the normalized irradi-
ance as b goes from l to 2l to 4l to 10l. Each curve is set to 
a maximum of 1.0, but, of course, as the peaks broaden with 
decreasing b, energy is distributed over a wider region and 
I(0) must decrease—energy is conserved.

EXAMPLE 10.1 

Consider the arrangement of Fig. 10.3, where a large lens L2 is 
close to the long narrow (0.250 mm) slit in the aperture screen. 
The illumination is green magnesium light at 518.36 nm. De-
termine the width of the central maximum formed by L2, which 
has a focal length of 65.0 cm, on the viewing screen s.

SOLUTION 

Draw a line from the center of L2, up from the central axis at 
an angle u, out to point-P on s. The image formed on s is a 
perpendicular distance of one focal length, ƒ, from the lens. 
Let Y1 be the distance on s from the central axis to the first 
irradiance zero at P. The width of the principal maximum is 
then 2Y1. Here tan u1 = Y1>ƒ and so Y1 = ƒ tan u1. For small val-
ues of u1, Y1 = ƒ tan u1 ≈ ƒ sin u1 where for the m th minimum  
b sin um = ml and so Y1 ≈ ƒl>b. Hence

2Y1 ≈ 2ƒl>b

2Y1 ≈
2(65.0 * 10-2)(518.36 * 10-9)

0.25 * 10-3

2Y1 ≈ 2.695 mm

To three significant figures the width of the central maximum 
on the viewing screen is 2.70 mm.

theoretical interest, we actually measure irradiance and so will 
focus our attention on it.

We should inject a note of caution at this point: one of the 
frailties of the Huygens–Fresnel Principle is that it does not take 
proper regard of the variations in amplitude, with angle, over the 
surface of each secondary wavelet. We will come back to this 
when we consider the obliquity factor in Fresnel diffraction, 
where the effect is significant. In Fraunhofer diffraction the dis-
tance from the aperture to the plane of observation is so large that 
we need not be concerned about it, provided that u remains small.

Single-Slit Irradiance

Figure 10.13 is a plot of the normalized flux density, as ex-
pressed by Eq. (10.17). Envision some point on the curve, for 
example, the third subsidiary maximum at b = 3.470 7p; since 
b = (pb>l) sin u, an increase in the slit width b requires a de-
crease in u, if b is to be constant. Under these conditions the 
pattern shrinks in toward the principal maximum, as it would 
if l were decreased. 

As a rule, the width of the fringe pattern, and hence the width 
of the central maximum, varies inversely with the width of the slit. 
The width of the central maximum is conveniently taken to be 
the distance from the first zero of irradiance on one side of the 

Figure 10.11  A summary of phasor addition for the single slit. As P 
moves away from the central axis u increases, and the distance from the 
slit to P increases. Consequently, the amplitude of each wavelet reaching P 
decreases, and so the amplitude of each phasor gradually decreses with 
increasing u. That causes the vibration curve to spiral inward. The overall 
length of the curve is constant from (a) to (d). However, the resultant pha-
sor (from the open circle to the open arrow head) changes length and sign 
as P relocates and the spiral winds inward.

(d)

(c)

(b)

(a)

Figure 10.12  Here the resultant amplitude (from A to B) is 
E0(u) = 2r sin b, whereas the corresponding arc length is E0 (0) = 2rb.
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472 Chapter 10 Diffraction

The light wave that propagates beyond the aperture screen is 
fairly complicated, having different amplitudes in different di-
rections (i.e., along different values of u) throughout the space. 
Using the setup of Fig. 10.3 with a lens L2 of focal length ƒ, we 
plot the resulting normalized amplitude of the electric field, and 
the normalized irradiance, in Fig. 10.14. Recall that a negative 
value of the electric-field amplitude indicates that at that loca-
tion it’s 180°out-of-phase with the field of the central maximum. 

Earlier we studied Young’s Experiment and used an initial 
small hole (Fig. 9.10) or slit (Fig. 9.11) to restrict the light that 
would then arrive at the aperture screen. What we were doing 
was arranging to illuminate the two apertures (two pinholes or 
two slits) in the second screen within the central maximum of 
the diffraction pattern of the initial hole. Thus if the first opaque 

TAblE 10.1  Single-Slit Fraunhofer Diffraction

 b ± Normalized Normalized Maximum 
       Amplitude Irradiance or Minimum

 0 1 1 Max.

 p 0 0 Min.

1.430 3p -0.217 0.047 Max.

 2p 0 0 Min.

2.459 0p 0.128 0.016 Max.

 3p 0 0 Min.

3.470 7p -0.091 0.008 Max.

 4p 0 0 Min.
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Figure 10.13 The Fraunhofer diffraction pattern of a single slit. (a) This is 
the irradiance distribution. (b) Normalized irradiance for different slit 
widths: b = l, 2l, 4l, and 10l.
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 10.2 Fraunhofer Diffraction 473

screen had a very narrow slit in it, the light corresponding to the 
broad principal maximum of the Fraunhofer pattern bathed both 
slits in the aperture screen. As we’ll see in Chapter 12 when we 
study something called the van Cittert–Zernike theorem, the 
light within the principal maximum has a high degree of spatial 
coherence even when the source has a broad bandwidth. 

If the source emits white light, the higher-order maxima 
show a succession of colors trailing off into red with increasing 
u. Each different-colored light component has its minima and 
subsidiary maxima at angular positions characteristic of that 
wavelength (Problem 10.6). Indeed, only in the region about 
u = 0 will all the constituent colors overlap to yield white light.

The point source S in Fig. 10.6 would be imaged at the posi-
tion of the center of the pattern, if the diffracting screen Σ were 
removed. Under this sort of illumination, the pattern produced 
with the slit in place is a series of dashes in the yz-plane of the 
screen s, much like a spread-out image of S (Fig. 10.6b). An in-
coherent line source (in place of S) positioned parallel to the slit, 
in the focal plane of the collimator L1, will broaden the pattern 
out into a series of bands. Any point on the line source generates 
an independent diffraction pattern, which is displaced, with re-
spect to the others, along the y-direction. With no diffracting 
screen present, the image of the line source would be a line paral-
lel to the original slit. With the screen in place the line is spread 
out, as was the point image of S (Fig. 10.15). Keep in mind that 
it’s the small dimension of the slit that does the spreading out.

The single-slit pattern is easily observed without the use of 
special equipment. Any number of sources will do (e.g., a dis-
tant street light at night, a small incandescent lamp, sunlight 
streaming through a narrow space in a window shade); almost 
anything that resembles a point or line source will serve. Prob-
ably the best source for our purposes is an ordinary clear, 
straight-filament display bulb (the kind in which the filament is 

Figure 10.15  (a) The single-slit pattern with a line source. (b) The same 
single slit illuminated by plane waves. See first photograph of Fig. 10.18.

Figure 10.14 The solid curve is the normalized irradiance. The dotted 
curve is the normalized electric-field amplitude. The pattern is formed by a 
lens with a focal length ƒ. The distance Y is measured from the central axis 
(Y = 0) on the viewing screen.
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vertical and about 3 inches long). You can use your imagination 
to generate all sorts of single-slit arrangements (e.g., a comb or 
fork rotated to decrease the projected space between the tines, 
or a scratch across a layer of india ink on a microscope slide). 
An inexpensive vernier caliper makes a remarkably good vari-
able slit. Hold the caliper close to your eye with the slit, a few 
thousandths of an inch wide, parallel to the filament of the 
lamp. Focus your eye beyond the slit at infinity, so that its lens 
serves as L2.

10.2.2 The Double Slit

It might at first seem from Fig. 10.7 that the location of the 
principal maximum is always to be in line with the center of 
the diffracting aperture; this, however, is not generally true. 
The diffraction pattern is actually centered about the axis of the 
lens and has exactly the same shape and location, regardless of 
the slit’s position, as long as its orientation is unchanged and 
the approximations are valid (Fig. 10.16). All waves traveling 
parallel to the lens axis converge on the second focal point of 
L2; this then is the image of S and the center of the diffraction 
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474 Chapter 10 Diffraction

stant relative phase difference between the secondary sources. 
At normal incidence, the wavelets are all emitted in-phase. The 
interference fringe at a particular point of observation is deter-
mined by the differences in the optical path lengths traversed 
by the overlapping wavelets from the two slits. As we will see, 
the flux-density distribution (Fig. 10.18) is the result of a rap-
idly varying double-slit interference system modulated by a 
single-slit diffraction pattern. 

To obtain an expression for the optical disturbance at a point 
on s, we need only slightly reformulate the single-slit analysis. 
Each of the two apertures is divided into differential strips (dz 
by /), which in turn behave like an infinite number of point 
sources aligned along the z-axis. The total contribution to the 
electric field, in the Fraunhofer approximation [Eq. (10.12)], is 
then

 E = C3b>2

-b>2
 F(z) dz + C3a + b>2

a - b>2
 F(z) dz (10.22)

where F(z) = sin [vt - k(R - z sin u)]. The constant-amplitude 
factor C is the secondary source strength per unit length along 
the z-axis (assumed to be independent of z over each aperture) 
divided by R, which is measured from the origin to P and is 
taken as constant. We will be concerned only with relative flux 
densities on s, so that the actual value of C is of little interest to 
us now. Integration of Eq. (10.22) yields

E = bC a sin b

b
b [sin(vt - kR) +  sin (vt - kR + 2a)] (10.23)

pattern. Suppose now that we have two long slits of width b 
and center-to-center separation a (Fig. 10.17). Each aperture, 
by itself, would generate the same single-slit diffraction pattern 
on the viewing screen s. At any point on s, the contributions 
from the two slits overlap, and even though each must be es-
sentially equal in amplitude, they may well differ significantly 
in-phase. Since the same primary wave excites the secondary 
sources at each slit, the resulting wavelets will be coherent, and 
interference must occur. If the primary plane wave is incident 
on g  at some angle ui (see Problem 10.2), there will be a con-

Figure 10.17  (a) Double-slit geometry. Point-P on s is essentially infinitely far away.  
(b) A double-slit pattern (a = 3b). A detailed view of a missing order.
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Figure 10.16  The double-slit setup.
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 10.2 Fraunhofer Diffraction 475

which when squared and averaged over a relatively long inter-
val in time is the irradiance

 I(u) = 4I0 a sin2 b

b2 b cos2 a (10.24)

In the u = 0 direction (i.e., when b = a = 0), I0 is the flux-
density contribution from either slit, and I(0) = 4I0 is the total 
flux density. The factor of 4 comes from the fact that the ampli-
tude of the electric field is twice what it would be at that point 
with one slit covered.

If in Eq. (10.24) b becomes vanishingly small (kb 6 6  1), 
then (sin b)>b ≈ 1, and the equation reduces to the flux-
density expression for a pair of long line sources, that is, Young’s 
Experiment, Eq. (9.17). If, on the other hand, a = 0, the two 
slits coalesce into one, a = 0, and Eq. (10.24) becomes I(0) =  
4I0(sin2 b)>b2. This is the equivalent of Eq. (10.17) for single-
slit diffraction with the source strength doubled. We might 
then envision the total expression as being generated by a 
cos2 a interference term modulated by a (sin2 b)>b2 diffrac-
tion term. 

If the slits are finite in width but very narrow, the diffraction 
pattern from either slit will be uniform over a broad central  
region, and bands resembling the idealized Young’s fringes will 
appear within that region. At angular positions (u-values) where

b = ±p, ±2p, ±3p, . . .

diffraction effects are such that no light reaches s, and clearly 
none is available for interference. At points on s where

a = ±p>2, ±3p>2, ±5p>2, . . .

the various contributions to the electric field will be completely 
out-of-phase and will cancel, regardless of the actual amount of 
light made available from the diffraction process.

When we studied Young’s Experiment for two idealized narrow 
slits, the phase-angle difference was d = ka sin u and a = d>2. We 
saw then (Fig. 9.14c) that whenever d equaled an odd whole-
number multiple of p the wavelets from the two slits were to-
tally out-of-phase and canceled on the viewing screen. In other 
words, the two associated phasors were then antiparallel (i.e., 
oppositely directed), yielding a zero resultant electric-field am-
plitude and a zero irradiance. 

The irradiance distribution for a double-slit Fraunhofer pat-
tern is illustrated in Figs. 10.17b and 10.19. Notice that it is a 
combination of Figs. 9.12 and 10.6. The curve in Fig. 10.7 is for 
the particular case in which a = 3b (i.e., a = 3b). You can get a 
rough idea of what the pattern will look like, since if a = mb, 
where m is any number, there will be 2m bright fringes (counting 
“fractional fringes” as well)* within the central diffraction peak 
(Problem 10.14). An interference maximum and a diffraction 
minimum (zero) may correspond to the same u-value. In that 

with a K (ka>2) sin u and, as before, b K (ka>2) sin u. This is 
just the sum of the two fields at P, one from each slit, as given 
by Eq. (10.15). The distance from the first slit to P is R, giving 
a phase contribution of -kR. The distance from the second slit 
to P is (R - a sin u) or (R - 2a>k), yielding a phase term equal 
to (-kR + 2a), as in the second sine function. The quantity 2b
is the phase difference (kΛ) between two nearly parallel rays, 
arriving at a point-P on s, from the edges of one of the slits. The 
quantity 2a is the phase difference between two waves arriving 
at P, one having originated at any point in the first slit, the other 
coming from the corresponding point in the second slit. Simpli-
fying Eq. (10.23) a bit further, it becomes

E = 2bC asin b

b
b cos a sin (vt - kR + a)

Figure 10.18  Single- and double-slit Fraunhofer patterns. (a) Photographs 
taken with monochromatic light. (M. Cagnet, M. Francon, and J.C.  Thrierr: Atlas optiss-

cher Erscheinungen, Berlin-Heidelberg-New York. Springer-Verlag, New York.) (b) When the slit 
spacing equals b, the two slits coalesce into one (of width 2b) and the sin-
gle-slit pattern appears—that’s the first curve closest to you. The farthest 
curve corresponds to the two slits separated by a = 10b. Notice that the 
two-slit patterns all have their first diffraction minimum at a distance  
from the central maximum of Z0. Note how the curves gradually match  
Fig. 10.17b as the slit width b gets smaller in comparison to the separation a. 
(Reproduced with permission from “Graphical representations of Fraunhofer interference and diffrac-

tion,” Am. J. Phys 62, 6 (1994). A. B. Bartlett, University of Colorado, and B. Mechtly, Northeast 

Missouri State University. Copyright 1994, American Association of Physics Teachers.)
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*Notice that m need not be an integer. Moreover, if m is an integer, there will be 
“half-fringes,” as shown in Fig. 10.17c.
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476 Chapter 10 Diffraction

either side of the central peak. Determine the approximate slit 
width b.

SOLUTION 

We know that for single-slit diffraction b sin umD =mDl, where 
the added subscript D indicates “diffraction.” Moreover, for 
two-slit interference a sin umI = mIl, where the I subscript in-
dicates “interference.” Since there are nine maxima there must 
be four subsidiary peaks on each side of the central peak. And 
hence mI = ±4. Therefore the location of the edge of the cen-
tral diffraction maximum (u1D) should correspond to the loca-
tion of the edge of the fourth interference fringe (u4I). Thus 

sin u4I = sin u1D

and so

u4I = u1D

Therefore
4l
a

=
1l
b

4b = a

b =
0.100

4
 mm

and so b = 0.025 mm.

The double-slit pattern is also rather easily observed, and 
the seeing is well worth the effort. A straight-filament, tubu-
lar bulb is again the best line source. For slits, coat a micro-
scope slide with India ink; if you happen to have some, a col-
loidal suspension of graphite in alcohol works even better 
(it’s more opaque). Scratch a pair of slits across the dry ink 
with a razor blade and stand about 10 feet from the source. 
Hold the slits parallel to the filament and close to your eye, 
which, when focused at infinity, will serve as the needed lens. 
Interpose red or blue cellophane and observe the change in 
the width of the fringes. Find out what happens when you 
cover one and then both of the slits with a microscope slide. 
Move the slits slowly in the z-direction; then holding them 
stationary, move your eye in the z-direction. Verify that the 
position of the center of the pattern is indeed determined by 
the lens and not the aperture.

10.2.3 Diffraction by Many Slits

We now consider diffraction from a number (N) of long narrow 
parallel slits, but before we carry out a formal mathematical 
analysis let’s use what we know about phasors to anticipate 
some of the results. Figure 10.20a pictures, in cross section, 
three parallel slits (each b wide, each separated by a distance a), 
illuminated perpendicularly by monochromatic plane waves. 
The attendant electric-field amplitude on a distant viewing 

case, no light is available at that precise position to partake in the 
interference process, and the suppressed peak is said to be a 
missing order.

EXAMPlE 10.2

Imagine two narrow parallel long slits, each b wide, separated 
by a = 0.100 mm. These are illuminated perpendicularly by 
plane waves of yellow sodium light (l = 589.6 nm). The re-
sulting fringe pattern on a distant screen consists of a total of 
nine narrow maxima that gradually decrease in brightness on 

Figure 10.19  Two-slit Fraunhofer diffraction. Here, keeping the slit spac-
ing, a, constant, the slit width, b, is decreased from 0.75 mm to 0.25 mm. 
As each slit is narrowed, the dashed single-slit envelope widens to include 
move and more double-slit (cosine-squared) fringes, which remain (except 
for their heights) the same.

0 10−10−20 20

Position

2-Slit Diffraction
Ir

ra
di

an
ce

a = 2.5
b = 0.75

0 10−10−20 20

Position

Ir
ra

di
an

ce

a = 2.5
b = 0.5

0 10−10−20 20

Position

Ir
ra

di
an

ce

a = 2.5
b = 0.25

M10_HECH6933_05_GE_C10.indd   476 26/08/16   4:06 PM



 10.2 Fraunhofer Diffraction 477

counterclockwise). The three phasors then close on themselves, 
forming an equilateral triangle, and the resultant amplitude is 0. 
In part ƒ phasor-3 and phasor-1 each shift by d3 = 135° with 
respect to phasor-2, whereupon the amplitude is small and neg-
ative. When d3 = 180°, phasor-3 swings 180° counterclockwise 
from phasor-2, while phasor-1 swings 180° clockwise from 
phasor-2. The three phasors then overlie each other such that 
two cancel, leaving only one in the negative direction (Fig. 10.20g). 
The net amplitude is thereupon -1.0E01; this is a small negative 
subsidiary maximum, about which the curve in Fig. 10.20b 
turns out to be symmetrical. Squaring the field amplitude yields 
the irradiance distribution, whose principal peaks at 0 and 360° 
are proportional to 32E01

2  or 9E01
2  compared to the subsidiary 

maximum, whose value at 180° is 12E01
2 .

Generally, principal maxima occur when the phase shift be-
tween successive wavelets is m2p, where m is a whole number, 
including 0. We’ll see that as u increases, the phasors will sub-
sequently always form a polygon (in this case of three slits, a 
triangle) with N sides. Zeros of amplitude will occur whenever 
the phase-angle difference equals m′2p>N (where m′ equals an 
integer); in this case m′ = 1, N = 3, and d3 = 2p>3 = 120°, 
whereupon the amplitude has its first zero value. When dN = p, 
the phasors will overlie each other, producing a resultant that is 
either 0 when N is even or ±E01 when N is odd, as it is here. 
The second zero in the three-slit pattern occurs when m′ = 2 

screen is plotted in Fig. 10.20b. This is a graph of the net ampli-
tude as the point of observation moves away from the central 
axis, across the diffraction pattern, transverse to the slits. We’ll 
use the accompanying phasor diagrams to derive that graph. In 
all cases the horizontal will be the reference axis. For three slits 
the phase difference between successive wavelets from the slits 
is again d3 = (2p>l)a sin u. The wavelet from the center of the 
aperture screen travels the reference OPL, and its phasor (num-
ber 2, drawn with a black dot at its tail) is therefore horizontal, 
to the right, stationary, and positive. The other two phasors 
(numbers 1 and 3) are shifted by d3—one clockwise, the other 
counterclockwise—from the reference. 

In part c, which corresponds to a point on the central axis  
(u = 0), the three wavelets arrive in-phase (d3 = 0), the phasors 
lie on a straight line, and the net amplitude (3E01) is maximum 
and positive. In part d, where u has increased, there is a phase 
difference of, say, d3 = 90° between successive phasors. The 
reference phasor-2 from the central slit (still with a black dot at 
its tail) remains horizontal and the other two phasors are shifted 
90°, phasor-1 clockwise, phasor-3 counterclockwise, with re-
spect to it (see Figs. 9.14 and 10.10, and refer back to the ac-
companying discussions). When tip-to-tailed, the resultant field 
amplitude (Fig. 10.20d) is small (1E01) and positive. 

In part e the individual phase shifts with respect to reference 
phasor-2 are each d3 = 120° (phasor-1 clockwise, phasor-3 

Figure 10.20  Electric field for three-slit diffraction. (a) 
The aperture screen. (b) The resulting electric-field ampli-
tude. (c) The maximum field amplitude. (d) The resultant is 
positive when d3 = 90°. (e) The resultant amplitude is 
zero when d3 = 120°. (f ) The amplitude is negative when 
d3 = 135°. (g) The amplitude is E01 when d3 = 180°.
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478 Chapter 10 Diffraction

sponding phasors—numbered 1, 2, 3, and 4, each of amplitude 
E01—then lie on a line, and the net amplitude (4E01) is maxi-
mum and positive (Fig. 10.23b). This establishes the reference 
direction, even though there is no central slit, and so no specific 
reference phasor. 

In part c, u is such that the phase difference between succes-
sive phasors is d4 = 90°. Because N is an even number there is 
no central wavelet. Accordingly, phasors-2 and -3 are shifted 
d4>2 = 45° with respect to the reference direction, phasor-2 ro-
tated clockwise and phasor-3 counterclockwise from the hori-
zontal. The four phasors, shifted by 90° with respect to each 
other, then form a polygon, a square, closing on themselves and 
producing the first zero of field amplitude (Fig. 10.23c). This is 
plotted in the graph (Fig. 10.23a) at d4>2 = p>4 = 45°. That 
result accords with what we saw earlier, namely, that the first 
zero occurs when d4 = m′2p>N = 2p>4. 

and d3 = m′2p>N = 4p>3, or at d3>2 = 120° in Fig 10.20b. 
Squaring the electric-field amplitude (except for a constant) 
produces the irradiance distribution.

Figure 10.21 illustrates the normalized irradiance for N = 2, 
3, 4, 5, and 6. For the moment, the slit widths are idealized to be 
infinitesimal, and single-slit diffraction is therefore ignored. 
The separations between consecutive slits, a, are the same in all 
setups. Recall that the analyses for odd and even numbers of 
slits were slightly different in that in the first instance there was 
a central reference slit and in the second there wasn’t. To take 
that into consideration Fig. 10.21 is a plot of relative irradiance 
against 1

2 dN. Notice that the principal maxima in the three-slit 
pattern are at the same locations as in the two-slit pattern. Be-
cause the former has more phasors, its field amplitude reaches 
its first zero value sooner than does the latter. As we’ll see pres-
ently, the more slits, the more ways for the wavelets to fall out-
of-phase. The principal irradiance maxima thus become nar-
rower and taller as N increases, and only a small amount of 
energy appears in the (N - 2) subsidiary maxima. The actual 
diffraction patterns are shown in Fig. 10.22.

Figure 10.23 treats the four-slit system, and the graph in part 
a again represents the amplitude of the electric field at various 
values of u. As always, on the central axis (u = 0), the four 
wavelets arrive in-phase [d4 = (2p>l)a sin u = 0]. The corre-

Figure 10.22  Diffraction patterns for slit systems shown at left. (Francis 

Weston Sears, Optics. Reprinted with permission of Addison Wesley Longman, Inc.)

Figure 10.21  Multi-slit irradiance patterns ignoring single-slit diffraction. 

Here, dN>2 =
p

l
 a sin u and N is the number of long, parallel, very narrow 

slits. Notice how the principal maxima increase as N2.

d2�2
2pp 3p0

4 N = 2

d3�2
2pp 3p0

9

1

N = 3

1

d4�2
2pp 3p0

16 N = 4

d5�2
2pp 3p0

25 N = 5

d6�2
2p

Irradiance

R
el

at
iv

e 
ir

ra
di

an
ce

p 3p0

36 N = 6

M10_HECH6933_05_GE_C10.indd   478 26/08/16   4:06 PM



 10.2 Fraunhofer Diffraction 479

and it increases to -4E01 at d4 = 2p; the curve in Fig. 10.23a 
shows this as a negative peak beyond d4>2 = 3p>4. Squaring 
that curve produces the irradiance distribution in Fig. 10.21, 
which, in turn, corresponds to the four-slit fringe pattern in 
Fig. 10.22.

The five-slit field amplitude distribution is pictured in Fig. 
10.24a. The m = 0 principal maximum is 5E01. It’s followed by 
the first zero at d5 = m′2p>N where m′ = 1 and d5 = 2p>5. 
There the phasors close on themselves, forming a pentagon, with 
the reference phasor-3 on the bottom, stationary, horizontal,  
and pointing to the right (Fig. 10.24b). Thereafter, the end of 
phasor-1 (white circle) moves clockwise, as the tip of phasor-5 
(white arrowhead) moves counterclockwise. They pass each 
other and the amplitude goes negative (Fig. 10.24c). Both these 
phasors (1 and 5) subsequently cross over phasor-3 and finally 
meet tip-to-tail beneath it. At that value of d5 = 4p>5, corre-
sponding to the second zero, m′ = 2, the phasors close into a 
five-pointed star (Fig. 10.24d) with the reference phasor still 
horizontally to the right. Increasing d5 causes phasor-5 to swing 
counterclockwise with its tip to the right of the tail of phasor-1, 
resulting in an increasingly positive net amplitude. The central 
positive subsidiary maximum in Fig. 10.24a equals E01 at 
d5>2 = p>2. There (Fig. 10.24e) phasor-4 points left, having 
swung counterclockwise through 180° from reference phasor-3, 
and phasor-5 points right, having swung counterclockwise 
through 180° from phasor-4. Similarly, phasor-2 points left, hav-
ing swung clockwise through 180° from reference phasor-3, and 

Note that for a three-slit system the first zero didn’t happen 
until d3>2 = 120°; the principal maximum now is even narrower 
than it was before. Just beyond d4 = 90° the tail of phasor-1 (the 
open circle) crosses to the right over the tip of phasor-4 (open 
arrow), and the resultant, which is small and horizontal, becomes 
negative (Fig. 10.23d). As u increases further (Fig. 10.23e) phasor-1 
and phasor-4 (rotating clockwise and counterclockwise, respec-
tively) lower, and the horizontal negative resultant grows. That 
continues until phasor-1 and phasor-4 overlap and the resultant 
(drawn from the white circle to the tip of the white arrowhead) 
becomes -E01. 

Increasing u further increases sin u and that increases d4. The 
phasors then form an incomplete star (Fig. 10.23ƒ) and the net 
amplitude becomes -E01. When u is such that the relative phase 
angle between successive phasors is d4 = 180°, the four phasors 
are alternately antiparallel and completely cancel (Fig. 10.23g), 
producing the second amplitude zero. In other words, m′ = 2 
and d4 = m′2p>N = p. 

Because there’s no central slit, when d4 = 3p>2 the middle 
two phasors, phasors-2 and -3, are shifted with respect to the 
reference axis each by 3p>4, the first clockwise, the second 
counterclockwise. And Fig. 10.23h shows the four phasors each 
with a 3p>2 shift with respect to the next. The result is a closed 
square and zero net field amplitude. Thereafter, as d4 increases, 
the tail of phasor-1 (the white circle) moves right, away from the 
tip (white arrow head) of phasor-4, which moves left. The net 
amplitude (which is horizontal) is negative beyond d4 = 3p>2 

Figure 10.23  Electric field for four-slit diffraction. (a) The electric-field amplitude. (b) Here the pha-
sors lie along a straight line and the amplitude is positive and maximum. (c) When d4 = 90°, the 
resultant is zero. (d) As u increases so that d4 7 90°, the amplitude becomes negative. (e) At 
d4 = 120°, the amplitude is negative and equal to -E01. (f) When d4 = 144°, the amplitude is again 
-E01. (g) As d4 goes to 180°, the four phasors cancel. (h) At d4>2 = 3p>4, the phasors form a 
square and the resultant is zero. (i) The phasors align and the amplitude equals -4E01 when 
d4 = 2p.

E0(u)

E01

b c
d
e f g h i

d4�2

p�2 3p�4 p

0 30° 60° 90°

1

2

3

4

180°

(a)

p�40

120° 150°

E01

d4 = 0

1 2 3 4

(b)

d4
90°

41

2 3

(c)

45° = d4�245°

d4
1204 1

2 3

(e)

60° = d4�2

14

3 2

(h)

2

3

d4�2
3
4
p

d4
100°

41

2 3

(d)

50° = d4�2

(f) d4
144°

1

2 3

4

d4 = 180°
(g)

d4 = 2p

4 3 2 1(i)

M10_HECH6933_05_GE_C10.indd   479 26/08/16   4:06 PM



480 Chapter 10 Diffraction

Dividing these two equations leads to

 E0(u) = E01
sin Na
sin a

 (10.25)

This is the expression for the electric-field amplitude that cor-
responds to the idealized curves (which overlook single-slit dif-
fraction) in Figs. 10.20b, 10.23a, and 10.24a. 

Notice that as u goes to zero, a goes to zero, and this ratio 
approaches Na>a or just N. More generally, when a equals an 
integer multiple of p the denominator is zero, as is the numera-
tor. Then E0(u) = E01 = 0>0 and we have to use L’Hospital’s 
Rule. Accordingly, we take the derivative of the top and bottom 
of the right side of Eq. (10.25). As a goes to any integer multi-
ple of p, the ratio becomes ±N, whereupon for principal max-
ima, E0 = ±NE01, just as we saw in Figs. 10.20b, 10.23a, and 
10.24a.

To include the diffraction effects at each slit, recall that 

E0(u)

E0(0)
=

 sin b

b

where the amplitude of a single phasor due to one slit is 
E0(0) = E01. Hence 

 E0(u) = E01 
sin b

b
 
sin Na
sin a

 (10.26)

Except for a constant, this quantity squared is the irradiance.

phasor-1 points right, having swung clockwise through 180° 
from phasor-2. Thus two phasors point left, whereas three point 
right, and so four of them therefore cancel (Fig. 10.24e). The 
resulting amplitude is +1E01. The entire field amplitude distri-
bution is symmetrical around p>2. 

Recall Fig. 10.12, which allowed us to find an expression for 
the diffracted field from a single slit of width b. In a similar way 
we construct Fig. 10.25 for N narrow parallel slits. Each phasor 
is the base of an isosceles triangle with a vertex angle of 2a = dN, 
where a = (pa sin u)>l. We temporarily continue to take each 
slit to be infinitesimally wide. The diagram shows that each pha-
sor has a length (i.e., an electric-field amplitude) given by

2r sin a = E01

The resultant N-phasor amplitude (drawn from the tail with the 
little white circle to the tip with the white arrowhead) is 

2r sin Na = E0(u)

Figure 10.24  Electric field for five-slit diffraction. (a) The 
amplitude of the electric field. (b) When d5>2 = p>5, E0(u) = 0. 
(c) When d5>2 is between p>5 and 2p>5 the field is negative. 
(d) When d5>2 = 2p>5, E0(u) = 0. (e) When d5>2 = p, 
E0(u) = E01 (f) When d5>2 = 3p>5, E0(u) = 0 (g) When 
d5>2 = 4p>5, E0(u) = 0.
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Figure 10.25  The amplitude E0(u) in Fraunhofer diffraction resulting 
from N narrow parallel slits.
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R
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Figure 10.26  Multi-slit geometry. Again point-P is on s essentially  
infinitely far from g .

The Irradiance from Several Slits

The procedure for obtaining the irradiance function for a mono-
chromatic wave diffracted by many slits is essentially the same 
as that used when considering two slits. Here again, the limits of 
integration must be appropriately altered. Consider the case of N 
long, parallel, narrow slits, each of width b and center-to-center 
separation a, as illustrated in Fig. 10.26. With the origin of the 
coordinate system once more at the center of the first slit, the 
total optical disturbance at a point on the screen s is given by

E = C3b∙2

-b∙2
 F(z) dz + C 3a + b∙2

a - b∙2
 F(z) dz

+ C 32a + b∙2

2a - b∙2
 F(z) dz + g

 + C 3(N - 1)a + b∙2

(N - 1)a - b∙2
 F(z) dz (10.27)
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482 Chapter 10 Diffraction

where, as before, F(z) = sin [vt - k(R - z sin u)]. This applies 
to the Fraunhofer condition, so that the aperture configuration 
must be such that all the slits are close to the origin, and the ap-
proximation [Eq. (10.11)]

 r = R - z sin u (10.28)

applies over the entire array. The contribution from the jth slit 
(where the first one is numbered zero), obtained by evaluating 
only that one integral in Eq. (10.27), is then

Ej =
C

k sin u
 [sin (vt - kR) sin (kz sin u)

-  cos (vt - kR) cos (kz sin u)] ja + b>2
ja - b>2

provided that we require uj ≈ u. After some manipulation this 
becomes

Ej = bC asin b

b
b sin (vt - kR + 2aj)

recalling that b = (kb>2) sin u and a = (ka>2) sin u. Notice that 
this is equivalent to the expression for a line source [Eq. (10.15)] 
or, of course, a single slit, where in accord with Eq. (10.28) and 
Fig. 10.26, Rj = R - ja sin u, so that -kR + 2aj = -kRj. The 
total optical disturbance, as given by Eq. (10.27), is simply the 
sum of the contributions from each of the slits; that is,

E = ^
N - 1

j = 0
Ej

or E = ^
N - 1

j = 0
bC asin b

b
b sin (vt - kR + 2aj) 

This in turn can be written as the imaginary part of a complex 
exponential:

 E = Im cbC asin b

b
b ei(vt - kR) ^

N - 1

j = 0
(ei2a) jd  (10.29)

But we have already evaluated this same geometric series in the 
process of simplifying Eq. (10.2). Equation (10.29) therefore 
reduces to the form

   E = bC asin b

b
b asin Na

sin a
b sin [vt - kR + (N - 1)a] (10.30)

The distance from the center of the array to the point-P is equal 
to [R - (N - 1)(a>2) sin u], and therefore the phase of E at P 
corresponds to that of a wave emitted from the midpoint of the 
source. The flux-density distribution function is

 I(u) = I0 asin b

b
b

2

asin Na
sin a

b
2

 (10.31)

remembering that b = (kb>2) sin u and a = (ka>2) sin u.

Note that I0 is the flux density in the u = 0 direction emitted 
by any one of the slits and that I(0) = N2I0. In other words, the 
waves arriving at P in the forward direction are all in-phase, and 
their fields add constructively. Each slit by itself would generate 
precisely the same flux-density distribution. Superimposed, the 
various contributions yield a multiple-wave interference system 
modulated by the single-slit diffraction envelope. If the width of 
each aperture were shrunk to zero, Eq. (10.31) would become 
the flux-density expression [Eq. (10.6)] for a linear coherent 
array of oscillators. As in that earlier treatment [Eq. (10.l7)], 
principal maxima occur when (sin Na>sin a) = N, that is, 
when

a = 0, ±p, ±2p, . . .

or equivalently, since a = (ka>2) sin u,

 a sin um = ml (10.32)

with m = 0, ±1, ±2, . . . . The value of m is known as the order 
of the diffraction. This is quite general and gives rise to the same 
u-locations for these maxima, regardless of the value of N Ú 2. 
Minima, of zero flux density, exist whenever (sin Na>sin a)2 = 0 
or when

a = ±
p

N
 , ±

2p
N

 , ±
3p
N

 , . . . , ±
(N - 1)p

N
, ±

(N + 1)p

N
 , . . . 

(10.33)

EXAMPlE 10.3

Imagine 12 narrow, parallel, long slits each b millimeters 
wide, each separated from the next slit by a center-to-center 
distance of 5b. The apertures are illuminated normally by 
plane waves and produce a Fraunhofer diffraction pattern on a 
distant screen. Determine the relative irradiance of the first-
order principal maximum compared to the zeroth-order prin-
cipal maximum.

SOlUTION 

Using Eq. (10.31) the principal maxima occur when 
(sin Na>sin a) = N and so here 

I(u) = I(0) asin b

b
b

2

Moreover, since a = 5b

b =
p

l
 b sin u =

p

l
 
a
5

 sin u =
a

5

The first-order maximum occurs when a = p; hence, there 
b = p>5. And so for m = 1

I(u) = I(0) asin b

b
b

2

= I(0) asin p>5
p>5 b

2

Continued
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 10.2 Fraunhofer Diffraction 483

width by two adjacent zeros, then each will extend over a length 
in u, (sin u ≈ u) of approximately 2l>Na. As N increases, the 
principal maxima maintain their relative spacing (l>a) while 
becoming increasingly narrow. Figure 10.27 shows the case of 
six slits, with a = 4b.

The multiple-slit interference term in Eq. (10.35) has the 
form (sin2Na)>N2sin2 a; thus for large N, (N2 sin2 a)-1 may be 
envisioned as the curve beneath which sin2 Na rapidly varies. 
Notice that for small a this interference term looks like 
sinc2 Na (see Fig. 10.28).

EXAMPlE 10.4

An opaque screen contains seven long, very narrow parallel 
slits that are closely spaced. When illuminated by monochro-
matic plane waves, a Fraunhofer pattern appears on a distant 
screen. (a) How many subsidiary irradiance maxima will there 
be between the zeroth- and first-order principal maxima? (b) 
Assuming each slit to be essentially infinitesimally narrow, 
compare the irradiance of the smallest subsidiary maximum to 
that of a principal maximum.

SOlUTION 

(a) We know that there will be (N - 2) subsidiary maxima 
between consecutive principal maxima. Hence (7 - 2), or 5, 
small peaks will exist between the m = 0 and m = 1 large 
maxima. (b) When N is an odd number greater than 2 there 
will be a subsidiary maximum in the irradiance centrally 
located between the principal peaks. The electric-field 
amplitude at that location will equal 1E01, since all but one 
of the seven phasors (six of which are antiparallel) cancel. 
This is the smallest subsidiary maximum. The seven phasors 
lie on a straight line at each principal maximum, yielding 
an amplitude of 7E01. Thus the ratio of the corresponding 
irradiances is 12>72 = 1>49.

10.2.4 The Rectangular Aperture

Consider the configuration depicted in Fig. 10.29. A mono-
chromatic plane wave propagating in the x-direction is incident 
on the opaque diffracting screen g . We wish to find the conse-
quent (far-field) flux-density distribution in space or equiva-
lently at some arbitrary distant point P. According to the  
Huygens–Fresnel Principle, a differential area dS, within the 
aperture, may be envisioned as being covered with coherent 
secondary point sources. But dS is much smaller in extent than 
is l, so that all the contributions at P remain in-phase and in-
terfere constructively. This is true regardless of u; that is, dS 
emits a spherical wave (Problem 10.22). If eA is the source 
strength per unit area, assumed to be constant over the entire 
aperture, then the optical disturbance at P due to dS is either 
the real or imaginary part of

 dE = aeA

r
b ei(vt - kr) dS (10.37)

Thus

I(u)

I(0)
= asin p>5

p>5 b
2

= a0.587 8
0.628 3

b
2

= 0.9362

The first-order principal maximum is 0.875 times as large as 
the zeroth-order maximum.

Recall that between consecutive principal maxima (i.e., over 
the range in a of p) there will be N - 1 minima. And, of course, 
between each pair of minima there will have to be a subsidiary 
maximum. The term (sin Na>sin a)2, which we can think of as 
embodying the interference effects, has a rapidly varying numer-
ator and a slowly varying denominator. The subsidiary maxima 
are therefore located approximately at points where sin Na has 
its greatest value, namely,

 a = ±
3p
2N

 , ±
5p
2N

 , . . . (10.34)

The N - 2 subsidiary maxima between consecutive princi-
pal maxima are clearly visible in Fig. 10.22, which should 
be carefully compared with Fig. 10.21. We can get some 
idea of the f lux density at these peaks by rewriting  
Eq. (10.31) as

 I(u) =
I(0)

N2  asin b

b
b

2

 asin Na
sin a

b
2

 (10.35)

where at the points of interest 0 sin Na 0 = 1. For large N, a is small 
and  sin2 a ≈ a2. At the first subsidiary peak a = 3p>2N, in 
which case

 I ≈ I(0) asin b

b
b

2

a 2
3p

b
2

 (10.36)

and the flux density has dropped to about 1
22 of that of the 

adjacent principal maximum (see Problem 10.17). Since 
(sin b)>b for small b varies slowly, it will not differ from 1 
appreciably, close to the zeroth-order principal maximum, so 
that I>I(0) ≈ 1

22 . This flux-density ratio for the next second-
ary peak is down to 1

62 , and it continues to decrease as a ap-
proaches a value halfway between the principal maxima. At 
that symmetry point, a ≈ p>2, sin a ≈ 1, and the flux-density 
ratio has its lowest value, approximately 1>N2. Thereafter 
a 7 p>2, and the flux densities of the subsidiary maxima  
begin to increase.

Try duplicating Fig. 10.22 using a tubular bulb and home-
made slits. You’ll probably have difficulty seeing the subsidiary 
maxima clearly, with the effect that the only perceptible differ-
ence between the double- and multiple-slit patterns may be an 
apparent broadening in the dark regions between principal max-
ima. As in Fig. 10.22, the dark regions will become wider than 
the bright bands as N increases and the secondary peaks fade 
out. If we consider each principal maximum to be bounded in 
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484 Chapter 10 Diffraction

r by the distance OP, that is, R, in the amplitude term, as long 
as the aperture is relatively small. But the approximation for r 
in the phase needs to be treated a bit more carefully; k = 2p>l
is a large number. To that end we expand out Eq. (10.38) and, 
by making use of

 R = [X2 + Y2 + Z2]1>2 (10.39)

The choice is yours and depends only on whether you like sine 
or cosine waves, there being no difference except for a phase 
shift. The distance from dS to P is

 r = [X2 + (Y - y)2 + (Z - z)2]1>2 (10.38)

and as we have seen, the Fraunhofer condition occurs when this 
distance approaches infinity. As before, it will suffice to replace 

(      )(    )

Na
2p 3p 4p 5p 6p 7p 8p 9p 10pp 11p 12p 13p 14p 15p 16p0

0

1

sin2Na

a
0

0

1

sin2a

N 2

5p
2

8p
3

7p
3

3p
2

5p
3

4p
3

7p
6

p

2
p

3
p

6
2p
3

sinu

sinu

0
0

l

a
2l
a

5p
6

13p
6

11p
6

2pp

N = 2

N = 6
sin2Na
sin2a

N 2

0
0

l

a
l

2a
l

6a
2l
a

a = 4b
N = 6

sinNa
sina

sinb
b

22

(    )sinb
b

2

Figure 10.27  Multiple-slit pattern  
(a = 4b, N = 6). In the last part, the interfer-
ence is modulated by the diffraction envelope 
of a single slit of finite width.
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 10.2 Fraunhofer Diffraction 485

concern about the directionality of the emitters (the obliquity 
factor). Now

r = R[1 - 2(Yy + Zz)>R2]1>2

and dropping all but the first two terms in the binomial expan-
sion, we have

r = R[1 - (Yy + Zz)>R2]

The total disturbance arriving at P is

 E  ˜ =
eAei(vt - kR)

R
 33
Aperture

eik(Yy + Zz)>R dS (10.41)

Consider the specific configuration shown in Fig. 10.30. 
Equation (10.41) can now be written as

E  ˜ =
eAei(vt - kR)

R
 3b∙2

-b∙2
 eikYy>R dy 3a∙2

-a∙2
 eikZz>R dz

where dS = dy dz. With b′ K kbY>2R and a′ K kaZ>2R, we 
have

3+b∙2

-b∙2
 eikYy>R dy = b aeib′ - e-ib′

2ib′
b = b asin b′

b′
b

and similarly

3+a∙2

-a∙2
 eikZz>R dz = a aeia′ - e-ia′

2ia′
b = a asin a′

a′
b

so that

 E  ˜ =
AeAei(vt - kR)

R
 asin a′

a′
b asin b′

b′
b (10.42)

obtain

 r = R[1 + ( y2 + z2)>R2 - 2(Yy + Zz)>R2]1>2 (10.40)

In the far-field case R is very large in comparison to the dimen-
sions of the aperture, and the ( y2 + z2)>R2 term is certainly 
negligible. Since P is very far from Σ, u can still be kept small, 
even though Y and Z are fairly large, and this mitigates any 

Figure 10.28  Multiple-slit diffraction, each with a finite slit width. The 
more slits that are opened, the narrower the peaks. Notice that the princi-
pal maxima are located at fixed positions. Note, too, that there are (N - 2) 
subsidiary maxima between adjacent principal maxima (N being the num-
ber of slits beyond 1).
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Figure 10.29  Fraunhofer diffraction from 
an arbitrary aperture, where r and R are very 
large compared to the size of the hole.
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486 Chapter 10 Diffraction

the familiar shape of Fig. 10.13. When b′ and a′ are nonzero 
integer multiples of p or, equivalently, when Y and Z are  
nonzero integer multiples of lR>b and lR>a, respectively, 
I(Y, Z) = 0, and we have a rectangular grid of nodal lines,  
as indicated in Fig. 10.31. Notice that the pattern in the Y-,  
Z-directions varies inversely with the y-, z-aperture dimensions. 
A horizontal, rectangular opening will produce a pattern with  

where A is the area of the aperture. Since I = 8(Re E ˜)29T,

 I(Y, Z) = I(0) asin a′
a′

b
2

asin b′
b′

b
2

 (10.43)

where I(0) is the irradiance at P0; that is, at Y = 0, Z = 0. At 
values of Y and Z such that a′ = 0 or b′ = 0, I(Y, Z) assumes 

Σ

s

x

dzdy

a

y

z

P

r

P0

R

Y

Z

b

Figure 10.30  A rectangular aperture.

(a) Fraunhofer pattern of a square  
aperture. (b) The same pattern further 
exposed to bring out more of the faint 
terms. (E.H.)

(a) (b)
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 10.2 Fraunhofer Diffraction 487

a vertical rectangle at its center and vice versa (Figs. 10.32  
and 10.33).

Along the b′-axis, a′ = 0 and the subsidiary maxima are 
located approximately halfway between zeros, that is, at  
b′m = ±3p>2, ±5p>2, ±7p>2, . . . . At each subsidiary maxi-
mum  sin b′m = 1, and, of course, along the b′-axis, since a′ = 0, 

(sin a′)>a′ = 1, so that the relative irradiances are approximat-
ed simply by

 
I

I(0)
=

1

b′2
m

 (10.44)

Similarly, along the a′-axis

 
I

I(0)
=

I

a′2
m

 (10.45)

The flux-density ratio* drops off rather rapidly from 1 to approxi-
mately 1

22 to 1
62 to 1

122, and so on. Even so, the off-axis secondary 

Figure 10.31  (a) The irradiance distribution for a square aperture. (b) The irradiance 
produced by Fraunhofer diffraction at a square aperture. (c) The electric-field distribution 
produced by Fraunhofer diffraction via a square aperture. (R.G. Wilson, Illinois Wesleyan University)

I

2p

2p 3p

3p

–3p
–2p

–2p

–3p

–p
–p

b�

a�

p
p

(a)

(b)

(c)

Figure 10.32  The Fraunhofer diffraction pattern of a vertical rectangular 
hole; b 7 a. The aperture is taller than it is wide. (M. Cagnet, M. Francon, and  

J.C. Thrierr: Atlas optisscher Erscheinungen, Berlin-Heidelberg-New York. Springer-Verlag, New York.)

*These particular photographs were taken during an undergraduate laboratory 
session. A 1.5-mW He–Ne laser was used as a plane-wave source. The apparatus 
was set up in a long darkened room, and the pattern was cast directly on  
4 × 5 Polaroid (ASA 3000) film. The film was located about 30 feet from a small 
aperture, so that no focusing lens was needed. The shutter, placed directly in 
front of the laser, was a student-contrived cardboard guillotine arrangement, and 
therefore no exposure times are available. Any camera shutter (a single-lens reflex 
with the lens removed and the back open) will serve, but the cardboard one was 
more fun.
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488 Chapter 10 Diffraction

10.2.5 The Circular Aperture

Fraunhofer diffraction at a circular aperture is an effect of great 
practical significance in the study of optical instrumentation. 
Envision a typical arrangement: plane waves impinging on a 
screen Σ containing a circular aperture and the consequent far-
field diffraction pattern spread across a distant observing 
screen s. By using a large focusing lens L2, we can bring s in 
close to the aperture without changing the pattern. Now, if L2 
is positioned close to the diffracting opening in Σ, the form of 
the pattern is essentially unaltered. The lightwave reaching Σ is 
cropped by the aperture so that only a circular segment propa-
gates through L2 to form an image in the focal plane. This is 
obviously the same process that takes place in an eye, tele-
scope, microscope, or camera lens. The image of a distant point 
source, as formed by a perfectly aberration-free converging lens, 
is never a point but rather some sort of diffraction pattern. We 
are essentially collecting only a fraction of the incident wave-
front and therefore cannot hope to form a perfect image. As 
shown in the last section, the expression for the optical distur-
bance at P, arising from an arbitrary aperture in the far-field 
case, is

 E  ˜ =
eAei(vt - kR)

R
 33
Aperture

eik(Yy + Zz)>R dS [10.41]

For a circular opening, symmetry would suggest introducing 
spherical coordinates in both the plane of the aperture and the 
plane of observation, as shown in Fig. 10.34. Therefore, let

z = r cos f y = r sin f
Z = q cos Φ Y = q sin Φ

The differential element of area is now

dS = r dr df

Substituting these expressions into Eq. (10.41), it becomes

E  ˜ =
eAei(vt - kR)

R
 3a

r = 0
 32p

f = 0
ei(krq>R) cos (f- Φ)r dr df

(10.46)

Because of the complete axial symmetry, the solution must be in-
dependent of Φ. We might just as well solve Eq. (10.46) with 
Φ = 0 as with any other value, thereby simplifying things slightly.

The portion of the double integral associated with the vari-
able f,

32p

0
ei(krq>R) cos f df

is one that arises quite frequently in the mathematics of phys-
ics. It is a unique function in that it cannot be reduced to any 
of the more common forms, such as the various hyperbolic, 
exponential, or trigonometric functions, and indeed with the 

peaks are still smaller; for example, the four corner peaks  
(whose coordinates correspond to appropriate combinations of 
b′ = ±3p>2 and a′ = ±3p>2) nearest to the central maxi-
mum each have relative irradiances of about 1 1

2222.

EXAMPLE 10.5

The aperture in the opaque screen shown in Fig. 10.30 is 0.120 
mm in the y-direction by 0.240 mm in the z-direction. It is illu-
minated by a helium–neon laser at 543 nm. A large positive lens 
with a focal length of 1.00 m projects a Fraunhofer diffraction 
pattern on a screen in the lens’s focal plane. Determine the rela-
tive irradiance, I(Y, Z)>I(0), at Y = 2.00 mm and Z = 3.00 mm 
on the observation screen.

SOLUTION 

From Eq. (10.43)

I(Y, Z) = I(0) asin a′
a′

b
2

asin b′
b′

b
2

where a′ = kaZ>2R and b′ = kbY>2R.

Here R ≈ f, a = 0.240 mm, b = 0.120 mm, and 

I(Y, Z) = I(0) csin(paZ>ƒl)

paZ>ƒl d
2

csin(pbY>ƒl)

pbY>ƒl d
2

I(Y, Z)

I(0)
= csin(1388.5Z )

1388.5Z
d

2

csin(694.27Y )

694.27Y
d

2

I(Y, Z)

I(0)
= a-0.854 1

4.165 5
b

2

a0.983 4
1.388 5

b
2

= (0.205 0)2(0.708 2)2

and so
I(2, 3) = 0.0211I(0)

Figure 10.33  The Fraunhofer diffraction pattern for a vertical  
rectangular aperture (taller than wide, b 7 a). Draw a cross through the 
center and lable A = 1, B = 0.047, and C = 0.016. The diagonal terms 
are then B * B = 0.002 and C * C = 0.000 2. The remaining terms are 
C * B = B * C = 0.000 7. The display can be extended using D = 0.008 3.

1

0.047

0.047

0.016

0.016

0.047

0.002

0.002

0.0007

0.0007

0.047

0.002

0.002

0.0007

0.0007

0.016

0.0007

0.0007

0.0002

0.0002

0.016

0.0007

0.0007

0.0002

0.0002

M10_HECH6933_05_GE_C10.indd   488 09/09/16   1:16 PM
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When m = 1, this clearly leads to

 3u

0
u′J0(u′) du′ = uJ1(u) (10.50)

with u′ just serving as a dummy variable. If we now return to 
the integral in Eq. (10.49) and change the variable such that  
w = krq>R, then dr = (R>kq) dw and

3r = a

r = 0
J0(krq>R)r dr = (R>kq)2 3w = kaq∙R

w = 0
J0(w)w dw

Making use of Eq. (10.50), we get

 E  ˜(t) =
eAei(vt - kR)

R
 2pa2(R>kaq) J1(kaq>R) (10.51)

exception of these, it is perhaps the most often encountered. 
The quantity

 J0(u) =
1

2p
 32p

0
 eiu cos v dv (10.47)

is known as the Bessel function (of the first kind) of order zero. 
More generally,

 Jm(u) =
i-m

2p
 32p

0
 ei(mv + u cos v) dv (10.48)

represents the Bessel function of order m. Numerical values of 
J0(u) and J1(u) are tabulated for a large range of u in most math-
ematical handbooks. Just like sine and cosine, the Bessel func-
tions have series expansions and are certainly no more esoteric 
than these familiar childhood acquaintances. As seen in Fig. 10.35, 
J0(u) and J1(u) are slowly decreasing oscillatory functions that 
do nothing particularly dramatic.

Equation (10.46) can be rewritten as

 E  ˜ =
eAei(vt - kR)

R
 2p 3a

0
 J0(krq>R)r dr (10.49)

Another general property of Bessel functions, referred to as a 
recurrence relation, is

d
du

 [umJm(u)] = umJm - 1(u)

Σ

s

x

f

r

Φ

u
0

P0

P
q

R
Y

Z

a

y

z

Figure 10.34  Circular aperture geometry.
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Figure 10.35  Bessel functions.
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490 Chapter 10 Diffraction

Since sin u = q>R, the irradiance can be written as a function  
of u,

 I(u) = I(0) c2J1(ka sin u)

ka sin u
d

2

 (10.56)

and as such is plotted in Fig. 10.36. Because of the axial symmetry, 
the towering central maximum corresponds to a high-irradiance 
circular spot known as the Airy disk. It was Sir George Biddell 
Airy (1801–1892), Astronomer Royal of England, who first de-
rived Eq. (10.56). The central disk is surrounded by a dark ring 
that corresponds to the first zero of the function J1(u). From  
Table 10.2 J1(u) = 0 when u = 3.83, that is, kaq>R = 3.83. The 
radius q1 drawn to the center of this first dark ring can be thought 
of as the extent of the Airy disk (Fig. 10.37). It is given by 
q1 = 3.83 Rl>2pa or

 q1 = 1.22 
Rl
2a

 (10.57)

For a lens focused on the screen s, the focal length ƒ ≈ R, so

[radius 1st dark ring] q1 ≈ 1.22 
ƒl

D
 (10.58)

where D is the aperture diameter, in other words, D = 2a. (The 
diameter of the Airy disk in the visible spectrum is very roughly 
equal to the ƒ># of the lens in millionths of a meter.) As shown 
in the accompanying photos, q1 varies inversely with the hole’s 
diameter. As D approaches l, the Airy disk can be very large 

To within a constant the irradiance at point-P is 8(Re E ˜  )29 or 
1
2 E ˜E ˜*, that is,

 I =
2e2

AA2

R2  cJ1(kaq>R)

kaq>R d
2

 (10.52)

where A is the area of the circular opening. To find the irradi-
ance at the center of the pattern (i.e., at P0), set q = 0. It follows 
from the above recurrence relation (m = 1) that

 J0(u) =
d
du

 J1(u) +
J1(u)

u
 (10.53)

From Eq. (10.47) we see that J0(0) = 1, and from Eq. (10.48), 
J0(0) = 0. The ratio of J1(u)>u as u approaches zero has the same 
limit (L’Hospital’s Rule) as the ratio of the separate derivatives of 
its numerator and denominator, namely, dJ1(u)>du over 1. But 
this means that the right-hand side of Eq. (10.53) is twice that 
limiting value, so that J1(u)>u = 1

2 at u = 0. The irradiance at P0 
is therefore

 I(0) =
e2

AA2

2R2  (10.54)

which is the same result obtained for the rectangular opening 
[Eq. (10.43)]. If R is assumed to be essentially constant over the 
pattern, we can write

 I = I(0) c2J1(kaq>R)

kaq>R d
2

 (10.55)

I�I(0)
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Figure 10.36  (a) The Airy pattern. (b) Electric field created by 
Fraunhofer diffraction at a circular aperture. (c) Irradiance resulting 
from Fraunhofer diffraction at a circular aperture. (R.G. Wilson, Illinois 

Wesleyan University)

(c)

(b)
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Airy rings using (a) a 0.5-mm hole diameter and (b) a 1.0-mm hole diameter. 
(E.H.)

(a)

(b)

*See Born and Wolf, Principles of Optics, p. 398, or the very fine elementary text 
by Towne, Wave Phenomena, p. 464.

Table 10.2  bessel Functions*

 x J1(x)* x J1(x) x J1(x)

 0.0 0.000 0 3.0 0.339 1 6.0 20.276 7

 0.1 0.049 9 3.1 0.300 9 6.1 20.255 9

 0.2 0.099 5 3.2 0.261 3 6.2 20.232 9

 0.3 0.148 3 3.3 0.220 7 6.3 20.208 1

 0.4 0.196 0 3.4 0.179 2 6.4 20.181 6

 0.5 0.242 3 3.5 0.137 4 6.5 20.153 8

 0.6 0.286 7 3.6 0.095 5 6.6 20.125 0

 0.7 0.329 0 3.7 0.053 8 6.7 20.095 3

 0.8 0.368 8 3.8 0.012 8 6.8 20.065 2

 0.9 0.405 9 3.9 20.027 2 6.9 20.034 9

 1.0 0.440 1 4.0 20.066 0 7.0 20.004 7

 1.1 0.470 9 4.1 20.103 3 7.1 0.025 2

 1.2 0.498 3 4.2 20.138 6 7.2 0.054 3

 1.3 0.522 0 4.3 20.171 9 7.3 0.082 6

 1.4 0.541 9 4.4 20.202 8 7.4 0.109 6

 1.5 0.557 9 4.5 20.231 1 7.5 0.135 2

 1.6 0.569 9 4.6 20.256 6 7.6 0.159 2

 1.7 0.577 8 4.7 20.279 1 7.7 0.181 3

 1.8 0.581 5 4.8 20.298 5 7.8 0.201 4

 1.9 0.581 2 4.9 20.314 7 7.9 0.219 2

 2.0 0.576 7 5.0 20.327 6 8.0 0.234 6

 2.1 0.568 3 5.1 20.337 1 8.1 0.247 6

 2.2 0.556 0 5.2 20.343 2 8.2 0.258 0

 2.3 0.539 9 5.3 20.346 0 8.3 0.265 7

 2.4 0.520 2 5.4 20.345 3 8.4 0.270 8

 2.5 0.497 1 5.5 20.341 4 8.5 0.273 1

 2.6 0.470 8 5.6 20.334 3 8.6 0.272 8

 2.7 0.441 6 5.7 20.324 1 8.7 0.269 7

 2.8 0.409 7 5.8 20.311 0 8.8 0.264 1

 2.9 0.375 4 5.9 20.295 1 8.9 0.255 9

*J1(x) = 0 for x = 0, 3.832, 7.016, 10.173, 13.324, . . .
Adapted from E. Kreyszig, Advanced Engineering Mathematics, reprinted by  
permission of John Wiley & Sons, Inc. 

Figure 10.37  Fraunhofer diffraction from a circular aperture; the Airy 
pattern.

indeed, and the circular aperture begins to resemble a point 
source of spherical waves.

The higher-order zeros occur at values of kaq>R equal to 
7.02, 10.17, and so forth. The secondary maxima are located 
where u satisfies the condition

d
du

 cJ1(u)
u d = 0

which is equivalent to J2(u) = 0. From math tables, then, these 
secondary peaks occur when kaq>R equals 5.14, 8.42, 11.6, and 
so on, whereupon I>I(0) drops from 1 to 0.017 5, 0.004 2, and 
0.001 6, respectively (Problem 10.36).

Circular apertures are preferable to rectangular ones, as far 
as lens shapes go, since the circle’s irradiance curve is broader 
around the central peak and drops off more rapidly thereafter. 
Exactly what fraction of the total light energy incident on s is 
confined to within the various maxima is a question of interest, 
but one somewhat too involved to solve here.* On integrating 
the irradiance over a particular region of the pattern, one finds 
that 84% of the light arrives within the Airy disk and 91% with-
in the bounds of the second dark ring.
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492 Chapter 10 Diffraction

Diffraction is being studied as a possible means of rapid auto-
matic analysis of Pap tests for cancer. (a) The Fraunhofer diffrac-
tion pattern of a normal cervical cell. (b) The diffraction pattern 
of a malignant cervical cell is very different. (Benjamin J. Pernick)(a) (b)

(a) Airy rings—long exposure (1.5-mm hole dia meter). (b) Central Airy 
disk—short exposure with the same aper ture. (E.H.)

(a)

(b)

EXAMPLE 10.6

A circular hole in an opaque screen has a diameter of 4.98 mm. 
It is illuminated perpendicularly by light from a helium–neon 
laser (l0 = 543 nm) and forms a Fraunhofer diffraction pattern 
on a distant screen. Determine the angular width, 2∆u1, of the 
Airy disk. How big would it be if the hole was made 10 times 
smaller?

SOlUTION 

We know that sin u = q>R. Let ∆u1 be half the angular width of 
the disk. Hence, using Eq. (10.57),

sin ∆u1 = 1.22 
l

2a
=

q1

R

For small angles, sin ∆u1 ≈ ∆u1 and so

2∆u1 = 1.22 
l

a
Here

2∆u1 = 1.22 
543 * 10-9 m

2.49 * 10-3 m

and 2∆u1 = 2.66 * 10-4 rad 

Finally, when a = 0.498 mm, 2∆u1 = 2.66 * 10-3 rad. The 
smaller the hole, the larger the Airy disk.

10.2.6 Resolution of Imaging Systems

Imagine that we have some sort of lens system that forms an 
image of an extended object. If the object is self-luminous, it is 
likely that we can regard it as made up of an array of incoher-
ent sources. On the other hand, an object seen in reflected light 
will surely display some phase correlation between its various 
scattering points. When the point sources are in fact incoher-
ent, the lens system will form an image of the object that con-
sists of a distribution of partially overlapping, yet independent, 
Airy patterns. In the finest lenses, which have negligible aber-
rations, the spreading out of each image point due to diffrac-
tion represents the ultimate limit on image quality.

Suppose that we simplify matters somewhat and examine 
only two equal-irradiance, incoherent, distant point sources. 
For example, consider two stars seen through the objective lens 
of a telescope, where the entrance pupil corresponds to the dif-
fracting aperture. In the previous section we saw that the radius 
of the Airy disk was given by q1 = 1.22ƒl>D. If ∆u is the cor-
responding angular measure, then ∆u = 1.22l>D, inasmuch as 
q1>ƒ = sin ∆u ≈ ∆u. The Airy disk for each star will be spread 
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out over an angular half-width ∆u about its geometric image 
point, as shown in Fig. 10.38. If the angular separation of the 
stars is ∆w and if ∆w 7 7  ∆u, the images will be distinct and 
easily resolved. As the stars approach each other, their respec-
tive images come together, overlap, and commingle into a sin-
gle blend of fringes. If Lord Rayleigh’s criterion is applied, the 
stars are said to be just resolved when the center of one Airy 
disk falls on the first minimum of the Airy pattern of the other 
star. (We can certainly do a bit better than this, but Rayleigh’s 
criterion, however arbitrary, has the virtue of being particularly 
uncomplicated.*) The minimum resolvable angular separation 
or angular limit of resolution is

 (∆w)min = ∆u = 1.22l>D (10.59)

as depicted in Fig. 10.39. If ∆/ is the center-to-center separa-
tion of the images, the limit of resolution is

 (∆/)min = 1.22ƒl>D (10.60)

The resolving power for an image-forming system is generally 
defined as either 1>(∆w)min or 1>(∆/)min.

EXAMPlE 10.7

A positive lens having a 40-mm diameter is used to form the im-
age of two stars on a CCD in a camera. If the stars are 1000 light-
years from Earth, how far apart are they if they are just resolvable 
according to the Rayleigh criterion? Assume l0 = 550 nm.

SOlUTION 

From Eq. (10.59)

(∆w)min = 1.22l>D

Hence (∆w)min =
1.22(550 * 10-9 m)

40 * 10-3 m

and (∆w)min = 1.677 5 * 10-5 rad

The stars’ separation, L, is then

L = R(∆w)min = 1000(1.677 5 * 10-5)

and L = 0.016 8 light-year.

If the smallest resolvable separation between images is to be 
reduced (i.e., if the resolving power is to be increased), the 
wavelength, for instance, might be made smaller. Using ultravio-
let rather than visible light in microscopy allows for the percep-
tion of finer detail. The electron microscope utilizes equivalent 
wavelengths of about 10-4 to 10-5 that of light. This makes it 

L2

∆w

∆u

s

∆�

∆u

Figure 10.38  Overlapping images. (E.H.)

*In Rayleigh’s own words: “This rule is convenient on account of its simplicity and 
it is sufficiently accurate in view of the necessary uncertainty as to what exactly is 
meant by resolution.” See Section 9.6.1 for further discussion.
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L2

(∆w)min

s

(∆�)min
∆u

Figure 10.39  Overlapping images. (E.H.)

possible to examine objects that would otherwise be completely 
obscured by diffraction effects in the visible spectrum. On the 
other hand, the resolving power of a telescope can be increased 
by increasing the diameter of the objective lens or mirror.  
Besides collecting more of the incident radiation, this will also 
result in a smaller Airy disk and therefore a sharper, brighter 
image. The Mount Palomar 200-in. Telescope has a mirror 5 m 
in diameter (neglecting the obstruction of a small region at its 
center). At 550 nm it has an angular limit of resolution of 
2.7 * 10-2 s of arc. In contrast, the Jodrell Bank radio tele-
scope, with a 250-ft diameter, operates at a rather long, 21-cm 
wavelength. It therefore has a limit of resolution of only about 
700 s of arc. The human eye has a pupil diameter that of course 
varies. Taking it, under bright conditions, to be about 2 mm, 
with l = 550 nm, (∆w)min turns out to be roughly 1 min of arc. 
With a focal length of about 20 mm, (∆/)min on the retina is 
6700 nm. This is roughly twice the mean spacing between re-
ceptors. The human eye should therefore be able to resolve two 
points, an inch apart, at a distance of some 100 yards. You will 
probably not be able to do quite that well; one part in one thou-
sand is more likely.

A more appropriate criterion for resolving power has been 
proposed by C. Sparrow. Recall that at the Rayleigh limit there 
is a central minimum or saddle point between adjacent peaks. 
A further decrease in the distance between the two point sources 
will cause the central dip to grow shallower and ultimately disap-
pear. The angular separation corresponding to that configuration 

is Sparrow’s limit. The resultant maximum has a broad flat top. 
In other words, at the origin, which is the center of the peak, 
the second derivative of the irradiance function is zero; there is 
no change in slope (Fig. 10.40).

Unlike the Rayleigh rule, which rather tacitly assumes inco-
herence, the Sparrow condition can readily be generalized to 
coherent sources. In addition, astronomical studies of equal-
brightness stars have shown that Sparrow’s criterion is by far 
the more realistic.

10.2.7 The Zeroth-Order bessel beam 

When light emerges from a narrow circular aperture, the dif-
fracted beam has a central Airy disk that increases with distance 
via Eq. (10.57)—the beam spreads out as it propagates. Even 
though they resemble parallel ray bundles, laserbeams also di-
verge. The simplest and one of the most common laserbeam 
configurations is the TEM00 mode Gaussian beam (p. 624). If 
D0 is the waist diameter (i.e., the diameter where the beam is 
narrowest), it will double its cross-sectional area after propagat-
ing a distance zR. This is known as the Rayleigh range, where 
zR = pD2

0>4l. Indeed, all real beams, no matter how well colli-
mated they are, diverge. 

Nonetheless, there is a class of solutions to the differential 
wave equation for free space that are “nondiffracting.” The sim-
plest of these nonspreading beam solutions corresponds to a 
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The resolution of two small equal-irradiance sources.

This picture is made up of only about 750 pixels. The subject is hard to see 
when the page is close to you because you can resolve the individual pixel 
squares. That’s especially true when you hold the picture close to your face. 
To perceive it more clearly, decrease your ability to resolve each separate 
pixel: decrease D, the aperture of your eye (squint), or decrease the angular 
separation of the edges of each pixel (hold the picture farther away). If you 
do either, you should be able to make out the image of your humble author. 
(E.H.)

monochromatic wave propagating in the z-direction with an elec-
tric field proportional to the zeroth-order Bessel function J0: 

E ˜(r, u, z, t) ∝ J0(k#r)ei(k iz -vt)

Here E ˜(r, u, z, t) is expressed in cylindrical coordinates (p. 39), 
ki = k cos f, k# = k sin f, and the angle f is fixed between 0 
and 90°. Note that when f = 0, sin f = 0, J0(0) = 1 and the  
solution is a plane wave. Ideal plane waves don’t spread out as 
they travel. But then again they’re not localized in a narrow 
beam, nor do they actually exist.

We’ll see in Chapter 11, when we study Fourier transforms, 
that in general a complex waveform like E  ˜(r, u, z, t) can be repre-
sented as an infinite sum of plane waves taken over a continuum 
of k values. In particular, E  ˜(r, u, z, t) may be considered a super-
position of an infinite number of plane waves, all with propagation 
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496 Chapter 10 Diffraction

in the front focal plane of a lens of radius R. Each spherical wavelet 
leaves the lens as a plane wave propagating at an angle f, such that

f = tan-111
2 a>ƒ2

The region of overlap of the plane waves in Fig.10.41b extends 
out to a distance zmax where  tan f = R>zmax = 1

2 a>ƒ and so 

zmax =
2Rƒ

a

This is the propagation length or range of the Bessel beam. If a 
is kept small and R large, it can be substantially greater than the 
Rayleigh range for a Gaussian beam of comparable diameter.*

10.2.8 The Diffraction Grating

A repetitive array of diffracting elements, either apertures or ob-
stacles, that has the effect of producing periodic alterations in the 
phase, amplitude, or both of an emergent wave is said to be a dif-
fraction grating. One of the simplest such arrangements is the 
multiple-slit configuration of Section 10.2.3. It seems to have been 
invented by the American astronomer David Rittenhouse in about 
1785. Some years later Joseph von Fraunhofer independently re-
discovered the principle and went on to make a number of impor-
tant contributions to both the theory and technology of gratings. 
The earliest devices were indeed multiple-slit assemblies, usually 

vectors (or, if you like, wave vectors) lying along a cone whose 
half-angle, measured from its central axis, the z-axis, is f. This is 
the defining characteristic of the Bessel or J0-beam. 

Because the irradiance is proportional to  E ˜E ˜*, all depen-
dence on z vanishes; I(r, u, t) ∝ J2

0(k#r) and the irradiance is 
the same in every plane perpendicular to the z-axis. This means 
that the transverse irradiance pattern does not spread out as the 
wave advances. That pattern consists of a narrow central region 
(of diameter 2.405>k#) surrounded by concentric rings (see 
photo at the top of the next column). Each ring carries roughly 
the same energy as does the central peak, which is only about 
5% of the initial energy of the beam. 

In reality, one cannot create perfect plane waves from which 
to fabricate an ideal J0-beam. A plane wave has infinite spatial 
extent and is therefore an unattainable idealization. So, at best, 
we can build a wave that only approximates a J0-beam over a 
finite region of space; several methods have been used to ac-
complish just that. 

Figure 10.41a shows an elegant scheme for generating a 
quasi-J0-beam. A narrow (≈10 mm) circular slit, or annulus, a 
few millimeters in diameter (a), is illuminated by monochro-
matic plane waves of wavelength l. Every point in the aperture 
acts like a point source of spherical waves. The annulus is located 

A Bessel beam. (Ryan P. MacDonald)

Clearly resolved

Rayleigh

Sparrow

Not resolved

Figure 10.40  The Rayleigh and Sparrow criteria for overlapping point 
images.

*Lord Rayleigh, “On the passage of electric waves through tubes, or the  
vibrations of dielectric cylinders,” Phil. Mag., S. 5, 43, No. 261, 125 (Feb. 1897); 
J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. 
Soc. Am. A 4, 651 (1987); J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-
free beams,” Phys. Rev. Lett. 58, 1499 (1987); C. A. McQueen, J. Arit, and K. 
Dholakia, “An experiment to study a ‘nondiffracting’ light beam,” Am. J. Phys.  
67, 912 (1999).
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scratching parallel notches into the surface of a flat, clear glass 
plate (Fig. 10.42a). Each of the scratches serves as a source of 
scattered light, and together they form a regular array of parallel 
line sources. When the grating is totally transparent, so that there 
is negligible amplitude modulation, the regular variations in the 
optical thickness across the grating yield a modulation in-phase, 
and we have what is known as a transmission phase grating (see 
photo on page 498). In the Huygens–Fresnel representation you 
can envision the wavelets as radiated with different phases over 
the grating surface. An emerging wavefront therefore contains pe-
riodic variations in its shape rather than its amplitude. This in turn 
is equivalent to an angular distribution of constituent plane waves.

On reflection from this kind of grating, light scattered by the 
various periodic surface features will arrive at some point-P with a 
definite phase relationship. The consequent interference pattern 
generated after reflection is quite similar to that arising from trans-
mission. Gratings designed specifically to function in this fashion 
are known as reflection phase gratings (Fig. 10.43). Gratings of 
this sort have traditionally been ruled in thin films of aluminum 
that have been evaporated onto optically flat glass blanks. The alu-
minum, being fairly soft, results in less wear on the diamond ruling 
tool and is also a better reflector in the ultraviolet region.

Figure 10.41  An arrangement for producing a Bessel beam using a cir-
cular slit. (a) A ring-shaped opening is illuminated by plane waves. (b) The 
aperture is placed in the front focal plane of the lens so that parallel rays 
leave the lens. (c) The plane waves, which all have propagation vectors 
residing on a cone, overlap out to a distance of zmax.

(a)

f f

R

a

f

zmax

(b)

(c)

consisting of a grid of fine wire or thread wound about and extend-
ing between two parallel screws, which served as spacers. A 
wavefront, in passing through such a system, is confronted by al-
ternate opaque and transparent regions, so that it undergoes a 
modulation in amplitude. Accordingly, a multiple-slit configura-
tion is said to be a transmission amplitude grating. Another, more 
common form of transmission grating is made by ruling or 

(a)

(b)

1st order
   (m = 1)

1st order
(m = −1)

m th order

AB − CD = a(sinum − sinui)

um

ui

C D

B

A

a

0 th order
(m = 0)

a

Figure 10.42  A transmission grating.
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The manufacture of ruled gratings is extremely difficult, and 
relatively few are made. In actuality, most gratings are exceed-
ingly good plastic castings or replicas of fine, master ruled grat-
ings. Today, large numbers of gratings are made holographi-
cally (p. 652).

If you were to look perpendicularly through a transmission 
grating at a distant parallel line source, your eye would serve as 
a focusing lens for the diffraction pattern. Recall the analysis of 
Section 10.2.3 and the expression

 a sin um = ml [10.32]

which is known as the grating equation for normal incidence. 
The values of m specify the order of the various principal 
maxima. For a source having a broad continuous spectrum, 
such as a tungsten filament, the m = 0, or zeroth-order, image 
corresponds to the undeflected, u0 = 0, white-light view of the 
source. The grating equation is dependent on l, and so for any 
value of m Z 0 the various colored images of the source cor-
responding to slightly different angles (um) spread out into a 
continuous spectrum. The regions occupied by the faint sub-
sidiary maxima will show up as bands seemingly devoid of 
any light. The first-order spectrum m = ±1 appears on either 

Light passing through a grating. (a) The region on the left is the visible spec-
trum; that on the right, the ultraviolet. (Klinger Educational Prod. Corp., College Point, N.Y.) 
(b) Head-on views of the m = 0 and m = ±1 diffracted beams arising when 
light from a He–Ne laser passed through a 530 lines>mm grating. In the upper 
version, the grating was in air (l = 632.8 nm). In the lower version, the grating 
was immersed in water. From the measured value of u1 the grating equation 
yielded lw = 471 nm and therefore nw = 1.34. (A.F. Leung, The Chinese University of 

Hong Kong.)

(a)

(b)

(c)

side of u = 0 and is followed, along with alternate intervals  
of darkness, by the higher-order spectra, m = ±2, ±3, . . . .  
Notice that the smaller a becomes in Eq. (10.32), the fewer 
will be the number of visible orders.

It should be no surprise that the grating equation is in fact 
Eq. (9.29), which describes the location of the maxima in 
Young’s double-slit setup. The interference maxima, all located 
at the same angles, are now simply sharper ( just as the multiple-
beam operation of the Fabry–Perot etalon made its fringes 
sharper). In the double-slit case when the point of observation is 
somewhat off the exact center of an irradiance maximum, the 
two waves, one from each slit, will still be more or less in-
phase, and the irradiance, though reduced, will still be appre-
ciable. Thus the bright regions are fairly broad. By contrast, 
with multiple-beam systems, although all the waves interfere 
constructively at the centers of the maxima, even a small dis-
placement will cause certain ones to arrive out-of-phase by 1

2l 
with respect to others. For example, suppose P is slightly off 
from u1 so that a sin u = 1.010l instead of 1.000l. Each of the 
waves from successive slits will arrive at P shifted by 0.01l 
with respect to the previous one. Then 50 slits down from the 
first, the path length will have shifted by 12l, and the light from 
slit 1 and slit 51 will essentially cancel. The same would be true 
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distances to the extreme wavelengths measured on the screen 
from the central axis. Accordingly,

Y2 (600) - Y2 (400) = 2.00 * 10-2 m

Given that u2(l) is the angle to a spectral line measured from 
the central axis:

tan u2 = Y2>R = Y2>ƒ
Since a sin u2 = 2l 

sin u2 ≈ tan u2 =
2l
a

and 
Y2

ƒ
=

2l
a

 

Here a = 1>500 000 = 2.00 * 10-6 and so

Y2(600) =
2(600 * 10-9)ƒ

2.00 * 10-6 = 0.60ƒ

Y2(400) =
2(400 * 10-9)ƒ

2.00 * 10-6 = 0.40ƒ

and 2.00 * 10-2 m = Y2(600) - Y2(400) = 0.20ƒ

from which it follows that ƒ = 0.10 m.

The larger l is, the larger um is, and the farther the spectral 
line is from the central axis: violet is closest, and red is farthest.

Consider next the somewhat more general situation of 
oblique incidence, as depicted in Figs. 10.42 and 10.43. The 
grating equation, for both transmission and reflection, becomes

 a(sin um - sin ui) = ml (10.61)

This expression applies equally well, regardless of the refrac-
tive index of the transmission grating itself (Problem 10.63). 
One of the main disadvantages of the devices examined thus far, 
and in fact the reason for their obsolescence, is that they spread 
the available light energy out over a number of low-irradiance 
spectral orders. For a grating like that shown in Fig. 10.43, most 
of the incident light undergoes specular reflection, as if from a 
plane mirror. It follows from the grating equation that um = ui
corresponds to the zeroth order, m = 0. All of this light is es-
sentially wasted, at least for spectroscopic purposes, since the 
constituent wavelengths overlap.

In an article in the Encyclopedia Britannica of 1888, Lord 
Rayleigh suggested that it was at least theoretically possible to 
shift energy out of the useless zeroth order into one of the higher-
order spectra. So motivated, Robert Williams Wood (1868–
1955) succeeded in 1910 in ruling grooves with a controlled 
shape, as shown in Fig. 10.44. Most modern gratings are of this 
shaped or blazed variety. The angular positions of the nonzero 
orders, um-values, are determined by a, l, and, of more immediate 

for slit-pairs 2 and 52, 3 and 53, and so forth. The result is a 
rapid falloff in irradiance beyond the centers of the maxima.

EXAMPlE 10.8

Polychromatic light encompassing the wavelength range from 
400 nm to 600 nm impinges normally on a transmission grating 
having 500 000 grooves per meter. A nearby positive lens creates 
a Fraunhofer diffraction pattern on a screen at its focal plane. 
Determine the focal length of the lens such that the second-order 
spectrum is spread out 2.00 cm in length. Discuss the sequence of 
colors in the pattern in relation to the central axis.

SOlUTION 

The grating equation

a sin um = ml

locates the principal maxima. The second-order spectrum is 
associated with m = 2. Thus take Y2 (400) and Y2 (600) as the 

(a)

(b)

1st order (m = 1)

1st order (m = −1)

m th order

AB − CD = a(sinum − sinui)

ui

um

C

a
B

A

D

0 th order (m = 0)

Figure 10.43  A reflection grating.
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500 Chapter 10 Diffraction

made concerning the detailed structure of the hydrogen atom as 
manifested by its emitted radiation, and spectroscopy provided 
the vital proving ground. The need for larger and better gratings 
became apparent. Grating spectrometers, used over the range 
from soft X-rays to the far infrared, have enjoyed continued 
interest. In the hands of the astrophysicist or rocket-borne, they 
yield information concerning the very origins of the Universe, 
information as varied as the temperature of a star, the rotation of 
a galaxy, and the red shift in the spectrum of a quasar. In the 
mid-1900s George R. Harrison and George W. Stroke remark-
ably improved the quality of high-resolution gratings. They 
used a ruling engine* whose operation was controlled by an 
interferometrically guided servomechanism.

Let us now examine in some detail a few of the major features 
of the grating spectrum. Assume an infinitesimally narrow inco-
herent source. The effective width of an emergent spectral line 
may be defined as the angular distance between the zeros on either 
side of a principal maximum; in other words, ∆a = 2p>N, which 
follows from Eq. (10.33). At oblique incidence we can redefine a 
as (ka>2) (sin u - sin ui), and so a small change in a is given by

 ∆a = (ka>2) cos u (∆u) = 2p>N (10.62)

where the angle-of-incidence is constant, that is, ∆ui = 0. Thus, 
even when the incident light is monochromatic,

 ∆u = 2l>(Na cos um) (10.63)

is the angular width of a line, due to instrumental broadening. 
Interestingly enough, the angular linewidth varies inversely 
with the width of the grating itself, Na. Another important 
quantity is the difference in angular position corresponding to a 

interest, ui. But ui and um are measured from the normal to the 
grating plane and not with respect to the individual groove sur-
faces. On the other hand, the location of the peak in the single-
facet diffraction pattern corresponds to specular reflection off 
that face, for each groove. It is governed by the blaze angle g 
and can be varied independently of um. This is somewhat analo-
gous to the antenna array of Section 10.1.3, where we were able 
to control the spatial position of the interference pattern [Eq. (10.6)] 
by adjusting the relative phase shift between sources without 
actually changing their orientations.

Consider the situation depicted in Fig. 10.45, when the in-
cident wave is normal to the plane of a blazed reflection grat-
ing; that is, ui = 0, so for m = 0, u0 = 0. For specular reflec-
tion ui - ur = 2g (Fig. 10.44), most of the diffracted radiation 
is concentrated about ur = -2g. (ur is negative because the 
incident and reflected rays are on the same side of the grating 
normal.) This will correspond to a particular nonzero order, on 
one side of the central image, when um = -2g; in other words, 
a sin a sin (-2g) = ml for the desired l and m.

Grating Spectroscopy

Quantum Mechanics, which evolved in the early 1920s, had its 
initial thrust in the area of atomic physics. Predictions were 

0 th order

Specular re�ection
(diffraction peak)

ui

u0

ui ur
g

a

b

g

Figure 10.44  Section of a blazed reflection phase grating.

*For more details about these marvelous machines, see A. R. Ingalls, Sci. Am. 
186, 45 (1952), or the article by E. W. Palmer and J. F. Verrill, Contemp. Phys. 9, 
257 (1968).

0 th order

g

2g

Figure 10.45  Blazed grating.
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 10.2 Fraunhofer Diffraction 501

Applying the expression for the dispersion, we get

(∆u)min = (∆l)min m>(a cos um)

The combination of these two equations provides us with ℛ, 
that is,

 l>(∆l)min = mN (10.67)

or ℛ =
Na(sin um - sin ui)

l
 (10.68)

The resolving power is a function of the grating width Na, the 
angle-of-incidence, and l. A grating 6 inches wide and contain-
ing 15,000 lines per inch will have a total of 9 * 104 lines and a 
resolving power, in the second order, of 1.8 * 105. In the vicin-
ity of 540 nm, the grating could resolve a wavelength difference 
of 0.003 nm. Notice that the resolving power cannot exceed 
2Na>l, which occurs when ui = -um = 90°. The largest values 
of ℛ are obtained when the grating is used in autocollimation, 
whereupon

 ℛauto =
2Na sin ui

l
 (10.69)

and again ui and um are on the same side of the normal. For one of 
Harrison’s 260-mm-wide blazed gratings at about 75° in a Littrow 
mount, with l = 500 nm, the resolving power just exceeds 106.

We now need to consider the problem of overlapping orders. 
The grating equation makes it quite clear that a line of 600 nm 
in the first order will have precisely the same position, um, as a 
300-nm line in the second order or a 200-nm line when m = 3. 
If two lines of wavelength l and (l + ∆l) in successive orders 
(m + 1) and m just coincide, then

a(sin um - sin ui) = (m + 1)l = m(l + ∆l)

difference in wavelength. The angular dispersion, as in the 
case of a prism, is defined as

 𝒟 K du>dl (10.64)

Differentiating the grating equation yields

 𝒟 = m>(a cos um) (10.65)

This means that the angular separation between two different 
frequency lines will increase as the order increases.

Blazed plane gratings with nearly rectangular grooves are 
most often mounted so that the incident propagation vector is al-
most normal to either one of the groove faces. This is the condi-
tion of autocollimation, in which ui and um are on the same side 
of the normal and g ≈ ui ≈ -um (see Fig. 10.46), whereupon

 𝒟auto = (2 tan ui)>l (10.66)

which is independent of a.
When the wavelength difference between two lines is 

small enough so that they overlap, the resultant peak becomes 
somewhat ambiguous. The chromatic resolving power ℛ of 
a spectrometer is defined as 

 ℛ K l>(∆l)min [9.76]

where (∆l)min is the least resolvable wavelength difference, or 
limit of resolution, and l is the mean wavelength. Lord Ray-
leigh’s criterion for the resolution of two fringes with equal flux 
density requires that the principal maximum of one coincide with 
the first minimum of the other. (Compare this with the equivalent 
statement used in Section 9.6.1.) As shown in Fig. 10.40, at the 
limit of resolution the angular separation is half the linewidth, or 
from Eq. (10.63)

(∆u)min = l>(Na cos um)

Source slits

Film plate

Figure 10.46  The Littrow autocollimation mounting.
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502 Chapter 10 Diffraction

(∆l)min = (589.592 3 - 588.995 3) nm = 0.597 nm. Hence from 
Eq. (10.67) with m = 2,

l

(∆l)min
= mN

and N =
589.293 8 nm
2(0.597 nm)

 

N = 493.5

To see the two lines we need a grating with at least 494 slits.

Two- and Three-Dimensional Gratings

Suppose that the diffracting screen g  contains a large number, 
N, of identical diffracting objects (apertures or obstacles). These 
are to be envisioned as distributed over the surface of g  in a 
completely random manner. We also require that each and every 
one be similarly oriented. Imagine the diffracting screen to be 
illuminated by plane waves that are focused by a perfect lens L2, 
after emerging from g  (see Fig. 10.16). The individual aper-
tures generate identical Fraunhofer diffraction patterns, all of 
which overlap on the image plane s. If there is no regular peri-
odicity in the location of the apertures, we cannot anticipate 
anything but a random distribution in the relative phases of the 
waves arriving at an arbitrary point-P on s. We have to be rath-
er careful, however, because there is one exception, which oc-
curs when P is on the central axis, that is, P = P0. All rays, from 
all apertures, parallel to the central axis will traverse equal opti-
cal path lengths before reaching P0. They will therefore arrive 
in-phase and interfere  constructively.

Now consider a group of arbitrarily directed parallel rays (not 
in the direction of the central axis), each one emitted from a dif-
ferent aperture. These will be focused at some point on s, such 
that each corresponding wave will have an equal probability of 
arriving with any phase between 0 and 2p. What must be deter-
mined is the resultant field arising from the superposition of N 
equal-amplitude phasors all having random relative phases. The 
solution to this problem requires an elaborate analysis in terms 
of probability theory, which is a little too far afield to do here.* 
The important point is that the sum of a number of phasors taken 
at random angles is not simply zero, as might be thought. The 
general analysis begins, for statistical reasons, by assuming that 
there are a large number of individual aperture screens, each 
containing N random diffracting apertures and each illuminated, 
in turn, by a monochromatic wave. We shouldn’t be surprised if 
there is some difference, however small, between the diffraction 
patterns of two different random distributions of, say, N = 100 
holes. After all, they are different, and the smaller N is, the more 

The precise wavelength difference is known as the free spec-
tral range,

 (∆l)fsr = l>m (10.70)

as it was for the Fabry–Perot Interferometer. In comparison 
with that device, whose resolving power was

 ℛ = ℱm [9.76]

we might take N to be the finesse of a diffraction grating 
(Problem 10.65).

A high-resolution grating blazed for the first order, so as to 
have the greatest free spectral range, will require a high groove 
density (up to about 1200 lines per millimeter) in order to main-
tain ℛ. Equation (10.68) shows that ℛ can be kept constant by 
ruling fewer lines with increasing spacing, such that the grating 
width Na is constant. But this requires an increase in m and a 
subsequent decrease in free spectral range, characterized by 
overlapping orders. If this time N is held constant while a alone 
is made larger, ℛ increases as does m, so that (∆l)fsr again de-
creases. The angular width of a line is reduced (i.e., the spectral 
lines become sharper), the coarser the grating is, but the disper-
sion in a given order diminishes, with the effect that the lines in 
that spectrum approach each other.

Thus far we have considered a particular type of periodic 
array, namely, the line grating. A good deal more information is 
available in the literature* concerning their shapes, mountings, 
uses, and so forth.

A few unlikely household items can be used as crude gratings. 
The grooved surface of a phonograph record works nicely near 
grazing incidence and CDs are lovely reflection gratings. Surpris-
ingly enough, with ui ≈ 90° an ordinary fine-toothed comb (or a 
stick of staples) will separate out the constituent wavelengths of 
white light. This occurs in exactly the same fashion as it would 
with a more orthodox reflection grating. In a letter to a friend 
dated May 12, 1673, James Gregory pointed out that sunlight 
passing through a feather would produce a colored pattern, and he 
asked that his observations be conveyed to Mr. Newton. If you’ve 
got one, a flight feather makes a nice transmission grating.

EXAMPLE 10.9

We wish to resolve the two bright yellow sodium lines (589.592 3 
nm and 588.995 3 nm) in the second-order spectrum produced 
by a transmission grating. How many slits or grooves must the 
grating possess at minimum?

SOLUTION The resolving power of the grating is l>(∆l)min, 
where l is the mean wavelength, or 12 (589.592 3 + 588.995 3) nm 
=  589.293 8 nm. 

*See F. Kneubühl, “Diffraction grating spectroscopy,” Appl. Opt. 8, 505 (1969);  
R. S. Longhurst, Geometrical and Physical Optics; and the extensive article by  
G. W. Stroke in the Encyclopedia of Physics, Vol. 29, edited by S. Flügge, p. 426.

*For a statistical treatment, consult J. M. Stone, Radiation and Optics, p. 146, and 
Sommerfeld, Optics, p. 194. Also take a look at “Diffraction plates for classroom 
demonstrations,” by R. B. Hoover, Am. J. Phys. 37, 871 (1969), and T. A. Wiggins, 
“Hole gratings for optics experiments,” Am. J. Phys. 53, 227 (1985).
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or a truly random array of (nonoverlapping) diffracting objects. 
Nonetheless, with a screen containing N “random” apertures 
illuminated by quasimonochromatic, nearly plane-wave illumi-
nation, we can anticipate seeing a mottled flux-density distribu-
tion closely resembling that of an individual aperture but N 
times as strong. Moreover, a bright spot will exist on-axis at its 
center, which will have a flux density of N 2 times that of a sin-
gle aperture. If, for example, the screen contains N rectangular 
holes (Fig. 10.47a), the resultant pattern (Fig. 10.47b) will re-
semble the images on page 486. Similarly, the array of circular 
holes depicted in Fig. 10.47c will produce the diffraction rings 
of Fig. 10.47d.

As the number of apertures increases, the central spot will 
tend to become so bright as to obscure the rest of the pattern. 
Note as well that the above considerations apply when all the 
apertures are illuminated completely coherently. In actuality, 

obvious that becomes. Indeed, we can expect their similarities to 
show up statistically on considering a large number of such 
masks—ergo the general approach.

If the many individual resulting irradiance distributions are all 
averaged for a particular off-axis point on s, it will be found that 
the average irradiance (Iav) there equals N times the irradiance 
(I0) due to a single aperture: Iav = NI0. Still, the irradiance at any 
point arising from any one aperture screen can differ from this 
average value by a fairly large amount, regardless of how great N 
is. These point-to-point fluctuations about the average manifest 
themselves in each particular pattern as a granularity that tends to 
show a radial fiberlike structure. If this fine-grained mottling is 
averaged over a small region of the pattern, which nonetheless 
contains many fluctuations, it will average out to NI0.

Of course, in any real experiment the situation will not quite 
match the ideal—there is no such thing as monochromatic light 

(a) (b) (e)

(c) (d) (f)

Figure 10.47  (a) A random array of rectangular apertures. (b) The resulting white-light 
Fraunhofer pattern. (c) A random array of circular apertures. (d) The resulting white-light 
Fraunhofer pattern. (a-d: Richard B. Hoover, Ealing Electro-Optics, Inc.) (e) A candle flame viewed through  
a fogged piece of glass. The spectral colors are visible as concentric rings. (E.H.) (f) A similar  
colored ring system created by viewing a white-light point source through a glass plate covered 
with transparent spherical lycopodium spores. (E.H.)
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504 Chapter 10 Diffraction

tunate enough to have mercury-vapor street lights, you’ll have 
no trouble seeing all their constituent visible spectral frequen-
cies. (If not, block out most of a fluorescent lamp, leaving 
something resembling a small source.) Notice the increased 
symmetry as you increase the number of layers of nylon. Inci-
dentally, this is precisely the way Rittenhouse, the inventor of 
the grating, became interested in the problem—only he used a 
silk handkerchief.

Consider the case of a regular two-dimensional array of dif-
fracting elements (Fig. 10.48) under normally incident plane-
wave illumination. Each small element behaves as a coherent 
source. And because of the regular periodicity of the lattice of 
emitters, each emergent wave bears a fixed-phase relation to the 
others. There will now be certain directions in which construc-
tive interference prevails. Obviously, these occur when the dis-
tances from each diffracting element to P are such that the 
waves are nearly in-phase at arrival. The phenomenon can be 
observed by looking at a point source through a piece of square 

the diffracted flux-density distribution will be determined by the 
degree of coherence (see Chapter 12). The pattern will run the 
gamut from no interference with completely incoherent light to 
the case discussed above for completely coherent illumination 
(Problem 10.67).

The same kind of effects arise from what we might call a 
two-dimensional phase grating. For example, the halo or co-
rona often seen about the Sun or Moon results from diffraction 
by random droplets of water vapor (i.e., cloud particles). If 
you would like to duplicate the effect, fog up a microscope 
slide with your breath, or rub a very thin film of talcum pow-
der on it and then fog it up. Look at a white-light point source. 
You should see a pattern of clear, concentric, colored rings 
[Eq. (10.56)] surrounding a white central disk. If you just see 
a white blur, you don’t have a distribution of roughly equal- 
sized droplets; have another try at the talcum. Strikingly beau-
tiful patterns approximating concentric ring systems can be 
seen through an ordinary mesh nylon stocking. If you are for-

Figure 10.48 (a) An ordered array of rectangular apertures.  
(b) The resulting white-light Fraunhofer pattern. (c) An ordered 
array of circular apertures. (d) The resulting white-light Fraunhofer 
pattern. (a-d: Richard B. Hoover, Ealing Electro-Optics, Inc.) (e) A white-light 
point source seen through a piece of tightly woven cloth. (E.H.)

(a) (b)

(c) (d)

(e)
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range emitted by an X-ray tube) was directed onto a thin sin-
gle crystal. The film plate (Fig. 10.49b) revealed a Fraunhofer 
pattern consisting of an array of precisely located spots. These 
sites of constructive interference occurred whenever the angle 
between the beam and a set of atomic planes within the crystal 
obeyed Bragg’s Law:

 2d sin u = ml (10.71)

Notice that in X-ray work u is traditionally measured from the 
plane and not the normal to it. Each set of planes diffracts a 
particular wavelength into a particular direction. The accompa-
nying photo rather strikingly shows the analogous behavior in a 
ripple tank.

Instead of reducing l to the X-ray range, we could have 
scaled everything up by a factor of about a billion and made a 
lattice of metal balls as a grating for microwaves.

10.3 Fresnel Diffraction

10.3.1  The Free Propagation of a Spherical Wave

In the Fraunhofer configuration, the diffracting system was rela-
tively small, and the point of observation was very distant. Under 
these circumstances a few potentially problematic features of the 
Huygens–Fresnel Principle could be completely passed over 
without concern. But we are now going to deal with the near-field 
region, which extends right up to the diffracting element itself, and 
any such approximations would be inappropriate. We therefore 
return to the Huygens–Fresnel Principle in order to reexamine it 
more closely. At any instant, every point on the primary wavefront 
is envisioned as a continuous emitter of spherical secondary wave-
lets. But if each wavelet radiated uniformly in all directions, in 
addition to generating an ongoing wave, there would also be a re-
verse wave traveling back toward the source. No such wave is 
found experimentally, so we must somehow modify the radiation 
pattern of the secondary emitters. We now introduce the function 

woven, thin cloth (such as nylon curtain material; see Fig. 10.48e) 
or the fine metal mesh of a tea strainer. The diffracted image is 
effectively the superposition of two grating patterns at right 
angles. Examine the center of the pattern carefully to see its 
gridlike structure.

As for the possibility of a three-dimensional grating, there 
seems to be no particular conceptual difficulty. A regular spatial 
array of scattering centers would certainly yield interference 
maxima in preferred directions. In 1912 Max von Laue (1879–
1960) conceived the ingenious idea of using the regularly 
spaced atoms within a crystal as a three-dimensional grating. It 
is apparent from the grating equation [Eq. (10.61)] that if l is 
much greater than the grating spacing, only the zeroth order 
(m = 0) is possible. This is equivalent to u0 = ui, that is, specu-
lar reflection. Since the spacing between atoms in a crystal is 
generally several angstroms (1 Å = 10-1 nm), light can be dif-
fracted only in the zeroth order.

Von Laue’s solution to the problem was to probe the lattice, 
not with light but with X-rays whose wavelengths were com-
parable to the interatomic distances (Fig. 10.49a). A narrow 
beam of white radiation (the broad continuous frequency 

Figure 10.49  (a) Transmission Laue pattern. (b) X-ray diffraction pattern 
for quartz (SiO2). (E.H.)

(b)

Film plane
White incident

beam

Single
crystal

(a)

Water waves in a ripple tank reflecting off an array of pegs acting as point 
scatterers. (PSSC Physics, D. C. Heath, Boston, 1960. Cengage Learning)
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506 Chapter 10 Diffraction

spherical surface corresponds to the primary wavefront at some 
arbitrary time t′ after it has been emitted from S at t = 0. The 
disturbance, having a radius r, can be represented by any one 
of the mathematical expressions describing a harmonic spher-
ical wave, for example,

 E =
e0

r
 cos (vt′ - kr) (10.73)

As illustrated, we have divided the wavefront into a number of 
annular regions. The boundaries of the various regions corre-
spond to the intersections of the wavefront with a series of 
spheres centered at P of radius r0 + l>2, r0 + l, r0 + 3l>2, and 
so forth. These are the Fresnel or half-period zones. Notice 
that, for a secondary point source in one zone, there will be a 
point source in the adjacent zone that is farther from P by an 
amount l>2. Since each zone, though small, is finite in extent, 
we define a ring-shaped differential area element dS, as indi-
cated in Fig. 10.52. All the point sources within dS are coherent, 
and we assume that each radiates in-phase with the primary 
wave [Eq. (10.73)]. The secondary wavelets travel a distance r 
to reach P, at a time t, all arriving there with the same phase,  
vt - k(r + r). The amplitude of the primary wave at a distance 
r from S is e0>r. We assume, accordingly, that the source 
strength per unit area eA of the secondary emitters on dS is 
proportional to e0>r by way of a constant Q, that is, eA = Qe0>r
. The contribution to the optical disturbance at P from the sec-
ondary sources on dS is, therefore,

 dE = K 
eA

r
 cos [vt - k(r + r)] dS (10.74)

K(u), known as the obliquity or inclination factor, in order to 
describe the directionality of the secondary emissions. Fresnel 
recognized the need to introduce a quantity of this kind, but he did 
little more than conjecture about its form.* It remained for the 
more analytic Kirchhoff formulation to provide an actual expres-
sion for K(u), which, as we will see in Section 10.4, turns out to be

 K(u) = 1
2 (1 + cos u) (10.72)

As shown in Fig. 10.50, u is the angle made with the normal to 
the primary wavefront, k$. This has its maximum value, K(0) = 1, 
in the forward direction and also dispenses with the back wave, 
since K(p) = 0.

Now examine the free propagation of a spherical monochro-
matic wave emitted from a point source S. If the Huygens–
Fresnel Principle is correct, we should be able to add up the 
secondary wavelets arriving at a point-P and thus obtain the 
unobstructed primary wave. In the process we will gain some 
insights, recognize a few shortcomings, and develop a very useful 
technique. Consider the construction shown in Fig. 10.51. The 

*It is interesting to read Fresnel’s own words on the matter, keeping in mind that 
he was talking about light as an elastic vibration of the aether.

Since the impulse communicated to every part of the primitive wave 
was directed along the normal, the motion which each tends to impress 
upon the aether ought to be more intense in this direction than in any 
other; and the rays which would emanate from it, if acting alone, would be 
less and less intense as they deviated more and more from this direction.

The investigation of the law according to which their intensity varies 
about each center of disturbance is doubtless a very difficult matter; . . . 
(Source: Augustine Jean Fresnel, 1788–1827).

Primary wave(a) (b)

Secondary wavelet

Wavefront
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0.2
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−0.4

−0.6

0.4

0.6

0.4 0.6 0.8

P

P

u

u

K(�)

k�
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Figure 10.50  (a) Secondary wavelets. (b) The obliquity factor K(u).
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Hence

El =
-KleArl

(r + r0)
 [sin (vt - kr - kr)] r =  rl

r =  rl - 1

Upon the introduction of rl - 1 = r0 + (l - 1)l>2 and rl =
r0 + ll>2, the expression reduces (Problem 10.69) to

 El = (-1)l + 1 
2KleArl

(r + r0)
 sin [vt - k(r + r0)] (10.76)

Observe that the amplitude of El alternates between positive 
and negative values, depending on whether l is odd or even. 
This means that the contributions from adjacent zones are out-
of-phase and tend to cancel. It is here that the obliquity factor 
makes a crucial difference. As l increases, u increases and K 
decreases, so that successive contributions do not in fact com-
pletely cancel each other. It is interesting that El>Kl is indepen-
dent of any position variables. Although the areas of each zone 
are almost equal, they do increase slightly as l increases, which 

The obliquity factor (K ) must vary slowly and may be assumed 
to be constant over a single Fresnel zone. To get dS as a function 
of r, begin with

dS = r dw 2p(r sin w)

Applying the law of cosines, we get

r2 = r2 + (r + r0)2 - 2r(r + r0) cos w

Upon differentiation, this yields

2r dr = 2r(r + r0) sin w dw

with r and r0 held constant. Making use of the value of dw, we 
find that the area of the element is therefore

 dS = 2p 
r

(r + r0)
 r dr (10.75)

The disturbance arriving at P from the lth zone is

El = Kl2p 
eAr

(r + r0)
 3rl

rl - 1

 cos [vt - k(r + r)] dr
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Figure 10.51  Propagation of a spherical wavefront.
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508 Chapter 10 Diffraction

This same result is obtained when

0El 0 6 ( 0El - 1 0 + 0El + 1 0)>2
If the last term, 0Em 0 , in the series of Eq. (10.77) corresponds to 
an even m, the same procedure (Problem 10.71) leads to

 E ≈
0E1 0
2

-
0Em 0

2
 (10.84)

Fresnel conjectured that the obliquity factor was such that the 
last contributing zone occurred at u = 90°, that is,

K(u) = 0 for p>2 … 0 u 0 … p

In that case Eqs. (10.83) and (10.84) both reduce to

 E ≈
0E1 0
2

 (10.85)

when 0Em 0  goes to zero, because Km(p>2) = 0. Alternatively, 
using Kirchhoff’s correct obliquity factor, we divide the entire 
spherical wave into zones with the last, or mth, zone surround-
ing O′. Now u approaches p, Km(p) = 0, 0Em 0 = 0, and once 
again E ≈ 0E1 0 >2. The optical disturbance generated by the 
entire unobstructed wavefront is approximately equal to one-
half the contribution from the first zone.

If the primary wave were simply to propagate from S to P in 
a time t, it would have the form

 E =
e0

(r + r0)
 cos [vt - k(r + r0)] (10.86)

Yet the disturbance synthesized from secondary wavelets, Eqs. 
(10.76) and (10.85), is

 E =
K1eArl

(r + r0)
 sin [vt - k(r + r0)] (10.87)

These two equations must, however, be exactly equivalent, and 
we interpret the constants in Eq. (10.87) to make them so. Note 
that there is some latitude in how we do this. We prefer to have 
the obliquity factor equal to 1 in the forward direction, that is, 
K1 = 1 (rather than 1>l), from which it follows that Q must be 
equal to 1>l. In that case, eArl = e0, which is fine dimension-
ally. Keep in mind that eA is the secondary-wavelet source 
strength per unit area over the primary wavefront of radius r, 
and e0>r is the amplitude of that primary wave E0(r). Thus 
eA = E0(r)>l. There is one other problem, and that’s the p>2 
phase difference between Eqs. (10.86) and (10.87). This can be 
accounted for if we are willing to assume that the secondary 
sources radiate one-quarter of a wavelength out-of-phase with 
the primary wave (see Section 4.2.3).

We have found it necessary to modify the initial statement of 
the Huygens–Fresnel Principle, but this should not distract us 
from our rather pragmatic reasons for using it, which are two-
fold. First, the Huygens–Fresnel theory can be shown to be an 
approximation of the Kirchhoff formulation and as such is no 
longer merely a contrivance. Second, it yields, in a fairly simple 

means an increased number of emitters. But the average dis-
tance from each zone to P also increases, such that El>Kl re-
mains constant (see Problem 10.70).

The sum of the optical disturbances from all m zones at P is

E = E1 + E2 + E3 + g+  Em

and since these alternate in sign, we can write

 E = 0E1 0 - 0E2 0 + 0E3 0 - g ± 0Em 0  (10.77)

If m is odd, the series can be reformulated in two ways, either as

E =
0E1 0
2

+ a 0E1 0
2

- 0E2 0 +
0E3 0
2

b + a 0E3 0
2

- 0E4 0 +
0E5 0
2

b + g

 + a 0Em - 2 0
2

- 0Em - 1 0 +
0Em 0

2
b +

0Em 0
2

 (10.78)

or as

E = 0E1 0 -
0E2 0
2

- a 0E2 0
2

- 0E3 0 +
0E4 0
2

b

- a 0E4 0
2

- 0E5 0 +
0E6 0
2

b + g

+ a 0Em - 3 0
2

- 0Em - 2 0 +
0Em - 1 0

2
b -

0Em - 1 0
2

+ 0Em 0
(10.79)

There are now two possibilities: either 0El 0  is greater than the 
arithmetic mean of its two neighbors 0El - 1 0  and 0El + 1 0 , or it is 
less than that mean. This is really a question concerning the rate 
of change of K(u). When

0El 0 7 ( 0El - 1 0 + 0El + 1 0)>2
each bracketed term is negative. It follows from Eq. (10.78) that

 E 6
0E1 0
2

+
0Em 0

2
 (10.80)

and from Eq. (10.79) that

 E 7 0E1 0 -
0E2 0
2

-
0Em - 1 0

2
+ 0Em 0  (10.81)

Since the obliquity factor goes from 1 to 0 over a great many 
zones, we can neglect any variation between adjacent zones, 
that is, 0E1 0 ≈ 0E2 0  and 0Em - 1 0 ≈ 0Em 0 . Expression (10.81), to 
the same degree of approximation, becomes

 E 7
0E1 0
2

+
0Em 0

2
 (10.82)

We conclude from Eqs. (10.80) and (10.82) that

 E ≈
0E1 0
2

+
0Em 0

2
 (10.83)
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 10.3 Fresnel Diffraction 509

proportional to the square root of its numerical designation, m. 
The radius of the hundredth zone will be only 10 times that of 
the first zone. Initially, therefore, the angle u increases rapidly; 
thereafter it gradually slows down as m becomes larger. Accord-
ingly, K(u) decreases rapidly only for the first few zones. The 
result is that as the spiral circulates around with increasing m, it 
becomes tighter and tighter, deviating from a circle by a smaller 
amount for each revolution.

Keep in mind that the spiral is made up of an infinite number 
of phasors, each shifted by a small phase angle. The relative 
phase between any two disturbances at P, coming from two 
points on the wavefront, say, O and A, can be depicted as shown 
in Fig. 10.55. The angle made by the tangents to the vibration 
curve, at points-Os and -As, is b, and this is the desired phase 
difference. If the point-A is considered to lie on the boundary of 
a cap-shaped region of the wavefront, the resultant at P from the 
whole region is the phasor Os As

T
 at an angle d.

The total disturbance arriving at P from an unimpeded wave 
is the sum of the contributions from all the zones between O 
and O′. The length of the phasor from Os to O′s is therefore 
precisely that amplitude. Note that as expected, the amplitude 
OsO′s is just about one-half the contribution from the first zone, 
Os 

Zs1. Observe that Os O′s
T

  has a phase of 90° with respect to the 
wave arriving at P from O. A wavelet emitted at O in-phase 
with the primary excitation gets to P still in-phase with the pri-
mary wave. This means that Os O′s

T
 is 90° out-of-phase with the 

unobstructed primary wave. This, as we have seen, is one of the 
shortcomings of the Fresnel formulation.

10.3.3 Circular Apertures

Spherical Waves

Fresnel’s procedure, applied to a point source, can be used as a 
semiquantitative method to study diffraction at a circular aperture. 

way, many predictions that are in fine agreement with experi-
mental observations. Don’t forget that it worked quite well in 
the Fraunhofer approximation.

10.3.2 The Vibration Curve

We now develop a graphic method for qualitatively analyzing a 
number of diffraction problems that arise predominantly from 
circularly symmetric configurations.

Imagine that the first, or polar, Fresnel zone in Fig. 10.51 is 
divided into N subzones by the intersection of spheres, centered 
on P, of radii

r0 + l>2N, r0 + l>N, r0 + 3l>2N, . . . , r0 + l>2
Each subzone contributes to the disturbance at P, the resultant of 
which is, of course, just E1. Since the phase difference across the 
entire zone, from O to its edge, is p rad (corresponding to l>2), 
each subzone is shifted by p>N rad. Figure 10.53 depicts the 
vector addition of the subzone phasors, where, for convenience, 
N = 10. The chain of phasors deviates very slightly from the 
circle, because the obliquity factor shrinks each successive am-
plitude. When the number of subzones is increased to infinity 
(i.e., N S ∞ ), the polygon of vectors blends into a segment of a 
smooth spiral called a vibration curve. For each additional 
Fresnel zone, the vibration curve swings through one half-turn 
and a phase of p as it spirals inward. As shown in Fig. 10.54, the 
points Os, Zs1, Zs2, Zs3, . . . , O′s on the spiral correspond to 
points O, Z1, Z2, Z3, . . . , O′, respectively, on the wavefront in 
Fig. 10.51. Each point Z1, Z2, . . . , Zm lies on the periphery of a 
zone, so each point Zs1, Zs2, . . . , Zsm is separated by a half-turn. 
We will see later, in Eq. (10.91), that the radius of each zone is 

p�10

E1

Os

Figure 10.53  Phasor addition.

Os

O�s

Zs2

Zs1

Zs3

Figure 10.54  Overlapping point images.
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510 Chapter 10 Diffraction

Because each adjacent contribution is nearly equal,

E ≈ 0

and I ≈ 0. If, on the other hand, m is odd,

E = 0E1 0 - ( 0E2 0 - 0E3 0)

-  ( 0E4 0 - 0E5 0) - g-( 0Em - 1 0 - 0Em 0)

and E ≈ 0E1 0

Envision a monochromatic spherical wave impinging on a screen 
containing a small hole, as illustrated in Fig. 10.56. We first record 
the irradiance arriving at a very small sensor placed at point-P on 
the symmetry axis. Our intention is to move the sensor around in 
space and so get a point-by-point map of the irradiance of the re-
gion beyond Σ.

Assume that the sensor at P “sees” an integral number of 
zones, m, filling the aperture. In actuality, the sensor merely 
records the irradiance at P, the zones having no reality. If m is 
even, then since Km Z 0,

E = ( 0E1 0 - 0E2 0) + ( 0E3 0 - 0E4 0) + g + ( 0Em - 1 0 - 0Em 0)

S
A

Z1

P Os

d b

AsO�s

Zs2

Zs4

Zs6

Zs1

Zs3

Zs5

O

O�

Figure 10.55  Wavefront and corresponding vibration curve.

S
A

Σ

P

r0

O

O�

Figure 10.56  A circular aperture.
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 10.3 Fresnel Diffraction 511

through P2, records a bright spot. As it moves radially outward 
and portions of successive zones are uncovered, the sensor de-
tects a series of relative maxima and minima. The photo on page 
513 shows the diffraction patterns for a number of holes ranging 
in diameter from 1 mm to 4 mm as they appear on a screen 1 m 
away. Starting from the top left and moving right, the first four 
holes are so small that only a fraction of the first zone is uncov-
ered. The sixth hole uncovers the first and second zones and is 
therefore black at its center. The ninth hole uncovers the first 
three zones and is once again bright at its center. Notice that 
even slightly beyond the geometric shadow at P3, in Fig. 10.58, 
the first zone is partially uncovered. Each of the last few contrib-
uting segments is only a small fraction of its respective zone and 
as such is negligible. The sum of all the amplitudes of the frac-
tional zones, though small, is therefore still finite. Farther into 
the geometric shadow, however, the entire first zone is obscured, 
the last terms are again negligible, and this time the series does 
indeed go to zero and darkness.

We can gain a better appreciation of the actual size of the things 
we are dealing with by computing the number of zones in a given 
aperture. The area of each zone (from Problem 10.70) is given by

 A ≈
r

(r + r0)
 pr0l (10.88)

The areas of the Fresnel zones are essentially equal, though 
they do increase very slightly as their radii increase. 

If the aperture has a radius R, a good approximation of the 
number of zones (NF) within it is simply

 NF =
pR2

A
=

(r + r0)R2

rr0l
 (10.89)

which is roughly twice the amplitude of the unobstructed wave. 
This is truly an amazing result. By inserting a screen in the path 
of the wave, thereby blocking out most of the wavefront, we have 
increased the irradiance at P by a factor of four. Conservation  
of energy clearly demands that there be other points where the 
irradiance has decreased. Because of the complete symmetry of 
the setup, we can expect a circular ring pattern. If m is not an in-
teger (i.e., a fraction of a zone appears in the aperture), the irradi-
ance at P is somewhere between zero and its maximum value. 

You might see this all a bit more clearly if you imagine that 
the aperture is expanding smoothly from an initial value of 
nearly zero. The amplitude at P can be determined from the vi-
bration curve, where A is any point on the edge of the hole. The 
phasor magnitude Os As is the desired amplitude of the optical 
field. Studying Fig. 10.57, we see that as the hole increases, As
moves counterclockwise around the spiral toward Zs1 and a 
maximum. Allowing the second zone in reduces Os As to Os Zs2, 
which is nearly zero, and P becomes a dark spot. As the aperture 
increases, Os As oscillates in length from nearly zero to a num-
ber of successive maxima, which themselves gradually de-
crease. Finally, when the hole is fairly large, the wave is essen-
tially unobstructed, As approaches O′s, and further changes in 
Os As are imperceptible.

To map the rest of the pattern, we now move the sensor along 
any line perpendicular to the central axis, as shown in Fig. 10.58. 
At P we assume that two complete zones fill the aperture and 
E ≈ 0. At P1 the second zone has been partially obscured and 
the third begins to show; E is no longer zero. At P2 a good frac-
tion of the second zone is hidden, whereas the third is even more 
evident. Since the contributions from the first and third zones are 
in-phase, the sensor, placed anywhere on the dotted circle passing 

Figure 10.57 The vibration curves for a circular aperture in an opaque screen. Given that point-A 
lies on the edge of the hole, As is the corresponding point on the vibration spiral. (a) Here the hole is 
small, and only about one half of the first Fresnel zone appears within it. The length of the phasor 
Os  

As
T

 is small, and it corresponds to the field amplitude. (b) As the hole gets bigger, Os  

As
T

 gets big-
ger. Now it encompasses about three quarters of the first zone. (c) In this case the entire first zone 
fits in the hole. The phasor Os  

As
T

 is a maximum, as is the on-axis electric field. Increasing the size of 
the hole will subsequently decrease the phasor and the irradiance on-axis.
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(a)
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512 Chapter 10 Diffraction

from a great distance away (a data point in the diagram thereupon 
moves from left to right). When viewed by a small detector at a 
location far from that screen, only a tiny fraction of the first zone 
will be visible in the hole. The far-field diffraction pattern then 
obtains and it has an on-axis normalized irradiance of 1.00. 
Bringing the detector closer to O results in a drop in the on-axis 
irradiance as the arrangement transitions to the near-field. More 
and more of the first zone appears in the aperture as P approaches 
O, until it entirely fills the hole. At that point much of the light has 
redistributed into the off-axis region and the normalized irradiance 
at P has decreased to 0.4; we have unquestionably entered the 
near-field. When P comes close enough so that from this vantage 
point the hole contains the first and second Fresnel zones (NF = 2), 
the on-axis electric field will be zero at P and the irradiance there 
will, accordingly, be zero as well, as seen in Figure 10.59. 

Notice that the more zones that appear within the fixed-
diameter hole, the smaller must be the area (A) of each zone; 
that’s evident in Eq. (10.89). The net amplitude of the electric 
field at P from each such diminished zone will be smaller  
as NF gets larger. Keeping D constant, the maximum on-axis  
irradiance—the irradiance arising from any one complete 
zone—will vary as (1>NF)2. Consequently, as P approaches O, 
the on-axis secondary irradiance maxima decrease; the peak at 
NF = 3 in Figure 10.59 is quite small, and at NF = 5, it’s even 
smaller. 

This quantity is often referred to as the Fresnel number. For exam-
ple, with a point source 1 m behind the aperture (r ≈ 1 m), a plane 
of observation 1 m in front of it (r0 = 1 m), and l = 500 nm, there 
are four zones when R = 1 nm, and 400 zones when R = 1 cm. 
When both r and r0 are increased to the point where only a small 
fraction of a zone appears in the aperture, NF 6 6  1 and 
Fraunhofer diffraction occurs. This is essentially a restatement 
of the Fraunhofer condition of Section 10.1.2; see Problem 10.1 
as well. When NF Ú 1, Fresnel diffraction obtains.

It follows from Eq. (10.89) that the number of zones filling 
the aperture depends on the distance r0 from P to O. As P moves 
in either direction along the central axis, the number of uncov-
ered zones, whether increasing or decreasing, oscillates between 
odd and even integers. As a result, the irradiance goes through a 
series of maxima and minima. Clearly, this does not occur in the 
Fraunhofer configuration, where, by definition, only a small 
fraction of a single zone appears in the aperture.*

Figure 10.59 shows the on-axis normalized irradiance for a 
circular hole of fixed diameter D. It’s normalized so that the max-
imum Fraunhofer irradiance equals 1.00. Imagine that point-P, 
the axial point of observation, comes toward the aperture screen 

*D. S. Burch, “Fresnel diffraction by a circular aperture,” Am. J. Phys. 53, 255 
(1985).
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Figure 10.58  Zones in a circular aperture.
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 10.3 Fresnel Diffraction 513

would increase, leaving the area of each zone constant. Each 
zone would then contribute, plus or minus, the same amplitude 
electric field at P. And as the hole is gradually opened, letting in 
an odd, and then an even, and then again an odd number of zones, 
the field would go from E1 to 0 and back to E1, over and over 
again. Given that Iu is the unobstructed irradiance at P, the on-
axis irradiance there, with the aperture screen in place, would 
then oscillate from 4Iu to 0 and back to 4Iu, and so forth, as the 
hole enlarged. Figure 10.60 (generated using Fast Fourier trans-
forms) depicts the irradiance distributions for a circular aperture 
encompassing, in turn, ≈ 0, 0.5, 1.0, 1.5, and 2.0 Fresnel zones. 
The tallest curve is for the Fraunhofer diffraction (Airy) pattern 
(associated with a small fraction of the first zone) and it’s normal-
ized to 1.0 on-axis. One complete zone then produces an on-axis 
peak of 0.4, whereas two zones result in an on-axis irradiance of 
zero, as expected. The several irradiance curves drawn to scale, 
and superimposed for comparison, are pictured in Fig. 10.61.

Consider the configuration where a small opaque disk is now 
placed at the center of a circular opening, creating an annulus 
(Fig. 10.62); we’ll need this arrangement presently when we 
study the zone plate. In the diagram the disk happens to obscure 
about half of the first zone as seen from an on-axis point-P. In 
that case, the phasor on the vibration curve begins at point-As, 
which is associated with the edge of the inner disk marked by 

Diffraction patterns for circular apertures of increasing size. (Francis 

Weston Sears, Optics, ©1949, Addison-Wesley Reading, MA. Pearson Education, Inc.)

Figure 10.59 The normalized irradiance at an on-axis point-P that is 
moved toward O. The number of Fresnel zones within the fixed-diameter 
circular aperture increases accordingly. (James C. Wyant, College of Optical Sciences, 

University of Arizona, http;//www.optics.arizona.edu/jcwyant/)
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By contrast, we saw earlier that if the hole was increased in 
diameter, allowing in one more odd-numbered zone (leaving P 
fixed), the on-axis irradiance would increase by the same amount 
as would be contributed by the first zone alone. In that situation, 
as the hole was enlarged the number of zones encompassed 
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514 Chapter 10 Diffraction

Figure 10.60  Diffraction patterns for circular apertures ranging from Fraunhofer to Fresnel.  
(James C. Wyant, College of Optical Sciences, University of Arizona, http;//www.optics.arizona.edu/jcwyant/)
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 10.3 Fresnel Diffraction 515

Figure 10.61 Irradiance distributions produced by circular apertures 
encompassing ≈0, 0.5, 1.0, 1.5, and 2.0 Fresnel zones. The curves are 
overlapped for ease of comparison. (James C. Wyant, College of Optical Sciences, 

University of Arizona, http;//www.optics.arizona.edu/jcwyant/)
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Figure 10.62  An arbitrary ring-shaped hole (an annulus) that passes 
about 3 23 zones. The opaque central disk (point-A is on its edge) obscures 
about two-thirds of the first zone. Point-B is on the outer edge of the open-
ing. It corresponds to point-B s on the vibration curve. Phasor As  

Bs
T

 gives 
us the electric-field amplitude at the on-axis point from which the zones 
are viewed.

Os

Zs2

As

B

A

Bs

O�s

Zs1

Zs3

point-A, rather than at Os, which corresponds to the (unob-
structed) center of the aperture. Point-As is located halfway 
along the curve between Os and the end of the first zone Zs1. 
The phasor extends to point-Bs, which is determined by point-B 
on the edge of the opening. In this case the ring-shaped opening 
encompasses about 9.2 zones. The length of that phasor corre-
sponds to the electric-field amplitude at point-P resulting from 
Fresnel diffraction at the open annulus.

Plane Waves

Suppose now that the point source has been moved so far 
from the diffracting screen that the incoming light can be re-
garded as a plane wave (r S ∞). Referring to Fig. 10.63, we 

Rm

r0

P

Σ

rm

(a)

–2

–1

0

+1

+2

0 0.5 1 1.5

(b)

2 2.5 3

Figure 10.63  (a) Plane waves incident on a circular hole. (b) A cross  
section of the three-dimensional irradiance distribution. The horizontal  
axis is scaled in units of R2>l and the vertical axis in R, where R is the 
radius of the hole. Thus the aperture extends from +1 to -1. At a dis-
tance of R2>l = r0 one Fresnel zone fills the aperture and the irradiance 
has a maximum. Beyond that I(r) falls off monotonically until it reaches  
the far-field regime. The first four zeros of the Fraunhofer irradiance  
distribution lie on the dashed lines. (G. W. Forbes, The Institute of Optics, University  

of Rochester)
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516 Chapter 10 Diffraction

and a2>l = 7.3 m 

whereas R = 3.00 m. We can expect Fresnel diffraction.

10.3.4 Circular Obstacles

In 1818 Fresnel entered a competition sponsored by the French 
Academy. His paper on the theory of diffraction ultimately won 
first prize and the title Mémoire Courronné, but not until it had 
provided the basis for a rather interesting story. The judging 
committee consisted of Pierre Laplace, Jean B. Biot, Siméon D. 
Poisson, Dominique F. Arago, and Joseph L. Gay-Lussac—a 
formidable group indeed. Poisson, who was an ardent critic of 
the wave description of light, deduced a remarkable and seem-
ingly untenable conclusion from Fresnel’s theory. He showed 
that a bright spot would be visible at the center of the shadow of 
a circular opaque obstacle, a result that he felt proved the absur-
dity of Fresnel’s treatment. We can come to the same conclusion 
by considering the following, somewhat oversimplified argu-
ment. Recall that an unobstructed wave yields a disturbance [Eq. 
(10.85)] given by E ≈ 0E1 0 >2. If some sort of obstacle precisely 
covers the first Fresnel zone, so that its contribution of 0E1 0  is 
subtracted out, then E ≈ - 0E1 0 >2. It is therefore possible that at 
some point-P on the axis, the irradiance will be unaltered by the 
insertion of that obstruction. This surprising prediction, fash-
ioned by Poisson as the death blow to the wave theory, was al-
most immediately verified experimentally by Arago; the spot 
actually existed. Amusingly enough, Poisson’s spot, as it is now 
called, had been observed many years earlier (1723) by Maraldi, 
but this work had long gone unnoticed.*

derive an expression for the radius of the mth zone, Rm. Since 
rm = r0 + ml>2,

R2
m = (r0 + ml>2)2 - r2

0

and so

 R2
m = mr0l + m2l2>4 (10.90)

Under most circumstances, the second term in Eq. (10.90) is 
negligible as long as m is not extremely large; consequently

 R2
m = mr0l (10.91)

and the radii are proportional to the square roots of integers. 
Using a collimated He–Ne laser (l0 = 632.8 nm), the radius of 
the first zone is 1 mm when viewed from a distance of 1.58 m. 
Under these particular conditions Eq. (10.91) is applicable as 
long as m 6 6  107, in which case Rm = 1m in millimeters. 
Figure 10.58 requires a slight modification in that now the lines 
 O1P1, O2P2, and O3P3 are perpendiculars dropped from the 
points of observation to Σ.

EXAMPlE 10.10

An opaque screen Σ contains a circular aperture 2.00 mm in 
diameter. A monochromatic point source (l0 = 550 nm) lies on 
the axis running through the center of the aperture perpendicular 
to Σ. That source is 3.00 m in front of Σ, and point-P is 3.00 m 
beyond it, both on the central axis. Calculate the number of 
Fresnel zones that fill the hole as seen from P. Will there be a 
bright or a dark spot at P? Verify that the diffraction pattern is of 
the near-field variety.

SOLUTION 

The distance from the point source S to the center of the aperture 
O is r. The distance from O to P is r0. Hence

NF =
(r + r0)R2

rr0l
=

(3.00 + 3.00)(2.00 * 10-3)2

(3.00)(3.00)(550 * 10-9)

NF =
6.00(4.00 * 10-6)

4.95 * 10-6

and the number of zones is NF = 4.8. If N were 5 zones P would 
correspond to a bright spot; with N = 4.8 it’s only a fairly bright 
spot.

Fraunhofer diffraction occurs when (according to Section 10.1.2)

R 7 a2>l
where a is the greatest width of the aperture and R is the smaller 
of the distance from S to Σ or Σ to P. Here R = 3.00 m,
a = 2.00 mm, and l = 550 nm.

Hence

a2>l = (2.00 * 10-3)2>550 * 10-9
*See J. E. Harvey and J. L. Forgham, “The spot of Arago: New relevance for an old 
phenomenon,” Am. J. Phys. 52, 243 (1984).

Shadow of a 1/8-inch diameter ball bearing. The bearing was glued to an 
ordinary microscope slide and illuminated with a He–Ne laserbeam. There 
are some faint extraneous nonconcentric fringes arising from both the micro-
scope slide and a lens in the beam. (E.H.)
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We now examine the problem a bit more closely, since it’s 
quite evident from the accompanying photo that there is a good 
deal of structure in the actual shadow pattern. If the opaque 
obstacle, be it a disk or sphere, obscures the first / zones, then

E = 0E/ + 1 0 - 0E/ + 2 0 + g+  0Em 0
(where, as before, there is no absolute significance to the signs 
other than that alternate terms must subtract). Unlike the analy-
sis for the circular aperture, Em now approaches zero, because 
Km S 0. The series must be evaluated in the same manner  
as that of the unobstructed wave [Eqs. (10.78) and (10.79)].  
Repeating that procedure yields

 E ≈
0E/ + 1 0

2
 (10.92)

and the irradiance on the central axis is generally only slightly 
less than that of the unobstructed wave. There is a bright spot 
everywhere along the central axis except immediately behind 
the circular obstacle. The wavelets propagating beyond the 
disk’s circumference meet in-phase on the central axis. Notice 
that as P moves close to the disk, u increases, K/ + 1 S 0, and 
the irradiance gradually falls off to zero. If the disk is large, the 
(/ + 1)th zone is very narrow, and any irregularities in the ob-
stacle’s surface may seriously obscure that zone. For Poisson’s 
spot to be readily observable, the obstacle must be smooth and 
circular.

If A is a point on the periphery of the disk or sphere, As is the 
corresponding point on the vibration curve (Fig. 10.64). As the 
disk increases for a fixed P, As spirals in counterclockwise  
toward O′s, and the amplitude AsO′s gradually decreases. The 
same thing happens as P moves toward a disk of constant 
size. For a small obstacle, AsO′s is nearly equal to OsO′s  
and the irradiance at the on-axis point-P is approximately 
equal to the unobstructed irradiance.

Os

As

O�s

Figure 10.64  The vibration curve applied to a circular obstruction.
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Figure 10.65  Poisson’s spot. These computed images detail the inner 
region of the diffraction pattern. The brightness of the rings has been 
accentuated to make them a bit more visible. The circular obstacle was  
40 mm in diameter, and in (a) l = 350 nm, whereas in (b) l = 700 nm. 
(Wolfram Demonstration Project, http://demonstrations.woffram.com/PoissonSpot / contributed by 

Gábor Angler)

Off the axis, the zones covered in Fig. 10.58 for the circular 
aperture will now be exposed and vice versa. Accordingly, a 
whole series of concentric bright and dark rings will surround 
the central spot (Fig. 10.65).

The opaque disk images S at P and would similarly form a 
crude image of every point in an extended source. R. W. Pohl 
has shown that a small disk can therefore be used as a crude 
positive lens.

The diffraction pattern can be seen with little difficulty, but 
you need a telescope or binoculars. Glue a small ball bearing  
(≈1

8 or 1
4 inch in diameter) to a microscope slide, which then 

serves as a handle. Place the bearing a few meters beyond the 
point source and observe it from 3 or 4 meters away. Position it 
so that it is directly in front of and completely obscuring the 
source. You will need the telescope to magnify the image, since 
r0 is so large. If you can hold the telescope steady, the ring sys-
tem should be quite clear.
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518 Chapter 10 Diffraction

10.3.5 The Fresnel Zone Plate

In our previous considerations, we utilized the fact that succes-
sive Fresnel zones tended to nullify each other (Fig. 10.66). This 
suggests that we will observe a tremendous increase in  
irradiance at P, if we remove either all the even or all the odd 
zones. A screen that alters the light, either in amplitude or phase, 
coming from every other half-period zone is called a zone plate.*

Suppose that we construct a zone plate that passes only the 
first 20 odd zones and obstructs the even zones,

E = E1 + E3 + E5 + g+  E39

and each of these terms is approximately equal. For an unob-
structed wavefront, the disturbance at P would be E1>2, where-
as with the zone plate in place, E ≈ 20E1. Adding the phasors in 
Fig. 10.66, tip-to-tail, for all the odd zones, or all the even zones, 
produces an extremely large on-axis electric-field amplitude. The 
irradiance has thereby been increased by a factor of 1600.

To calculate the radii of the zones or regions shown in Fig. 10.67, 
refer to Fig. 10.68. The outer edge of the mth region is marked 
by the point-Am. By definition, a wave that travels the path  
S–Am–P must arrive out-of-phase by ml>2 with a wave that  
traverses the path S–O–P, that is,

 (rm + rm) - (r0 + r0) = ml>2 (10.93)

*Lord Rayleigh seems to have invented the zone plate, as witnessed by this entry 
of April 11, 1871, in his notebook: “The experiment of blocking out the odd 
Huygens zones so as to increase the light at centre succeeded very well.”

Figure 10.66  The phasors for successive zones alternate in sign. They’re 
also very nearly the same length, so obscuring either all the odd-numbered 
ones, or all the even-numbered ones, will greatly increase the electric-field 
amplitude, that is, the sum of all the phasors.

Os

O�s
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Zs2

O�s

Zs1

Zs3

Os

Zs2

O�s

Zs1

Zs3

Os

Zs2

O�s

Zs1

(a) (b)

Figure 10.67  (a) and (b) zone plates. (c) A zone plate used to image 
alpha particles coming from a target 1 cm in front, on photographic film  
5 cm behind. The plate is 2.5 mm in diameter and contains 100 zones, the 
narrowest of which is 5.3 mm wide. (University of California, Lawrence Livermore 

National Laboratory)

(c)
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 10.3 Fresnel Diffraction 519

Clearly, rm = (R2
m + r2

0)1>2 and rm = (R2
m + r2

0)1>2. Expand 
both these expressions using the binomial series. Since Rm is 
comparatively small, retaining only the first two terms yields

rm = r0 +
R2

m

2r0
 and rm = r0 +

R2
m

2r0

Finally, substituting into Eq. (10.93), we obtain

 a 1
r0

+
1
r0
b =

ml

R2
m

 (10.94)

Under plane-wave illumination (r0 S ∞), and Eq. (10.94)  
reduces to

 R2
m = mr0l [10.91]

which is an approximation of the exact expression stated by  
Eq. (10.90). Equation (10.94) has a form identical to that of the 
thin-lens equation, which is not merely a coincidence, since S is 
actually imaged in converging diffracted light at P. Accordingly, 
the primary focal length is said to be

 ƒ1 =
R2

m

ml
 (10.95)

(Note that the zone plate will show extensive chromatic aberration.) 
The points-S and -P are said to be conjugate foci. With a colli-
mated incident beam (Fig. 10.69), the image distance is the pri-
mary or first-order focal length, which in turn corresponds to a 
principal maximum in the irradiance distribution. In addition to 
this real image, there is also a virtual image formed of diverging 
light a distance ƒ1 in front of g . At a distance of ƒ1 from g , 
each ring on the plate is filled by exactly one half-period zone 
on the wavefront. If we move a sensor along the S–P axis to-
ward g , it registers a series of very small irradiance maxima 
and minima until it arrives at a point ƒ1>3 from g . At that third-
order focal point, there is a pronounced irradiance peak. Addi-
tional focal points will exist at ƒ1>5, ƒ1>7, and so forth, unlike 
a lens but even more unlike a simple opaque disk.

PS

rmrm

Am

Rm

r0r0 O

Σ

Figure 10.68  Zone-plate geometry.

Following a suggestion by Lord Rayleigh, R. W. Wood con-
structed a phase-reversal zone plate. Instead of blocking out 
every other zone, he increased the thickness of alternate zones, 
thereby retarding their phase by p. Since the entire plate is 
transparent, the amplitude should double, and the irradiance 
should increase by a factor of 4. In actuality, the device does not 
work quite that well because the phase is not really constant 
over each zone. Ideally, the retardation should be made to vary 
gradually over a zone, jumping back by p at the start of the next 
zone.*

The usual way to make an optical zone plate is to draw a 
large-scale version and then photographically reduce it. Plates 
with hundreds of zones can be made by photographing a 
Newton’s ring pattern, in collimated quasimonochromatic light. 
Rings of aluminum foil on cardboard work very well for micro-
waves.

Zone plates can be made of metal with a self-supporting 
spoked structure, so that the transparent regions are devoid of 
any material. These will function as lenses in the range from 
ultraviolet to soft X-rays, where ordinary glass is opaque.

EXAMPlE 10.11

The primary focal length of a zone plate is to be 200 cm using 
500-nm light. The plate must be only slightly larger than 10.0 
mm in diameter; how many transparent zones, or regions, 
should it contain? Locate the third-order focal point, from 
which exactly 3 Fresnel half-period zones on the wavefront fill 
each transparent region on the plate. 

f1 f1

Figure 10.69  Zone-plate foci.

*See Ditchburn, Light, 2nd ed., p. 232; M. Sussman, “Elementary diffraction 
theory of zone plates,” Am. J. Phys. 28, 394 (1960); Ora E. Myers, Jr., “Studies 
of transmission zone plates,” Am. J. Phys. 19, 359 (1951); and J. Higbie, “Fresnel 
zone plate: Anomalous foci,” Am. J. Phys. 44, 929 (1976).

Continued
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520 Chapter 10 Diffraction

dS is an area element situated at some arbitrary point-A whose 
coordinates are (y, z). The location of the origin O is deter-
mined by a perpendicular drawn to g  from the position of the 
monochromatic point source. The contribution to the optical 
disturbance at P from the secondary sources on dS has the form 
given by Eq. (10.74). Making use of what we learned from the 
freely propagating wave (eArl = e0), we can rewrite that equa-
tion as

 dEP =
K(u)e0

rrl
 cos [k(r + r) - vt] dS (10.96)

The sign of the phase has changed from that of Eq. (10.74) 
and is written in this way to conform with traditional treat-
ment. In the case where the dimensions of the aperture are 
small in comparison to r0 and r0, we can set K(u) = 1 and 
let 1>rr equal 1>r0r0 in the amplitude coefficient. Being 
more careful about approximations introduced into the 
phase, apply the Pythagorean theorem to triangles SOA and 
POA to get

r = (r2
0 + y2 + z2)1>2

and r = (r2
0 + y2 + z2)1>2 

Expand these using the binomial series and form

 r + r ≈ r0 + r0 + (y2 + z2) 
r0 + r0

2r0r0
 (10.97)

Observe that this is a more sensitive approximation than 
that used in the Fraunhofer analysis [Eq. (10.40)], where the 
terms quadratic and higher in the aperture variables were 
neglected. The disturbance at P in the complex representa-
tion is

 E  ˜P =
e0e-ivt

r0r0l
3y2

y1
3z2

z1

 eik(r + r) dy dz (10.98)

Following the usual form of derivation, we introduce the  
dimensionless variables u and v defined by

 u K y c2(r0 + r0)

lr0r0
d

1>2
 v K z c2(r0 + r0)

lr0r0
d

1>2
 (10.99)

Substituting Eq. (10.97) into Eq. (10.98) and utilizing the new 
variables, we arrive at

E  ˜P =
e0

2(r0 + r0)
 ei[k(r0 + r0) -vt] 3u2

u1

 eipu2>2 du 3v2

v1

 eipv2>2 dv

(10.100)

The term in front of the integral represents the unobstructed 
disturbance at P divided by 2; call it E  ˜u>2. The integral itself 
can be evaluated using two functions, 𝒞(w) and 𝒮(w), where w 

SOlUTION 

From Eq. (10.95)

ƒ1 =
R2

m

ml

and 200 * 10-2 =
(10.0 * 10-3)2

m(500 * 10-9)
 

Accordingly m = 100; there are to be 100 transparent zones or 
regions on the plate. 

For the third-order focal point each transparent region is filled 
by three half-period Fresnel zones. Thus we can concentrate on 
the first such region. From Eq. (10.91), the radius of the first 
three half-period Fresnel zones when viewed from P is 23r0l, 
and that must equal the open radius of the first region, R1, on the 
plate. In other words, when P is at the third-order focal point, 
r0 = ƒ3 and the radius of the plate’s first zone is

R1 = 23r0l = 23ƒ3l

and so ƒ3 =
1
3

 
R2

1

1l
=

1
3

ƒ1 

10.3.6  Fresnel Integrals and the Rectangular 
Aperture

We now treat a class of problems within the domain of Fresnel 
diffraction, which no longer have the circular symmetry of  
the previously studied configurations. Consider Fig. 10.70 where 

S

Σ

O

A

P

r

r

r0

r0

z2

z1 y1

y2

z

y(y, z)

Figure 10.70  Fresnel diffraction at a rectangular aperture.
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 10.3 Fresnel Diffraction 521

represents either u or v. These quantities, which are known as 
the Fresnel integrals, are defined by

𝒞(w) K 3w

0
 cos (pw′2>2) dw′

 𝒮(w) K 3w

0
 sin (pw′2>2) dw′ (10.101)

Both functions have been extensively studied, and their numerical 
values are available in Table 10.3 and Fig. 10.71. Their interest to 
us at this point derives from the fact that

3w

0
 eipw′2>2 dw′ = 𝒞(w) + i 𝒮(w)

and this, in turn, has the form of the integrals in Eq. (10.100). 
The disturbance at P is then

 E  ˜P =
E  ˜u

2
 [𝒞(u) + i𝒮(u)]u2

u1 [𝒞(v) + i𝒮(v)]v2
v1

 (10.102)

which can be evaluated using the tabulated values of 𝒞(u1), 
𝒞(u2), 𝒮(u1), and so on. The mathematics becomes rather in-
volved if we compute the disturbance at all points of the plane of 
observation, leaving the position of the aperture fixed. Instead 
we will fix the S–O–P line and imagine that we move the aper-
ture through small displacements in the g -plane. This has the 
effect of translating the origin O with respect to the fixed aper-
ture, thereby scanning the pattern over the point-P. Each new 
position of O corresponds to a new set of relative boundary loca-
tions y1, y2, z1, and z2. These in turn mean new values of u1, u2, 
v1, and v2, which, when substituted into Eq. (10.102), yield a 
new E  ˜P. The error encountered in such a procedure is negligible, 
as long as the aperture is displaced by distances that are small 
compared with r0. This approach is therefore even more appro-
priate to incident plane waves. In that case, if E0 is the amplitude 
of the incoming plane wave at g , Eq. (10.96) becomes simply

dEP =
E0K(u)

rl
 cos (kr - vt) dS

where, as before, eA = E0>l. This time, with

 u = y a 2
lr0

b
1>2
 v = z a 2

lr0
b

1>2
 (10.103)

where we have divided the numerator and denominator in Eq. 
(10.99) by r0 and then let it go to infinity, E  ˜P takes the same 
form as Eq. (10.102), where E  ˜u is again the unobstructed distur-
bance. The irradiance at P is E  ˜P E  ˜*P>2; hence

IP =
Iu

4
 5 [𝒞(u2) - 𝒞(u1)]2 + [𝒮(u2) - 𝒮(u1)]26

    *  5 [𝒞(v2) - 𝒞(v1)]2 + [𝒮(v2) - 𝒮(v1)]26  (10.104)

where Iu is the unobstructed irradiance at P.

TAblE 10.3  Fresnel Integrals

 w 𝒞(w) 𝒮(w) w 𝒞(w) 𝒮(w)

 0.00 0.000 0 0.000 0 4.50 0.526 1 0.434 2

 0.10 0.100 0 0.000 5 4.60 0.567 3 0.516 2

 0.20 0.199 9 0.004 2 4.70 0.4914 0.567 2

 0.30 0.299 4 0.014 1 4.80 0.433 8 0.496 8

 0.40 0.397 5 0.033 4 4.90 0.500 2 0.435 0

 0.50 0.492 3 0.064 7 5.00 0.563 7 0.499 2

 0.60 0.581 1 0.110 5 5.05 0.545 0 0.544 2

 0.70 0.659 7 0.172 1 5.10 0.499 8 0.562 4

 0.80 0.723 0 0.249 3 5.15 0.455 3 0.542 7

 0.90 0.764 8 0.339 8 5.20 0.438 9 0.496 9

 1.00 0.779 9 0.438 3 5.25 0.461 0 0.453 6

 1.10 0.763 8 0.536 5 5.30 0.507 8 0.440 5

 1.20 0.715 4 0.623 4 5.35 0.549 0 0.466 2

 1.30 0.638 6 0.686 3 5.40 0.557 3 0.514 0

 1.40 0.543 1 0.713 5 5.45 0.526 9 0.551 9

 1.50 0.445 3 0.697 5 5.50 0.478 4 0.553 7

 1.60 0.365 5 0.638 9 5.55 0.445 6 0.518 1

 1.70 0.323 8 0.549 2 5.60 0.451 7 0.470 0

 1.80 0.333 6 0.450 8 5.65 0.492 6 0.444 1

 1.90 0.394 4 0.373 4 5.70 0.538 5 0.459 5

 2.00 0.488 2 0.343 4 5.75 0.555 1 0.504 9

 2.10 0.581 5 0.374 3 5.80 0.529 8 0.546 1

 2.20 0.636 3 0.455 7 5.85 0.481 9 0.551 3

 2.30 0.626 6 0.553 1 5.90 0.448 6 0.516 3

 2.40 0.555 0 0.619 7 5.95 0.4566 0.468 8

 2.50 0.457 4 0.619 2 6.00 0.499 5 0.447 0

 2.60 0.389 0 0.550 0 6.05 0.542 4 0.468 9

 2.70 0.392 5 0.452 9 6.10 0.549 5 0.516 5

 2.80 0.467 5 0.391 5 6.15 0.514 6 0.549 6

 2.90 0.562 4 0.410 1 6.20 0.467 6 0.539 8

 3.00 0.605 8 0.496 3 6.25 0.449 3 0.495 4

 3.10 0.561 6 0.581 8 6.30 0.476 0 0.455 5

 3.20 0.466 4 0.5933 6.35 0.524 0 0.456 0

 3.30 0.405 8 0.519 2 6.40 0.549 6 0.496 5

 3.40 0.438 5 0.429 6 6.45 0.529 2 0.539 8

 3.50 0.532 6 0.415 2 6.50 0.481 6 0.545 4

 3.60 0.588 0 0.492 3 6.55 0.452 0 0.507 8

 3.70 0.542 0 0.575 0 6.60 0.469 0 0.463 1

 3.80 0.448 1 0.565 6 6.65 0.516 1 0.454 9

 3.90 0.422 3 0.475 2 6.70 0.546 7 0.491 5

 4.00 0.498 4 0.420 4 6.75 0.530 2 0.536 2

 4.10 0.573 8 0.475 8 6.80 0.483 1 0.543 6

 4.20 0.541 8 0.563 3 6.85 0.453 9 0.506 0

 4.30 0.449 4 0.554 0 6.90 0.473 2 0.462 4

 4.40 0.438 3 0.462 2 6.95 0.520 7 0.4591
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522 Chapter 10 Diffraction

EXAMPlE 10.12

A square hole 2.00 mm * 2.00 mm in an opaque screen is  
illuminated normally by plane waves of 500-nm light. The point 
of observation P is 4.0 m beyond the screen directly opposite 
point-O at the center of the aperture. Using the fact that the 
Fresnel integrals are odd functions, determine (with the help  
of Table 10.3) the irradiance at P in terms of the unobstructed 
irradiance Iu.

SOlUTION 

From Eq. (10.103)

u = y a 2
lr0

b
1∙2

 and v = z a 2
lr0

b
1∙2

Referring to Fig. 10.70, z1 = -1.00 mm, z2 = +1.00 mm, 
y1 = -1.00 mm, and y2 = +1.00 mm. Hence u1 = -1.00, 
u2 =  +1.00, v1 = -1.00, and v2 = +1.00. The Fresnel inte-
grals are odd functions and so 

𝒞(w) = -𝒞(-w) and 𝒮(w) = -𝒮(-w)

Eq. 10.104 then becomes

IP =
Iu

4
5 32𝒞(1)42 + 32𝒮(1)4262

From Table 10.3 𝒞(1) = 0.779 9 and 𝒮(1) = 0.438 3 and so

IP =
Iu

4
52.433 0 + 0.768 462

Hence IP = 2.56 Iu 

To find the irradiance in the above example somewhere else 
in the pattern—for instance, 0.1 mm to the left of center—move 
the aperture relative to the OP-line accordingly, whereupon 
u2 = 1.1, u1 = -0.9, v2 = 1.0, and v1 = -1.0. The resultant IP 

Figure 10.71  Fresnel cosine and sine intergrals.
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will also be equal to that found at 0.1 mm to the right of  
center. Indeed, because the aperture is square, the same value 
obtains 0.1 mm directly above and below center as well  
(see photo).

We can approach the limiting case of free propagation by 
allowing the aperture dimensions to increase indefinitely. 
Making use of the fact that 𝒞(∞) = 𝒮(∞) = 1

2 and 𝒞(- ∞) 
=  𝒮(- ∞) = -  12 the irradiance at P, opposite the center of the 
aperture, is

IP = Iu

which is exactly correct. This is rather remarkable, considering 
that when the length OA in Fig. 10.70 is large, all the approxi-
mations made in the derivation are no longer applicable.  
It should be realized, however, that a relatively small aperture 
satisfying the approximations can still be large enough to  
effectively show no diffraction in the region opposite its center. 
For example, with r0 = r0 = 1 m an aperture that subtends an 
angle of about 1° or 2° at P may correspond to values of 0 u 0  and 
0 v 0  of roughly 25 to 50. The quantities 𝒞 and 𝒮 are then very 
close to their limiting values of 12. Further increases in the aper-
ture dimensions beyond the point where the approximations 
are violated can therefore introduce only a small error. This 
implies that we need not be very concerned about restricting 
the actual aperture size (as long as r0 7 7l and r0 7 7l). The 
contributions from wavefront regions remote from O must be 
quite small, a condition attributable to the obliquity factor and 
the inverse r-dependence of the amplitude of the secondary 
wavelets.

10.3.7 The Cornu Spiral

Marie Alfred Cornu (1841–1902), professor at the École Poly-
technique in Paris, devised an elegant geometrical depiction of 
the Fresnel integrals, akin to the vibration curve already consid-
ered. Figure 10.72, which is known as the Cornu spiral, is a 
plot in the complex plane of the points B ˜(w) K 𝒞(w) + i 𝒮(w)
as w takes on all possible values from 0 to ± ∞ . This just means 
that we plot 𝒞(w) on the horizontal or real axis and 𝒮(w) on the 
vertical or imaginary axis. The appropriate numerical values are 
taken from Table 10.3. If d/ is an element of arc length mea-
sured along the curve, then

d/2 = d 𝒞2 + d𝒮2

From the definitions (10.101),

d/2 = (cos2 pw2>2 + sin2 pw2>2) dw2

and d/ = dw 

Values of w correspond to the arc length and are marked off along 
the spiral in Fig. 10.72. As w approaches ± ∞ , the curve spirals 
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 10.3 Fresnel Diffraction 523

to Os, because P is now opposite the aperture’s center.) Label 
the two points B ˜1(u) and B ˜2(u), respectively, as in Fig. 10.73. 
The phasor B̃12(u) drawn from B ˜1(u) to B ˜2(u) is just the com-
plex number B ˜2(u) - B ˜1(u)

B̃12(u) = [𝒞(u) + i 𝒮(u)]u2
u1

and is the first term in the expression [Eq. (10.102)] for E  ˜P. 
Similarly, for v1 = -1.0 and v2 = 1.0, B ˜2(v) - B ˜1(v) is

B̃12(v) = [𝒞(v) + i 𝒮(v)]v2
v1

which is the latter portion of E  ˜P. The magnitudes of these two 
complex numbers are just the lengths of the appropriate  
B̃12-phasors, which can be read off the curve with a ruler, using 
either axis as a scale. The irradiance is then simply

 IP =
Iu

4
 0 B̃12(u) 02 0 B̃12(v) 02 (10.106)

and the problem is solved. Notice that the arc lengths along the 
spiral (i.e., ∆u = u2 - u1 and ∆v = v2 - v1) are proportional to 

into its limiting values at B̃+ = 1
2 + i 12 and B̃- = -  12 - i 12 . The 

slope of the spiral is

 
d𝒮
d 𝒞

=
sin pw2>2
cos pw2>2 = tan 

pw2

2
 (10.105)

and so the angle between the tangent to the spiral at any point 
and the 𝒞-axis is b = pw2>2.

The Cornu spiral can be used either as a convenient tool for 
quantitative determinations or as an aid to gaining a qualitative 
picture of a diffraction pattern (which was also the case with the 
vibration curve). As an example of its quantitative uses, recon-
sider the problem of a 2-mm-square hole, dealt with in the pre-
vious section (l = 500 nm, r0 = 4 m, and plane-wave illumina-
tion). We wish to find the irradiance at P directly opposite the 
aperture’s center, where in this case u1 = -1.0 and u2 = 1.0.
The variable u is measured along the arc; that is, w is replaced 
by u on the spiral. Place two points on the spiral at distances 
from Os equal to u1 and u2. (These are symmetrical with respect 

(a) A typical Fresnel pattern for a square aperture. (b)–(f) A series of Fresnel patterns for increasing 
square apertures under identical conditions. Note that as the hole gets larger, the pattern changes from a 
spread-out Fraunhofer-like distribution to a far more localized structure. (E.H.)

(a) (b) (c)

(d) (e) (f)
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524 Chapter 10 Diffraction

Maintaining the position of P opposite the center of the dif-
fracting hole, now suppose that the aperture size is adjustable.  
As the square hole is gradually opened, ∆v and ∆u increase  
accordingly. The endpoints B ˜1 and B ˜2 of either of these arc 
lengths spiral around counterclockwise toward their limiting val-
ues of B ˜- and B ˜ +, respectively. The phasors B̃12(u) and B̃12(v), 
which are identical in this instance because of the symmetry, pass 
through a series of extrema. The central spot in the pattern there-
fore gradually shifts from relative brightness to darkness and 
back. All the while, the entire irradiance distribution varies con-
tinually from one beautifully intricate display to the next (see 
photo p. 523). For any particular aperture size, the off-center dif-
fraction pattern can be computed by repositioning P. It is helpful 
to visualize the arc length as a piece of string, whose measure is 
equal to either ∆v or ∆u. Imagine it lying on the spiral, with Os 
initially at its midpoint. As P is moved, for example, to the left 
along the y-axis (Fig. 10.70), y1 and therefore u1 both become 
less negative, and y2 and u2 increase positively. The result is that 
our ∆u-string slides up the spiral. As the distance between the 
endpoints of the ∆u-string changes, 0 B̃12(u) 0  changes, and the ir-
radiance [Eq. (10.106)] varies accordingly. When P is at the left 
edge of the geometric shadow, y1 = u1 = 0. As the point of ob-
servation moves into the geometric shadow, u1 increases posi-
tively, and the ∆u-string is now entirely on the upper half of the 
Cornu spiral. As u1 and u2 continue to increase, the string winds 
ever more tightly about the B ˜+-limit. Its ends, B ˜1 and B ˜2, become 

the aperture’s overall dimensions in the y- and z-direction, re-
spectively. The arc lengths are therefore constant, regardless of 
the position of P in the plane of observation. On the other hand, 
the phasors B̃12(u) and B̃12(v), which span the arc lengths, are 
not constant, and they do depend on the location of P.
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Figure 10.72  The Cornu spiral.
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Figure 10.73  Cornu spiral.
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 10.3 Fresnel Diffraction 525

closer to each other, with the result that 0 B̃12(u) 0  becomes quite 
small, and IP decreases within the geometric shadow region.  
(We will come back to this point in more detail in the next sec-
tion.) The same process applies when we scan in the z-direction; 
∆v is constant and 0 B̃12(v) 0  varies.

If the aperture is completely opened out, revealing an unob-
structed wave, u1 = v1 = - ∞ , which means that B ˜1(u) - B ˜1(v) =
B ˜- and B ˜2(u) - B ˜2(v) = B ˜+. The B̃-B̃+-line makes a 45° angle 
with the 𝒞-axis and has a length equal to 12. Consequently, 
the phasors B̃12(u) and B̃12(v) each have magnitude 12 and 
phase p>4, that is, B̃12(u) = 12 exp (ip>4) and B̃12(v) =12 exp (ip>4). It follows from Eq. (10.102) that

 E  ˜P = E  ˜ueip>2 (10.107)

and as in Section 10.3.1, we have the unobstructed amplitude, 
except for a p>2 phase discrepancy.* Finally, using Eq. (10.106), 
IP = Iu.

We can construct a more palpable picture of what the  
Cornu spiral represents by considering Fig. 10.74, which de-
picts a cylindrical wavefront propagating from a coherent line 
source. The present procedure is exactly the same as that used 
in deriving the vibration curve, and the reader is referred back 
to Section 10.3.2 for a more leisurely discussion. Suffice it to 
say that the wavefront is divided into half-period strip zones by 
its intersection with a family of cylinders having a common axis 
and radii of r0 + l>2, r0 + l, r0 + 3l>2, and so on. The contri-
butions from these strip zones are proportional to their areas, 
which decrease rapidly. This is in contrast to the circular zones, 
whose radii increase, thereby keeping the areas nearly constant. 

O

r0

z2

z1

z�1

z�2

P

r0 + l�2

r0 + l

Figure 10.74  Cylindrical wavefront zones.

*The phase discrepancy will be resolved by the Kirchhoff theory in Section 10.4.

Zs2

Zs1

Z�s1

Z�s2

Os b

B+~

B–~

Figure 10.75  Cornu spiral related to the cylindrical wavefront.

Each strip zone is similarly divided into N subzones, which 
have a relative phase difference of p>N. The vector sum of all 
the amplitude contributions from zones above the center line is 
a spiraling polygon. If N goes to ∞  and the contributions gener-
ated by the strip zones below the center line are included, the 
polygon smooths out into a continuous Cornu spiral. This is not 
surprising, since the coherent line source generates an infinite 
number of overlapping point-source patterns.

Figure 10.75 shows a number of unit tangent vectors at 
various positions along the spiral. The vector at Os corre-
sponds to the contribution from the central axis passing 
through O on the wavefront. The points associated with the 
boundaries of each strip zone can be located on the spiral, 
since at those positions the relative phase, b, is either an even 
or odd multiple of p. For example, the point Zs1 on the spiral 
(Fig. 10.75), which is related to z1 (Fig. 10.74) on the wave-
front, is by definition 180°out-of-phase with Os. Therefore Zs1 
must be located at the top of the spiral, where w = 12 inas-
much as there b = pw2>2 = p.

It will be helpful as we go along in the treatment to visualize 
the blocking out of these strip zones when analyzing the effects 
of obstructions. Obviously, one could even make an appropriate 
zone plate, which would accomplish this to some advantage, 
and such devices are in use.

10.3.8 Fresnel Diffraction by a Slit

We can treat Fresnel diffraction at a long slit as an extension of 
the rectangular-aperture problem. We need only elongate the 
rectangle by allowing y1 and y2 to move very far from O, as 
shown in Fig. 10.76. As the point of observation moves along 

M10_HECH6933_05_GE_C10.indd   525 26/08/16   4:07 PM



526 Chapter 10 Diffraction

measured and substituted into Eq. (10.108) to find IP. At point-
P1, z1 and therefore v1 are smaller negative numbers, whereas 
z2 and v2 have increased positively. The arc length ∆v (the 
string) moves up the spiral (Fig. 10.77), and the chord decreas-
es. As the point of observation moves down into the geometric 
shadow, the string winds about B̃+, and the chord goes through 
a series of relative extrema. If ∆v is very small, our imaginary 
piece of string is small, and the chord 0 B̃12(v) 0  decreases ap-
preciably only when the radius of curvature of the spiral itself 
is small. This occurs in the vicinity of B ˜+ or B ˜-, that is, far out 
into the geometric shadow. There will thus be light well be-
yond the edges of the aperture, as long as the aperture is rela-
tively small. Note, too, that with small ∆v there will be a broad 
central maximum. In fact, if ∆v is much less than 1, r0l is 
much greater than the aperture width, and the Fraunhofer con-
dition prevails. This transition of Eq. (10.108) into the form of 
Eq. (10.17) is more plausible when we realize that for large w 
the Fresnel integrals have trigonometric representations (see 
Problem 10.85).

As the slit widens, ∆v becomes larger, for a fixed r0, until a 
configuration like that in Fig. 10.78 exists for a point opposite 
the slit’s center. If the point of observation is moved vertically 
either up or down, ∆v slides either down or up the spiral. Yet the 
chord increases in both cases, so that the center of the diffrac-
tion pattern must be a relative minimum. Fringes now appear 
within the geometric image of the slit, unlike the Fraunhofer 
pattern.

Figure 10.79 shows two curves of 0 B̃12(w) 02 plotted against 
(w1 + w2)>2, which is the center point of the arc length ∆w. (Re-
call that the symbol w stands for either u or v.) A family of such 
curves running the range in ∆w from about 1 to 10 would cover 
the region of interest. The curves are computed by first choosing 

the y-axis, as long as the vertical boundaries at either end of the 
slit are still essentially at infinity, u2 ≈ ∞ , u1 ≈ - ∞ , and 
B̃12(u) ≈ 12 eip>4. From Eq. (10.106), for either point-source 
or plane-wave illumination,

 IP =
Iu

2
 0 B̃12(v) 02 (10.108)

and the pattern is independent of y. The values of z1 and z2, 
which fix the slit width, determine the important parameter  
∆v = v2 - v1, which in turn governs B̃12(v). Imagine once 
again that we have a string of length ∆v lying along the spiral. At 
P, opposite point-O, the aperture is symmetrical, and the string 
is centered on Os (Fig. 10.77). The chord 0 B̃12(v) 0  need only be 

P2

P1

P

(a)

Σ

z

y

z2

O2

O1

O

z1

Figure 10.76  (a) Single-slit geometry. (b) A typical near-field irradiance 
distribution fairly close to a wide slit. The aperture was illuminated by a 
He–Ne laser and the pattern detected via a photodiode. Here the horizontal 
is parallel to the z-axis in the diagram. (W. Klein, I. Physikalisches Institut, Koln, 

Germany)
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Figure 10.77 Cornu spiral for the slit.
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B1
~

B2
~

B–~

Figure 10.78  An irradiance minimum in the slit pattern. The central 
region about Os is open and transmits light.

given slit. For example, Fig. 10.79a can be read as 0 B̃12(v) 02 
versus (v1 + v2)>2 for ∆v = 2.5. The abscissa relates to 
(z1 + z2)>2, that is, the displacement of the point of observation 
from the center of the slit. In Fig. 10.79b ∆w = 3.5, which 
means that a slit having a ∆v = 3.5 clearly has fringes appear-
ing within the geometric image as expected (Problem 10.84). 
The curves could, of course, be plotted in terms of values of ∆z 
or ∆y explicitly, but that would unnecessarily limit them to one 
set of configuration parameters r0, r0, and l.

As the slit is widened still further (Fig. 10.80), ∆v approach-
es and then surpasses 10. An increasing number of fringes ap-
pear within the geometric image, and the pattern no longer ex-
tends appreciably beyond that image. It then looks as though it 
was formed by two semi-infinite opaque screens (see Section 
10.3.9).

The same kind of reasoning applies equally well to the anal-
ysis of the rectangular aperture, where use can also be made of 
the curves in Fig. 10.79.

To observe Fresnel slit diffraction, form a long narrow space 
between two fingers held at arm’s length. Make a similar paral-
lel slit close to your eye, using your other hand. With a bright 
source, such as the daytime sky or a large lamp, illuminating the 
far slit, observe it through the nearby aperture. After inserting 
the near slit, the far slit will appear to widen, and rows of fringes 
will be evident.

a particular ∆w and then reading the appropriate 0 B̃12(w) 0  values 
off the Cornu spiral as ∆w slides along it. For a long slit

 IP =
Iu

2
 0 B̃12(v) 02 [10.108]

and since ∆z is the slit width that corresponds to ∆v, each curve 
in Fig. 10.79 is proportional to the irradiance distribution for a 

Figure 10.79  0 B̃12(w) 02 versus (w1 + w2)>2 for (a) ∆w = 2.5 and (b) ∆w = 3.5. (c) Fresnel  
diffraction for a beam of neutrons passing through a single slit. (R. Gáhler and A. Zeilinger, “Wave-optical experi-

ments with very cold neutrons,” Am. J. Phys 59, (4), 316 (1991). American Association of Physics Teachers.)
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528 Chapter 10 Diffraction

EXAMPLE 10.13

With Fig. 10.76a in mind, consider a long narrow horizontal slit 
of width 0.70 mm. Using the Cornu spiral (Fig. 10.72), deter-
mine the approximate ratio of the irradiance 1.0 m from O at P 
to the irradiance there with the aperture screen removed. Take 
the illumination to have a wavelength of 600 nm.

Figure 10.80  Fresnel diffraction from a 5.0-mm-wide vertical slit. Each 
identical irradiance distribution has a vertical grey line corresponding to 
the point where the diffraction is to be computed. The phasors on the 
associated Cornu spirals represent the different field amplitudes at those 
several locations. (“Single-Slit Diffraction Pattern,” Wolfram Demonstrations Project,  

http://demonstrations.wolfram.com/ contributed by Hans-Joackim Domke and Martin Domke)
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∆w = 5.0

I

SOLUTION 

The irradiance can be computed via Eq. (10.108)

IP

Iu
= 1

2 �B̃12(v)�2

We first need to compute v from

v = za 2
lr0

b
1>2

and

v = z c 2

600 * 10-9(1.0 m)
d

1�2

= z(1825.7)

With z = ±1
2(0.70 mm)

v1 = -0.64 and v2 = +0.64

Put a dot on the spiral at -0.64 where each division on the spiral 
is 0.1. That point is B ˜1. Now put a dot on the spiral at +0.64. 
That point is B ˜2. The phasor from B ˜1 to B ˜2 is B̃12. Mark off its 
length on the edge of a piece of paper and then, using either axis 
of the spiral diagram, determine its length to scale. Here the 
length �B̃12� ≈ 1.25 and so

IP

Iu
= 1

2 �B̃12�2 ≈ 0.78

10.3.9 The Semi-Infinite Opaque Screen

We now form a semi-infinite planar opaque screen by remov-
ing the upper half of Σ in Fig. 10.76a. This is done simply 
enough, by letting z2 = y1 = y2 = ∞ . Remembering the origi-
nal approximations, we limit the geometry so that the point of 
observation is close to the screen’s edge. Since v2 = u2 = ∞  
and u1 = - ∞ , Eq. (10.104) or (10.108) leads to

 IP =
Iu

2
 5 [1

2 - �(v1)]2 + [1
2 - �(v1)]26  (10.109)

When the point-P is directly opposite the edge, v1 = 0, 
�(0) = �(0) = 0, and IP = Iu>4. This was to be expected, since 
half the wavefront is obstructed, the amplitude of the distur-
bance is halved, and the irradiance drops to one quarter. This 
occurs at point (3) in Figs. 10.81 and 10.82. Moving into the 
geometric shadow region to point (2) and then on to (1) and still 
further, the successive chords clearly decrease monotonically 
(Problem 10.85). No irradiance oscillations exist within that re-
gion; the irradiance merely drops off rapidly. At any point above 
(3) the screen’s edge will be below it; in other words, z1 6 0 
and v1 6 0. At about v1 = -1.2 the chord reaches a maximum, 
and the irradiance is a maximum. Thereafter, IP oscillates about 
Iu, gradually diminishing in magnitude. With sensitive electronic 
techniques, many hundreds of these fringes can be observed.*

*J. D. Barnett and F. S. Harris, Jr., J. Opt. Soc. Am. 52, 637 (1962).
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obstruction passes in front of the source slit parallel to it, a se-
ries of fringes will appear.

10.3.10 Diffraction by a Narrow Obstacle

Refer back to the description of the single narrow slit; consider 
the complementary case in which the slit is opaque, and the 
screen transparent. Let’s envision, for example, a vertical 
opaque wire. At a point directly opposite the wire’s center, there 
will be two separate contributing regions extending from y1 to 
- ∞  and from y2 to + ∞ . On the Cornu spiral, these correspond 
to two arc lengths from u1 to B ˜- and from u2 to B ˜+. The ampli-
tude of the disturbance at a point-P on the plane of observation 
is the magnitude of the vector sum of the two phasors B-u1

¡ and 
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Σ Figure 10.81  The semi-infinite 
opaque screen.
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Figure 10.82  (a) The Cornu spiral for a semi-infinite screen. (b) The corre-
sponding calculated irradiance distribution. (c) The same irradiance pattern 
under He–Ne laser illumination measured with a photodiode. (W. Klein, I. 

Physikalisches Institut, Koln, Germany)

(c)

It is evident that the diffraction pattern in the accompa-
nying photo would appear in the vicinity of the edges of a 
wide slit (∆v greater than about 10) as a limiting case. The 
irradiance distribution suggested by geometrical optics is 
obtained only when l goes to zero. Indeed, as l decreases, 
the fringes move closer to the edge and become increasingly 
fine in extent.

The straight-edge pattern can be observed using any kind of 
slit, held up in front of a broad lamp at arm’s length, as a source. 
Introduce an opaque obstruction (e.g., a blackened microscope 
slide or a razor blade) very near your eye. As the edge of the 
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u2B+¡
, illustrated in Fig. 10.83. As with the opaque disk, the 

symmetry is such that there will always be an illuminated re-
gion along the central axis. This can be seen from the spiral, 
since when P is on the central axis, B-u1

¡ = u2B+¡
 and their sum 

can never be zero. The arc length ∆u represents the obscured 
region of the spiral, which increases as the diameter of the wire 

Os

u2

u1

�

�

B+~

B–~

Figure 10.83  The Cornu spiral as applied to a narrow obstacle. The  
central region about Os is obscured and does not transmit light.

(a) The shadow pattern cast by the lead from a mechanical pencil. (E.H.)  
(b) The pattern cast by a 1/8-inch-diameter rod. (E.H.) (c) Matter-wave  
diffraction. Fresnel electron-diffraction pattern of a 2-mm-diameter metallized 
quartz filament. (O.E. Klemperer, Electron Physics, Butterworths, [1972] pp. 188–191.)

(a)

(c)

(b)

(a) The fringe pattern for a half-screen formed with light. (Francis Weston Sears, 

Optics, © 1949, Addison-Wesley, Reading, MA. Pearson Education) (b) Fresnel electron diffraction  

at a half plane (MgO crystal)—electrons behave like photons. (Handbuch der Physik, edited by  

S. Flügge, Springer-Verlag, Heidelberg.)

(a)

(b)

increases. For thick wires, u1 approaches B ˜-, u2 approaches B ˜+, 
the phasors decrease in length, and the irradiance on the shadow’s 
axis drops off. This is evident from the accompanying photos, 
which show the patterns actually cast by a thin piece of lead 
from a mechanical pencil and by a rod with a 1

8-inch diameter. 
Imagine that we have a small irradiance sensor at point-P on the 
plane of observation (or the film plate). As P moves off the cen-
tral axis to the right, y1 and u1 increase negatively, whereas y2 
and u2, which are positive, decrease. The opaque region, ∆u, 
slides down the spiral. When the sensor is at the right edge of 
the geometric shadow y2 = 0, u2 = 0; in other words, u2 is at Os. 
Notice that if the wire is thin, that is, if ∆u is small, the sensor 
will record a gradual decrease in irradiance as u2 approaches Os. 
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determined by integrating over the area bounded by that aper-
ture. If both apertures are present at once, there are no opaque 
regions at all; the limits of integration go to infinity, and we 
have the unobstructed disturbance Eu, whereupon

 E1 + E2 = Eu (10.110)

which is the statement of Babinet’s Principle. Take a close 
look at Figs. 10.78 and 10.83, which depict the Cornu spiral con-
figurations for a transparent slit and a narrow opaque obstacle. If 
the two arrangements are made complementary, Fig. 10.84  
illustrates Babinet’s Principle quite clearly. The phasor arising 
from a narrow obstacle (B-B1

¡ + B2B+¡
) added to that from a s 

lit B2B1
¡ yields the unobstructed phase B-B+¡

.
The principle implies that when E0 = 0, E1 = -E2; in other 

words, these disturbances are precisely equal in magnitude and 
180° out-of-phase. One would therefore observe exactly the same 
irradiance distribution with either g1 or g2 in place, an interest-
ing result indeed. It is evident, however, that the principle cannot 
be exactly true, since for an unobstructed wave from a point 
source, there are no zero-amplitude points (i.e., Eu Z 0 every-
where). Yet if the source is imaged at P0 by perfect lenses, as in 
Fig. 10.6 (with neither g1 nor g2 present), there will be a large, 
essentially zero-amplitude region beyond the immediate vicinity 
of P0 (beyond the Airy disk) in which E1 + E2 = Eu = 0. It is 
therefore only for the case of Fraunhofer diffraction that com-
plementary screens will generate equivalent irradiance distri-
butions, that is, E1 = -E2 (excluding point-P0). Nonetheless, 
Eq. (10.110) is valid in Fresnel diffraction, even though the  
irradiances obey no simple relationship. This is exemplified by 
the slit and narrow obstacle of Fig. 10.84. For a circular hole 
and disk examine Fig. 10.85. Equation (10.110) is again clearly 
applicable, even though the diffraction patterns are certainly not 
equivalent.

On the other hand, if the wire is thick, ∆u is large and u1 and u2 
are large. As ∆u slides down the spiral, the two phasors revolve 
through a number of complete rotations, going in- and out-of-
phase in the process. The resulting additional extrema appear-
ing within the geometric shadow are evident in the middle photo. 
In fact, the separation between internal fringes varies inversely 
with the width of the rod, just as if the pattern arose from the 
interference of two waves (Young’s Experiment) reflected at the 
rod’s edges.

EXAMPLE 10.14

Consider a long narrow horizontal opaque rectangular object of 
width 0.70 mm. Using the Cornu spiral (Fig. 10.72), determine 
the approximate ratio of the irradiance at P on the central axis 
(1.0 m from the center point of the rectangle, O) to the irradi-
ance there with the aperture screen removed. Take the illumina-
tion to have a wavelength of 600 nm.

SOlUTION 

There will be two phasors involved, one corre-sponding to 
light from below the obstruction, and one for light from above 
it. Thus there will be a phasor from B ˜- to B ˜1, and another from 
B ˜2 to B ˜+. We need to locate B ˜1 and B ˜2 by finding v1 and v2. 
Accordingly, since

v = za 2
lr0

b
1>2

and

v = z c 2

600 * 10-9(1.0 m)
d

1>2
= z(1825.7)

with z = ±1
2 (0.70 mm)

v1 = -0.64  and  v2 = +0.64

Put a dot on the spiral at -0.64; that’s B ˜1. Put a dot on the spiral 
at + 0.64; that’s B ˜2. The quantities ∙B ˜-1∙ = ∙B-B1

¡ ∙ and ∙B ˜1 + ∙ =
∙B1B+¡

∙ are equal to each other and to ≈ 0.38. Since the phasors 
are parallel, the net amplitude, ∙B̃∙, is ≈ 0.76 and

IP

Iu
= 1

2 ∙B̃∙2 ≈ 0.29

10.3.11 babinet’s Principle

Two diffracting screens are said to be complementary when the 
transparent regions on one exactly correspond to the opaque 
regions on the other and vice versa. When two such screens are 
overlapped, the combination is obviously completely opaque. 
Now then, let E1 or E2 be the scalar optical disturbance arriv-
ing at P when either complementary screen g1 or g2, respec-
tively, is in place. The total contribution from each aperture is 

�

�

B+~

B–~

B1
~

B2
~

Figure 10.84  The Cornu spiral illustrating Babinet’s Principle.
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532 Chapter 10 Diffraction

Figure 10.86  (a)–(d) White-
light diffraction patterns for 
regular arrays of apertures and 
complementary obstacles in 
the form of rounded plus signs. 
(e) and (f) Diffraction patterns 
for a regular array of rectangu-
lar apertures and obstacles, 
respectively. (Richard B. Hoover, 

Ealing Electro-Optics, Inc.)

(a) (b)

(c) (d)

(e)

(f)

Os

As

O�s

Figure 10.85  The vibration curve illustrating Babinet’s Principle.

The real beauty of Babinet’s Principle is most evident when 
applied to Fraunhofer diffraction, as shown in Fig. 10.86, 
where the patterns from complementary screens are almost 
identical.

10.4  Kirchhoff’s Scalar  
Diffraction Theory

We have described a number of diffracting configurations,  
quite satisfactorily, within the context of the relatively simple 
Huygens–Fresnel theory. Yet the whole imagery of surfaces cov-
ered with fictitious point sources, which was the basis of that anal-
ysis, was merely postulated rather than derived from fundamental 
principles. The Kirchhoff treatment shows that these results are 
actually derivable from the scalar differential wave equation.

The discussion to follow is rather formal and involved. Portions 
of it have therefore been relegated to an appendix, where we can 
indulge in succinctness and risk sacrificing readability for rigor.

In the past, when dealing with a distribution of monochro-
matic point sources, we computed the resultant optical distur-
bance at point-P (i.e., EP) by carrying out a superposition of the 
individual waves. There is, however, a completely different  
approach, which is founded in potential theory. Here one is con-
cerned not with the sources themselves but rather with the scalar 
optical disturbance and its derivatives over an arbitrary closed 
surface surrounding P. We assume that a Fourier analysis can 
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in which case

 ℰ̃(r) =
e0

r
 eikr (10.116)

If we substitute this into Eq. (10.114), it becomes

ℰ̃P =
1

4p
 cT

S
 
eikr

r
 

0
0r

 ae0

r
 eikrb cos (n̂, R̂) dS

- T
S
 
e0

r
 eikr 

0
0r

 aeikr

r
b cos (n̂, r̂) dSd

where dS$ = n̂ dS, n̂, r̂, and R̂ are unit vectors,

∇  aeikr

r
b = r̂ 

0
0r

 aeikr

r
b

and

∇ℰ(r) = R̂    0  ℰ>0r
The differentiations under the integral signs are

0
0r

 aeikr

r
b = eikr aik

r
-

1

r2b

and

0
0r

 aeikr

r
b = eikr aik

r
-

1

r2b

When r 7 7  l and r 7 7  l, the 1>r2 and 1>r2 terms can be 
neglected. This approximation is fine in the optical spectrum 

separate the constituent frequencies, so that we need only deal 
with one such frequency at a time. The monochromatic optical 
disturbance E is a solution of the differential wave equation

 ∇2E =
1

c2 
02E

0t2  (10.111)

Without specifying the precise spatial nature of the wave, we 
can write it as

 Ẽ = ℰ̃e-ikct (10.112)

Here ℰ̃ represents the complex space part of the disturbance. 
Substituting this into the wave equation, we obtain

 ∇2ℰ̃ + k2ℰ̃ = 0 (10.113)

This is known as the Helmholtz Equation and is solved, with the 
aid of Green’s Theorem, in Appendix 2. The optical disturbance 
existing at a point-P, expressed in terms of the optical distur-
bance and its gradient evaluated on an arbitrary closed surface 
S, enclosing P, is

ℰ̃P =
1

4p
 cT

S
 
eikr

r
 ∇ℰ̃ · dS$ - T

S
ℰ̃∇aeikr

r
b · dS$d

(10.114)

Known as the Kirchhoff Integral Theorem, Eq. (10.114) relates 
to the geometric configuration illustrated in Fig. 10.87.

We now apply the theorem to the specific instance of an un-
obstructed spherical wave originating at a point source s, as 
shown in Fig. 10.88. The disturbance has the form

 E ˜(r, t) =
e0

r
 ei(kr-vt) (10.115)

S

P

r

dS�
E = � exp (−ivt)

Figure 10.87  An arbitrary closed surface 
S enclosing point-P.
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534 Chapter 10 Diffraction

completely surrounds the small spherical surface S1. At r = 0 the 
disturbance E(r, t) has a singularity and is therefore properly ex-
cluded from the volume V between S1 and S2. The integral must 
now include both surfaces S1 and S2. But we can have S2 increase 
outward indefinitely by requiring its radius to go to infinity. In that 
case, the contribution to the surface integral vanishes. (This is true 
whatever the form of the incoming disturbance, as long as it drops 
off at least as rapidly as a spherical wave.) The remaining surface 
S1 is a sphere centered at the point source. Since, over S1, n̂ and R̂ 
are antiparallel, it is evident from Fig. 10.88b that the angles (n̂, r̂) 

but certainly need not be true for microwaves. Proceeding, we 
write

ℰ̃p = -  
e0i

l
 T

S
 
eik(r+r)

rr ccos (n̂, r̂) - cos (n̂, R̂)

2
 d  

dS

(10.117)

This is the Fresnel–Kirchhoff diffraction formula.
Take a long look at Eq. (10.96), which represents the 

 disturbance at P arising from an element dS in the Huygens–
Fresnel theory, and compare it with Eq. (10.117). In Eq. (10.117) 
the angular dependence is contained in the single term 
1
2[cos (n̂, r̂) - cos (n̂, R̂)], which we shall call the obliquity fac-
tor K(u), showing it to be equivalent to Eq. (10.72) later on. 
Notice as well that k can be replaced by -k everywhere, since 
we certainly could have chosen the phase of Eq. (10.115) to have 
been (vt - kr). With Eq. (10.112) in mind, multiply both sides 
of Eq. (10.117) by exp (- ivt); the differential element is then

 dEP =
K(u)e0

rrl
 cos [k(r + r) - vt - p>2] dS (10.118)

This is the contribution to EP arising from an element of surface 
area dS a distance r from P. The p>2 term in the phase results 
from the fact that - i = exp (- ip>2). The Kirchhoff formula-
tion therefore leads to the same total result, with the exception 
that it includes the correct p>2 phase shift, which is lacking in 
the Huygens–Fresnel treatment [Eq. (10.96)].

We have yet to ensure that the surface S can be made to corre-
spond to the unobstructed portion of the wavefront, as it does in 
the Huygens–Fresnel theory. For the case of a freely propagating 
spherical wave emanating from the point source s, we construct 
the doubly connected region shown in Fig. 10.89. The surface S2 

P

S2

S1

S

r

n

r

R

n

u

r

P

S2

r

r

R

u

Figure 10.89  A doubly connected region surrounding point S.

P

r

r r
dS

(a)

(b)

S

S

S

P

r

n

n
r

R

(n, r)

(n, R)

Figure 10.88  A spherical wave emitted from point s.
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propagates beyond the aperture. There are no electron-oscillators 
here, which implies that these ideas have a certain generality, being 
applicable to elastic waves as well.

The formulation of diffraction in terms of the interference of a 
scattered edge wave and a geometrical wave is perhaps more phys-
ically appealing than the fictitious emitters of the Huygens–Fresnel 
Principle. It is not, however, a new concept. Indeed, it was first 
propounded by the ubiquitous Thomas Young even before Fresnel’s 
celebrated memoir on diffraction. But in time Fresnel’s brilliant 
successes unfortunately convinced Young to reject his own ideas, 
and he finally did so in a letter to Fresnel in 1818. Strengthened by 
Kirchhoff’s work, the Fresnel conception of diffraction became 
generally accepted and has persisted (right up to Section 10.4). The 
resurrection of Young’s theory began in 1888. At that time, Gian 
Antonio Maggi proved that Kirchhoff’s analysis, for a point source 
at least, was equivalent to two contributing terms. One of these was 
a geometrical wave, but the other, unhappily, was an integral, 
which allowed no clear physical interpretation at the time.

In his doctoral thesis (1893), Eugen Maey showed that an 
edge wave could indeed be extracted from a modified Kirchhoff 
formulation for a semi-infinite half-plane. Arnold Sommerfeld’s 
rigorous solution of the half-plane problem (see Section 10.1) 
showed that a cylindrical wave actually does proceed from the 
screen’s edge. It propagates into both the geometrical shadow 
region and the illuminated region. In the latter, the boundary dif-
fraction wave combines with the geometrical wave, in complete 
accord with Young’s theory. In 1917 Adalbert (Wojciech) Ru-
binowicz was able to prove that Kirchhoff’s formula for a plane 
or spherical wave can be appropriately decomposed into the two 
desired waves, thereby revealing the basic correctness of Young’s 
ideas. He also later established that the boundary diffraction 
wave, to a first approximation, was generated by reflection of the 
primary wave from the aperture’s edge. In 1923 Friedrich Kottler 
pointed out the equivalence of the solutions of Maggi and Ru-
binowicz, and one now speaks of the Young-Maggi-Rubinowicz 
theory. Most recently, Kenro Miyamoto and Emil Wolf (1962) 

and (n̂, R̂) are u and 180°, respectively. The obliquity factor then 
becomes

K(u) =
cos u + 1

2

which is Eq. (10.72). Clearly, since the surface of integration S1 
is centered at s, it does indeed correspond to the spherical wave-
front at some instant. The Huygens–Fresnel Principle is there-
fore directly traceable to the scalar differential wave equation.

We shall not pursue the Kirchhoff formulation any further, 
other than to point out briefly how it is applied to diffracting 
screens. The single closed surface of integration surrounding 
the point of observation P is generally taken to be the entire 
screen g  capped by an infinite hemisphere. There are then three 
distinct areas with which to be concerned. The contribution to 
the integral from the region of the infinite hemisphere is zero. 
Moreover, it is assumed that there is no disturbance immedi-
ately behind the opaque screen, so that this second region con-
tributes nothing. The disturbance at P is therefore determined 
solely by the contributions arising from the aperture, and one 
need only integrate Eq. (10.117) over that area.

The fine results obtained by using the Huygens–Fresnel 
Principle are now justified theoretically, the main limitations 
being that r 7 7  l and r 7 7l.

10.5 boundary Diffraction Waves

In Section 10.1.1 we said that the diffracted wave could be envi-
sioned as arising from a fictitious distribution of secondary emitters 
spread across the unobstructed portion of the wavefront, namely, 
the Huygens–Fresnel Principle. There is, however, another, com-
pletely different, and rather appealing possibility. Suppose that an 
incoming wave sets the electrons on the rear of the diffracting 
screen g  into oscillation, and these in turn radiate. We anticipate a 
twofold effect. First, all the oscillators that are remote from the edge 
of the aperture radiate back toward the source in such a fashion as to 
cancel the incoming wave at all points, except within the projection 
of the aperture itself. In other words, if this were the only contribut-
ing mechanism, a perfect geometrical image of the aperture would 
appear on the plane of observation. There is, however, an addi-
tional contribution arising from those oscillators in the vicinity of 
the aperture’s edge. A portion of the energy radiated by these sec-
ondary sources propagates in the forward direction. The superposi-
tion of this scattered wave (known as the boundary diffraction 
wave) and the unobstructed portion of the primary wave (known as 
the geometrical wave) yield the diffraction pattern. A rather cogent 
reason for contemplating such a scheme becomes apparent when 
one examines the following arrangement. Tear a small hole (≈1

2 
cm in diameter) of arbitrary shape in a piece of paper, and holding 
it at arm’s length, view an ordinary lightbulb some meters distant. 
Even with your eye in the shadow region, the edges of the aperture 
will be brightly illuminated. The accompanying ripple-tank photo-
graph also illustrates the process. Notice how each edge of the slit 
seems to serve as a center for a circular disturbance, which then 

Ripple-tank waves passing through a slit. (PSSC Physics, D. C. Heath, Boston, 1960. 

Cengage Learning)
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536 Chapter 10 Diffraction

*A fairly complete bibliography can be found in the article by A. Rubinowicz in 
Progress in Optics, Vol. 4, p. 199.

10.5* Consider the case of single-slit Fraunhofer diffraction. Calcu-
late the ratio of the irradiance of the central maximum to the irradiance 
of the first secondary maximum on either side of it. Check your answer 
with Fig. 10.13.

10.6 The angular distance between the center and the first minimum 
of a single-slit Fraunhofer diffraction pattern is called the half-angular 
breadth; write an expression for it. Find the corresponding half-linear 
width when no focusing lens is present and the distance from the slit to 
the viewing screen is L. Notice that the half-linear width is also the 
distance between the successive minima.

10.7* A single slit in an opaque screen 0.10 mm wide is illuminated 
(in air) by plane waves from a krypton ion laser (l0 = 461.9 nm). If the 
observing screen is 1.5 m away, determine whether or not the resulting 
diffraction pattern will be of the far-field variety and then compute the 
angular width of the central maximum.

10.8* A narrow single slit (in air) in an opaque screen is illuminated 
by infrared from a He–Ne laser at 1152.2 nm, and it is found that the 
center of the tenth dark band in the Fraunhofer pattern lies at an angle 
of 6.4° off the central axis. Determine the width of the slit. At what 
angle will the tenth minimum appear if the entire arrangement is im-
mersed in water (nw = 1.33) rather than air (na = 1.000 29)?

10.9 A collimated beam of microwaves impinges on a metal screen 
that contains a long horizontal slit that is 25 cm wide. A detector mov-
ing parallel to the screen in the far-field region locates the first mini-
mum of irradiance at an angle of 36.87° above the central axis. Deter-
mine the wavelength of the radiation.

10.10* Plane waves from a magnesium lamp (l = 518.36 nm) arrive 
perpendicularly on an opaque screen containing a long 0.250-mm-wide 
slit. A large nearby positive lens forms a sharp image of the Fraunhofer 
diffraction pattern on a screen. The center of the fourth dark fringe is found 
to be 1.20 mm from the central axis. Determine the focal length of the lens.

10.11* Consider the single-slit Fraunhofer diffraction pattern formed 
on a screen by a lens of focal length ƒ. Show that the peak of the first 
subsidiary bright band is a distance Y (measured from the central axis) 
on the viewing screen, given by

≈1.430 3 
lƒ

b

Complete solutions to all problems—except those with an asterisk— 
can be found in the back of the book.

10.1 A point source S is a perpendicular distance R away from the 
center of a circular hole of radius a in an opaque screen. If the distance 
from S to the periphery of the hole is (R + /), show that Fraunhofer 
diffraction will occur on a very distant screen when

lR 7 7  a2>2

What is the smallest satisfactory value of R if the hole has a radius of  
1 mm, / … l>10, and l = 500 nm?

10.2* In Section 10.1.3 we talked about introducing an intrinsic phase 
shift e between oscillators in a linear array. With this in mind, show 
that Eq. (10.18) becomes

b = (kb>2)(sin u - sin ui)

when the incident plane wave makes an angle ui with the plane of the slit.

10.3 Referring back to the multiple antenna system on p. 464, com-
pute the angular separation between successive lobes or principal max-
ima and the width of the central maximum.

10.4 Examine the setup of Fig. 10.3 in order to determine what is hap-
pening in the image space of the lenses; in other words, locate the exit 
pupil and relate it to the diffraction process. Show that the configurations 
in Fig. P.10.4 are equivalent to those of Fig. 10.3 and will therefore result 
in Fraunhofer diffraction. Design at least one more such arrangement.

Problems

S P

Σ

S P

Σ

Figure P.10.4

have extended the boundary diffraction theory to the case of arbi-
trary incident waves.*

A very useful contemporary approach to the problem was  
devised by Joseph B. Keller. He developed a geometric theory  

of diffraction that is closely related to Young’s edge wave  
picture. Along with the usual rays of Geometrical Optics, Keller 
hypothesized the existence of diffracted rays. Rules governing 
these diffracted rays, which are analogous to the Laws of  
Reflection and Refraction, were employed to determine the re-
sultant fields.
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10.12* Plane waves of green light (l = 546.1 nm) impinge normally 
on a long narrow slit (0.15 mm wide) in an opaque screen. A large lens 
with a focal length of +62.0 cm placed just behind the slit produces a 
Fraunhofer diffraction pattern on a screen at its focal plane. Determine 
the width of the central irradiance maximum (zero to zero).

10.13* A long narrow slit 0.20 mm wide is illuminated normally with 
collimated blue hydrogen light (l = 486.1 nm). Immediately behind 
the slit is a large positive lens of focal length 60.0 cm. It produces a 
diffraction pattern on a screen in its focal plane. How far apart are the 
first and second zeros of irradiance?

10.14 Show that for a double-slit Fraunhofer pattern, if a = mb, the 
number of bright fringes (or parts thereof) within the central diffrac-
tion maximum will be equal to 2m.

10.15* Two long slits 0.10 mm wide, separated by 0.20 mm in an 
opaque screen, are illuminated by light with a wavelength of 550 nm. 
If the plane of observation is 2.5 m away, will the pattern correspond to 
Fraunhofer or Fresnel diffraction? How many Young’s fringes are vis-
ible within the central bright band?

10.16* In a two-slit setup, each slit is 0.020 mm wide. These apertures 
are illuminated by plane waves of yellow sodium light (l = 589.6 nm). 
The resulting Fraunhofer fringe pattern consists of 11 narrow bright 
fringes that gradually decrease in irradiance with distance from the cen-
tral maximum. Determine the separation between the slits.

10.17 What is the relative irradiance of the subsidiary maxima in a 
three-slit Fraunhofer diffraction pattern? Draw a graph of the irradi-
ance distribution, when a = 2b, for two and then three slits.

10.18* Let E01 be the electric-field amplitude on a distant screen due 
to each one of three very narrow parallel slits illuminated by mono-
chromatic plane waves. Compare the amplitude of the central subsid-
iary maximum to the amplitude of the zeroth-order principal maximum 
in the resulting Fraunhofer pattern. How does this stack up against the 
results of the previous question? Explain your answer in detail. You 
should ignore the diffraction of the individual slits.

10.19* Imagine two aperture screens arranged to produce two Fraunhofer 
diffraction patterns. One contains 8 very narrow closely spaced parallel 
slits, the other 16 such slits. All else being equal, compare the two irradi-
ance distributions. That is, how many subsidiary maxima between con-
secutive principal maxima will each pattern contain? If the irradiance of 
the zeroth-order peak of the 16-slit pattern is set equal to 1.0, how big will 
the corresponding peak be for the 8-slit pattern? Which arrangement pro-
duces wider principal maxima? Draw a rough sketch of each.

10.20* Suppose we have 15 parallel long narrow slits in an opaque 
screen. Furthermore, suppose each slit is separated from the next by a 
center-to-center distance that is equal to 4 slit widths. Given that a 
Fraunhofer diffraction pattern appears on a screen, determine the ratio 
of the irradiance of the second-order principal maximum to that of the 
zeroth-order maximum.

10.21* Consider the Fraunhofer diffraction pattern for eight very nar-
row parallel slits under monochromatic illumination. (a) Sketch the 
resulting irradiance distribution. (b) Explain why the first minimum 
occurs, from a phasor perspective. (c) Why is the electric field zero 

midway between principal peaks? (d) What does the phasor diagram of 
the field amplitude look like for the second minimum (measured from 
the zeroth principal maximum)? (e) What are the angles between suc-
cessive phasors at each minimum considered above?

10.22* Starting with the irradiance expression for a finite slit, shrink 
the slit down to a minuscule area element and show that it emits equally 
in all directions.

10.23* An opaque screen contains a rectangular hole 0.199 mm 
(along the z-axis) by 0.100 mm (along the y-axis). It is illuminated by 
light at 543 nm from a helium–neon laser. A big positive lens with a 
1.00-m focal length forms a Fraunhofer pattern on its focal plane. Lo-
cate the first minima along the Y- and Z-axes.

10.24* Consider the Fraunhofer diffraction pattern of a rectangular 
aperture 0.200 mm (in the y-direction) by 0.100 mm (in the z-direction). 
It is formed in 543-nm light from a helium–neon laser, on a screen 10.0 m 
away. Determine the relative irradiance 1.00 mm from the center of the 
pattern along the orthogonal symmetry axes Y and Z.

10.25* Show that Fraunhofer diffraction patterns have a center of sym-
metry [i.e., I(Y, Z) = I(-Y, -Z)], regardless of the configuration of the 
aperture, as long as there are no phase variations in the field over the re-
gion of the hole. Begin with Eq. (10.41). We’ll see later (Chapter 11) that 
this restriction is equivalent to saying that the aperture function is real.

10.26 With the results of Problem 10.25 in mind, discuss the sym-
metries that would be evident in the Fraunhofer diffraction pattern of 
an aperture that is itself symmetrical about a line (assuming normally 
incident quasimonochromatic plane waves).

10.27 From symmetry considerations, create a rough sketch of the 
Fraunhofer diffraction patterns of an equilateral triangular aperture and 
an aperture in the form of a plus sign.

10.28 Figure P.10.28 is the irradiance distribution in the far field  
for a configuration of elongated rectangular apertures. Describe the 
arrangement of holes that would give rise to such a pattern and give 
your reasoning in detail.

Figure P.10.28  (R.G. Wilson, Illinois Wesleyan University)

10.29 In Fig. P.10.29a and b are the electric field and irradiance dis-
tributions, respectively, in the far field for a configuration of elongated 
rectangular apertures. Describe the arrangement of holes that would 
give rise to such patterns and discuss your reasoning.
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10.30 Figure P.10.30 is a computer-generated Fraunhofer irradiance 
distribution. Describe the aperture that would give rise to such a pat-
tern and give your reasoning in detail.

Figure P.10.29  (R.G. Wilson, Illinois Wesleyan University)

Figure P.10.30  (R.G. Wilson, Illinois Wesleyan University)

Figure P.10.31  (R. G. Wilson, Illinois Wesleyan University.)

Figure P.10.32  (R.G. Wilson, Illinois Wesleyan University)

10.34* We wish to use the 15-cm-diameter objective from an amateur 
telescope to form an image on a CCD of a distant star. Assuming a 
mean wavelength of 540 nm and a focal length of +140 cm, determine 
the size of the resulting Airy disk. How would that change if we dou-
bled the lens diameter, keeping all else constant?

10.35* Imagine that you are staring at a star. You have dilated pupils, 
each with a diameter of 6.00 mm. The retina is about 21.0 mm from the 
pupil in a typical eye. Considering that the index of refraction of the 
vitreous humor is 1.337, determine the size of the Airy disk on your 
retina. Assume a mean vacuum wavelength of 550 nm.

10.36* Verify that the peak irradiance I1 of the first “ring” in the Airy 
pattern for far-field diffraction at a circular aperture is such that 
I1>I(0) = 0.0175. You might want to use the fact that

J1(u) =
u
2

 c1 -
1

1!2!
 (1

2 u)2 +
1

2!3!
 (1

2 u)4 -
1

3!4!
 (1

2 u)6 + gd

10.37* For large values of u

J1(u) =
12pu

 (sin u - cos u)

Use that relationship to show that the angular separation (∆u) between 
consecutive minima far from the center of an Airy pattern is given by

∆u =
l

2a cos u

10.31 Figure P.10.31 is the electric-field distribution in the far field 
for a hole of some sort in an opaque screen. Describe the aperture that 
would give rise to such a pattern and give your reasoning in detail.

10.32 In light of the five previous questions, identify Fig. P.10.32, 
explaining what it is and what aperture gave rise to it.

10.33* A 2.4-cm-diameter positive lens with a focal length of 100 cm 
forms an image of a small far-away red (656 nm) hydrogen lamp.  
Determine the linear size of the central circular spot appearing on the 
focal plane.
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[Hint: Write an expression for  sin u and take the derivative of it with 
respect to m, where for consecutive minima ∆m = 1.]

10.38 No lens can focus light down to a perfect point because there 
will always be some diffraction. Estimate the size of the minimum spot 
of light that can be expected at the focus of a lens. Discuss the relation-
ship among the focal length, the lens diameter, and the spot size. Take 
the ƒ-number of the lens to be roughly 0.8 or 0.9, which is just about 
what you can expect for a fast lens.

10.39 Figure P.10.39 shows several aperture configurations. Roughly 
sketch the Fraunhofer patterns for each. Note that the circular regions 
should generate Airy-like ring systems centered at the origin.

Figure P.10.39

10.40* Suppose that we have a laser emitting a diffraction-limited 
beam (l0 = 632.84 nm) with a 2.5-mm diameter. How big a light spot 
can be produced on the surface of the Moon a distance of 376 * 103 km 
away from such a device? Neglect any effects of the Earth’s atmosphere.

10.41* If you peered through a 0.75-mm hole at an eye chart, you 
would probably notice a decrease in visual acuity. Compute the angu-
lar limit of resolution, assuming that it is determined only by diffrac-
tion; take l0 = 500 nm. Compare your results with the value of 
1.7 * 10-4 rad, which corresponds to a 4.0-mm pupil.

10.42* We intend to observe two distant equal-brightness stars whose 
angular separation is 50.0 * 10-7rad. Assuming a mean wavelength of 
550 nm, what is the smallest-diameter objective lens that will resolve 
the stars (according to Rayleigh’s criterion)?

10.43* Using Rayleigh’s criterion, determine the smallest angle sub-
tended by two points of equal brightness that can just be resolved by the 
human eye. Assume a pupil diameter of 2.0 mm and a mean wavelength 
of 550 nm. The index of refraction of the medium within the eye is 1.337.

10.44* What is the linear separation between two identical points on 
an object that can just be resolved, if that object is at the near-point of 
the eye (25 cm). See the previous question.

10.45 The neoimpressionist painter Georges Seurat was a member of the 
pointillist school. His paintings consist of an enormous number of closely 
spaced small dots (≈ 1

10 inch) of pure pigment. The illusion of color mix-
ing is produced only in the eye of the observer. How far from such a paint-
ing should one stand in order to achieve the desired blending of color?

10.46* The Mount Palomar telescope has an objective mirror with a 
508-cm diameter. Determine its angular limit of resolution at a wave-
length of 500 nm, in radians, degrees, and seconds of arc. How far 
apart must two objects be on the surface of the Moon if they are to be 
resolvable by the Palomar telescope? The Earth-Moon distance is 
3.844 * 108 m; take l0 = 500 nm. How far apart must two objects be 
on the Moon if they are to be distinguished by the eye? Assume a pupil 
diameter of 4.00 mm.

10.47* A telescope having an objective lens with a diameter of 10.0 
cm will be used to view two equally bright small sources of 550-nm 
light. (a) Determine the angular separation of the sources if they are 
just resolvable. Use Rayleigh’s criterion. (b) How far apart can they be 
at a distance of 1000 km?

10.48* How were blue light–emitting lasers used to improve DVD 
technology? Explain.

10.49* We’d like to read a license plate (numbers about 5.0 cm *
5.0 cm) at a distance of 161 km (about 100 mi). How big an objec-
tive mirror would a spy satellite need? Assume a mean wavelength 
of 550 nm.

10.50* The Hubble Space Telescope has an objective mirror 2.4 m in 
diameter. With an average wavelength of 550 nm, determine its linear 
limit of resolution at 600 km (about 370 miles).

10.51* A transmission grating, whose lines are separated by 
2.0 * 10-6 m, is illuminated by a narrow beam of red light 
(l0 = 694.3 nm) from a ruby laser. Spots of diffracted light, on both 
sides of the undeflected beam, appear on a screen 2.0 m away. How far 
from the central axis is each of the two nearest spots?

10.52* A diffraction grating with slits 0.60 * 10-3 cm apart is illumi-
nated by light with a wavelength of 550 nm. At what angle will the 
third-order maximum appear?

10.53* A diffraction grating produces a second-order spectrum of 
yellow light (l0 = 540 nm) at 25°. Determine the spacing between the 
lines on the grating.

10.54* Collimated red light (656.281 6 nm) from a hydrogen dis-
charge lamp falls perpendicularly onto a transmission grating. The 
beam emerges forming a red line in the second-order spectrum at an 
angle of 42.00º with the central axis. Compute the number of lines per 
centimeter the grating must have. Determine the angular location of 
the blue (486.132 7 nm) line in the second-order hydrogen spectrum.

10.55 White light falls normally on a transmission grating that con-
tains 1000 lines per centimeter. At what angle will red light 
(l0 = 620 nm) emerge in the first-order spectrum?

10.56* Light from a laboratory sodium lamp has two strong yellow 
components at 589.592 3 nm and 588.995 3 nm. How far apart in the 
first-order spectrum will these two lines be on a screen 1.00 m from a 
grating having 9000 lines per centimeter?

10.57* With Example 10.9 on page 502 in mind, determine the num-
ber of grooves a transmission grating must have if it is to resolve the 
sodium doublet in the first-order spectrum. Compare the results of 
both problems.

10.58* A transmission grating has 5900 lines/cm. Light in the range 
from 400 nm to 720 nm impinges perpendicularly on the grating. How 
big is the angular width of the first-order spectrum?

10.59* Sunlight impinges on a transmission grating that is formed with 
5000 lines per centimeter. Does the third-order spectrum overlap the 
second-order spectrum? Take red to be 750 nm and violet to be 390 nm.
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Figure P.10.68  (E.H.)10.60* A beam of collimated polychromatic light ranging from  
500 nm to 700 nm impinges normally on a transmission grating having  
590 000 lines/m. If the complete second-order spectrum is to appear, 
how wide, at most, can the slits be? [Hint: The second-order spectrum 
must fit within the diffraction envelope of each slit.]

10.61 Light having a frequency of 4.0 * 1014 Hz is incident on a 
grating formed with 9000 lines per centimeter. What is the highest 
order spectrum that can be seen with this device? Explain.

10.62* Suppose that a grating spectrometer, while in vacuum on 
Earth, sends 550-nm light off at an angle of 20.0° in the first-order 
spectrum. By comparison, after landing on the planet Mongo, the same 
light is diffracted through 18.0°. Determine the index of refraction of 
the Mongoian atmosphere.

10.63 Prove that the equation

 a(sin um - sin ui) = ml [10.61]

when applied to a transmission grating, is independent of the refractive 
index.

10.64* A grating has a total width of 10.0 cm and contains 600 lines/
mm. What is its resolving power in the second-order spectrum? At 
a mean wavelength of 540 nm, what wavelength difference can it 
resolve?

10.65 A high-resolution grating 260 mm wide, with 300 lines per 
millimeter, at about 75° in autocollimation has a resolving power of 
just about 106 for l = 550 nm. Find its free spectral range. How do 
these values of ℛ and (∆l)fsr compare with those of a Fabry-Perot 
etalon having a 1-cm air gap and a finesse of 25?

10.66 What is the total number of lines a grating must have in order 
just to separate the sodium doublet (l1 = 5896.0 Å, l2 = 5890.0 Å) in 
the third order?

10.67* Imagine an opaque screen containing 30 randomly located cir-
cular holes. The light source is such that every aperture is coherently 
illuminated by its own plane wave. Each wave in turn is completely 
incoherent with respect to all the others. Describe the resulting far-field 
diffraction pattern.

10.68 Imagine that you are looking through a square piece of woven 
cloth at a point source (l0 = 550 nm) 20 m away. If you see a square 
arrangement of bright spots located about the point source (Fig. 
P.10.68), each separated by an apparent nearest-neighbor distance of 
12 cm, how close together are the strands of cloth?

10.69* Perform the necessary mathematical operations needed to  
arrive at Eq. (10.76).

10.70 Referring to Fig. 10.52, integrate the expression dS =  
2pr2 sin w dw over the l th zone to get the area of that zone,

Al =
lpr

r + r0
 cr0 +

(2l - 1)l

4
d

Show that the mean distance to the lth zone is

rl = r0 +
(2l - 1)l

4

so that the ratio Al>rl is constant.

10.71* Derive Eq. (10.84).

10.72* The circular hole in an opaque screen is 6.00 mm in diameter. 
It is perpendicularly illuminated by collimated light of wavelength 
500 nm. How many Fresnel zones will be “seen” from a point-P on the 
central axis 6.00 m from the screen? Will that point be bright or dark? 
Roughly, what will the diffraction pattern look like on a vertical plane 
containing P?

10.73* Collimated light from a krypton ion laser at 568.19 nm im-
pinges normally on a circular aperture. When viewed axially from a 
distance of 1.00 m, the hole uncovers the first half-period Fresnel zone. 
Determine its diameter.

10.74* Plane waves impinge perpendicularly on a screen with a small 
circular hole of radius R in it. It is found that when viewed from some 
axial point-P the hole uncovers 12 of the first half-period zone. What is 
the irradiance at P in terms of the irradiance there when the screen is 
removed? [Hint: Look at Eqs. 10.54 and 10.55.]

10.75* Imagine a point source S a perpendicular distance r0 from a 
circular hole in an aperture screen g . The screen is a distance r0 in 
front of an axial observation point-P. Show that the electric field due to 
the l th Fresnel zone as “seen” at P is given by 

El = (-1)l + 1 2e0

(r0 + r0)
 cos [vt - k(r0 + r0)]

10.76* Monochromatic plane waves perpendicularly illuminate a 
small circular hole in a screen. From point-P, beyond the hole on the 
central axis, exactly 3 Fresnel zones appear to fill the hole. If the inci-
dent irradiance on the aperture screen is Iu, prove that the irradiance at 
P is very nearly 4Iu. [Hint: Because these are plane waves, the unob-
structed irradiance at P would equal Iu.]

10.77* Plane waves (l = 550 nm) impinge normally on a 5.00-mm-
diameter hole in an opaque screen (g). The diffraction pattern is ob-
served on another screen (s), which is slowly moved toward the aperture. 
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Using this fact, show that the irradiance in the shadow of a semi-
infinite opaque screen decreases in proportion to the inverse square 
of the distance to the edge, as z1 and therefore v1 become large.

10.86 What would you expect to see on the plane of observation if the 
half-plane Σ in Fig. 10.81 were semi-transparent?

10.87 Plane waves from a collimated He–Ne laserbeam (l0 =
632.8 nm) impinge on a steel rod with a 2.5-mm diameter. Draw a 
rough graphic representation of the diffraction pattern that would be 
seen on a screen 3.16 m from the rod.

10.88 Make a rough sketch of the irradiance function for a Fresnel 
diffraction pattern arising from a double slit. What would the Cornu 
spiral picture look like at point-P0?

10.89* Make a rough sketch of a possible Fresnel diffraction pattern 
arising from each of the indicated apertures (Fig. P.10.89).

At what distance from Σ will the near-field pattern (a system of bright 
and dark rings) show its first irradiance maximum on the central axis (at 
point-P)? At what distance will a minimum first appear at P? [Hint: The 
first maximum is reached when the entire first Fresnel zone is exposed.]

10.78* Envision an opaque screen (Σ) containing a circular hole of 
radius R. A point source S lies on the central axis a distance r0 in front 
of Σ and an observation point-P lies a distance r0 beyond Σ, also on 
the central axis. If R = 1.00 mm, r0 = 1.00 m, r0 = 1.00 m, and 
l0 = 500 nm, determine how many Fresnel zones will be visible from 
P and if it will be brightly illuminated or not. Roughly what would the 
diffraction pattern look like on a vertical screen containing P?

10.79* Considering the previous problem, suppose we insert an 
opaque disk of radius RD at the center of the hole so that the unob-
structed region is now an annulus. If RD = 0.50 mm, determine the 
ratio of the irradiance at P now (I ) to the irradiance without the screen 
in place (Iu).

10.80* Consider a Fresnel zone plate having a transparent circular 
disk at its center. This is the m = 1 region, and the tenth transparent 
region has a diameter of 6.00 mm. Determine the plate’s principal focal 
length when l0 = 600 nm.

10.81* We want to make a Fresnel zone plate with a principal focal 
length of 2.00 m for krypton ion laser light of wavelength 647 nm. 
How big should the central transparent disk be? If it has 30 transparent 
regions, what’s the minimum diameter of the plate?

10.82* A horizontal hole 2.00 mm by 1.00 mm in an opaque screen is 
illuminated normally by a beam of collimated light of wavelength 500 
nm. If the incident irradiance is 30.0 W>m2, calculate the approximate 
irradiance at a point 5.0 m from the hole on the central axis.

10.83* A collimated beam from a ruby laser (694.3 nm) having an 
irradiance of 10 W>m2 is incident perpendicularly on an opaque screen 
containing a square hole 5.0 mm on a side. Compute the irradiance at 
a point on the central axis 200 cm from the aperture. Check that this is 
near-field diffraction.

10.84 Use the Cornu spiral to make a rough sketch of 0 B̃12(w) 02 ver-
sus (w1 + w2)>2 for ∆w = 5.5. Compare your results with those of  
Fig. 10.79.

10.85 The Fresnel integrals have the asymptotic forms (correspond-
ing to large values of w) given by

�(w) ≈ 1
2 + a 1

pw
b sin apw2

2
b

�(w) ≈ 1
2 - a 1

pw
b cos apw2

2
b

Figure P.10.89

10.90* Suppose the slit in Fig. 10.76 is made very wide. What will 
the Fresnel diffraction pattern look like?

10.91* A long narrow slit 0.10 mm wide is illuminated by light of 
wavelength 500 nm coming from a point source 0.90 m away. Deter-
mine the irradiance at a point 2.0 m beyond the screen when the slit 
is centered on, and perpendicular to, the line from the source to the 
point of observation. Write your answer in terms of the unobstructed 
irradiance.

10.92* A long horizontal narrow slit of width 0.70 mm is illuminated 
with 600-nm light. A point-P, 1.0 m away from the aperture screen, is 
opposite the lower edge of the screen. If 100 W>m2 arrives at P with 
no screen in place, determine the approximate irradiance there when 
the light passes through the slit. Use the Cornu spiral.

10.93* A long narrow horizontal opaque rectangular object of 
width 0.70 mm is illuminated by 600-nm light. Consider a point-P, 
at the level of the lower edge of the object, 1.0 m from it. Determine 
the ratio of the irradiance at P with and without the obstacle in 
place.

 Problems 541
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11
11.1 Introduction

In what is to follow we will extend the discussion of Fourier 
methods introduced in Chapter 7. It is our intent to provide a 
strong basic introduction to the subject rather than a complete 
treatment. Besides its real mathematical power, Fourier analy-
sis leads to a marvelous way of treating optical processes in 
terms of spatial frequencies.* It is always exciting to discover a 
new bag of analytic toys, but it’s perhaps even more valuable to 
unfold yet another way of thinking about a broad range of phys-
ical problems—we shall do both.†

The primary motivation here is to develop an understand-
ing of the way optical systems process light to form images. In 
the end we want to know all about the amplitudes and phases 
of the lightwaves reaching the image plane. Fourier methods 
are especially suited to that task, so we first extend the treat-
ment of Fourier transforms begun earlier. Several transforms 
are particularly useful in the analysis, and these will be con-
sidered first. Among them is the delta function, which will 
subsequently be used to represent a point source of light. How 
an optical system responds to an object comprising a large 
number of delta-function point sources will be considered in 
Section 11.3.1. The relationship between Fourier analysis and 
Fraunhofer diffraction is explored throughout the discussion, 
but is given special attention in Section 11.3.3. The chapter 
ends with a return to the problem of image evaluation, this 
time from a different, though related, perspective: the object is 
treated not as a collection of point sources but as a scatterer of 
plane waves.

11.2 Fourier Transforms

11.2.1 One-Dimensional Transforms

It was seen in Section 7.4 that a one-dimensional function of 
some space variable ƒ(x) could be expressed as a linear combi-
nation of an infinite number of harmonic contributions:

 ƒ(x) =
1
p

 c3 ∞

0
A(k) cos kx dk + 3 ∞

0
B(k) sin  kx dkd  [7.56]

The weighting factors that determine the significance of the 
various angular spatial frequency (k) contributions, that is, A(k)
and B(k), are the Fourier cosine and sine transforms of ƒ(x) 
given by

A(k) = 3+ ∞

- ∞
ƒ(x′) cos kx′ dx′

and B(k) = 3+ ∞

- ∞
ƒ(x′) sin kx′ dx′ [7.57]

respectively. Here the quantity x′ is a dummy variable over 
which the integration is carried out, so that neither A(k) nor 
B(k) is an explicit function of x′, and the choice of symbol 
used to denote it is irrelevant. The sine and cosine transforms 
can be consolidated into a single complex exponential ex-
pression as follows: substituting [Eq. 7.57] into [Eq. 7.56], 
we obtain

ƒ(x) =
1
p

 3 ∞

0
cos kx3+ ∞

- ∞
ƒ(x′) cos kx′dx′ dk

+
1
p

 3 ∞

0
sin kx3+ ∞

- ∞
ƒ(x′) sin  kx′dx′ dk

But since cos k (x′ - x) = cos kx cos kx′ + sin  kx sin  kx′, this 
can be rewritten as

 ƒ(x) =
1
p

 3 ∞

0
c3+ ∞

- ∞
ƒ(x′) cos k(x′ - x) dx′ddk (11.1)

Fourier Optics

*See Section 13.2 for a further nonmathematical discussion.

†As general references for this chapter, see R. C. Jennison, Fourier Transforms 
and Convolutions for the Experimentalist; N. F. Barber, Experimental Correlograms 
and Fourier Transforms; A. Papoulis, Systems and Transforms with Applications in 
Optics; J. W. Goodman, Introduction to Fourier Optics; J. Gaskill, Linear Systems, 
Fourier Transforms, and Optics; R. G. Wilson, Fourier Series and Optical Transform 
Techniques in Contemporary Optics; and the excellent series of booklets Images 
and Information, by B. W. Jones et al. 
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Just as F(k) is the transform of ƒ(x),  ƒ(x) itself is said to be 
the inverse Fourier transform of F(k), or symbolically

 ƒ(x) = ℱ-1{F(k)} = ℱ -1{ℱ{ƒ(x)}} (11.8)

and ƒ(x) and F(k) are frequently referred to as a Fourier-transform 
pair. It’s possible to construct the transform and its inverse in an 
even more symmetrical form in terms of the spatial frequency 
k = 1>l = k>2p. Still, in whatever way it’s expressed, the 
transform will not be precisely the same as the inverse trans-
form because of the minus sign in the exponential. As a result 
(Problem 11.13), in the present formulation,

ℱ{F(k)} = 2pƒ(-x) while ℱ-1{F(k)} = ƒ(x)

When we study Abbe’s image theory we’ll see that this relation-
ship is associated with the fact that a single lens forms real in-
verted images. This is most often inconsequential, especially 
for even functions where ƒ(x) = ƒ(-x), so we can expect a 
good deal of parity between functions and their transforms.

Obviously, if ƒ were a function of time rather than space, we 
would merely have to replace x by t and then k, the angular spa-
tial frequency, by v, the angular temporal frequency, in order to 
get the appropriate transform pair in the time domain, that is,

 ƒ(t) =
1

2p3
+ ∞

- ∞
F(v)e-ivt dv (11.9)

and F(v) = 3+ ∞

- ∞
ƒ(t)eivt dt (11.10)

It should be mentioned that if we write ƒ(x) as a sum of func-
tions, its transform [Eq. (11.5)] will apparently be the sum of the 
transforms of the individual component functions. This can 
sometimes be a convenient way of establishing the transforms of 
complicated functions that can be constructed from well-known 
constituents. Figure 11.1 makes this procedure fairly self-evident.

EXAMPLE 11.1

Prove that if ƒ(x) has the transform F(k), then ƒ(ax), where a is 
a positive constant, has the transform (1>a)F(k>a).

SOLUTION 

The transform of ƒ(ax) is

3+ ∞

- ∞
ƒ(ax) eikxdx

Let y = ax whereupon dy = adx and the integral becomes

1
a3

+ ∞

- ∞
(y) eiky�ady

Considering the angular spatial frequency to now be k>a, this 
integral equals

1
a

 F(k>a)

which was to be proven.

The quantity in the square brackets is an even function of k, and 
therefore changing the limits on the outer integral leads to

    ƒ(x) =
1

2p
 3+ ∞

- ∞
c3+ ∞

- ∞
ƒ(x′) cos k(x′ - x) dx′ddk (11.2)

Inasmuch as we are looking for an exponential representation, 
Euler’s theorem comes to mind. Consequently, observe that

i
2p

 3+ ∞

- ∞
c3+ ∞

- ∞
ƒ(x′) sin k(x′ - x) dx′ddk = 0

because the factor in brackets is an odd function of k. Adding 
these last two expressions yields the complex* form of the Fou-
rier integral,

 ƒ(x) =
1

2p
 3+ ∞

- ∞
c3+ ∞

- ∞
ƒ(x′)eikx′dx′d e-ikx dk (11.3)

Thus we can write

 ƒ(x) =
1

2p3
+ ∞

- ∞
F(k)e-ikx dk (11.4)

provided that

 F(k) = 3+ ∞

- ∞
ƒ(x)eikx dx (11.5)

having set x′ = x in Eq. (11.5). The function F(k) is the Fourier 
transform of ƒ(x), which is symbolically denoted by

 F(k) = ℱ{ƒ(x)6  (11.6)

Actually, several equivalent, slightly different ways of defining 
the transform appear in the literature. For example, the signs in 
the exponentials could be interchanged, or the factor of 1>2p
could be split symmetrically between ƒ(x) and F(k); each would 
then have a coefficient of 1>12p. Note that A(k) is the real part 
of F(k), while B(k) is its imaginary part, that is,

 F(k) = A(k) + iB(k) (11.7a)

As was seen in Section 2.4, a complex quantity like this can 
also be written in terms of a real-valued amplitude, 0F(k) 0 , the 
amplitude spectrum, and a real-valued phase, f(k), the phase 
spectrum:

 F(k) = 0F(k) 0  eif(k) (11.7b)

and sometimes this form can be quite useful [see Eq. (11.96)].

*To keep the notation in standard form, and when there’s no loss of clarity, we 
omit the tilde symbol that would  otherwise indicate a complex quantity.
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544 Chapter 11 Fourier Optics

The definite integral can be found in tables and equals 1p; 
hence

 F(k) = e-k 

2>4a (11.12)

which is again a Gaussian function (Fig. 11.2b), this time with 
k as the variable. The standard deviation is defined as the range 
of the variable (x or k) over which the function drops by a fac-
tor of e-1>2 = 0.607 of its maximum value. Thus the standard 
deviations for the two curves are sx = 1>12a and sk = 12a 
and sx sk = 1. As a increases, ƒ(x) becomes narrower while, in 
contrast, F(k) broadens. In other words, the shorter the pulse 
length, the broader the spatial frequency bandwidth. Table 11.1 
lists some of the symmetry characteristics of the Fourier trans-
form. The Gaussian is real and even and its transform is real 
and even.

11.2.2 Two-Dimensional Transforms

Thus far the discussion has been limited to one-dimensional 
functions, but Optics generally involves two-dimensional sig-
nals: for example, the field across an aperture or the flux-density 
distribution over an image plane. The Fourier-transform pair 
can readily be generalized to two dimensions, whereupon

 ƒ(x, y) =
1

(2p)233
+∞

-∞

 F(kx , ky)e
-i(kx x + kyy)dkx dky (11.13)

and F(kx , ky) = 33
+∞

-∞

 ƒ(x, y) ei(kx x + kyy)dx dy (11.14)

Transform of the Gaussian Function

As an example of the method, let’s examine the Gaussian prob-
ability function,

 ƒ(x) = Ce-ax2
 (11.11)

where C = 1a>p and a is a constant. If you like, you can imagine 
this to be the profile of a pulse at t = 0. The familiar bell-shaped 
curve (Fig. 11.2a) is quite frequently encountered in Optics. It will 
be germane to a diversity of considerations, such as the wave 
packet representation of individual photons, the cross-sectional 
irradiance distribution of a laserbeam in the TEM00 mode, and the 
statistical treatment of thermal light in coherence theory. Its Fou-
rier transform, ℱ{ƒ(x)}, is obtained by evaluating

F(k) = 3+ ∞

- ∞
(Ce-ax2

)eikx dx

On completing the square, the exponent, -ax2 + ikx, becomes
-(x1a - ik>21a)2 - k2>4a, and letting x1a - ik>21a = b 
yields

F(k) =
C1a

 e-k 

2>4a3+ ∞

- ∞
e-b2

db

(a)

Function

x

f1(x)

Transform

k

F1(k)

(b)
x

f2(x)

k

F2(k)

(c)
x

f3(x)

k

F3(k)

f3(x) = f1(x) + f2(x) F3(k) = F1(k) + F2(k)

F(k) = �{ f(x)}

Figure 11.1  A composite function and its Fourier transform.

(a)

0 sx

(b)

x

f(x)

k

√a�p

0

1

sk

f(k)

Figure 11.2  A Gaussian and its Fourier transform.

TAbLE 11.1  Fourier Transform Symmetries

 ƒ(x) or ƒ(t) F(k) or F(v)

Real and even Real and even

Real and odd Imaginary and odd

Imaginary and even Imaginary and even

Imaginary and odd Real and odd

Complex and even Complex and even

Complex and odd Complex and odd
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The quantities kx and ky are the angular spatial frequencies 
along the two axes. Suppose we were looking at the image of a 
tiled floor made up alternately of black and white squares 
aligned with their edges parallel to the x- and y-directions. If the 
floor were infinite in extent, the mathematical distribution of 
reflected light could be regarded in terms of a two-dimensional 
Fourier series. With each tile having a length /, the spatial pe-
riod along either axis would be 2/, and the associated funda-
mental angular spatial frequencies would equal p>/. These and 
their harmonics would certainly be needed to construct a func-
tion describing the scene. 

If the pattern was finite in extent, the function would no longer 
be truly periodic, and the Fourier integral would have to replace 
the series. In effect, Eq. (11.13) says that ƒ(x, y) can be construct-
ed out of a linear combination of elementary functions having the 
form exp[- i(kx x + kyy)], each appropriately weighted in ampli-
tude and phase by a complex factor F(kx 

, ky). The transform sim-
ply tells you how much of and with what phase each elementary 
component must be added to the recipe. In three dimensions, the 
elementary functions appear as exp[- i(kx x + kyy + kzz)] or exp
(- i k$~r $  ), which correspond to planar surfaces. Furthermore, if ƒ 
is a wavefunction, that is, some sort of three-dimensional wave 
ƒ(r $, t), these elementary contributions become plane waves that 
look like exp[(- i k$~r $  - vt)]. In other words, the disturbance 
can be synthesized out of a linear combination of plane waves 
having various propagation numbers and moving in various di-
rections. Similarly, in two dimensions the elementary functions 
are “oriented” in different directions as well. That is to say, for a 
given set of values of kx and ky, the exponent or phase of the el-
ementary functions will be constant along lines

kx x + kyy = constant = A

or y = -  
kx

ky
  x +

A
ky

  (11.15)

The situation is analogous to one in which a set of planes nor-
mal to and intersecting the xy-plane does so along the lines 
given by Eq. (11.15) for differing values of A. A vector perpen-
dicular to the set of lines, call it k$a, would have components  
kx and ky. Figure 11.3 shows several of these lines (for a given 
kx and ky), where A = 0, ±2p, ±4pc. The slopes are all 
equal to -kx>ky or -ly>lx while the y-intercepts equal 
A>ky = Aly>2p. The orientation of the constant phase lines is

 a = tan-1 
ky

kx
= tan-1 

lx

ly
 (11.16)

The wavelength, or spatial period la, measured along k$a, is 
obtained from the similar triangles in the diagram, where 
la>ly = lx>2lx

2 + ly
2 and

 la =
12lx

-2 + ly
-2

 (11.17)

0 lx−lx 2lx−2lx
x

y

A = 4p

A = 2p

A = 0

A = −2p

A = −4p

2ly

ly

la

−ly

−2ly

ka

a

Figure 11.3  Geometry for Eq. (11.15).

The angular spatial frequency ka, being 2p>la, is then

 ka = 2kx
2 + ky

2 (11.18)

as expected. This just means that in order to construct a 
two-dimensional function, harmonic terms in addition to 
those of spatial frequency kx and ky will generally have to be 
included as well, and these are oriented in directions other 
than along the x- and y-axes. We’ll see how this works pres-
ently (p. 554).

Return for a moment to Fig. 10.7, which shows an aperture, 
with the diffracted wave leaving it represented by several differ-
ent conceptions. One of these ways to envision the complicated 
emerging wavefront is as a superposition of plane waves com-
ing off in a whole range of directions (Fig. 7.52). These are the 
Fourier-transform components, which emerge in specific direc-
tions with specific values of angular spatial frequency—the 
zero spatial frequency term corresponding to the undeviated 
axial wave, the higher spatial frequency terms coming off at 
increasingly great angles from the central axis. These Fourier 
components make up the diffracted field as it emerges from the 
aperture.

Transform of the Cylinder Function

The cylinder function

 ƒ(x, y) = e1 2x2 + y2 … a
0 2x2 + y2 7 a

 (11.19)

(Fig. 11.4a) provides an important practical example of the  
application of Fourier methods to two dimensions. The mathe-
matics will not be particularly simple, but the relevance of the 
calculation to the theory of diffraction by circular apertures and 
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546 Chapter 11 Fourier Optics

lenses amply justifies the effort. The evident circular symmetry 
suggests polar coordinates, and so let

kx = ka cos a

 ky = ka sin a 
(11.20)

x = r cos u
y = r sin u

in which case dx dy = r dr du. The transform, ℱ{ƒ(x)}, then 
reads

 F(ka,a) = 3a

r = 0
c32p

u= 0
 eikar cos (u - a)dud r dr (11.21)

Inasmuch as ƒ(x, y) is circularly symmetrical, its transform must 
be symmetrical as well. This implies that F(ka, a) is independent 
of a. The integral can therefore be simplified by letting a equal 
some constant value, which we choose to be zero, whereupon

 F(ka) = 3a

0
c32p

0
 eikar cos udud r dr (11.22)

(b)

(a)

kx

ky

F(ka)

x

y

1a

f(x, y)

Figure 11.4  The cylinder, or top-hat, function and its transform.

It follows from Eq. (10.47) that

 F(ka) = 2p3a

0
J0(kar)r dr (11.23)

the J0(kar) being a Bessel function of order zero. Introducing a 
change of variable, namely, kar = w, we have dr = ka

-1 dw, and 
the integral becomes

 
1

ka
23kaa

w = 0
J0(w)w dw (11.24)

Using Eq. (10.50), the transform takes the form of a first-order 
Bessel function (see Fig. 10.35), that is,

F(ka) =
2p

ka
2

 ka a J1(ka a)

or F(ka) = 2pa2 cJ1(kaa)

kaa
d  (11.25)

The similarity between this expression (Fig. 11.4b) and the 
formula for the electric field in the Fraunhofer diffraction 
pattern of a circular aperture [Eq. (10.51)] is, of course, not 
accidental.

As we’ll soon see, in the case of Fraunhofer diffraction the 
transform of the electric-field function across the aperture is 
quite generally equal to the electric field of the diffraction pat-
tern. Because that field has oscillatory values and so goes 
negative, it’s not easy to represent it pictorially in black and 
white on a printed page. Figure 11.5 is an attempt to do just 
that; it’s a plot of the absolute values of the two-dimensional 
transforms of several circular apertures of increasing size. By 
the time brightness adjustments are made for printing the 
transforms on this page, they end up looking much like irradi-
ance distributions.

The Lens as a Fourier Transformer

Figure 11.6 shows a transparency, located in the front focal 
plane of a converging lens, being illuminated by parallel light. 
This object, in turn, scatters plane waves, which are collected 
by the lens, and parallel bundles of rays are brought to conver-
gence at its back focal plane. If a screen were placed there, at Σt, 
the so-called transform plane, we would see the far-field dif-
fraction pattern of the object spread across it. (This is essentially 
the configuration of Fig. 10.8e.) In other words, the electric-field 
distribution across the object mask, which is known as the ap-
erture function, is transformed by the lens into the far-field 
diffraction pattern. Although this assertion is true enough for 
most purposes, it’s not exactly true. After all, the lens doesn’t 
actually form its image on a plane.

Remarkably, that Fraunhofer EE$-field pattern corresponds to 
the exact Fourier transform of the aperture function—a fact we 
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11.2.3 The Dirac Delta Function

Many physical phenomena occur over very short durations in 
time with great intensity, and one is frequently concerned with 
the consequent response of some system to such stimuli. For 
example: How will a mechanical device, like a billiard ball, 
respond to being slammed with a hammer? Or how will a par-
ticular circuit behave if the input is a short burst of current? In 
much the same way, we can envision some stimulus that is a 
sharp pulse in the space, rather than the time, domain. A bright 
minute source of light embedded in a dark background is es-
sentially a highly localized, two-dimensional, spatial pulse—a 
spike of irradiance. A convenient idealized mathematical rep-
resentation of this sort of sharply peaked stimulus is the Dirac 
delta function d(x). This is a quantity that is zero everywhere 
except at the origin, where it goes to infinity in a manner so as 
to encompass a unit area, that is,

 d(x) = e 0 x Z 0
∞ x = 0

 (11.26)

and 3+ ∞

- ∞
d(x) dx = 1 (11.27)

This is not really a function in the traditional mathematical 
sense. In fact, because it is so singular in nature, it remained the 
focus of considerable controversy long after it was reintroduced 

shall confirm more rigorously in Section 11.3.3. Here the object 
is in the front focal plane, and all the various diffracted waves 
maintain their phase relationships traveling essentially equal 
optical path lengths to the transform plane. That doesn’t quite 
happen when the object is displaced from the front focal plane. 
Then there will be a phase deviation, but that is actually of little 
consequence, since we are generally interested in the irradiance 
where the phase information is averaged out and the phase dis-
tortion is unobservable.

Thus if an otherwise opaque object mask (Fig. 11.5) con-
tains a single circular hole, the E$-field across it will resemble 
the top hat of Fig. 11.4a, and the diffracted field, the Fourier 
transform, will be distributed in space as a Bessel function, 
looking very much like Fig. 11.4b. Similarly, if the object 
transparency varies in density only along one axis, such that its 
amplitude transmission profile is triangular (Fig. 11.7a), then 
the amplitude of the electric field in the diffraction pattern will 
correspond to Fig. 11.7b—the Fourier transform of the triangle 
function is the sinc-squared function.

(a) (b)

x x

E(x)

0

�{E(x)}

Figure 11.7  The transform of the triangle function is the sinc2 function.

f f
Σt

Figure 11.6 The light diffracted by a transparency at the front (or object) 
focal point of a lens converges to form the far-field diffraction pattern at 
the back (or image) focal point of the lens.

Figure 11.5  The top row depicts four  
circular spatial signals of increasing size. 
The row below it shows the corresponding 
two-dimensional Fourier transforms for 
each circular signal. (K. Betzler, Universität 

Osanabrück)
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(a)

1

0
x

f(x) = d(x)

(c)

1

0 x0
x

f(x) = d(x−x0)

(b)

A

0
x

f(x) = Ad(x)

Figure 11.8  The height of the arrow representing the delta function  
corresponds to the area under the function.

and brought into prominence by P. A. M. Dirac in 1930. Yet 
physicists, pragmatic as they sometimes are, found it so highly 
useful that it soon became an established tool, despite what 
seemed a lack of rigorous justification. The precise mathemati-
cal theory of the delta function evolved roughly 20 years later, 
in the early 1950s, principally at the hands of Laurent Schwartz.

Perhaps the most basic operation to which d(x) can be ap-
plied is the evaluation of the integral

3+ ∞

- ∞
d(x)ƒ(x) dx

Here the expression ƒ(x) corresponds to any continuous func-
tion. Over a tiny interval running from x = -g to +g centered 
about the origin, ƒ(x) ≈ ƒ(0) ≈ constant, since the function is 
continuous at x = 0. From x = - ∞  to x = -g and from 
x = +g to x = + ∞ , the integral is zero, simply because the  
d-function is zero there. Thus the integral equals

ƒ(0)3+g

-g
d(x) dx

Because d(x) = 0 for all x other than 0, the interval can be van-
ishingly small, that is, g S 0, and still

3+g

-g
d(x) dx = 1

from Eq. (11.27). Hence we have the exact result that

 3+ ∞

- ∞
d(x)ƒ(x) dx = ƒ(0) (11.28)

This is often spoken of as the sifting property of the d-function 
because it manages to extract only the one value of ƒ(x) taken at 
x = 0 from all its possible values. Similarly, with a shift of origin 
of an amount x0,

 d(x - x0) = e 0 x Z x0

∞ x = x0
 (11.29)

and the spike resides at x = x0 rather than x = 0, as shown in 
Fig. 11.8. The corresponding sifting property can be appreciated 
by letting x - x0 = x′, then with ƒ(x′ + x0) = g(x′),

3+ ∞

- ∞
d(x - x0)ƒ(x) dx = 3+ ∞

- ∞
d(x′)g(x′) dx′ = g(0)

and since g(0) = ƒ(x0),

 3+ ∞

- ∞
d(x - x0)ƒ(x) dx = ƒ(x0) (11.30)

Formally, rather than worrying about a precise definition of d(x) 
for each value of x, it would be more fruitful to continue along 

the lines of defining the effect of d(x) on some other function 
ƒ(x). Accordingly, Eq. (11.28) is really the definition of an en-
tire operation that assigns a number ƒ(0) to the function ƒ(x). 
Incidentally, an operation that performs this service is called a 
functional.

It is possible to construct a number of sequences of pulses, 
each member of which has an ever-decreasing width and a 
concomitantly increasing height, such that any one pulse en-
compasses a unit area. A sequence of square pulses of height 
a>L and width L>a for which a = 1, 2, 3, . . . would fit the bill; 
so would a sequence of Gaussians [Eq. (11.11)],

 da(x) = A a
p

 e-ax2
 (11.31)

as in Fig. 11.9, or a sequence of sinc functions

 da(x) =
a
p

 sinc (ax) (11.32)

Such strongly peaked functions that approach the sifting prop-
erty, that is, for which

 lim
a S ∞ 3

+ ∞

- ∞
da(x)ƒ(x) dx = ƒ(0) (11.33)

are known as delta sequences. It is often useful, but not actually 
rigorously correct, to imagine d(x) as the convergence limit of 
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This implies, via Eq. (11.4), that the delta function can be 
thought of as the inverse Fourier transform of unity, that is, 
d(x) = ℱ -1{1} and so ℱ{d(x)} = 1. We can imagine a square 
pulse becoming narrower and taller as its transform, in turn, 
grows broader, until finally the pulse is infinitesimal in 
width, and its transform is infinite in extent—in other words, 
a constant.

Displacements and Phase Shifts

If the d-spike is shifted off x = 0 to, say, x = x0, its transform 
will change phase but not amplitude—that remains equal to 1. 
To see this, evaluate

ℱ{d(x - x0)} = 3+ ∞

- ∞
d(x - x0)eikxdx

From the sifting property [Eq. (11.30)] the expression becomes

 ℱ{d(x - x0)} = eikx0 (11.40)

What we see is that only the phase is affected, the amplitude 
being 1 as it was when x0 = 0. This whole process can be ap-
preciated somewhat more intuitively if we switch to the time 
domain and think of an infinitesimally narrow pulse (such as a 
spark) occurring at t = 0. This results in the generation of an 
infinite range of frequency components, which are all initially 
in-phase at the instant of creation (t = 0). On the other hand, 
suppose the pulse occurs at a time t0. Again every frequency is 
produced, but in this situation the harmonic components are all 
in-phase at t = t0. Consequently, if we extrapolate back, the 
phase of each constituent at t = 0 will now have to be different, 
depending on the particular frequency. Besides, we know that 
all these components superimpose to yield zero everywhere ex-
cept at t0, so that a frequency-dependent phase shift is quite 
reasonable. This phase shift is evident in Eq. (11.40) for the 
space domain. Note that it does vary with the angular spatial 
frequency k.

All of this is quite general in its applicability, and we ob-
serve that the Fourier transform of a function that is dis-
placed in space (or time) is the transform of the undisplaced 
function multiplied by an exponential that is linear in phase 
(Problem 11.17). This property of the transform will be of 
special interest presently, when we consider the image of sev-
eral point sources that are separated but otherwise identical. 
The process can be appreciated diagramatically with the help 
of Figs. 11.10 and 7.34. To shift the square wave by p>4 to the 
right, the fundamental must be shifted 1

8-wavelength (or, say, 
1.0 mm), and every component must then be displaced an 
equal distance (i.e., 1.0 mm). Thus each component must be 
shifted in-phase by an amount specific to it that produces a 
1.0-mm displacement. Here each is displaced, in turn, by a 
phase of mp>4.

0
x

a = 1

a = 4

a = 16

da(x) = e–ax2a
p√

Figure 11.9  A sequence of Gaussians.

such sequences as a S ∞ . The extension of these ideas into two 
dimensions is provided by the definition

 d(x, y) = e ∞ x = y = 0
0 otherwise

 (11.34)

and 33
+∞

-∞

 d(x, y) dx dy = 1 (11.35)

and the sifting property becomes

 33
+∞

-∞

 ƒ(x, y) d(x - x0) d(y - y0) dx dy = ƒ(x0 , y0) (11.36)

Another representation of the d-function follows from Eq. (11.3), 
the Fourier integral, which can be restated as

ƒ(x) = 3+ ∞

- ∞
c 1
2p3

+ ∞

- ∞
e-ik(x - x′)dkdƒ(x′) dx′

and hence

 ƒ(x) = 3+ ∞

- ∞
d(x - x′)ƒ(x′) dx′ (11.37)

provided that

 d(x - x′) =
1

2p3
+ ∞

- ∞
e-ik(x - x′)dk (11.38)

Equation (11.37) is identical to Eq. (11.30), since by definition 
from Eq. (11.29) d(x - x′) = d(x′ - x). The (divergent) inte-
gral of Eq. (11.38) is zero everywhere except at x = x′.  
Evidently, with x′ = 0, d(x) = d(-x) and

 d(x) =
1

2p3
+ ∞

- ∞
e-ikx dk =

1
2p3

+ ∞

- ∞
eikxdk (11.39)
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When the number of terms is infinite, this periodic function is 
often called comb(x). In any event, the transform will simply be 
a sum of terms, such as that of Eq. (11.40):

 ℱ{ƒ(x)} =
ĵ

eikxj (11.42)

In particular, if there are two d-functions, one at x0 = d>2 and 
the other at x0 = -d>2,

ƒ(x) = d[x - (+d>2)] + d[x - (-d>2)]

and ℱ{ƒ(x)} = eikd>2 + e-ikd>2 

which is just
 ℱ{ƒ(x)} = 2 cos (kd>2) (11.43)

as in Fig. 11.11. Thus the transform of the sum of these two 
symmetrical d-functions is a cosine function and vice versa. 
The composite is a real even function, and F(k) = ℱ{ƒ(x)} will 
also be real and even. This should be reminiscent of Young’s 
Experiment with infinitesimally narrow slits—we’ll come back 
to it later. If the phase of one of the d-functions is shifted, as in 
Fig. 11.12, the composite function is asymmetrical, it’s odd,

ƒ(x) = d[x - (+d>2)] - d[x - (-d>2)]

and ℱ{ƒ(x)} = eikd>2 - e-ikd>2 = 2i sin (kd>2) (11.44)

The real sine transform [Eq. (11.7)] is then

 B(k) = 2 sin (kd>2)  (11.45)
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4
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(sin kx +     sin 3kx +     sin 5kx)

Figure 11.10  A shifted square wave showing the corresponding change 
in phase for each component wave.
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Figure 11.11  Two delta functions and their cosine-function transform.
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Figure 11.12  Two delta functions and their real sine-function transform, 
B(k). Still, F(k), as in Eq. 11.44, is actually imaginary. The transform of any 
real odd function is an imaginary odd function (see Table 11.1.)

Sines and Cosines

We saw earlier (Fig. 11.1) that if the function at hand can be written 
as a sum of individual functions, its transform is simply the sum of 
the transforms of the component functions. Suppose we have a string 
of delta functions spread out uniformly like the teeth on a comb,

 ƒ(x) =
ĵ
d(x - xj) (11.41)
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Figure 11.13  The spectra of a shifted cosine function.

and it, too, is an odd function. In general, the transform of a real 
odd function is an imaginary odd function.

This raises an interesting point. Recall that there are two al-
ternative ways to consider the complex transform: either as the 
sum of a real and an imaginary part, from Eq. (11.7a), or as the 
product of an amplitude and a phase term, from Eq. (11.7b). It 
happens that the cosine and sine are rather special functions; the 
former is associated with a purely real contribution, and the lat-
ter is associated with a purely imaginary one. Most functions, 
even harmonic ones, will usually be a blend of real and imagi-
nary parts. For example, once a cosine is displaced a little, the 
new function, which is typically neither odd nor even, has both 
a real and an imaginary part. Moreover, it can be expressed as a 
cosinusoidal amplitude spectrum, which is appropriately 
phase-shifted (Fig. 11.13). Notice that when the cosine is shifted 
1
4 l into a sine, the relative phase difference between the two 
component delta functions is again p rad.

Figure 11.14 displays in summary form a number of trans-
forms, mostly of harmonic functions. Observe how the func-
tions and transforms in (a) and (b) combine to produce the 
function and its transform in (d ). As a rule, each member of 

the pair of d-pulses in the frequency spectrum of a harmonic 
function is located along the k-axis at a distance from the ori-
gin equal to the fundamental angular spatial frequency of ƒ(x). 
Since any well-behaved periodic function can be expressed as 
a Fourier series, it can also be represented as an array of pairs 
of delta functions, each weighted appropriately and each a 
distance from the k-origin equal to the angular spatial fre-
quency of the particular harmonic contribution—the frequency 
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Figure 11.15  (a) The comb function and its transform. (b) A shifted 
comb function and its transform.

spectrum of any periodic function will be discrete. One of the 
most remarkable of the periodic functions is comb(x): As 
shown in Fig. 11.15, its transform is also a comb function.

11.3 Optical Applications

11.3.1 Two-Dimensional Images

To begin to understand how a two-dimensional image—for 
example, one on a photograph—can be synthesized out of 
Fourier components, examine Fig. 11.16. The cosinusoidally 
modulated black and white “fringe” pattern on the left is a 
spatial brightness signal. It has a single spatial frequency, 
which can be determined by scanning it along a horizontal  
x-axis perpendicular to the bands.

Take the amplitude of this signal to correspond to the ob-
served fringe contrast, that is, (Imax - Imin)/(Imax + Imin). Without 

changing either the spatial frequency or amplitude, the pattern 
could be shifted right or left with respect to its present position, 
and that corresponds to altering the phase of the sinusoid. These 
three quantities—frequency, amplitude, and phase—can specify 
the brightness pattern completely.

The signal depicted in Fig. 11.16 is the analogue of a mono-
chromatic wave in that we take it to have a single spatial fre-
quency k0. For that to be true we’ll have to treat it as if it were 
unbounded by the rectangular frame of the picture, and so it’s 
actually an idealization, just as the monochromatic wave in the 
time domain is an idealization. A mathematical sinusoid oscil-
lates between -1 and +1 and has an average value of 0. That 
cannot be the case for our paper-printed brightness sinusoid, 
since it cannot have negative values. Consequently, the signal 
must contain a zero-frequency DC term, a term that essentially 
raises up the oscillation, keeping it from going negative (see 
Fig. 11.14d). Accordingly, we’ll add a constant to the sinusoid, 
one just like that in Fig. 11.14a.

Exactly how high this constant raises the cosinusoid,  
beyond the minimum amount needed so the signal isn’t nega-
tive, is determined by the contrast of the particular cosinusoi-
dal pattern; the smallest rise (i.e., DC term) comports with 
the greatest contrast. That DC contribution, which here is like 
a uniform grey background, must be present in all physical 
images of this sort. It’s shown as a zero-frequency spike in 
Figs. 11.14a and d and in Fig. 11.17. If A is the amplitude of 
the cosinusoid, to raise it a minimum amount so it’s all above 
the axis and positive, the DC spike must be 2pA, as illustrated 
in Fig. 11.14d.

Earlier in Fig. 7.42 we introduced the idea of plotting a trans-
form symmetrically with both positive and negative spatial fre-
quencies. That was done both because the complex mathemati-
cal representation does as much automatically, and because the 
diffraction pattern is likewise symmetrical around the DC con-
tribution. Accordingly, our cosinusoidal spatial signal will be 
represented in frequency space as in Fig. 11.14d: two delta-
function spikes at ±k0, on either side of a DC spike. Because 
the k0 contribution has been split in two to make the transform 
symmetrical, the two nonzero frequency spikes have amplitudes 
of 2pA>2.

Figure 11.16  (a) A brightness sinusoid and (b) its Fourier transform. 
(Steven Lehar, http://sharp.bu.edu/~slehar/fourier/fourier.html)

(a) (b)

Figure 11.17  Two delta spikes that correspond to a cosinusoidal spatial 
signal of spatial frequency k0. The DC term raises the signal so that it oscil-
lates between 0 and +2A and never goes negative. To make the transform 
symmetrical, the k0 spike is split in two, as in Fig. 11.14d.

2pA

k0

F(k)

0

DC

k0
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The two-dimensional Fourier transform is illustrated on the 
right in Fig. 11.16, where every dot or pixel represents a spe-
cific Fourier frequency contribution. The central dot is the DC 
term, and there will always be such a contribution in physical 
image systems. It’s flanked by two dots that encode the cosinu-
soid. Although it can’t actually be seen in Fig. 11.16b, the 
brightness of the pixels represents the magnitude of the par-
ticular spatial frequency Fourier component. In this case the 
signal bands are vertical and the Fourier pixels are therefore 
spread out along a perpendicular horizontal line through the DC 
center. Those three pixels in the frequency domain are entirely 
equivalent to the associated brightness cosinusoid; they tell us 
everything we need to know to specify that signal in the spatial 
domain. 

If the wavelength of the spatial signal is changed, the spac-
ing between the transform pixels will change in an inverse 
fashion; the shorter the spatial wavelength, and hence the 
higher the spatial frequency, the farther apart the pixels will be, 
but the pattern will always be symmetrical about the zero. In 
Fig. 11.18 we encounter several signals: (a) a fairly low fre-
quency fundamental, k0, (b) its third harmonic, 3k0, (c) its fifth 
harmonic, 5k0, and (d) its seventh harmonic, 7k0. Each signal 
has a bright band at its center and all are in-phase. The three 
transform pixels for each signal are increasingly farther apart. 
The greater the distance (in any direction on the transform 
plane) a pixel is from the center of the transform (i.e., from 
the central DC value), the higher is its spatial frequency. A 
fine pattern in space requires high-frequency components (pixels 
far from the center) in the transform. However complicated it 
might be, any physical transform will always be symmetrical 
along lines through its center. 

Figure 11.18  Several brightness sinusodial signals and their Fourier tranforms. The spatial frequency 
ranges from that of the fundamental k0 to the third, fifth, and seventh harmonics. (Steven Lehar,  

http://sharp.bu.edu/~slehar/fourier/fourier.html)

1k0 3k0 5k0 7k0

At this point we make use of the fact that the transform of the 
sum of several functions is the sum of the individual transforms 
of those separate functions, as illustrated in Fig. 11.1. Accord-
ingly, add the several different-frequency cosinusoidal signals 
displayed in Fig. 11.18 to produce the intricate band patterns of 
Fig. 11.19. The transforms are each just the sum of the individual 
transforms, and although it’s hard to see, the DC terms increase 
as the central fringe gets brighter and narrower in successive sig-
nals. The process is reminiscent of multiple-beam diffraction, in 
which the principal maxima become finer and taller as more con-
tributions are added.

Now suppose a single cosinusoidal signal is rotated through 
some arbitrary angle, as in Fig. 11.3. Neither the spatial wave-
length nor the amplitude of the signal in Fig. 11.20 has been 
altered from that of Fig. 11.16. The resulting transform of the 
tilted signal (again assuming it is boundless) is the same as be-
fore, namely, three delta functions. As before, these pixels lie on 
a line perpendicular to the signal bands and so are rotated 
through the same angle as was the signal. In all the cases dis-
cussed above, if we were to take the inverse transform of each 
transform (i.e., the delta functions), we’d reproduce the origi-
nal spatial signals.

Let’s now add the tilted signal in Fig. 11.20a to the lowest 
frequency signal in Fig. 11.18. In other words, combine Fig. 11.21a 
plus b to generate the pattern on the left in Fig. 11.21c. The 
transform of this resultant signal is the sum of the individual 
transforms constituting that signal, namely, three horizontal 
delta dots overlying three tilted dots. This begins to suggest 
how more complex images might be generated by adding in 
many cosinusoidal terms, in different directions, encompassing 
a wide range of spatial frequencies. 
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All of this comes together in the several photos that follow, 
starting with Fig. 11.22a. We begin with a picture of a youthful 
Einstein, overlooking that it happens to be slightly pixelated. 
The idea is to show how that image may be synthesized by 
spatial cosinusoids in a range of frequencies and orientations. 
The complete Fourier transform of the image is given in 
Fig. 11.22b. That’s the thing we’ll gradually, but only par-
tially, construct in order to fabricate a semblance of Einstein’s 
image. Going out along the central horizontal line, one en-
counters pixels corresponding to vertically oriented brightness 

Figure 11.19  Combinations of sinusoidal signals and their transforms. 
Referring to Fig. 11.17, we see that here (c) is the sum of the 1k0 and  
3k0 signals; (e) is the sum of the 1k0, 3k0, and 5k0 signals; (g) is the sum 
of the 1k0, 3k0, 5k0, and 7k0 signals. (Steven Lehar, http://sharp.bu.edu/~slehar/fourier/

fourier.html)

(a) (b)

Signals Transforms

(c) (d)

(e) (f)

(g) (h)

Figure 11.20  A tilted sinusoidal signal and its Fourier transform.  
(Steven Lehar, http://sharp.bu.edu/~slehar/fourier/fourier.html)

(a) (b)

Recall the picture of the Mona Lisa and its transform com-
prising thousands of frequency pixels (Fig. 7.50), which is 
completely equivalent to La Gioconda, though not nearly as 
engaging. Considering that transform, draw a line through its 
center. Any pixel on that line corresponds to a specific single 
brightness cosinusoid oriented perpendicular to the line, hav-
ing a spatial frequency proportional to its distance from the DC 
center.

Figure 11.21  The sum of two sinusoidal signals, (a) plus (b), yields  
(c), and their Fourier transforms. (Steven Lehar, http://sharp.bu.edu/~slehar/fourier/ 

fourier.html)

(a)

(b)

(c)
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1.  multiplying ƒ(y, z) by a constant a produces an output  
ag(Y, Z ).

2.  when the input is a weighted sum of two (or more) func-
tions, aƒ1(y, z) + bƒ2(y, z), the output will similarly have  
the form ag1(Y, Z ) + bg2(Y, Z ), where ƒ1(y, z) and ƒ2(y, z)
generate g1(Y, Z ) and g2(Y, Z ) respectively.

Furthermore, a linear system will be space invariant if it pos-
sesses the property of stationarity; that is, in effect, changing 
the position of the input merely changes the location of the 
output without altering its functional form. The idea behind 
much of this is that the output produced by an optical system 
can be treated as a linear superposition of the outputs arising 
from each of the individual points on the object. In fact, if we 
symbolically represent the operation of the linear system as 
ℒ5 6 , the input and output can be written as

 g(Y, Z ) = ℒ{ƒ(y, z)} (11.46)

Using the sifting property of the d-function [Eq. (11.36)], this 
becomes

g(Y, Z ) = ℒ• 33 

+∞

-∞

ƒ(y′, z′) d(y′ - y) d(z′ - z) dy′ dz′ ¶

The integral expresses ƒ(y, z) as a linear combination of elemen-
tary delta functions, each weighted by a number ƒ(y′, z′). It fol-
lows from the second linearity condition that the system operator 
can equivalently act on each of the elementary functions; thus

 g(Y, Z ) = 33 

+∞

-∞

ƒ(y′, z′) ℒ{d(y′ - y)d(z′ - z)} dy′ dz′ 

(11.47)

The quantity ℒ{d(y′ - y) d(z′ - z)} is the response of the system 
[Eq. (11.46)] to a delta function located at the point (y′, z′) in the 
input space—it’s called the impulse response. Apparently, if 
the impulse response of a system is known, the output can be 

sinusoids of increasing frequency. That’s true along any 
straight line through the DC pixel, where the undulating 
bands are perpendicular to the line.

After adding in only 30 sinusoids with different frequencies 
in different orientations (Fig. 11.23b), a visage already appears 
that is only very slightly suggestive of the great man. Still, 
there seems to be a face there; two eyes, a nose, and even a 
moustache is discernible (Fig. 11.23a). Adding many more 
terms to the transform (Fig. 11.24b) results in a clearly recog-
nizable picture of Einstein (Fig. 11.24a).

11.3.2 Linear Systems

Fourier techniques provide a particularly elegant framework 
from which to evolve a description of the formation of images. 
And for the most part, this will be the direction in which we 
shall be moving, although some side excursions are unavoid-
able in order to develop the needed mathematics.

A key point in the analysis is the concept of a linear system, 
which in turn is defined in terms of its input–output  relations. Sup-
pose then that an input signal ƒ(y, z) passing through some optical 
system results in an output g(Y, Z). The system is linear if:

Figure 11.22  (a) A somewhat pixelated image of A. Einstein. (b) The 
Fourier transform of that image of Einstein. (K.S. Sasaki and I. Ohzawa, Osaka 

University)

(a) (b)

Figure 11.23  With 30 pixels in the Fourier transform (b) we can already 
begin to see Einsteins image emerging in (a). (K.S. Sasaki and I. Ohzawa, Osaka 

University)

(a) (b)

Figure 11.24  With many more pixels in the transform (b) Einstein’s 
image emerges (a). (K.S. Sasaki and I. Ohzawa, Osaka University)

(a) (b)
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irradiance distribution in the image plane. Because of the inco-
herence of the source, the flux-density contributions from each 
of its elements are additive, so

 Ii(Y, Z ) = 33
+∞

-∞

 I0(y, z) (y, z; Y, Z ) dy dz (11.49)

In a “perfect,” diffraction-limited optical system having no ab-
errations, (y, z; Y, Z ) would correspond in shape to the dif-
fraction figure of a point source at ( y, z). Evidently, if we set the 
input equal to a d-pulse centered at ( y0, z0), then I0(y, z) =   
Ad(y - y0)d(z - z0). Here the constant A of magnitude 1 carries 
the needed units (i.e., irradiance times area). Thus

Ii(Y, Z ) = A33
+∞

-∞

 d(y - y0) d(z - z0) (y, z; Y, Z ) dy dz

and so from the sifting property,

Ii(Y, Z ) = A (y0, z0; Y, Z )

The point-spread function has a functional form identical to 
that of the image generated by a d-pulse input. It’s the impulse 
response of the system [compare Eqs. (11.47) and (11.49)], 
whether optically perfect or not. In a well-corrected system , 
apart from a multiplicative constant, is the Airy irradiance dis-
tribution function [Eq. (10.56)] centered on the Gaussian image 
point (Fig. 11.26).

If the system is space invariant, a point-source input can be 
moved about over the object plane without any effect other than 
changing the location of its image. Equivalently, one can say 
that the spread function is the same for any point ( y, z). In prac-
tice, however, the spread function will vary, but even so, the 
image plane can be divided into small regions, over each of 
which  doesn’t change appreciably. Thus if the object, and 
therefore its image, is small enough, the system can be taken to 

determined directly from the input by means of Eq. (11.47). If 
the elementary sources are coherent, the input and output sig-
nals will have to be electric fields; if incoherent, they’ll be flux 
densities.

Consider the self-luminous and, therefore, incoherent source 
depicted in Fig. 11.25. We can imagine that each point on the 
object plane, Σ0, emits light that is processed by the optical 
system. It emerges to form a spot on the focal or image plane, 
Σi. In addition, assume that the magnification between object 
and image planes is one. The image will be life-sized and erect, 
which makes it a little easier to deal with for the time being. 
Notice that if the magnification (MT) was greater than one, the 
image would be larger than the object. Consequently, all of its 
structural details would be larger and broader, so the spatial fre-
quencies of the harmonic contributions that go into synthesizing 
the image would be lower than those of the object. For example, 
an object that is a transparency of a sinusoidally varying black 
and white linear pattern (a sinusoidal amplitude grating) would 
be imaged having a greater space between maxima and there-
fore a lower spatial frequency. Besides that, the image irradi-
ance would be decreased by MT

2, because the image area would 
be increased by a factor of MT

2.
If I0(y, z) is the irradiance distribution on the object plane, an ele-

ment dy dz located at ( y, z) will emit a radiant flux of I0(y, z) dy dz. 
Because of diffraction (and the possible presence of aberra-
tions), this light is smeared out into some sort of blur spot over 
a finite area on the image plane rather than focused to a point. 
The spread of radiant flux is described mathematically by the 
function (y, z; Y, Z ), such that the flux density arriving at the 
image point from dy dz is

 dIi(Y, Z ) = ( y, z; Y, Z )I0( y, z) dy dz (11.48)

This is the patch of light in the image plane at (Y, Z ), and  
(y, z; Y, Z ) is known as the point-spread function. In other 

words, when the irradiance I0(y, z) over the source element  
dy dz is 1 W>m2, (y, z; Y, Z ) dy dz is the profile of the resulting 

Σ
0

Σ
i

z

y

Y

Z

(Y, Z)

Optical system

Figure 11.26  The point-spread function: the irradiance produced  
by the optical system with an input point source.

Σ0
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y

z

dz
dy

Y

Z

I0(y, z)

Figure 11.25  A lens system forming an image.
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be space invariant. We can imagine a spread function sitting at 
every Gaussian image point on Σi, each multiplied by a different 
weighting factor I0(y, z) but all of the same general shape inde-
pendent of ( y, z). Since the magnification was set at 1, the coor-
dinates of any object and conjugate image point have the same 
magnitude.

If we were dealing with coherent light, we would have to 
consider how the system acted upon an input that was again a  
d-pulse, but this time one representing the field amplitude. 
Once more the resulting image would be described by a spread 
function, although it would be an amplitude spread function. 
For a diffraction-limited circular aperture, the amplitude spread 
function looks like Fig. 10.36b. And finally, we would have to 
be concerned about the interference that would take place on 
the image plane as the coherent fields interacted. By contrast, 
with incoherent object points the process occurring on the im-
age plane is simply the summation of overlapping irradiances, 
as depicted in one dimension in Fig. 11.27. Each source point, 

y

(a)

(b)

I0

Y
(c)

(d)

Ii

Ii

Y
(e)

(y, Y)

(y, Y)

Figure 11.27  Here (a) is convolved first with (b) to produce (c) and then 
with (d) to produce (e). The resulting pattern is the sum of all the spread-
out contributions, as indicated by the dashed curve in (e).

(Y − y)

Y

Y
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b

Y = y a

(Y − y)
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Y

y

Σi

Figure 11.28  The point-spread function.

with its own strength, corresponds to an appropriately scaled  
d-pulse, and in the image plane each of these is smeared out, via 
the spread function. The sum of all the overlapping contribu-
tions is the image irradiance.

What kind of dependence on the image and object space 
variables will (y, z; Y, Z ) have? The spread function can de-
pend only on (y, z) as far as the location of its center is con-
cerned. Thus the value of (y, z; Y, Z ) anywhere on ^i merely 
depends on the displacement at that location from the particular 
Gaussian image point (Y = y, Z = z) on which  is centered  
(Fig. 11.28). In other words,

 (y, z; Y, Z ) = (Y - y, Z - z) (11.50)

When the object point is on the central axis ( y = 0, z = 0), the 
Gaussian image point is as well, and the spread function is then 
just (Y, Z ), as depicted in Fig. 11.26. Under the circumstances 
of space invariance and incoherence,

 Ii(Y, Z ) = 33
+∞

-∞

 I0( y, z) (Y - y, Z - z) dy dz (11.51)

11.3.3 The Convolution Integral

Figure 11.27 shows a one-dimensional representation of the 
distribution of point-source d-functions that make up the  
object. The corresponding image is essentially obtained by 
“dealing out” an appropriately weighted point-spread func-
tion to the location of each image point on Σi and then adding 
up all the contributions at each point along Y. This dealing 
out of one function to every point of (and weighted by) an-
other function is a process known as convolution, and we say 
that one function, I0(y), is convolved with another, (y, Y ), or 
vice versa.

This procedure can be carried out in two dimensions as well, 
and that’s essentially what is being done by Eq. (11.51), the so-
called convolution integral. The corresponding one-dimensional 
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expression describing the convolution of two functions ƒ(x) 
and h(x),

 g(X) = 3+ ∞

- ∞
ƒ(x) h(X - x) dx (11.52)

is easier to appreciate. In Fig. 11.27 one of the two functions 
was a group of d-pulses, and the convolution operation was par-
ticularly easy to visualize. Still, we can imagine any function to 
be composed of a “densely packed” continuum of d-pulses and 
treat it in much the same fashion. Let us now examine in some 
detail exactly how the integral of Eq. (11.52) mathematically 
manages to perform the convolution. The essential features of 
the process are illustrated in Fig. 11.29. The resulting signal 
g(X1), at some point X1 in the output space, is a linear superpo-
sition of all the individual overlapping contributions that exist 
at X1. In other words, each source element dx yields a signal of 
a particular strength ƒ(x) dx, which is then smeared out by the 
system into a region centered about the Gaussian image point 
(X = x). The output at X1 is then dg(X1) = ƒ(x)h(X1 - x) dx. 
The integral sums up all of these contributions from each source 
element. Of course, the elements more remote from a given 
point on g i contribute less because the spread function gener-
ally drops off with displacement. Thus we can imagine ƒ(x) to 
be a one-dimensional irradiance distribution, such as a series of 
vertical bands, as in Fig. 11.30. If the one-dimensional line-
spread function, h(X - x), is that of Fig. 11.30d, the resulting 
image will simply be a somewhat blurred version of the input 
(Fig. 11.30e).

f(0)

f(0) dx

f(0) h(X) f(0) h(X1) dx

f(x1) h(X – x1)

f(x2) h(X – x2)

h(X – x)

f(x) h(0)

f(x1)

f(x2)

f(x)

X1 X2 x1 x20

x
X

0

f(0) h(X2) dx

X Figure 11.29  The overlapping 
of weighted spread functions.
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x

X

f(x)

h1(X – x)

(a)

(c)

(b)

x

x

X

X

g1(X)

g2(X)

h1(X – x)

(e)

(d)

x

Figure 11.30  The irradiance distribution is converted to a function ƒ(x) 
shown in (a). This is convolved with d-function (b) to yield a duplicate of 
ƒ(x). By contrast, convolving ƒ(x) with the spread function h2 in (d) yields a 
smoothed-out curve represented by g2(x) in (e).
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Let’s now examine the convolution a bit more as a mathe-
matical entity. Actually it’s a rather subtle beast, performing a 
process that might certainly not be obvious at first glance, so 
let’s approach it from a slightly different viewpoint. Accord-
ingly, we will have two ways of thinking about the convolution 
integral, and we shall show that they are equivalent.

Suppose h(x) looks like the asymmetrical function in Fig. 11.31a. 
Then h(-x) appears in Fig. 11.31b, and its shifted form h(X - x) 

x

h(x)

(a)
0

x

h(–x)

(b)
0

x

h(X –  x)

h(X –  x)

(c)
X

x

f(x)

(d)

x

f(x)

(e)
X

d

Figure 11.31  The geometry of the convolution process in the object 
coordinates.

is shown in (c). The convolution of ƒ(x) [depicted in (d)] and h(x) 
is g(X), as given by Eq. (11.52). This is often written more con-
cisely as ƒ(x)àh(x). The integral simply says that the area under 
the product function ƒ(x)h(X - x) for all x is g(X). Evidently, the 
product is nonzero only over the range d wherein h(X - x) is 
nonzero, that is, where the two curves overlap (Fig. 11.31e). 
At a particular point X1 in the output space, the area under the 
product ƒ(x)h(X1 - x) is g(X1). This fairly direct interpretation 
can be related back to the physically more pleasing view of the 
integral in terms of overlapping point contributions, as depicted 
previously in Fig. 11.29. Remember that there we said that each 
source element was smeared out in a blur spot on the image plane 
having the shape of the spread function. Now suppose we take 
the direct approach and wish to compute the product area in 
Fig. 11.31e at X1, that is, g(X1). A differential element dx centered 
on any point in the region of overlap (Fig. 11.32a), say, x1, will 

h(X1 –  x)

h(X1 –  x1)

x

f(x1)
f(x)

(a)

X1 x2x0 x1

f(x1) h(X –  x1)

X

(d)

x1 X1

h(X –  x)

X

(b)

x

h(X –  x1)

X

(c)

x1 X1

X

(e)

x0 X1 x2

Figure 11.32  The geometry of the convolution process in the image 
coordinates.
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f(x) h(X – x)
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Figure 11.33  Convolution of two rectangular “boxcar” pulses, each of 
height 1.0. The fact that we represented ƒ(x) by a finite number of delta 
functions (viz., 7) accounts for the steps in g(X), which should otherwise be 
triangular. Here each impulse, at x1, x2, x3, etc., composing ƒ(x) is spread 
out into a rectangular signal (centered on x1, x2, x3, etc.). The area of each 
such signal in the vertical column of shifted rectangles (on the right) is 
then summed to yield the convolution. Note how the convolution stretches 
over a distance of 2d.
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Figure 11.34  Convolution of two square pulses.

contribute an amount ƒ(x1)h(X1 - x1) dx to the area. This same 
differential element will make an identical contribution when 
viewed in the overlapping spread-function scheme. To see this, 
examine (b) and (c) in Fig. 11.32, which are now drawn in the 
output space. The latter shows the spread function “centered” at 

X = x1. A source element dx, in this case located on the object at 
x1, generates a smeared-out signal proportional to ƒ(x1)h(X - x1), 
as in (d), where ƒ(x1) is just a number. The piece of this signal 
that exists at X1 is ƒ(x1)h(X1 - x1) dx, which indeed is identical 
to the contribution made by dx at x1 in (a). Similarly, each differ-
ential element of the product area (at any x = x′) in Fig. 11.32a 
has its counterpart in a curve like that of (d) but “centered” on a 
new point (X = x′). Points beyond x = x2 make no contribution  
because they are not in the overlap region of (a) and, equivalently, 
because they are too far from X1 for the smear to reach it, as 
shown in (e).

If the functions being convolved are simple enough, g(X) can 
be determined roughly without any calculations at all. The con-
volution of two identical square pulses is illustrated, from both 
of the viewpoints discussed above, in Figs. 11.33 and 11.34. In 
Fig. 11.33 each impulse constituting ƒ(x) is spread out into a 
square pulse and summed. In Fig. 11.34 the overlapping area, as 
h varies, is plotted against X. In both instances the result is a 
triangular pulse. 

Incidentally, observe that (ƒàh) = (hàƒ ), as can be seen 
by a change of variable (x′ = X - x) in Eq. (11.52), being care-
ful with the limits (see Problem 11.18).

M11_HECH6933_05_GE_C11.indd   560 26/08/16   4:40 PM



 11.3 Optical Applications 561

x

f(x)

0 1

1

2

2 3

(a)

x

h(x)

h(–1) h(3)

0 1

0.5
1

−1 2 3

h(X – x)

x

f(x)

0 1

1

2

−2−3−4 2 3

(b)

x

f(x) h(–1–x)

g(–1) = 0−1

−1

1

h(0 – x)

x

f(x)

0 1 2 3

(c)

x

f(x) h(–x)

A = g(0) = 0.33
A

x

f(x)

0 2 3

(d)

x

f(x) h(1 – x)

A = g(1) = 1.33

A

1

2

x
0 3

(e)

x

f(x) h(2 – x)

A = g(2) = 3.0

A

1 2

h(2 – x)

3

x
0

(f)

x

f(x) h(3 – x)

A = g(3) = 3.0

A

1

1

2 4

h(3 – x)

h(1 – x)

3

4

x

f(x)

0

(g)

x

f(x) h(4 – x)

A = g(4) = 2.66

A
1

0.66

2
h(4 – x)

X = 4

5

x

f(x)

0

(h)

x

f(x) h(5 – x)

A = g(5) = 1.66

A
h(5 – x)

X = 5

6

x

f(x)

0

(i)

( j)

x

f(x) h(6 – x)

g(6) = 0

g(–1)

g(1)

g(2) g(3)

g(5)

g(6)

h(6 – x)

X = 6

X

g(X)

0 1

1

2

3

–1 2 3 64 5

Figure 11.35  The convolution of ƒ(x) and h(x) where g(X) = ƒ(x)àh(x). 
We take the product of ƒ(x) and h(X - x) at every point where both exist at 
a particular value of X. The area, A, under the product curve (on the left) is 
the value of g(X) at that value of X.

Equation 11.52 for the convolution can be interpreted 
literally and we’ll now carry out that integral in a straight-
forward graphical way, but first a few auxiliary ideas. Con-
sider the two spatial signals to be convolved, ƒ(x) and h(x), 
shown in Fig. 11.35a. Notice that both of these functions 
are asymmetrical. There’re plotted using the dummy inte-
gration variable x. In general, functions like these, and sev-
eral we’ve already looked at, ones that are zero everywhere 
but in a finite region, are said to have compact support. 
When such functions are convolved, the width of the re-
sulting convolution will always equal the sum of the over-
all widths of the two contributing functions. 

We will opt to have h(x) sweep across ƒ(x). Accordingly, flip 
h(x) around its ordinate (the dotted vertical line at x = 0), thereby 
forming the mirror image h(-x), as required by the convolution 
integral. To get h(-x) moving to the right, write it as h(X - x) and 
consult Fig. 11.36. The variable X is the displacement of the ordinate 

of h(-x) from the stationary point x = 0, which marks the ori-
gin of the dummy variable coordinate frame. In part (a) of 
Fig. 11.36 these two (the vertical dashed line and the x = 0 axis) are 
on top of each other, X = 0, and h(X - x) = h(0 - x) = h(-x). 
To test the scheme, let x = -3, which corresponds to the left side 
of the rectangular function (marked by the little open circle), and 
examine h(X - x) at that location in Fig. 11.36a. There 
h[0 - (-3)] =  h(0 + 3) = h(3), and that’s the same value as in 
Fig. 11.35a (again marked by the little open circle); the math works 
so far. Now displace the rectangle to the right by 1 unit—that is, let 
X = 1—as in Fig. 11.36b. Then h(X - x) = h(1 - x) and if, for 
example, we set x = +2, this time to correspond to the right side of 
the function (marked by the little black circle), h(X - x) = h(-1) 
and that again matches h(x) in Fig. 11.35a. Thus, as X increases, 
h(X - x) sweeps to the right, just as we need it to do.

Return to the convolution integral and Fig. 11.35, and con-
tinue the process. In Fig. 11.35b the two functions just touch, 
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there is no overlap and no product area, and ƒ(x) h(X - x) = 0. 
The dashed moving ordinate of h(X - x) is at x = -1. It’s 1 unit 
to the left of the stationary origin 0, and so X = -1. The convo-
lution, g(X), at X = -1 is zero, but it’s about to rise [study the 
g(x) curve in Fig. 11.35j]. As h(X - x) moves farther to the right 
it overlaps ƒ(x), which is always stationary, as in Fig. 11.35c. 
Draw a vertical line at each x in the overlap region, and find the 
values of both functions on these lines. Then take the product of 
those two values at each x and plot the product curve [which in 
this case lies on the hypotenuse of the triangle because h(X - x) 
has a magnitude of 1]. The area under ƒ(x)  h(X - x) is the value 
of g(X) at the location of the ordinate of h(X - x)—the dotted 
vertical line—which will be, successively, at X = -1, 0, 1, 2, 3, 
4, 5, and 6. 

Because h(X - x) happens to have a constant magnitude of 
1.0, the overlap area, the area bounded by a portion of the trian-
gle ƒ(x), equals the area under the product curve. In this instance 
(Fig. 11.35c) that area is 0.33, and it is plotted in Fig. 11.35g at 
X = 0 because the ordinate of h(X - x) in Fig. 11.35c is at zero 
displacement from the origin 0. In Fig. 11.35d the area beneath 
the little triangle of base 2 is 1.33. That’s the value of the convo-
lution at X = 1. In Fig. 11.35e with X = 2, the product area is 
the area of the whole triangle, namely, 3. It continues to be 3 until 
the left side of h(X - x) arrives at x = 0 (Fig. 11.35ƒ ), after 
which some of the ƒ(x) triangle emerges from the overlap region 
at the left and the convolution gradually falls to zero at X = 6 
(Fig. 11.35h).

EXAMPLE 11.2

Consider the functions ƒ(x) and h(x) depicted in the accompa-
nying diagram.

SOLUTION 

Since ƒ(x) convolved with h(x) is the same as h(x) convolved 
with ƒ(x), let’s keep ƒ(x) stationary and sweep h(x) over it. 
Because these functions are symmetrical, h(x) = h(-x), and there 
is no concern about mirroring the function. We’ll develop the 
convolution centered on the vertical origin axis of ƒ(x). The plot 
of g(X) will turn out to be the light grey curve. 

(a) In this drawing h(X - x) just touches ƒ(x) and the overlap 
begins there, just as the convolution begins there; that is, it has 
a nonzero value beyond that point (x = -0.75), which is fixed 
by the location (X = -0.75) of the ordinate, of h(X - x). So 
plot a point in (d) on the X-axis at X = -0.75, and that will be 
the start of the convolution curve.

(b) Here h(X - x) has moved right so that fully half of it 
overlaps ƒ(x). The grey area in the diagram is bounded by the 
point-by-point product ƒ(x) h(X - x), as a function of x, the 
dummy variable. In other words, at every point on the x-axis in 
the region of overlap where both functions exist, draw a verti-
cal line and find the value of each function on that line [e.g., at 
some point x1, these would be ƒ(x1) and h(X - x1)]. Take the 
product of those two values [e.g., at x1 it would be ƒ(x1) *  

h(X - x1)]. Do that at every point where the two functions 
overlap. Of course, only where both functions are nonzero will 
the product have a nonzero value. Then draw a curve represent-
ing the product as a function of x. The area under that product 
curve (the grey region) is the value of the convolution at the 
single location specified by the vertical axis of h(X - x). For 
part (b), h(X - x) is constant at a value of 0.5, and ƒ(x) is con-
stant at 1.0, so the product at every x between -0.5 and -0.25 
is 0.5. The area under that straight horizontal line at a height 
0.5 is (0.5)(0.25) = 0.125. Plot that value at X = -0.5, which 
is the location of the vertical axis of h(X - x), and we have the 
second point on what will unfold as the convolution (d ). Bear 

Figure 11.36  The function h(X - x) at X = 0, 1, 2, and 3. The rectangular 
pulse progresses to the right. Note that h(x) is flipped or mirrored about 
the origin, becoming h(-x).
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Graphically convolve those two functions, explaining each step 
of the process.
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in mind that in this simple example the overlap area and the 
product area happen to be equal because ƒ(x) is constant at 1.0. 
In general, the product area will not simply equal the area of 
overlap.
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In (c) the grey product area is now (0.5)(0.5) =  0.25, 
and we plot that on the convolution curve (d) at X = -0.25 
[which is where the vertical axis of h(X - x) is]. That value 
is sustained until h(X - x) starts to emerge from inside ƒ(x) 
at x = +0.25, and the convolution is f lat from X = -0.25 to 
X = +0.25. After that, it decreases linearly, ending up with 
a base width that equals the sum of the widths of the two 
functions.

There are ways to physically convolve two two-dimensional 
data sets and we now briefly study the process for some simple 
situations. Suppose there is a circular, uniformly illuminated 
hole in an opaque screen (Fig. 11.37a) and we want to deter-
mine the convolution of that aperture function ƒ(x, y) with it-
self. Because ƒ(x, y) is symmetrical, mirroring it about either 
axis has no effect; we just have to sweep one circle over the 
other and record the product area at each displacement. We’ve 
seen how convolving two rectangular one-dimensional pulses 
results in a triangular figure. Similarly, convolving the circular 
“top hat” in Fig. 11.37a with itself produces a slightly curved 
conical figure, Fig. 11.37c, an irradiance that drops off almost 
linearly from its central maximum, Fig. 11.37b. 

Figure 11.37  The convolution of a uniformly illuminated circular hole, 
depicted in (a), with itself. (b) This is what that convolution looks like in 
space. (c) A graph of its irradiance.
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Raise the plastic function h(Y - y, X - x) one division in the 
y-direction and then scan it one division to the right. This pro-
duces two overlapping pairs, and a bright disk with a maximum 
irradiance of 2.0 should be entered at the first position of the 
second row of the convolution. Another shift again causes the 
overlapping of two pairs, and another bright peak equal to 2.0 in 
the second row of the convolution. Finally, the shifting function 
is again raised one division and swept right, whereupon a single 
overlapping pair is formed and the convolution (Fig. 11.38b) 
finishes with the topmost peak of 1.0.

Figure 11.39 illustrates the convolution of two functions 
I0(y, z) and (y, z) in two dimensions, as given by Eq. (11.51). 
Here the volume under the product curve I0(y, z) (Y - y,  
Z - z), that is, the region of overlap, equals Ii (Y, Z) at (Y, Z ); 
see Problem 11.21.

The Convolution Theorem

Suppose we have two functions ƒ(x) and h(x) with Fourier 
transforms ℱ{ƒ(x)} = F(k) and ℱ{h(x)} = H(k), respectively. 
The convolution theorem states that if g = ƒàh,

 ℱ{g} = ℱ{ƒàh} = ℱ{ƒ} · ℱ{h} (11.53)

or G(k) = F(k)H(k) (11.54)

where ℱ{g} = G(k). The transform of the convolution of two 
functions is the product of their transforms. The proof is 
straightforward:

ℱ5ƒàh6 = 3+ ∞

- ∞
g(X)eikXdX

= 3+ ∞

- ∞
eikX c3+ ∞

- ∞
ƒ(x)h(X - x) dxddX

Thus

G(k) = 3+ ∞

- ∞
c3+ ∞

- ∞
h(X - x)eikX dXdƒ(x) dx

If we put w = X - x in the inner integral, then dX = dw and

G(k) = 3+ ∞

- ∞
ƒ(x)eikxdx3+ ∞

- ∞
h(w)eikwdw

Hence G(k) = F(k)H(k) 

which verifies the theorem. As an example of its application, 
refer to Fig. 11.40. Since the convolution of two identical square 
pulses (ƒàh) is a triangular pulse (g), the product of their trans-
forms must be the transform of g,  namely,

 ℱ{g} = [d sinc (kd>2)]2 (11.55)

As a somewhat more complicated example, examine the 
three-dot pattern in Fig. 11.38a. It might represent light coming 
from three uniformly illuminated circular holes in an opaque 
screen. This is the two-dimensional signal we now wish to 
graphically convolve with itself. A way to carry out that process 
is to draw a square grid of horizontal and vertical lines on a piece 
of paper, and place the three bright “top-hat” dots in an L-shaped 
pattern (on the x- and y-axes with the corner dot at the origin) 
on the lines of the grid—that’s ƒ(x, y). The grid line spacing 
(one division) should match the center-to-center spacing of the 
nearest neighbor dots. Create an identical grid on which to con-
struct the convolution. Now draw the same three-dot L on a 
piece of clear plastic (on the x- and y-axes as before)—that’s 
h(x, y). Flip the plastic over about the y-axis, creating h(y, X - x); 
the L now faces to the left. Flip it again, this time around the  
x-axis, creating h(Y - y, X - x); the L is now upside down and 
facing left as if it had been rotated through 180° about one of the 
circular apertures. 

Place the plastic, h(Y - y, X - x), with its three circular dots 
on top of the paper so its x-axis is parallel to, but somewhere 
below, the x-axis on the paper. Sweep the plastic function to the 
right one division at a time, recording the number of dot pairs 
(essentially the areas) that overlap—initially there won’t be any. 
Raise the plastic carrying h(Y - y, X - x) one division along 
the y-axis, and then sweep it to the right again. Because the 
particular pattern (Fig. 11.38a) lies on and above the x-axis, the 
two sets of dots, h(Y - y, X - x) and ƒ(x, y) = h(x, y), will be-
gin to overlap only when the two x-axes are collinear. Then, 
when just the two corner dots overlap, record a disk of peak ir-
radiance 1.0—that looks just like Fig. 11.37b—at the correspond-
ing location (lower left) on the convolution diagram (Fig. 11.38b). 
Next, shift the plastic one more division to the right, and note that 
now two pairs of overlapping dots occur. Accordingly, enter a 
bright disk of peak irradiance 2.0 on the convolution diagram. 
Another shift of the clear plastic function to the right produces 
one more dot pair, and we record a disk with a peak of 1.0, finish-
ing the bottom row (1.0, 2.0, 1.0) in Fig. 11.38b.

Figure 11.38  The convolution of ƒ(x, y), shown in (a), with itself. The 
result, g(x, y), is depicted in (b). See Fig. 11.53.

(a) (b)

f(x, y) g(X, Y)
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Figure 11.40  An illustration of the convolution theorem.

That is, the transform of the product is the convolution of the 
transforms.

Figure 11.42 makes the point rather nicely. Here an infi-
nitely long cosine, ƒ(x), is multiplied by a rectangular pulse, 
h(x), which truncates it into a short oscillatory wavetrain, g(x). 
The transform of ƒ(x) is a pair of delta functions, the transform 
of the rectangular pulse is a sinc function, and the convolution 
of the two is the transform of g(x). Compare this result with 
that of Eq. (7.60).

As an additional example, convolve a square pulse with the 
two d-functions of Fig. 11.12. The transform of the resulting 
double pulse (Fig. 11.41) is again the product of the individual 
transforms.

The k-space counterpart of Eq. (11.53), namely, the frequency 
convolution theorem, is given by

 ℱ{ƒ · h} =
1

2p
ℱ{ƒ}àℱ{h} (11.56)

f

d

d
d sinc (u)

0 2pp

h

d

g=

=

2d
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=

×

× 2i sin(u)

0 2p

–2i

2i

–p p

�{h}

kd
2

u = kd
2

2p
–2di
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–p–2p p
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2

2id
sin2 u
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Figure 11.41  An illustration of the convolution theorem.
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Transform of the Gaussian Wave Packet

As a further example of the usefulness of the convolution theo-
rem, let’s evaluate the Fourier transform of a pulse of light in 
the configuration of the wave packet of Fig. 11.43. Taking a 
rather general approach, notice that since a one-dimensional 
harmonic wave has the form

E ˜(x, t) = E0e-i(k0   

x -vt)

one need only modulate the amplitude to get a pulse of the de-
sired structure. Assuming the wave’s profile to be independent 
of time, we can write it as

E ˜(x, 0) = ƒ(x)e-ik0   

x

Now, to determine ℱ5ƒ(x)e-ik0 x6  evaluate

 3+ ∞

- ∞
ƒ(x)e-ik0 xeikxdx (11.57)

… …

hg =

=

=

=

×

×

x

�{g} = �{ f ·h} �{h}

f

k
0

G(k)

+k0−k0 +k0−k0k
0

H(k)

�{ f}

k
0

F(k)

Figure 11.42  
An example of the  
frequency convolution 
theorem.

Letting k′ = k - k0, we get

 F(k′) = 3+ ∞

- ∞
ƒ(x)eik′xdx = F(k - k0) (11.58)

In other words, if F(k) = ℱ{ƒ(x)}, then F(k - k0) =  
ℱ{ƒ(x)e-ik0 x}. For the specific case of a Gaussian envelope  
[Eq . (11.11)], as in the figure, ƒ(x) = 1a>p e-ax2

, that is,

 E ˜(x, 0) = 1a>p e-ax2
e-ik0 x (11.59)

From the foregoing discussion and Eq. (11.12), it follows that

 ℱ{E ˜(x, 0)} = e-  (k - k0)2>4a (11.60)

In quite a different way, the transform can be determined from 
Eq. (11.56). The expression E ˜(x, 0) is now viewed as the product 
of the two functions ƒ(x) = 1a>p exp (-ax2) and h(x) =   
exp (- ik0 x). One way to evaluate ^{h} is to set ƒ(x) = 1 in  
Eq. (11.57). This yields the transform of 1 with k replaced by  
k - k0. Since ^{1} = 2pd(k) (see Problem 11.4), we have  
^{e-ik0x} = 2pd(k - k0). Thus ^{E ˜(x, 0)}is 1>2p times the 
convolution of 2pd(k - k0), with the Gaussian e-k2>4a centered 
on zero. The result* is once again a Gaussian centered on k0, 
namely, e-(k - k0)2>4a.

*We should actually have used the real part of exp (- ik0x) to start with in this 
derivation, since the transform of the complex exponential is different from the 
transform of cos k0x and taking the real part afterward is insufficient. This is the 
same sort of difficulty one always encounters when forming products of complex 
exponentials. The final answer [Eq. (11.60)] should, in fact, contain an additional 
exp [- (k + k0)2>4a] term, as well as a multiplicative constant of 1

2. This second 
term is usually negligible in comparison, however. Even so, had we used  
exp (+  ik0x) to start with [Eq. (11.59)], only the negligible term would have  
resulted! Using the complex exponential to represent the sine or cosine in this 
fashion is rigorously incorrect, albeit pragmatically common practice. As a  
short-cut, it should be indulged in only with the greatest caution!

l0 =

x k

E(x, 0)

e–ax2
 e–ik0x 

�{E(x, 0)}

2p
k0

e–(k – k0)2�4a

k0

a
p√

0

Figure 11.43  A Gaussian wave packet and its transform.
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To underscore the similarity between Eq. (11.63) and Eq. 
(11.14), let’s define the spatial frequencies kY and kZ as

 kY K kY>R = k sin f = k cos b (11.64)

and kZ K kZ>R = k sin u = k cos g (11.65)

For each point on the image plane, there is a corresponding 
spatial frequency. The diffracted field can now be written as

 E(kY, kZ) = 33
+∞

-∞ 

�(y, z)ei(kYy + kZz) dy dz (11.66)

and we’ve arrived at the key point: the field distribution in the 
Fraunhofer diffraction pattern is the Fourier transform of 
the field distribution across the aperture (i.e., the aperture 
function). Symbolically, this is written as

 E(kY, kZ) = ℱ{�(y, z)} (11.67)

The field distribution in the image plane is the spatial-frequency 
spectrum of the aperture function. The inverse transform is then

  �(y, z) =
1

(2p)2 33
+∞

-∞  

E(kY, kZ)e-i(kYy + kZz) dkY dkZ (11.68)

that is,

 �(y, z) = ^ -1{E(kY, kZ)} (11.69)

As we have seen time and again, the more localized the signal, 
the more spread out is its transform—the same is true in two 

11.3.4 Fourier Methods in Diffraction Theory

Fraunhofer Diffraction

Fourier-transform theory provides a particularly beautiful in-
sight into the mechanism of Fraunhofer diffraction. Let’s go 
back to Eq. (10.41), rewritten as

 E(Y, Z) =
eAei(vt - kR)

R 33
Aperture

eik(Yy + Zz)�R dy dz (11.61)

This formula refers to Fig. 10.29, which depicts an arbitrary dif-
fracting aperture in the yz-plane upon which is incident a mono-
chromatic plane wave. The quantity R is the distance from the 
center of the aperture to the output point where the field is E(Y, Z). 
The source strength per unit area of the aperture is denoted by eA. 
We are talking about electric fields that are of course time-varying; 
the term exp i(vt - kR) just relates the phase of the net distur-
bance at the point (Y, Z ) to that at the center of the aperture. The 
1>R corresponds to the dropoff of field amplitude with distance 
from the aperture. The phase term in front of the integral is of 
little present concern, since we are interested in the relative am-
plitude distribution of the field, and it doesn’t much matter what 
the resultant phase is at any particular output point. Thus if we 
limit ourselves to a small region of output space over which R is 
essentially constant, everything in front of the integral, with the 
exception of eA, can be lumped into a single constant. 

The eA has thus far been assumed to be invariant over the 
aperture, but that certainly need not be the case. Indeed, if the 
aperture were filled with a bumpy piece of dirty glass, the field 
emanating from each area element dy dz could differ in both 
amplitude and phase. There would be nonuniform absorption, 
as well as a position-dependent optical path length through the 
glass, which would certainly affect the diffracted field distribu-
tion. The variations in eA, as well as the multiplicative constant, 
can be combined into a single complex quantity

 �(y, z) = �0(y, z)eif(y, z) (11.62)

which we call the aperture function. The amplitude of the 
field over the aperture is described by �0(y, z), while the 
point-to-point phase variation is represented by exp [if(y, z)]. 
Accordingly, �0(y, z) dy dz is proportional to the diffracted 
field emanating from the differential source element dy dz. 
Consolidating this much, we can reformulate Eq. (11.61) more 
generally as

 E(Y, Z) = 33
+∞

-∞ 

�(y, z)eik(Yy + Zz)�R dy dz (11.63)

The limits on the integral can be extended to ± ∞  because the 
aperture function is nonzero only over the region of the aperture.

It might be helpful to envision dE(Y, Z) at a given point-P as 
if it were a plane wave propagating in the direction of k$ as in 
Fig. 11.44 having an amplitude determined by �(y, z) dy dz.  

z

y

Z

Y

X

x

f

u

P

k

R

Figure 11.44  A bit of geometry.
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568 Chapter 11 Fourier Optics

With kZ = k sin u, this is precisely the form derived in Section 
10.2.1. The far-field diffraction pattern of a rectangular aperture 
(Section 10.2.4) is the two-dimensional counterpart of the slit. 
With �(y, z) again equal to �0 over the aperture (Fig. 10.30),

E(kY, kZ) = ℱ{�(y, z)}

E(kY, kZ) = 3 + b�2

y = - b�2
 3 + a�2

z = - a�2
 �0ei(kYy + kZz )dy dz

hence,

E(kY, kZ) = �0 ba sinc 
bkY
2R

 sinc 
akZ
2R

just as in Eq. (10.42), where ba is the area of the hole.

Young’s Experiment: The Double Slit In our first treat-
ment of Young’s Experiment (Section 9.3), we took the slits 
to be infinitesimally wide. The aperture function was then two 
symmetrical d-pulses, and the corresponding idealized field 
amplitude in the diffraction pattern was the Fourier transform, 
namely, a cosine function. Squared, this yields the familiar 
cosine-squared irradiance distribution of Fig. 9.12. More real-
istically, each aperture actually has some finite shape, and the 
real diffraction pattern will never be quite so simple. Figure 11.45 
shows the case in which the holes are actual slits. The aper-
ture function, g(x), is obtained by convolving the d-function 
spikes, h(x), that locate each slit with the rectangular pulse, 
ƒ(x), that corresponds to the particular opening. From the con-
volution theorem, the product of the transforms is the modulated 
cosine amplitude function representing the diffracted field as it 

dimensions. The smaller the diffracting aperture, the larger the 
angular spread of the diffracted beam or, equivalently, the larger 
the spatial frequency bandwidth.

There is a minor issue that should be mentioned here. If we 
actually try to observe a Fraunhofer pattern on a distant screen 
(without a lens), what we get will only be an approximation; the 
true Fraunhofer pattern is formed in parallel light that doesn’t 
converge at any finite distance. That doesn’t  generally cause 
any grief because what we do observe is the irradiance, and that 
is indistinguishable from the ideal distribution at great distances. 
Still, at any distant, but finite, location the  diffracted electric-
field distribution will differ in phase very slightly from the 
Fourier transform of the aperture function. Since we cannot 
even measure the electric field, the problem is not likely to be a 
practical one and we shall henceforth simply overlook it.

The Single Slit

As an illustration of the method, consider the long slit in the y-
direction of Fig. 10.15, illuminated by a plane wave. Assuming 
that there are no phase or amplitude variations across the aper-
ture, �(y, z) has the form of a square pulse:

�(y, z) = e�0 when 0 z 0 … b�2
0 when 0 z 0 7 b�2

where �0 is no longer a function of y and z. If we take it as a 
one-dimensional problem,

E(kZ) = ℱ{�(z)} = �03 + b�2

z = - b�2
 e

ikZzdz

E(kZ) = �0b sinc kZb>2

=

=×

x

�{ f} �{h} �{g}

x x
0

… …

1

f(x)
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h(x)

H(k)

x

F(k)

cos ka�2

− b
2
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Figure 11.45  An illustration  
of the convolution theorem.
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appears on the image plane. Squaring that would produce the an-
ticipated double-slit irradiance distribution shown in Fig. 10.18. 
The one-dimensional transform curves are plotted against k, but 
that’s equivalent to plotting against image-space variables by 
means of Eq. (11.64). (The same reasoning applied to circular 
apertures yields the fringe pattern of Fig. 12.2.)

Three Slits Looking at Fig. 11.14d, we should see clearly 
that the transform of the array of three d-functions in the dia-
gram will generate a cosine that is raised by an amount pro-
portional to the zero-frequency term, that is, the d-function at 
the origin. When that delta function has twice the amplitude of 
the other two, the cosine is totally positive. Now suppose we 
have three ideally narrow parallel slits uniformly illuminated. 
The aperture function corresponds to Fig. 11.46a, where the 
central d-function is half its previous size. Accordingly, the 
cosine transform will drop one quarter of the way down, as 
indicated in Fig. 11.46b. This corresponds to the diffracted 
electric-field amplitude, and its square, Fig. 11.46c, is the 
three-slit irradiance pattern.

Apodization

The term apodization derives from the Greek a, to take away, 
and podos, meaning foot. It refers to the process of suppressing 
the secondary maxima (side lobes) or feet of a diffraction pattern. 
In the case of a circular pupil (Section 10.2.5), the diffraction pat-
tern is a central spot surrounded by concentric rings. The first 
ring has a flux density of 1.75% that of the central peak— it’s 
small, but it can be troublesome. About 16% of the light incident 
on the image plane is distributed in the ring system. The presence 
of these side lobes can diminish the resolving power of an optical 
system to a point where apodization is called for, as is often the 
case in astronomy and spectroscopy. For example, the star Sirius, 
which appears as the brightest star in the sky (it’s in the constel-
lation Canis Major—the big dog), is actually one of a binary 
system. It’s accompanied by a faint white dwarf as they both orbit 
their mutual center of mass. Because of the tremendous differ-
ence in brightness (104 to 1), the image of the faint companion, 

x
0

(a) Aperture function

f(x)

k

(b) Electric �eld

F(k)

k

(c) Irradiance

F2(k)

Figure 11.46  The Fourier transform of three equal d-functions representing three slits.

as viewed with a telescope, is generally completely obscured by 
the side lobes of the diffraction pattern of the main star.

Apodization can be accomplished in several ways, for ex-
ample, by altering the shape of the aperture or its transmission 
characteristics.* We already know from Eq. (11.66) that the dif-
fracted field distribution is the transform of �(y, z). Thus we 
could effect a change in the side lobes by altering �0(y, z) or 
f(y, z). Perhaps the simplest approach is the one in which only 
�0(y, z) is manipulated. This can be accomplished physically 
by covering the aperture with a suitably coated flat glass plate 
(or coating the objective lens itself). Suppose that the coating 
becomes increasingly opaque as it goes radially out from the 
center (in the yz-plane) toward the edges of a circular pupil. The 
transmitted field will correspondingly decrease off-axis until it 
is made to become negligible at the periphery of the aperture. In 
particular, imagine that this dropoff in amplitude follows a 
Gaussian curve. Then �0(y, z) is a Gaussian function, as is its 
transform E(Y, Z), and consequently the ring system vanishes. 
Even though the central peak is broadened, the side lobes are 
indeed suppressed (Fig. 11.47).

Another rather heuristic but appealing way to look at the pro-
cess is to realize that the higher spatial frequency contributions 
go into sharpening up the details of the function being synthesized. 

Distance

E

Figure 11.47  An Airy pattern compared with a Gaussian.

*For an extensive treatment of the subject, see P. Jacquinot and B. Roizen-Dossier, 
“Apodization,” in Vol. III of Progress in Optics.
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570 Chapter 11 Fourier Optics

where �I (y′, z′) is the individual aperture function applicable 
to each hole. This can be recast, using Eqs. (11.64) and (11.65), as

E(kY, kZ) = 33
+∞

-∞ 

�I (y′, z′)ei(kYy′ + kZz′) dy′ dz′

 *  ^
N

j = 1
ei(kYyj)ei(kZzj) (11.72)

Notice that the integral is the Fourier transform of the individu-
al aperture function, while the sum is the transform [Eq. (11.42)] 
of an array of delta functions

 Ad =
ĵ
d(y - yj) d(z - zj) (11.73)

Inasmuch as E(kY, kZ) itself is the transform ℱ5�(y, z)6  of the 
total aperture function for the entire array, we have

 ℱ5�(y, z)6 = ℱ5�I ( y′, z′)6 · ℱ5Ad6  (11.74)

This equation is a statement of the array theorem, which says 
that the field distribution in the Fraunhofer diffraction pat-
tern of an array of similarly oriented identical apertures 
equals the Fourier transform of an individual aperture func-
tion (i.e., its diffracted field distribution) multiplied by the pat-
tern that would result from a set of point sources arrayed in 
the same configuration (which is the transform of AD).

This can be seen from a slightly different point of view. The 
total aperture function may be formed by convolving the indi-
vidual aperture function with an appropriate array of delta func-
tions, each sitting at one of the coordinate origins ( y1, z1), ( y2, z2), 
and so on. Hence

 �(y, z) = �I ( y′, z′)àAd (11.75)

whereupon the array theorem follows directly from the convo-
lution theorem [Eq. (11.53)].

As a simple example, imagine that we again have Young’s 
Experiment with two slits along the y-direction, of width b and 
separation a. The individual aperture function for each slit is a 
step function,

�I (z′) = e�I 0 when 0 z′ 0 … b�2
0 when 0 z′ 0 7 b�2

and so

ℱ5�I (z′)6 = �I0b sinc kZb>2
With the slits located at z = ±a>2,

Ad = d(z - a>2) + d(z + a>2)

and from Eq. (11.43)

ℱ{Ad} = 2 cos kZ a>2

As we saw earlier in one dimension (Fig. 7.34), the high fre-
quencies serve to fill in the corners of the square pulse. In the 
same way, since �(y, z) = ℱ-1{E(kY, kZ)}, sharp edges on the 
aperture necessitate the presence of appreciable contributions of 
high spatial frequency in the diffracted field. It follows that mak-
ing �0(y, z) fall off gradually will reduce these high frequencies, 
which in turn is manifest in a suppression of the side lobes.

Apodization is one aspect of the more encompassing tech-
nique of spatial filtering, which is discussed in an extensive yet 
nonmathematical treatment in Chapter 13.

The Array Theorem

Generalizing some of our previous ideas to two dimensions, 
imagine that we have a screen containing N identical holes, as 
in Fig. 11.48. In each aperture, at the same relative position, we 
locate a point O1, O2, . . . , ON at (y1, z1), (y2, z2),  . . . , ( yN, zN), 
respectively. Each of these, in turn, fixes the origin of a local 
coordinate system (y′, z′). Thus a point (y′, z′) in the local 
frame of the jth aperture has coordinates (yj + y′, zj + z′) in the  
( y, z)-system. Under coherent monochromatic illumination, the 
resulting Fraunhofer diffraction field E(Y, Z) at some point-P on 
the image plane will be a superposition of the individual fields 
at P arising from each separate aperture; in other words,

E(Y, Z) = ^
N

j = 1
 33
+∞

-∞  

�I (y′, z′)eik[Y( yj + y′) + Z(zj + z′)]>R dy′ dz′

(11.70)

or E(Y, Z) = 33
+∞

-∞ 

�I (y′, z′)eik(Yy′ + Zz′)>R dy′ dz′ 

 *  ^
N

j = 1
eik(Yyj + Zzj)�R (11.71)
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Figure 11.48  Multiple-aperture configuration.
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The Lorentzian Profile

As an indication of the manner in which these ideas are applied 
in practice, consider the damped harmonic wave ƒ(t) at x = 0
depicted in Fig. 11.49. Here

ƒ(t) = e0 from t = - ∞  to t = 0
ƒ0e-t�2t cos v0t from t = 0 to t = + ∞

The negative exponential dependence arises, quite generally, 
whenever the rate-of-change of a quantity depends on its instan-
taneous value. In this case, we might suppose that the power 
radiated by an atom varies as (e-t>t)1>2. In any event, t is known 
as the time constant of the oscillation, and t-1 = g is the damp-
ing constant. The transform of ƒ(t) is

 F(v) = 3∞

0
(ƒ0e-t>2t cos v0t)eivtdt (11.78)

One finds on performing the calculation that

F(v) =
ƒ0

2
c 1
2t

- i(v + v0)d
-1

+
ƒ0

2
c 1
2t

- i(v - v0)d
-1

When ƒ(t) is the radiated field of an atom, t denotes the life-
time of the excited state (from around 1.0 ns to 10 ns). Now if 
we form the power spectrum F(v)F*(v), it will be composed of 
two peaks centered on ± v0 and thus separated by 2v0. At opti-
cal frequencies where v0 7 7  g, these will be both narrow and 
widely spaced, with essentially no overlap. The shape of these 
peaks is determined by the transform of the modulation enve-
lope in Fig. 11.49, that is, a negative exponential. The location 

Thus

E(kZ) = 2 �I0b sinc akZ  

b

2
b cos akZ  

a

2
b

which is the same conclusion arrived at earlier (Fig. 11.31). The 
irradiance pattern is a set of cosine-squared interference fringes 
modulated by a sinc-squared diffraction envelope.

11.3.5 Spectra and Correlation

Parseval’s Formula

Suppose that ƒ(x) is a pulse of finite extent, and F(k) is its 
Fourier transform [Eq. (11.5)]. Thinking back to Section 7.8, 
we recognize the function F(k) as the amplitude of the spatial 
frequency spectrum of ƒ(x). And F(k) dk then connotes the 
amplitude of the contributions to the pulse within the fre-
quency range from k to k + dk. Hence it seems that 0F(k) 0  
serves as a spectral amplitude density, and its square, 0F(k) 02, 
should be proportional to the energy per unit spatial frequency 
interval. Similarly, in the time domain, if ƒ(t) is a radiated 
electric field, 0 ƒ(t) 02 is proportional to the radiant flux or 
power, and the total emitted energy is proportional to 

1∞
0 0 ƒ(t) 02 dt. With F(v) = ℱ5ƒ(t)6 it appears that 0F(v) 02 

must be a measure of the radiated energy per unit temporal 
frequency interval. To be a bit more precise, let’s evaluate 

1+ ∞
- ∞ 0 ƒ(t) 02 dt in terms of the appropriate Fourier transforms. 

Inasmuch as 0 ƒ(t) 02 = ƒ(t)ƒ*(t) = ƒ(t) · [ℱ-15ℱ(v)6 ]*,

3 + ∞

- ∞
0 ƒ(t) 02 dt = 3 + ∞

- ∞
ƒ(t) c 1

2p
 3 + ∞

- ∞
F*(v)e+ ivtdvddt

Interchanging the order of integration, we obtain

3 + ∞

- ∞
0 ƒ(t) 02 dt =

1
2p3

+ ∞

- ∞
F*(v) c 3 + ∞

- ∞
ƒ(t)eivtdtddv

and so

 3 + ∞

- ∞
0 ƒ(t) 02 dt =

1
2p3

+ ∞

- ∞
0F(v) 02 dv (11.76)

where 0F(v) 02 = F*(v)F(v). This is Parseval’s formula. As ex-
pected, the total energy is proportional to the area under the 
0F(v) 02 curve, and consequently 0F(v) 02 is sometimes called 
the power spectrum or spectral energy distribution. The cor-
responding formula for the space domain is

 3 + ∞

- ∞
0 ƒ(x) 02 dx =

1
2p3

+ ∞

- ∞
0F(k) 02 dk (11.77)

l0 =

t

f(t)

0

2pc
v0

f0  e
–t�2t

Figure 11.49  A damped harmonic wave.
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concerned with images where the correlation, which is a func-
tion of X in the space domain, corresponds to the integral of 
the product of two functions, say, ƒ(x) and h(x), provided one 
of them is first displaced a distance specified by the variable X 
along the x-axis. Often there’s a temporal signal of long dura-
tion (e.g., an ongoing background of obscuring noise) within 
which one searches for a briefer particular signal. Alternatively, 
we might have a large display of data, like a picture of the roof-
tops of a city, and we must search it for a particular building. 

The cross-correlation of a signal with itself is known as the 
autocorrelation. It represents the degree of similarity between a 
given set of data and a time-lagged (or spatially displaced) ver-
sion of that data set. In other words, the autocorrelation, which 
is a function of X in the space domain, corresponds to the in-
tegral of the product of a function ƒ(x) with itself, provided 
one of those ƒ(x) functions is first displaced a distance speci-
fied by the variable X along the x-axis. Today there are optical 
devices called correlators that carry out such processes in real 
time. These techniques have all sorts of applications, from fin-
gerprint and DNA identification to the operation of production-line 
robot eyes.

Let’s go back to the derivation of Parseval’s formula and fol-
low it through again, this time with a slight modification.  
We wish to evaluate 1 +∞

-∞ ƒ(t + t)ƒ*(t) dt, using much the same 
approach as before. Thus, if F(v) = ℱ5ƒ(t)6 ,

3 + ∞

- ∞
ƒ(t + t)ƒ*(t) dt = 3 + ∞

- ∞
ƒ(t + t)

* c 1
2p

 3 + ∞

- ∞
F*(v)e+ ivt dvddt

(11.80)

Changing the order of integration, we obtain

1
2p

 3 + ∞

- ∞
F*(v) c3 + ∞

- ∞
ƒ(t + t)eivt dtddv

=
1

2p
 3 + ∞

- ∞
F*(v)ℱ5ƒ(t + t)6dv

of the peaks is fixed by the frequency of the modulated cosine 
wave, and the fact that there are two such peaks is a reflection of 
the spectrum of the cosine in this symmetrical frequency represen-
tation. To determine the observable spectrum from F(v)F*(v), 
we need only consider the positive frequency term, namely,

 0F(v) 02 =
ƒ0

2

g2 
g2>4

(v - v0)2 + g2>4 (11.79)

This has a maximum value of ƒ0
2>g2 at v = v0, as shown  

in Fig. 11.50. At the half-power points (v - v0) = ±g>2,  
0F(v) 02 = ƒ0

2>2g2, which is half its maximum value. The width 
of the spectral line between these points is equal to g.

The curve given by Eq. (11.79) is known as the resonance or 
Lorentz profile. The frequency bandwidth arising from the fi-
nite duration of the excited state is called the natural linewidth.

If the radiating atom suffers a collision, it can lose energy and 
thereby further shorten the duration of emission. The frequency 
bandwidth increases in the process, which is known as Lorentz 
broadening. Here again, the spectrum is found to have a Lorentz 
profile. Furthermore, because of the random thermal motion of the 
atoms in a gas, the frequency bandwidth will be increased via the 
Doppler effect. Doppler broadening, as it is called, results in a 
Gaussian spectrum. The Gaussian drops more slowly in the im-
mediate vicinity of v0 and then more quickly away from it than 
does the Lorentzian profile. These effects can be combined math-
ematically to yield a single spectrum by convolving the Gaussian 
and Lorentzian functions. In a low-pressure gaseous discharge, the 
Gaussian profile is by far the wider and generally predominates.

Autocorrelation and Cross-Correlation

In the discipline of signal analysis—both spatial and temporal—
there are important analytic techniques for comparing sets of 
data: cross-correlation and autocorrelation. In the time domain, 
cross-correlation provides a measure of the similarity existing 
between two waveforms (or two sets of data), revealed as a 
function of a temporal shift impressed upon one of the two sig-
nals. In other words, one signal is moved over the other and they 
are compared at each relative position. We will more often be 

v

�F(v)�2

f 0
2�g2

v00

(a)

g

Figure 11.50  (a) The resonance or Lorentz profile. (b) A comparison of Gaussian and Lorentzían 
spectra.

v

I(v)

Gaussian

Lorentzian

v0

(b)
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and write

cƒƒ (-X) = 3∞

- ∞
ƒ(x)ƒ*(x + X) dx

But ƒ(x) is real and so

cƒƒ (-X) = 3∞

- ∞
ƒ(x)ƒ(x + X) dx

Now let u = x + X such that x = u - X and dx = du. Then

cƒƒ (-X) = 3∞

- ∞
ƒ(u - X)ƒ(u) du

and since u is just a dummy variable

cƒƒ (-X) = cƒƒ (X)

Correlation analysis is essentially a means for comparing 
two signals in order to determine the degree of similarity be-
tween them. In autocorrelation the original function is displaced 
in time by an amount t, the product of the displaced and undis-
placed versions is formed, and the area under that product (cor-
responding to the degree of overlap) is computed by means of 
the integral. The autocorrelation function, cƒƒ(t), provides the 
result that will be obtained in such a process for all values of t. 
One reason for doing such a thing, for example, is to extract a 
signal from a background of random noise. Note that the auto-
correlation of a periodic function is itself a periodic function.

To see how the business works step by step, let’s take the 
autocorrelation of a simple function, such as A sin (vt + P), 
shown in Fig. 11.51. In each part of the diagram the function 
is shifted by a value of t, the product ƒ(t) · ƒ(t + t) is formed, 
and then the area under that product function is computed and 
plotted in part (e). Notice that the process is indifferent to the 
value of e. The final result is cƒƒ(t) = 1

2 A
2 cos vt, where this 

function unfolds through one cycle as t goes through 2p, so 
it has the same frequency as ƒ(t). Accordingly, if we had a 
process for generating the autocorrelation, we could recon-
struct from that both the original amplitude A and the angular 
frequency v.

EXAMPLE 11.4

Find the autocorrelation: cƒƒ (x) for the real function ƒ(x) 
where 

f (x) = •
0 x 6 0
1 - x 0 6 x 6 1
0 x 7 1

This is a single saw tooth. Adjust cƒƒ (x) so that it’s symmetrical 
around x = 0, at which point it equals 1.0.

To evaluate the transform within the last integral, notice that

ƒ(t + t) =
1

2p
 3 + ∞

- ∞
 F(v)e-iv(t +t)dv

by a change of variable in Eq. (11.9). Hence,

ƒ(t + t) = ℱ -15F(v)e-ivt6
so as discussed earlier, ℱ5ƒ(t + t)6 = F(v)e-ivt, Eq. (11.80) 
becomes

3 + ∞

- ∞
 ƒ(t + t)ƒ*(t) dt =

1
2p

 3 + ∞

-∞
 F*(v)F(v)e-ivt dv

(11.81)

and both sides are functions of the parameter t. The left-hand 
side of this formula is said to be the autocorrelation of ƒ(t), 
denoted by

 cƒƒ (t) K 3 + ∞

- ∞
ƒ(t + t)ƒ*(t) dt (11.82)

which is often written symbolically as ƒ(t)★ƒ*(t). If we take the 
transform of both sides, Eq. (11.81) then becomes

 ℱ5cƒƒ (t)6 = 0F(v) 02 (11.83)

This is a form of the Wiener–Khintchine theorem. It allows for 
determination of the spectrum by way of the autocorrelation of 
the generating function. The definition of cƒƒ(t) applies when 
the function has finite energy. When it doesn’t, things will have 
to be changed slightly. The integral can also be restated as

 cƒƒ (t) = 3 + ∞

- ∞
ƒ(t)ƒ*(t - t) dt (11.84)

by a simple change of variable (t + t to t). Similarly, the cross-
correlation of the functions ƒ(t) and h(t) is defined as

 cƒh (t) = 3 + ∞

- ∞
ƒ*(t) h(t + t) dt (11.85)

EXAMPLE 11.3

Given that ƒ(x) in the spatial domain is real, show that cƒƒ  (X) is 
an even function.

SOLUTION 

The autocorrelation would be an even function if cƒƒ  (X) equaled 
cƒƒ (-X). Hence, start with cƒƒ  (X) as given by Eq. (11.84),

cƒƒ  (X) = 3∞

- ∞
ƒ(x)ƒ*(x - X) dx

Continued
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574 Chapter 11 Fourier Optics

which leads to 

cƒƒ (x) =
1
3

-
x
2

+
x3

6

To have it be symmetrical around x = 0, write it as

cƒƒ (x) =
1
3

-
�x�
2

+
�x3�
6

At x = 0 this has a value of 1>3, so we’ll normalize it by multi-
plying by 3. In the region where - 1 6 x 6 +1

cƒƒ (x) = 1 -
3
2

 �x� +
1
2

 �x3�

and everywhere else, �x� 7 1, it is 0.

Assuming the functions to be real, we can rewrite cƒh(t) as

 cƒh (t) = 3 + ∞

- ∞
ƒ(t)h(t + t) dt (11.86)

SOLUTION 

Let u be the dummy variable. Using Eq. (11.85),

cƒƒ (x) = 3 ∞

- ∞
ƒ*(u) ƒ(u + x) du = 31 - x

0
(1 - u)(1 - u - x) du

where ƒ*(u) = ƒ(u) = (1 - u) and ƒ(u + x) = 1 - (u + x)

This formulation, however awkward, yields an autocorrelation 
that is a function of x.

(1 - u)(1 - u - x) = 1 - u - x - u + u2 + ux

and

cƒƒ (x) = 31 - x

0
[(1 - x) - u(2 - x) + u2] du

Consequently,

cƒƒ (x) = (1 - x)2 c1 -
(2 - x)

2
+

(1 - x)

3
d

and 

cƒƒ (x) = (1 - x)2(1>3 + x>6)

cf f (0)

0
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(a)

t = 0

cf f (p)
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0
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0
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0
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Figure 11.51  The autocorrelation of a sine function.

M11_HECH6933_05_GE_C11.indd   574 26/08/16   4:40 PM



 11.3 Optical Applications 575

We want an autocorrelation so there is no mirroring (no flip-
ping) of the plastic sliding function. Draw the same sort of grid 
as before and then place the plastic, in its original orientation, 
on the page so that its uppermost dot is on the x-axis of, and to 
the left of, the three-hole L. Now slide the plastic function to the 
right until its uppermost dot overlaps the corner hole. At a cor-
responding location (i.e., on the y-axis, one division below the 
origin of the autocorrelation diagram) record a disk with a peak 
central irradiance of 1.0. This is the start of the bottom row in 
Fig. 11.53b. Slide the plastic function one more division to the 
right. Another dot pair appears. Accordingly, record another 
disk of peak irradiance of 1.0, on the bottom row (1.0, 1.0) in 
the autocorrelation. 

Continuing, place the plastic to the left of the three holes, 
raise it one division on the grid, thereby overlaying the two x-
axes, and then slide it to the right. A single dot pair will occur 
and so enter a disk with a maximum irradiance of 1.0 at the left, 
at the start of the second line of the autocorrelation diagram. 
Next shift the plastic one more division to the right; all three 
dots now overlap, producing a disk with a maximum irradiance 
of 3.0 located on the center of the second line of the autocorre-
lation. That’s the peak in the autocorrelation occurring when the 
two functions match up. Sliding the plastic function one more 
division to the right results in a 1.0-unit irradiance, which ap-
pears on the middle (1.0, 3.0, 1.0) line of the autocorrelation. 

Raising the plastic function one additional division produces 
two consecutive 1.0-unit irradiance disks on the third and last 
line (1.0, 1.0). In that way the L-dot function scans over the 
identical L-hole function to produce a two-dimensional auto-
correlation. There being no mirroring, this result is very differ-
ent from the self-convolution of Fig. 11.38b.

which is obviously similar to the expression for the convolution 
of ƒ(t) and h(t). Equation (11.86) is written symbolically as 
cƒh(t) = ƒ(t)★h(t). Indeed, if either ƒ(t) or h(t) is even, then 
ƒ(t)àh(t) = ƒ(t)★h(t), as we shall see by example presently. 
Recall that the convolution flips one of the functions over and 
then sums up the product area (Fig. 11.31), that is, the area under 
the product curve. In contrast, the correlation sums up the overlap 
without flipping the function, and thus if the function is even, 
ƒ(t) = ƒ(- t), it isn’t changed by being flipped (or folded about 
the symmetry axis), and the two integrands are identical. For this 
to obtain, either function must be even, since ƒ(t)àh(t) =
h(t)àƒ(t). The autocorrelation of a square pulse is therefore 
equal to the convolution of the pulse with itself, which yields a 
triangular signal, as in Fig. 11.34. This same conclusion follows 
from Eq. (11.83) and Fig. 11.40. The transform of a square pulse 
is a sinc function, so that the power spectrum varies as sinc2u. 
The inverse transform of 0F(v) 02, that is, ℱ -15sinc2u6 , is cƒƒ (t), 
which as we have seen, is again a triangular pulse (Fig. 11.52).

EXAMPLE 11.5

Figure 11.53 depicts a two-dimensional signal and its autocor-
relation. Consider these bright circles to be uniformly illumi-
nated holes in an opaque screen. Explain how one might arrive 
at its autocorrelation. Discuss its salient features and compare it 
to the convolution shown earlier in Fig. 11.38. 

SOLUTION 

As we did in the analysis of Fig. 11.38, imagine that you put 
a piece of clear plastic over the three apertures. Draw three 
identical dots, one over each hole. Draw x- and y-axes through 
the L-shaped “holes,” with the origin at the corner circle, and do 
the same thing through the dots on the plastic. 

f (x) �{ f(x)} = F(k)

x k

cf f  = f(x) ★ f (x) �F(k)�2

x k

Figure 11.52  The square of the Fourier 
transform of the rectangular pulse ƒ(x) 
(i.e., 0 F(k) 02) equals the Fourier transform 
of the autocorrelation of ƒ(x).
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576 Chapter 11 Fourier Optics

the form of the resultant profile, its autocorrelation is unal-
tered. It is left as a problem to show analytically that when 
ƒ(t) = A sin (vt + P), Cƒƒ (t) = (A2>2) cos vt, which confirms 
the loss of phase information.

Figure 11.54 shows a means of optically correlating two two-
dimensional spatial functions. Each of these signals is represented 
as a point-by-point variation in the irradiance transmission prop-
erty of a photographic transparency (T1 and T2). For relatively 
simple signals, opaque screens with appropriate apertures could 
serve instead of transparencies (e.g., for square pulses).* The 
irradiance at any point-P on the image is due to a focused bundle 
of parallel rays that has traversed both transparencies. The coor-
dinates of P, (uƒ, wƒ), are fixed by the orientation of the ray 
bundle, that is, the angles u and w. If the transparencies are iden-
tical, a ray passing through any point (x, y) on the first film with 
a transmittance g(x, y) will pass through a corresponding point 
(x + X, y + Y) on the second film where the transmittance is 
g(x + X, y + Y). The shifts in coordinate are given by X = /u 
and Y = /w, where / is the separation between the transparencies. 
The irradiance at P is therefore proportional to the autocorrelation 
of g(x, y), that is,

 cƒƒ(X, Y) = 33
+∞

-∞

 g(x, y)g(x + X, y + Z) dx dy (11.88)

and the entire flux-density pattern is called a correlogram. If 
the transparencies are different, the image is of course represen-
tative of the cross-correlation of the functions. Similarly, if one 
of the transparencies is rotated by 180° with respect to the other, 
the convolution can be obtained (see Fig. 11.39).

It is clearly possible for a function to have infinite energy 
[Eq. (11.76)] over an integration ranging from - ∞  to + ∞  and 
yet still have a finite average power

lim
T S ∞

 
1

2T
 3 + T

- T
 0 ƒ(t) 02 dt

Accordingly, we will define a correlation that is divided by the 
integration interval:

 Cƒh(t) K lim
T S ∞

 
1

2T
 3 + T

- T
 ƒ(t) h(t + t) dt (11.87)

For example, if ƒ(t) = A (i.e., a constant), its autocorrelation

Cƒƒ(t) K lim
T S ∞

 
1

2T
 3 + T

- T
 (A)(A) dt = A2

and the power spectrum, which is the transform of the autocor-
relation, becomes

ℱ5Cƒƒ (t)6 = A2 2pd(v)

a single impulse at the origin (v = 0), which is sometimes re-
ferred to as a DC-term. Notice that Cƒh (t) can be thought of as 
the time average of a product of two functions, one of which is 
shifted by an interval t. In the next chapter, expressions of the 
form 8ƒ*(t) h(t + t)9 arise as coherence functions relating elec-
tric fields. They are also quite useful in the analysis of noise 
problems, for example, film grain noise.

We can obviously reconstruct a function from its trans-
form, but once the transform is squared, as in Eq. (11.83), we 
lose information about the signs of the frequency contribu-
tions, that is, their relative phases. In the same way, the auto-
correlation of a function contains no phase information and is 
not unique. To see this more clearly, imagine we have a number 
of harmonic functions of different amplitude and frequency. If 
their relative phases are altered, the resultant function changes, 
as does its transform, but in all cases the amount of energy 
available at any frequency must be constant. Thus, whatever 

�

�uu

u

f

T2T1

P

Broad
uniform
source

Figure 11.54  Optical correlation of two functions.

*See L. S. G. Kovasznay and A. Arman, Rev. Sci. Instr. 28, 793 (1958), and  
D. McLachlan, Jr., J. Opt. Soc. Am. 52, 454 (1962).

Figure 11.53  A two-dimensional function ƒ(x,y) and its autocorrelation 
function. See Fig. 11.38.

(a) (b)

f(x, y) cf f (X, Y)
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be somewhat reduced. There will be points in time where 
ƒ(t)ƒ(t + t1) is positive and other points where it will be nega-
tive, so that the value of the integral drops off (Fig. 11.55b). In 
other words, by shifting the signal with respect to itself, we have 
reduced the point-by-point similarity that previously (t = 0) 
occurred at any instant. As this shift t increases, what little cor-
relation existed quickly vanishes, as depicted in Fig. 11.55c. We 
can assume from the fact that the autocorrelation and the power 
spectrum form a Fourier transform pair [Eq. (11.83)] that the 
broader the frequency bandwidth of the noise, the narrower the 
autocorrelation. Thus for wide-bandwidth noise even a slight 
shift markedly reduces any similarity between ƒ(t) and ƒ(t + t). 
Furthermore, if the signal comprises a random distribution of 
rectangular pulses, we can see intuitively that the similarity we 
spoke of earlier persists for a time commensurate with the width 
of the pulses. The wider (in time) the pulses are, the more slowly 
the correlation decreases as t increases. But this is equivalent to 
saying that reducing the signal bandwidth broadens Cƒƒ (t). All 
of this is in keeping with our previous observation that the auto-
correlation tosses out any phase information, which in this case 
would correspond to the locations in time of the random pulses. 
Clearly, Cƒƒ (t) shouldn’t be affected by the position of the 
pulses along t.

In very much the same way, the cross-correlation is a mea-
sure of the similarity between two different waveforms, ƒ(t) and 
h(t), as a function of the relative time shift t. Unlike the auto-
correlation, there is now nothing special about t = 0. Once 
again, for each value of t we average the product ƒ(t)h(t + t) to 
get Cƒh(t) via Eq. (11.87). For the functions shown in Fig. 11.56, 
Cƒh(t) would have a positive peak at t = t1.

Since the 1960s a great deal of effort has gone into the 
development of optical processors that can rapidly analyze 
pictorial data. The potential uses range from comparing fin-
gerprints to scanning documents for words or phrases; from 
screening aerial reconnaissance pictures to creating terrain-
following guidance systems for missiles. An example of this 
kind of optical pattern recognition, accomplished using cor-
relation techniques, is shown in Fig. 11.57. The input signal 
ƒ(x, y) depicted in photograph (a) is a broad view of some 
region that is to be searched for a particular group of struc-
tures [photograph (b)] isolated as the reference signal h(x, y). 
Of course, that small frame is easy enough to scan directly by 
eye, so to make things more realistic, imagine the input to be 

Before moving on, let’s make sure that we actually do have 
a good physical feeling for the operation performed by the cor-
relation functions. Accordingly, suppose we have a random 
noise-like signal (e.g., a fluctuating irradiance at a point in 
space or a time-varying voltage or electric field), as in Fig. 11.55a. 
The autocorrelation of ƒ(t) in effect compares the function with 
its value at some other time, ƒ(t + t). For example, with t = 0 
the integral runs along the signal in time, summing up and aver-
aging the product of ƒ(t) and ƒ(t + t); in this case it’s simply  
ƒ2(t). Since at each value of t, ƒ2(t) is positive, Cƒƒ (0) will be a 
comparatively large number. On the other hand, when the noise 
is compared with itself shifted by an amount +t1, Cƒƒ (t1) will 

f (t)

f (t + t1)

Cf f (t)

t

(a)

(b)

(c)
0

Wide bandwidth noise

t

f (t)

t

t

t1

Figure 11.55  A signal ƒ(t) and its autocorrelation.

t = 0f(t)

t

t1

h(t)
t

Figure 11.56  The cross-correlation 
of ƒ(t) and h(t).
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578 Chapter 11 Fourier Optics

a few hundred feet of reconnaissance film. The result of opti-
cally correlating these two signals is displayed in photograph 
(c), where we immediately see, from the correlation peak 
(i.e., the spike of light), that indeed the desired group of 
structures is in the input picture, and moreover its location is 
marked by the peak.

11.3.6 Transfer Functions

An Introduction to the Concepts

Until recent times, the traditional means of determining the qual-
ity of an optical element or system of elements was to evaluate its 
limit of resolution. The greater the resolution, the better the sys-
tem was presumed to be. In the spirit of this approach, one might 
train an optical system on a resolution target consisting, for in-
stance, of a series of alternating light and dark parallel rectangu-
lar bars. We have already seen that an object point is imaged as a 
smear of light described by the point-spread function (Y, Z), as 
in Fig. 11.28. Under incoherent illumination, these elementary 
flux-density patterns overlap and add linearly to create the final 
image. The one-dimensional counterpart is the line-spread func-
tion (Z), which corresponds to the flux-density distribution 
across the image of a geometrical line source having infinitesimal 
width (Fig. 11.58). Because even an ideally perfect system is lim-
ited by diffraction effects, the image of a resolution target (Fig. 
11.59) will be somewhat blurred (see Fig. 11.30). Thus, as the 
width of the bars on the target is made narrower, a limit will be 
reached where the fine-line structure (akin to a Ronchi ruling) 
will no longer be discernible—this then is the resolution limit of 
the system. We can think of it as a spatial frequency cutoff where 
each bright and dark bar pair constitutes one cycle on the object 
(a common measure of which is line pairs per mm). An obvious 
analogy that underscores the shortcomings of this approach 
would be to evaluate a high-fidelity sound system simply on the 

Figure 11.57  An example of optical pattern recognition. 
(a) Input signal, (b) reference data, (c) correlation pattern. 
(Reprinted with permission from the November 1980 issue of Electro-Optical 

Systems Design. David Casasent.)

(a) (c)

(b)

Y

Z

Y

Z

Spread function

(Z)

Figure 11.58  The line-spread function.

basis of its upper-frequency cutoff. The limitations of this 
scheme became quite apparent with the introduction of  detectors 
such as the plumbicon, image orthicon, and vidicon. These 
tubes have a relatively coarse scanning raster, which fixes the 
resolution limit of the lens-tube system at a fairly low spatial 
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Figure 11.61 is a plot of the MTF for two hypothetical lenses. 
Both start off with a zero-frequency (DC) value of 1.0, and both 
cross the zero axis somewhere where they can no longer resolve 
the data at that cutoff frequency. Had they both been diffraction-
limited lenses, that cutoff would have depended only on diffrac-
tion and, hence, on the size of the aperture. In any event, sup-
pose one of these is to be coupled to a detector whose cutoff 
frequency is indicated in the diagram. Despite the fact that 
lens-1 has a higher limit of resolution, lens-2 would certainly 
provide better performance when coupled to the particular 
detector.

It should be pointed out that a square bar target provides 
an input signal that is a series of square pulses, and the con-
trast in image is actually a superposition of contrast varia-
tions due to the constituent Fourier components. Indeed, one 
of the key points in what is to follow is that optical elements 

frequency. Accordingly, it would seem reasonable to design the 
optics preceding such detectors so that it provided the most con-
trast over this limited frequency range. It would clearly be un-
necessary and perhaps, as we shall see, even detrimental to select 
a mating lens system merely because of its own high limit of 
resolution. Evidently, it would be more helpful to have some fig-
ure of merit applicable to the entire operating frequency range.

We have already represented the object as a collection of point 
sources, each of which is imaged as a point-spread function by 
the optical system, and that patch of light is then convolved into 
the image. Now we approach the problem of image analysis from 
a different, though related, perspective. Consider the object to be 
the source of an input lightwave, which itself is made up of plane 
waves. These travel off in specific directions corresponding, via 
Eqs. (11.64) and (11.65), to particular values of spatial frequency. 
How does the system modify the amplitude and phase of each 
plane wave as it transfers it from object to image?

A highly useful parameter in evaluating the performance of 
a system is the contrast or modulation, defined by

 Modulation K
Imax - Imin

Imax + Imin
 (11.89)

As a simple example, suppose the input is a cosinusoidal irradi-
ance distribution arising from an incoherently illuminated trans-
parency (Fig. 11.60). Here the output is also a cosine, but one 
that’s somewhat altered. The modulation, which corresponds to 
the amount the function varies about its mean value divided by 
that mean value, is a measure of how readily the fluctuations 
will be discernible against the DC background. For the input the 
modulation is a maximum of 1.0, but the output modulation is 
only 0.17. This is only the response of our hypothetical system 
to essentially one spatial frequency input—it would be nice to 
know what it does at all such frequencies. Moreover, here the 
input modulation was 1.0, and the comparison with the output 
was easy. In general it will not be 1.0, and so we define the ratio 
of the image modulation to the object modulation at all spatial 
frequencies as the modulation transfer function, or MTF.

Figure 11.59  A bar target resolution chart.
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Figure 11.60  The irradiance into and out of a system.
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Figure 11.61  Modulation versus spatial frequency for two lenses.
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580 Chapter 11 Fourier Optics

in Fig. 11.63. In either case, regardless of the form of the 
spread function, the image is harmonic if the object is har-
monic. Consequently, if we envision an object as being com-
posed of Fourier components, the manner in which these in-
dividual harmonic components are transformed by the optical 
system into the corresponding harmonic constituents of the 
image is the quintessential feature of the process. The function 
that performs this service is known as the optical transfer 
function, or OTF. It is a spatial frequency-dependent com-
plex quantity whose modulus is the modulation transfer func-
tion (MTF) and whose phase, naturally enough, is the phase 
transfer function (PTF). The former is a measure of the re-
duction in contrast from object to image over the spectrum. 
The latter represents the commensurate relative phase shift. 
Phase shifts in centered optical systems occur only off-axis, 
and often the PTF is of less interest than the MTF. Even so, 
each application of the transfer function must be studied care-
fully; there are situations wherein the PTF plays a crucial 
role. In point of fact, the MTF has become a widely used 
means of specifying the performance of all sorts of elements 

functioning as linear operators transform a sinusoidal input 
into an undistorted sinusoidal output. Despite this, the input 
and output irradiance distributions as a rule will not be identical. 
For example, the system’s magnification affects the spatial 
frequency of the output (henceforth, the magnification will be 
taken as 1). Diffraction and aberrations reduce the sinusoid’s 
amplitude (contrast). Finally, asymmetrical aberrations (e.g., 
coma) and poor centering of elements produce a shift in the 
position of the output sinusoid corresponding to the introduc-
tion of a phase shift. This latter point, which was considered 
in Fig. 11.13, can be appreciated using a diagram like that of 
Fig. 11.62.

If the spread function is symmetrical, the image irradiance 
will be an unshifted sinusoid, whereas an asymmetrical 
spread function will apparently push the output over a bit, as 

Z, z

Object and idealized image
(unit magni�cation)
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Diffraction limited image
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Figure 11.62  Harmonic input and resulting output.
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Figure 11.63  Harmonic input and output with an asymmetric spread 
function.
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 11.3 Optical Applications 581

where use was made of the convolution theorem [Eq. (11.53)]. 
This says that the frequency spectrum of the image irradiance 
distribution equals the product of the frequency spectrum of the 
object irradiance distribution and the transform of the spread 
function (Fig. 11.64). Thus, it is multiplication by ℱ{ (y, z)} that 
produces the alteration in the frequency spectrum of the object, 
converting it into that of the image spectrum. In other words, it is 
ℱ{ (y, z)} that, in effect, transfers the object spectrum into the 
image spectrum. This is just the service performed by the OTF, 
and indeed we shall define the unnormalized OTF as

 �(kY, kZ) K ℱ{ (y, z)} (11.92)

The modulus of �(kY, kZ) will effect a change in the amplitudes 
of the various frequency components of the object spectrum, 
while its phase will, of course, appropriately alter the phase of 
these components to yield ℱ{Ii(Y, Z)}. Bear in mind that in the 
right-hand side of Eq. (11.90) the only quantity dependent on 
the actual optical system is (y, z), so it’s not surprising that the 
spread function is the spatial counterpart of the OTF.

Let’s now verify the statement made earlier that a harmonic 
input transforms into a somewhat altered harmonic output. To 
that end, suppose

 I0(z) = 1 + a cos (kZz + P) (11.93)

where for simplicity’s sake, we’ll again use a one-dimensional 
distribution. The 1 is a DC bias, which makes sure the irradi-

and systems, from lenses, magnetic tape, and films to tele-
scopes, the atmosphere, and the eye, to mention but a few. 
Moreover, it has the advantage that if the MTFs for the indi-
vidual independent components in a system are known, the 
total MTF is often simply their product. This is inapplicable 
to the cascading of lenses, since the aberrations in one lens 
can compensate for those of another lens in tandem with it, 
and they are therefore not independent. Thus if we photograph 
an object having a modulation of 0.3 at 30 cycles per mm, 
using a camera whose lens at the appropriate setting has an 
MTF of 0.5 at 30 cycles>mm and a film* such as Tri-X with 
an MTF of 0.4 at 30 cycles>mm, the image modulation will 
be 0.3 * 0.5 * 0.4 = 0.06.

A More Formal Discussion

We saw in Eq. (11.51) that the image (under the conditions of 
space invariance and incoherence) could be expressed as the 
convolution of the object irradiance and the point-spread func-
tion, in other words,

 Ii(Y, Z) = I0(y, z)à (y, z) (11.90)

The corresponding statement in the spatial frequency domain is 
obtained by a Fourier transform, namely,

 ℱ{Ii(Y, Z)} = ℱ{I0(y, z)} · ℱ{ (y, z)} (11.91)

*Incidentally, the whole idea of treating film as a noise-free linear system is  
somewhat suspect. For further reading see J. B. De Velis and G. B. Parrent,  
Jr., “Transfer function for cascaded optical systems,” J. Opt. Soc. Am. 57, 1486 
(1967).

I0(y, z) =

=

=

=

×

×

y

Frequency spectrum of object

�{I0}

Ii(Y, Z)

Y

Transfer function

�{ }

Frequency spectrum of image

�{Ii}

(y, z)

Figure 11.64  The relation-
ships between the object and 
image spectra by way of the 
OTF, and the object and image 
irradiances by way of the 
point-spread function—all in 
incoherent illumination.
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582 Chapter 11 Fourier Optics

Notice that this is a function of the same form as the input 
signal [Eq. (11.93)], I0(z ), which is just what we set out to 
determine. If the line-spread function is symmetrical (i.e., 
even), ℱs{ (z)} = 0, ℳ(kZ) = ℱc{ (z)}, and Φ(kZ) = 0; there 
is no phase shift, as was pointed out in the previous section. 
For an asymmetric (odd) spread function, ℱs{ (z)} is nonze-
ro, as is the PTF.

It has now become customary practice to define a set of nor-
malized transfer functions by dividing �(kZ) by its zero spatial 
frequency value, that is, �(0) = 1 +∞

-∞
(z) dz. The normalized 

spread function becomes

 n(z) =
  (z)

3+ ∞

- ∞
  (z) dz

 (11.100)

while the normalized OTF is

 T(kZ) K
ℱ5   (z)6

3+ ∞

- ∞
  (z) dz

= ℱ5   n(z)6  (11.101)

or in two dimensions

 T(kY, kZ) = M(kY, kZ)eiΦ(kY, kZ) (11.102)

where M(kY, kZ) K ℳ(kY, kZ)>�(0, 0). Therefore Ii(Z) in Eq. 
(11.99) would then be proportional to

1 + aM(kZ) cos [kZZ + P - Φ(kZ)]

The image modulation [Eq. (11.89)] becomes aM(kZ), the ob-
ject modulation [Eq. (11.93)] is a, and the ratio is, as expected, 
the normalized MTF = M(kZ).

This discussion is only an introductory one designed more 
as a strong foundation than a complete structure. There are 
many other insights to be explored, such as the relationship 
between the autocorrelation of the pupil function and the OTF, 
and from there, the means of computing and measuring trans-
fer functions (Fig. 11.65)—but for this the reader is directed to 
the literature.*

ance doesn’t take on any unphysical negative values. Insofar as 
ƒàh = hàƒ, it will be more convenient here to use

Ii (Z) = (Z)àI0(z)

and so

Ii (Z) = 3 + ∞

- ∞
 51 + a cos [kZ (Z - z) + P]6 (z) dz

Expanding out the cosine, we obtain

Ii (Z) = 3 + ∞

- ∞
(z) dz + a cos (kZZ + P)3 + ∞

- ∞
 cos kZz (z) dz

+ a sin (kZZ + P)3 + ∞

- ∞
 sin kZz (z) dz

Referring back to Eq. (7.57), we recognize the second and third 
integrals as the Fourier cosine and sine transforms of (z), re-
spectively, that is to say, ℱc5 (z)6  and ℱs5 (z)6 . Hence

Ii (Z) = 3 + ∞

- ∞
(z) dz + ℱc5 (z)6a cos (kZZ + P)

 + ℱs5 (z)6a sin (kZZ + P) (11.94)

Recall that the complex transform we’ve become so used to 
working with was defined such that

 ℱ5ƒ(z)6 = ℱc5ƒ(z) + iℱs5ƒ(z)6  (11.95)

or F(kZ) = A(kZ) + iB(kZ) [11.7]

In addition,

ℱ5ƒ(z)6 = 0F(kZ) 0eiw(kZ) = 0F(kZ) 0[cos w + i sin w]

where 0F(kZ) 0 = [A2(kZ) + B2(kZ)]1>2 (11.96)

and w(k) = tan-1 
B(kZ)

A(kZ)
 (11.97)

In precisely the same way, we apply this to the OTF, writing it as

 ℱ5 (z)6 K �(kZ) = ℳ(kZ)eiΦ(kZ) (11.98)

where ℳ(kZ) and Φ(kZ) are the unnormalized MTF and the 
PTF, respectively. It is left as a problem to show that Eq. (11.94) 
can be recast as

Ii(Z) = 3 + ∞

- ∞
(z) dz + aℳ(kZ) cos [kZZ + P - Φ(kZ)]

(11.99)

*See the series of articles “The evolution of the transfer function,” by  
F. Abbott, beginning in March 1970 in Optical Spectra; the articles “Physical 
optics notebook,” by G. B. Parrent, Jr., and B. J. Thompson, beginning in 
December 1964, in the S.P.I.E. Journal, Vol. 3; or “Image structure and trans-
fer,” by K. Sayanagi, 1967, available from the Institute of Optics, University of 
Rochester. A number of books are worth consulting for practical emphasis, e.g., 
Modern Optics, by E. Brown; Modern Optical Engineering, by W. Smith; and 
Applied Optics, by L. Levi. In all of these, be careful of the sign convention in the 
transforms.
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Figure 11.65  An example 
of the kind of lens design 
information available via com-
puter techniques. (Optical 

Research Associates.)

(c)

(a)

(d)

(b)

11.6* Consider the function

E(t) = E0e-iv0te-t2>2t2

and first check that the exponents are unitless. Then show that the Fou-
rier transform of E(t) is

E(v) = 22pE0te-t2(v-v0)2>2

You might want to use the integral identity

3+ ∞

- ∞
e-ax2 + bx + c dx = ap

a
b

1>2
e 14 

(b2>a) + c

11.7* With the previous problem in mind show that the inverse trans-
form of

E(v) = 22pE0t e-t2(v-v0)2>2

brings you back to E(t).

11.8* Show that if ƒ(x) is real and even, its transform is real and even. 
[Hint: Start with Eq. (11.5), use the Euler formula from Section 2.5, 
and assume that ƒ(x) has both a real and an imaginary part.]

11.9 Given that ℱ{ƒ(x)} = F(k) if ℱ{h(x)} = H(k), if p and q are 
constants, determine ℱ{pƒ(x) + qh(x)}.

Complete solutions to all problems—except those with an  
asterisk—can be found in the back of the book.

11.1 Determine the Fourier transform of the function

E(x) = eE0 sin kp x 0 x 0 6 L
0 0 x 0 7 L

Make a sketch of ℱ5E(x)6 . Discuss its relationship to Fig. 11.11.

11.2* Determine the Fourier transform of

ƒ(x) = e sin2 kp x 0 x 0 6 L
0 0 x 0 7 L

Make a sketch of it.

11.3 Determine the Fourier transform of

ƒ(t) = e cos2 vp 

t 0 t 0 6 T
0 0 t 0 7 T

Make a sketch of F(v), then sketch its limiting form as T S ± ∞ .

11.4* Show that ℱ516 = 2pd(k).

11.5* Determine the Fourier transform of the function ƒ(x) =  
A cos k0 x.

PrObLEMS

 Problems 583
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584 Chapter 11 Fourier Optics

11.15* With the last two problems in mind, show that ℱ5 (1>2p) *
sinc (1

2 x)6 = rect(k), starting with the knowledge that ℱ5 rect(x)6 =
sinc (1

2 k), in other words, Eq. (7.58) with L = a, where a = 1.

11.16* Utilizing Eq. (11.38), show that ℱ -15ℱ5ƒ(x)66 = ƒ(x).

11.17* Given ℱ5ƒ(x)6 , show that ℱ5ƒ(x - x0)6  differs from it 
only by a linear phase factor.

11.18 Using direct method, show that aàb = bàa. Prove the rela-
tion using the convolution theorem.

11.19* Prove that the area under the convolution of the functions ƒ(x) 
and h(x) equals the product of the areas under each of those functions.

11.20* Examine the three graphs in Fig. P. 11.20 and explain what’s 
being illustrated. Discuss how the shape of g(X) arises. Why is g(X) 
symmetrical about X = 0? What’s the significance of the width of g(x)? 
Compute the peak value of g(x).

x
0

1

f (x)

+L−L

Figure P.11.11

x
0

1

rect

x0

x−x0
a(      )

a

Figure P.11.1411.10* Figure P.11.10 shows two periodic functions, ƒ(x) and h(x), 
which are to be added to produce g(x). Sketch g(x); then draw diagrams 
of the real and imaginary frequency spectra, as well as the amplitude 
spectra for each of the three functions.

11.21* Suppose we have two functions, ƒ(x, y) and h(x, y), where 
both have a value of 1 over a square region in the xy-plane and are zero 
everywhere else (Fig. P.11.21). If g(X, Y) is their convolution, make a 
plot of g(X, 0).

11.22 Referring to the previous problem, justify the fact that the con-
volution is zero for 0X 0 Ú d + / when h is viewed as a spread function.

11.23* Use the method illustrated in Fig. 11.30 to convolve the two 
functions depicted in Fig. P.11.23.

x

f(x)

x

h(x)

Figure P.11.10

11.11 Compute the Fourier transform of the triangular pulse shown 
in Fig. P.11.11. Make a sketch of your answer, labeling all the pertinent 
values on the curve.

11.12* Given that ℱ5ƒ(x)6 = F(k), introduce a constant scaling fac-
tor 1>a and determine the Fourier transform of ƒ(x>a). Show that the 
transform of ƒ(-x) is F(-k).

11.13* Show that the Fourier transform of the transform, ℱ5ƒ(x)6 ,  
equals 2pƒ(-x), and that this is not the inverse transform of the trans-
form, which equals ƒ(x). This problem was suggested by Mr. D. Chapman 
while a student at the University of Ottawa.

11.14* The rectangular function is often defined as

rect ` x - x0

a
` = c 0,

1
2,
1,

 

0 (x - x0)>a 0 7 1
2

0 (x - x0)>a 0 = 1
2

0 (x - x0)>a 0 6 1
2

where it is set equal to 12 at the discontinuities (Fig. P.11.14). Determine 
the Fourier transform of

ƒ(x) = rect ` x - x0

a
`

Notice that this is just a rectangular pulse, like that in Fig. 11.1b, shifted 
a distance x0 from the origin.

Figure P.11.20

x
0

1.0

(a)

1.51.00.5−0.5−1.0−1.5

f (x)

x
0

1.0

(b)

1.51.00.5−0.5−1.0−1.5

h(x)

X
0

1.0

0.5

(c)

1.51.00.5−0.5−1.0−1.5

g(X) = f(x) * h(x)
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11.24 Given that a(x)àb(x) = g(X), show that after shifting one of 
the functions by an amount x0, we get a(x - x0)àb(x) = g(X - x0).

11.25* Figure P.11.25 depicts a single “saw tooth” function and its 
convolution. Note that the convolution is asymmetrical—explain why 
that’s reasonable. Why does the convolution begin at 0? How wide is 
the convolution and how does that relate to ƒ(x)?

x

f (x, y)
h(x, y)

y

2d

2�

Figure P.11.21

dd
2

Figure P.11.23

11.26* Graphically convolve the two functions ƒ(x) and h(x) shown 
in Fig. P.11.26.

How wide will the convolution be? Will it be symmetrical? Where will 
it start?

11.27* Prove analytically that the convolution of any function ƒ(x) 
with a delta function, d(x), generates the original function ƒ(X).

 Problems 585

Figure P.11.25

x
0

1.0

0.5

(a)

1.5 2.01.00.5−0.5−1.0

f(x)

X
0

0.4

0.2

(b)

1.5 2.01.00.5−0.5−1.0

g(X) = f(x) * f(x)

Figure P.11.26

x
0

1

+2+1−1−2

h(x)

x
0

1

1−1

f(x)

11.28 Prove that d(x - x0)àƒ(x) = ƒ(X - x0) and discuss the mean-
ing of this result. Make a sketch of two appropriate functions and con-
volve them. Be sure to use an asymmetrical ƒ(x).

11.29* Show that ℱ{ƒ(x) cos k0 x} = [F(k - k0) + F(k + k0)]>2 and 
that ℱ{ƒ(x) sin k0 x} = [F(k - k0) - F(k + k0)]>2i.

11.30* Figure P.11.30 shows two functions. Convolve them graphi-
cally and draw a plot of the result.

x0

1

2

3

3 421

f(x)

x0 1 2 3

h(x)
Figure P.11.30

d d dd

Figure P.11.34

11.32 Determine the Fourier transform of

ƒ(x) = rect ` x - b
b

` + rect ` x + b
b

`

11.33 Given the function ƒ(x) = d(x + 4) + d(x - 3) + d(x - 6), 
convolve it with an arbitrary function h(x).

11.34* Make a sketch of the function arising from the convolution of 
the two functions depicted in Fig. P.11.34.

11.31* Graphically convolve, at least approximately, the two func-
tions shown in Fig. P.11.31. Does that solution remind you of any-
thing? Why is the convolution symmetrical? When does its peak value 
occur in relation to ƒ(x) and h(x)? How wide is the convolution? Why?

Figure P.11.31

x
0

1.0

1.51.00.5−0.5−1.0

f(x)

x
0

1.0

1.51.00.5−0.5−1.0

−1.5

−1.5

h(x)
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586 Chapter 11 Fourier Optics

11.45* Show, from the integral definitions, that ƒ(x)★g(x) =   
ƒ(x)àg(-x), where the functions are real.

11.46* Figure P.11.46 depicts a function ƒ(x). Draw, to scale, its au-
tocorrelation function cƒƒ (X). How wide is cƒƒ (X)? How wide is each 
individual peak composing cƒƒ (X)?

How wide will it be? At what value of x will the correlation peak? 
What is the maximum value of cƒh(x)? Is it symmetrical? [Hint: Slide 
either one over the other.]

11.42* Consider the periodic function

ƒ(x) = cos (kx + P)

where the amplitude is 1.0, and P is an arbitrary phase term. Show that 
the autocorrelation function (before being normalized) is

cƒƒ (x) = 1
2 cos kx

See Fig. 11.49.

11.43* A rectangular pulse extends from -x0 to +x0 and has a height 
of 1.0. Sketch its autocorrelation, cƒƒ (X). How wide is cƒƒ (X)? Is it an 
even or odd function? Where does it start (become nonzero) and where 
does it end?

11.44* Figure P.11.44 depicts a single “saw tooth” function and its 
autocorrelation. Explain why cƒƒ (X) is symmetrical about the origin. 
Why does it extend from -1 to +1? Draw sketches where appropriate.

11.35* Figure P.11.35 depicts a rect function (as defined above) and 
a periodic comb function. Convolve the two to get g(x). Now sketch the 
transform of each of these functions against spatial frequency 
k>2p = 1>l. Check your results with the convolution theorem. Label 
all the relevant points on the horizontal axes in terms of d—like the 
zeros of the transform of ƒ(x).

f(x) h(x)

… …

d
2

d

Figure P.11.35

h(x)

0

×

……

E(x)

x

f (x)

1 1

=
Figure P.11.36

11.36 Figure P.11.36 shows, in one dimension, the electric field 
across an illuminated aperture consisting of several opaque bars form-
ing a grating. Considering it to be created by taking the product of a 
periodic rectangular wave h(x) and a unit rectangular function ƒ(x), 
sketch the resulting electric field in the Fraunhofer region.

11.37 Show (for normally incident plane waves) that if an aperture 
has a center of symmetry (i.e., if the aperture function is even), then the 
diffracted field in the Fraunhofer case also possesses a center of sym-
metry.

11.38 Suppose a given aperture produces a Fraunhofer field pattern 
E(X, Y). Show that if the aperture’s dimensions are altered such that the 
aperture function goes from �(x, y) to �(ax, by), the newly diffracted 
field will be given by:

E′(X, Y) =
1
ab

 E aX
a

 , 
Y
b
b

11.39 Show that B(t) = A sin (vt + e), CBB (t) = (A2>2) cos v · t, 
which confirms the loss of phase information in the autocorrelation.

11.40 Suppose we have a single slit along the y-direction of width t 
where the aperture function is constant across it at a value of �0. What 
is the diffracted field if we now apodize the slit with a cosine function 
amplitude mask? In other words, we cause the aperture function to go 
from �0 at the center to 0 at ± t>2 via a cosinusoidal drop-off.

11.41* Graphically find the cross-correlation cƒh(x) of the two func-
tions shown here:

11.47* Figure P.11.47 shows a function ƒ(x) consisting of a periodic 
array of equally spaced delta functions. Construct its autocorrelation 
and discuss whether or not it is periodic.

Figure P.11.41

x
0

1

1

f(x)

x
0

1

−1

h(x)

Figure P.11.44

x
0

1.0

0.5

1.00.5−0.5−1.0

f(x)

X
0

0.4

0.2

1.00.5−0.5−1.0

cf f (X) = f(x) ★ f (x)

Figure P.11.46

x
0

f(x)
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11.48* Imagine two uniformly illuminated small circular holes in an 
opaque screen, as shown in Fig. P.11.48. Construct its autocorrelation. 
Discuss the irradiance distribution for each resulting individual patch 
of light in the autocorrelation. Indicate the relative irradiances of the 
several patches of light in the autocorrelation. Discuss the overall size 
of the autocorrelation compared to the original function.

11.49* Figure P.11.49 shows a transparent ring on an otherwise 
opaque mask. Make a rough sketch of its autocorrelation function, tak-
ing l to be the center-to-center separation against which you plot that 
function.

11.50* Consider the function in Fig. 11.49 as a cosine carrier multi-
plied by an exponential envelope. Use the frequency convolution theo-
rem to evaluate its Fourier transform.

 Problems 587

Figure P.11.47

x
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Figure P.11.49
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12
Thus far in our discussion of phenomena involving the superpo-
sition of waves, we’ve restricted the treatment to that of either 
completely coherent or completely incoherent disturbances. 
This was done primarily as a mathematical convenience, since, 
as is quite often the case, the extremes in a physical situation are 
the easiest to deal with analytically. In fact, both of these limit-
ing conditions are more conceptual idealizations than actual 
physical realities. A middle ground exists between these anti-
thetic poles, which is of considerable contemporary concern—
the domain of partial coherence. Even so, the need for extending 
the theoretical structure is not new; it dates back at least to the 
mid-1860s, when Emile Verdet demonstrated that a primary source 
commonly considered to be incoherent, such as the Sun, could 
produce observable fringes when it illuminated the closely spaced 
pinholes (f 0.05 mm) of Young’s Experiment (Section 9.3). 
Theoretical interest in the study of partial coherence lay dor-
mant until it was revived in the 1930s by P. H. van Cittert and 
later by Fritz Zernike. And as the technology flourished, ad-
vancing from traditional light sources, which were essentially 
optical frequency noise generators, to the laser, a new practical 
impetus was given the subject. Moreover, the recent advent of 
individual-photon detectors has made it possible to examine re-
lated processes associated with the corpuscular aspects of the 
optical field.

Optical coherence theory is currently an area of active re-
search. Thus, even though much of the excitement in the field is 
associated with material beyond the level of this book, we shall 
nonetheless introduce some of the basic ideas.

12.1 Introduction

Earlier (Section 7.10) we evolved the highly useful picture of 
quasimonochromatic light as resembling a series of randomly 
phased finite wavetrains (Fig. 7.47). Such a disturbance is nearly 
sinusoidal, although the frequency does vary slowly (in com-
parison to the rate of oscillation, 1015 Hz) about some mean 
value. Moreover, the amplitude fluctuates as well, but this too is 
a comparatively slow variation. The average constituent wave-
train exists roughly for a time ∆tc, which is the coherence time 
given by the inverse of the frequency bandwidth ∆n.

It is often convenient, even if artificial, to divide coherence 
effects into two classifications, temporal and spatial (p. 403). 
The former relates directly to the finite bandwidth of the source, 
the latter to its finite extent in space.

To be sure, if the light were monochromatic, ∆n would be 
zero, and ∆tc infinite, but this is, of course, unattainable. How-
ever, over an interval much shorter than ∆tc an actual wave be-
haves essentially as if it were monochromatic. In effect, the 
coherence time is the temporal interval over which we can rea-
sonably predict the phase of the lightwave at a given point in 
space. This then is what is meant by temporal coherence; 
namely, if ∆tc is large, the wave has a high degree of temporal 
coherence and vice versa.

The same characteristic can be viewed somewhat differently. 
To that end, imagine that we have two separate points-P′1 and -P′2 
lying on the same radius drawn from a quasimonochromatic 
point source (see Fig. 9.6). If the coherence length, c∆tc, is 
much larger than the distance (r12) between P′1 and P′2, then a 
single wavetrain can easily extend over the whole separation. 
The disturbance at P′1 would then be highly correlated with the 
disturbance occurring at P′2. On the other hand, if this longitu-
dinal separation were much greater than the coherence length, 
many wavetrains, each with an unrelated phase, would span the 
gap r12. In that case, the disturbances at the two points in space 
would be independent at any given time. The degree to which a 
correlation exists is sometimes spoken of alternatively as the 
amount of longitudinal coherence. Whether we think in terms 
of coherence time (∆tc) or coherence length (c∆tc), the effect 
still arises from the finite bandwidth of the source.

The idea of spatial coherence is most often used to de scribe 
effects arising from the finite spatial extent of ordinary light 
sources. Suppose then that we have a classical broad monochro-
matic source. Two point radiators on it, separated by a lateral 
distance that is large compared with l, will presumably behave 
quite independently. That is to say, there will be a lack of cor-
relation existing between the phases of the two emitted distur-
bances. Extended sources of this sort are generally referred to 
as incoherent, but this description is somewhat misleading, as 
we shall see in a moment. Usually one is interested not so much 
in what is happening on the source itself but rather in what is 
occurring within some distant region of the radiation field. The 
question to be answered is really this: How do the nature of the 

Basics of Coherence 
Theory
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 12.1 Introduction 589

Young’s Experiment can also be used to demonstrate temporal 
coherence effects with a finite bandwidth source. Figure 12.2a 
shows the fringe patterns obtained with two small circular aper-
tures illuminated by a He–Ne laser. Before the photograph in 
Fig. 12.2b was taken, an optically flat piece of glass, 0.5 mm 
thick, was positioned over one of the pinholes (say, S1). No 
change in the form of the pattern (other than a shift in its loca-
tion) is evident, because the coherence length of the laser light 
far exceeds the optical path length difference introduced by the 
glass. On the other hand, when the same experiment is repeated 
using the light from a collimated mercury arc [(c) and (d ) in 
Fig. 12.2], the fringes disappear. Here the coherence length is 
short enough and the additional optical path length difference of 
the glass is long enough for uncorrelated wavetrains from the 
two apertures to arrive at the plane of observation. In other 
words, of any two coherent wavetrains that leave S1 and S2, the 
one from S1 is now delayed so long in the glass that it falls com-
pletely behind the other and arrives at go to meet a totally dif-
ferent wavetrain from S2.

In both cases of temporal and spatial coherence we are re-
ally concerned with one phenomenon, namely, the correlation 
between optical disturbances. That is, we are generally inter-
ested in determining the effects arising from relative fluctua-
tions in the fields at two points in space–time. Admittedly, the 
term temporal coherence seems to imply an effect that is ex-
clusively temporal. However, it relates back to the finite extent 
of the wavetrain in either space or time, and some people even 
prefer to refer to it as longitudinal spatial rather than temporal 

source and the geometrical configuration of the situation relate 
to the resulting phase correlation between two laterally spaced 
points in the light field?

This brings to mind Young’s Experiment, in which a primary 
monochromatic source S illuminates two pinholes in an opaque 
screen. These in turn serve as secondary sources, S1 and S2, to 
generate a fringe pattern on a distant plane of observation, go 
(Fig. 9.11). We already know that if S is an idealized point 
source, the wavelets issuing from any set of apertures-S1 and -S2 
on ga will maintain a constant relative phase; they will be pre-
cisely correlated and therefore coherent. A well-defined array 
of stable fringes results, and the field is spatially coherent. At 
the other extreme, if the pinholes are illuminated by separate 
thermal sources (even with narrow bandwidths), no correlation 
exists; no fringes will be observable with existing detectors, and 
the fields at S1 and S2 are said to be incoherent. The generation 
of interference fringes provides a very convenient measure of 
coherence.

We can gain some important insights into the process by re-
turning to the general considerations of Section 9.1 and Eq. (9.7). 
Imagine two scalar waves E1(t) and E2(t) traveling toward, and 
overlapping at, point-P, as in Fig. 9.2. If the light is monochro-
matic and both beams have the same frequency, the resulting in-
terference pattern will depend on their relative phase at P. If the 
waves are in-phase, E1(t)E2(t) will be positive for all t as the 
fields rise and fall in together. Hence, I12 = 28E1(t)E2(t)9T will 
be a nonzero positive number, and the net irradiance I will exceed 
I1 + I2. Similarly, if the lightwaves are completely out-of-phase, 
one will be positive when the other is negative, with the result 
that the product E1(t)E2(t) will always be negative, yielding a 
negative interference term I12, and the result that I will be less 
than I1 + I2. In both cases, the product of the two fields moment 
by moment is oscillatory, but it is nonetheless either totally posi-
tive or negative and so averages in time to a nonzero value.

Now consider the more realistic case in which the two light-
waves are quasimonochromatic, resembling the disturbance in 
Fig. 7.47, which has a finite coherence length. If we again form 
the product E1(t)E2(t), we see in Fig. 12.1 that it varies in time, 
drifting from negative to positive values. Accordingly, the inter-
ference term 8E1(t)E2(t)9T, which is averaged over a relatively 
long interval compared with the periods of the waves, will be 
quite small, if not zero: I ≈ I1 + I2. In other words, insofar as 
the two lightwaves are uncorrelated in their risings and fallings, 
they will not preserve a constant phase relationship, they will 
not be completely coherent, and they will not produce the ideal 
high-contrast interference pattern considered in Chapter 9. We 
should be reminded here of Eq. (11.87), which expresses the 
cross-correlation of two functions—with t = 0. Indeed, if P is 
shifted in space (e.g., along the plane of observation in Young’s 
Experiment), there by introducing a relative time delay of t be-
tween the two lightwaves, then the interference term becomes 
8E1(t)E2(t + t)9T, which is the cross-correlation. Coherence is 
correlation, a point that will be made formally in Section 12.4.

t

E1

t

E2

t

E1 E2

Figure 12.1  Two overlapping E-fields and their product as functions of 
time. The more uncorrelated the fields, the more nearly the product will 
average to zero.
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590 Chapter 12 Basics of Coherence Theory

filter. Radiation from a thermal source is analogous to noise; it 
comprises a wide frequency spectrum with a random, rapidly 
fluctuating phase. We filter the light to reduce its bandwidth, 
to make it easier to analyze, and end up with the equivalent of 
narrow-band noise. 

The analysis can get a little confusing here because there’s a 
lot going on all at once. There will be interfering electromag-
netic (EM) wavelets, the irradiance fringes that arise from those 
wavelets (call them constituent fringes), and the actual observed 
pattern of light and dark bands (the final fringes) that arises 
from the overlaying (sans any interaction) of the constituent 
fringes. 

The source, the aperture screen, and the plane of observation 
are all separated by large horizontal distances. Consequently, 
Young’s cosine-squared pattern is modulated by Fraunhofer dif-
fraction due to the finite size of the individual apertures, just as 
we’ve seen before. What’s different here (Fig. 12.3) is that the 
graphical irradiance fringes seem to “float” above the I = 0 
line. They don’t originate at zero (blackness) as they did in the 
idealized situations we studied earlier (e.g., Fig. 9.17), where 
the illumination was supposed to be perfectly coherent. Each 
graphical irradiance peak now lies beneath the diffraction enve-
lope as before, but each is shorter than before; the fringes ap-
pear less distinct than before (the black bands are gone). Since 
coherence theory is all about fringes, we say that the optical 
field is only partially coherent.

The optical field at a distant aperture plane (shown schemat-
ically in Fig. 12.4) can be considered a flood of independent 
EM plane waves, each originating at a point on the source. Such 
a wavelet emitted from the center of the source, traveling down 
the central axis, would arrive perpendicular to the apertures, 
and ultimately result in a familiar (Fig. 9.14) Young’s fringe 
system, albeit a rather faint one. But now there are many uncor-
related waves coming in on the aperture screen in lots of direc-
tions, and each creates a cosine-squared fringe pattern. Every 

coherence. Even so, it does depend intrinsically on the stability 
of phase in time, and accordingly we will continue to use the 
term temporal coherence. Spatial coherence, or if you will, lat-
eral spatial coherence, is perhaps easier to appreciate because 
it’s so closely related to the concept of the wavefront. Thus if 
two laterally displaced points reside on the same wavefront at 
a given time, the fields at those points are spatially coherent 
(see Section 12.4.1).

12.2 Fringes and Coherence

Interference fringes are an easily observable manifestation of 
coherence. If a setup produces fringes, the extant optical field 
must be coherent, at least to some degree. This section explores 
how we can begin to quantify that phenomenon.

In addition to the concepts of coherence length and coherence 
time, there’s another idea, coherence area, which is conceptu-
ally useful. To appreciate it, consider the classic double-aperture 
setup depicted schematically in Fig. 12.3. These two apertures 
could be pinholes or very narrow slits. The extended quasimono-
chromatic source, assumed to have a uniform irradiance, and a 
mean wavelength of l0, sends out light from countless indepen-
dent atomic emitters. Think of it as some thermal source, like an 
incandescent bulb, a discharge lamp, or the Sun, followed by a 

Figure 12.2  Double-beam interference from a pair of circular aper-
tures. (a) He–Ne laser light illuminating the holes. (b) Laser light once 
again but now a glass plate, 0.5 mm thick, is covering one of the holes. 
(c) Fringes with collimated mercury-arc illumination but no glass plate.  
(d) This time the fringes disappear when the plate is inserted using mer-
cury light. (B.J. Thompson, J. Soc. Photo. Inst. Engr. 4, 7 [1965])

(a) (b)

(c) (d)

Figure 12.3  A filtered thermal source illuminating a pair of apertures. 
The resulting irradiance fringes are formed by partially coherent  
quasimonochromatic light.
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 12.2 Fringes and Coherence 591

Take S′ and S to be very close initially. Ignoring diffraction 
in Fig. 12.5a, the two constituent fringe systems almost overlap, 
peak-on-peak, yielding a bright, well-defined pattern, which 
nonetheless “floats” slightly above the zero-I axis. Moving S′ 
laterally away from S will move P′ away from P, and the two 
idealized cosine-squared irradiance systems further shift with 
respect to each other. The final fringes that we actually see, the 
result of this superposition, become less distinct, until (Fig. 12.5c) 
the irradiance peaks produced by S′ precisely overlay troughs 
produced by S. The two contributing sets of fringes then essen-
tially blend, vanishing into a uniform blotch of light (see Prob-
lem 12.2). Where that extreme condition sets in can be used to 
define the coherence of the light, and that’s in part where this 
analysis is going.

The two wavelets, one from S to S2 to P, and the other from 
S to S1 to P arrive in-phase and produce a traditional cosine-
squared irradiance pattern with a maximum at P. Now suppose 
S′ happens to be located such that P′ lies at a minimum in this 
(S’s) irradiance pattern. The maximum generated by S′ at P′
would then precisely overlap the minimum created there by S. 
In fact, all of S’s minima will then overlap all of S′’s maxima, 
washing out the final fringe system entirely (Fig. 12.5c). For 
this to happen, we need there to be a relative phase difference 
between the two sets of light-field (EM) wavelets equal to an 
odd multiple of p radians. That is, the two wavelets from S to 
S2 to P, and from S to S1 to P, arrive in-phase, just as the two 
wavelets from S′ to S2 to P′, and from S′ to S1 to P′, arrive  
in-phase. But whatever phase the two EM wavelets have at P, 
the wavelets at P′ must have a phase that’s half a wavelength 
different. That will produce a half-wave relative shift in the con-
stituent irradiance patterns, and put every one of S′’s maxima 
on top of S’s minima, and vice versa.

To accomplish this, reexamine Fig. 12.4 and notice that a 
plane wave traveling along the central SP-axis at ga makes an 
angle u with a plane wave traveling along the S′P′-axis. The 
OPL from S′ to P′ is longer than the OPL from S to P by an 
amount equal to a sin u. As u gets smaller, S′ approaches S, and 
a sin u approaches zero. To cause the EM wavelets at P and P′ 
to be out-of-phase by p with respect to each other, a sin u must 
equal l0>2 (or an odd multiple thereof). For small angles, 
sin u ≈ u and the fringes will vanish when

u ≈ l0>2a

or more generally, ideally, when u ≈ (m + 1
2)l0>a where m = 0, 

1, 3, . . . . Once the final fringes vanish, if S′ is moved still far-
ther from S, maxima in the two constituent irradiance distribu-
tions will again approach one another, and fringes will ideally 
reappear, if only faintly.

Let’s apply the above results to a line source of linear dimen-
sion ds, like the one in Fig. 10.4, except that the constituent 
point sources are now not coherent. Take it to extend from S′ to 
S″ in Fig. 12.4. Alternatively, we might consider a slit source in 
the plane of g s (perpendicular to the page), of width S′S″. Just 
as S′ and S, when properly located, act together as a coordinated 

one of these is shifted laterally a bit, depending on the angle u, 
and they all overlap on the plane of observation go. We want to 
be able to understand what the irradiance distribution due to this 
tumult of EM wavelets looks like, and how it depends on the 
size, shape, and location of the thermal source. 

To simplify matters at first, suppose only two source points 
exist: S′ at the periphery of the extended source and S at its 
center. Source point-S generates a cosine-squared interference 
pattern centered with its zeroth-order maximum at P. Whereas 
the irradiance pattern produced by S′ is centered on the line 
from S′ to P′ (where m = 0), its bright bands appear at angular 
distances from it equal to um = ml0>a. The location of P′ is 
determined by the location of S′. These two source points are 
independent of each other; the rapidly changing EM waves 
coming from them cannot interfere in any sustained way. Their 
separate sets of constituent irradiance fringes simply overlap on go (Fig. 12.5). 

Figure 12.4  Irradiance fringes produced by point sources S, S,′ and S″ 
via Young’s double-aperture setup.
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Figure 12.5  The overlapping of two sets of idealized irradiance fringes 
showing how they become less distinct as they go increasingly out-of-phase.

(c)

(b)

(a)

M12_HECH6933_05_GE_C12.indd   591 26/08/16   5:00 PM



592 Chapter 12 Basics of Coherence Theory

source pair to blur out the two constituent fringe systems they 
individually produced, the same process can be envisioned to 
occur point-by-point along the line source. Thus imagine S′ and 
S positioned such that the fringe systems they individually gen-
erate overlap and vanish. Locate a point source on the line just 
below S′ and another one just below S. These form a coordi-
nated pair whose individual fringes on go will also be washed 
out. And the same is true for coordinated pairs of points all the 
way down to one source point just above S and one just above 
S″. Arranging for S′ and S to have their cosine-squared irradi-
ance fringes blur out is enough to have the constituent fringes 
from every minute point source (except one) on the entire line 
source blur out. Clearly, if the line source is displaced perpen-
dicular to the plane of the diagram (parallel to the rectangular 
apertures) it becomes a slit source of finite width S′S″ and the 
argument still holds; the fringes still vanish. The source slit sub-
tends an angle us = 2u when the fringes vanish into a more-or-
less uniform blotch of light, and so 

  us ≈ l0>a (12.1)

For fringes to be clearly observable, it’s necessary that the 
source subtend an angle viewed from the aperture plane much 
less than us.

A circular thermal source, assumed to have a uniform irradi-
ance (Fig. 12.4), again lights up two pinholes separated by a 
distance a. The source, which has a linear dimension ds, is fil-
tered so it emits a mean vacuum wavelength of l0. We imagine 
an illuminated circular region of diameter dc ≈ a projected onto ga, just encompassing both holes, such that dc ≈ l0>us. Aper-
ture separations less than dc will produce increasingly more dis-
cernible fringes. Accordingly, dc might be called the lateral co-
herence distance, in spite of the fact that our analysis was rather 
crude. An improved treatment related to coherence theory, the 
van Cittert–Zernike theorem, and the Airy diffraction pattern, 
will be discussed later. It confirms that fringes first vanish when 
dc = 1.22 l0>us. The order-of-magnitude area of the illuminated 
circle on ga, having a diameter dc,

 Ac ≈ (l0>us)
2 (12.2)

could be called the coherence area (although a slightly more 
practical definition will be considered presently). If the source-
to-aperture distance is l, and if we approximate the area of the 
source As simply as ds

2, it’s left as a problem to show that an al-
ternative statement of the area of coherence is

 Ac ≈
l2 l 0

2

As
 (12.3)

The area of coherence gets larger as the distance from the 
source (l) gets larger. This is essentially the case because the 
farther g s is from the aperture screen, the more narrowly each 
incoherent source point illuminates it—and the less separated 
will be their constituent fringe sets, one from the other. In other 

words, the rays from a star impinge on the apparatus at very nar-
row angles and all their cosine-squared patterns nearly overlap 
peak-on-peak. Coherence increases as the light propagates far-
ther and farther from its source, that is, as the light approaches 
being collimated. That is why Young’s fringes can be seen by 
looking through two closely spaced pinholes at a distant street 
lamp—try it. And that is also why it’s generally not so good to 
talk about the source being coherent or partially so; it’s the light 
that’s coherent or not.

At this point a cautionary note concerning lateral coherence 
length is appropriate, since it’s basically a contrived idea. The 
concept, however useful, should be applied with caution. Be-
yond the fact that it’s only an order-of-magnitude quantity in 
the first place, there are different ways to approach it, and 
whether or not one of the apertures lies on the central axis, or 
whether that axis is midway between apertures, can lead to al-
ternative formulations and even a difference of a factor of 2. 
Given variations that arise for differently shaped apertures, 
some authors prefer to be more encompassing and take 
dc = 1.22 l0>us to be the “radius” of the area of coherence rather 
than its diameter. 

EXAMPLE 12.1

The angle subtended by the Sun at the surface of the Earth is 
0.533°. Suppose we filter the sunlight, passing a quasimono-
chromatic beam at 500 nm, and wish to observe Young’s double-
pinhole fringes. How far apart, at the very most, could the tiny 
apertures be?

SOLUTION 

Using dc ≈ l0>us, where us = 0.533° = 9.30 *10-3 rad,

dc ≈
500 * 10-9 m

9.30 * 10-3 rad
≈ 5.4 * 10-5 m

The aperture separation should be less than roughly 54 mm.

Figure 12.6 is something of a visual summary: The individual 
fringe width depends inversely (Section 9.3.1) on the center-to-
center distance between apertures. The overall size of the final 
striated disk of light depends inversely (Section 10.2.5) on the 
size of each aperture. We can see from Fig. 12.6a how a small 
thermal source produces a distinct irradiance pattern—bright 
and dark bands. The shifted constituent fringes (two are shown 
graphically) are modulated by the Fraunhofer diffraction enve-
lope of the individual apertures. The resulting graphical fringes 
“float,” but only slightly above the I = 0 axis. On the other 
hand, a large source (Fig. 12.6b) produces indistinct final fring-
es, modulated by a lower envelope as the irradiance spreads out. 
Both the bright and dark extremes blend into an almost unifor-
mity. The faint remaining graphical fringes “float” well above 
the I = 0 axis.
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12.2.1 Diffraction and the Vanishing Fringes

Return to the situation in which the light field from a finite 
thermal source is incoherent and fringes just vanish. It 
would seem that the diffraction pattern produced by the 
source, when taken as a sizeable aperture, ought to have 
something to do with the cosine-squared pattern washing 
out. Since the light that produces the fringes comes from 
the source, and widening the source degrades the fringes, 
that statement is not, on its face, unreasonable. Indeed, 
there is a very useful formulation called the van Cittert–
Zernike theorem that addresses this relationship, and we’ll 
come to it soon enough. That theorem is highly mathemati-
cal and a tad obscure, so a little groundwork now will pay 
off later.

On the left of the screen g s in Fig. 12.7 is a provider of fil-
tered thermal light. The source screen has a hole, of diameter ds, 
in it which acts as the extended source illuminating a Young’s 
setup much like that of Fig. 12.3. The light streaming from the 
hole can again be thought of as a barrage of plane waves com-
ing off in a wide range of directions—that’s been discussed sev-
eral times before. These are the EM wavelets that illuminate the 
two apertures and lead to the cosine-squared fringes. 

If the small source hole is lit by only plane waves traveling 
in the forward direction (Fig. 10.2b) it would reemit wavelets in 
a cone and thus project a Fraunhofer pattern onto the distant 
aperture screen. Its main diffraction peak would subtend a large 
angle u ≈ l0>b where here b = ds. Clearly, when ds is small, u 
is large and both of Young’s apertures would be coherently  

illuminated and produce cosine-squared fringes. That much is 
easily observed (Fig. 9.10).

Plane waves at other angles impinge on the source hole and 
they, in turn, produce diffraction patterns on the aperture screen 
that are shifted proportionately off the central axis. Still, each 
broad central diffraction peak will illuminate both of the dou-
ble apertures, and that’s an important point. At this juncture, 
with ds small, we again have Young’s Experiment as discussed 
in Chapter 9.

Once more, consider a plane wave along the central axis, 
but now suppose the source hole is widened so that u decreases 
and the central diffraction peak narrows until its width just 
equals a, the distance separating the two apertures in ga. The 
Young’s fringes that were being produced before must vanish 
when the first diffraction minima (m = ±1), on each side of 
the central peak (separated by a), overlay each of the two ap-
ertures. There will simply be no light reaching either aperture 
in ga, arising from that central plane wave. What of all the 
other plane waves emerging from the source? They create iden-
tical Fraunhofer patterns that are slightly shifted off the central 
axis. Although each such peak will likely illuminate at least 
one aperture (e.g., S2 in Fig. 12.7), if it does it will necessarily 
fall short of illuminating the other (e.g., S1 in Fig. 12.7). This 
means the light that does arrive at both holes in ga will be 
incoherent, and the Young’s fringes will vanish. If the source 
is made still wider, the fringes will faintly reappear when the 
tiny second-order diffraction maxima simultaneously reach 
both apertures.

Quite generally, there should be a relationship between the 
far-field diffraction pattern at a region in space that is generated 
by a specific representation of a thermal source, and the coher-
ence of the resulting light from that source, over that same re-
gion (that’s what the van Cittert–Zernike theorem is).

Figure 12.6  (a) High-contrast fringes resulting from a small uniform 
source. (b) Lower-contrast fringes resulting from a larger uniform source. 
(Peter Lawson/Sky & Telescope Magazine)
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Figure 12.7  Diffraction from a thermal source. The diagram shows just 
two of the many constituent Fraunhofer diffraction patterns spread over 
the aperture screen.
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594 Chapter 12 Basics of Coherence Theory

in turn, and then relate all this to the idea of coherence in a more 
formal way. An analytic expression can be derived for the flux-
density distribution with the aid of Fig. 12.8.* We use a lens L 
to localize the fringe pattern more effectively, that is, to make 
the cones of light diffracted by the finite pinholes more com-
pletely overlap on the plane go. A point source S′ located on 
the central axis would generate the usual pattern given by

 I = 4I0 cos2 aYap
sl

b (12.5)

from Section 9.3. Similarly, a point source above or below S′ 
(parallel to the slits in Fig.12.8b) and lying on a line normal to 
the line S1S2 would generate the same straight band fringe sys-
tem slightly displaced in a direction parallel to the fringes. Thus 
replacing S′ by an incoherent line source (normal to the plane of 
the drawing) effectively just increases the amount of light avail-
able. This is something we presumably already knew. In con-
trast, an off-axis point source at, say, S″, will generate a pattern 
centered about P″, its image point on go in the absence of the 
aperture screen. A “spherical” wavelet leaving S″ is focused at 
P″; thus all rays from S″ to P″ traverse equal optical paths, and 
the interference must be constructive; in other words, the central 
maximum appears at P″. The path difference S1P″ - S2P″ ac-
counts for the displacement P′P″. Consequently, S″ produces  
a fringe system identical to that of S′ but shifted by an amount 
P′P″ with respect to it. Since these source points are uncorre-
lated, their irradiances add on go rather than their field ampli-
tudes (Fig. 12.8e).

The pattern arising from a broad quasimonochromatic ther-
mal source having a rectangular aperture of width b can be de-
termined by finding the irradiance due to an “incoherent” con-
tinuous line source parallel to S1S2. Notice, in Fig. 12.8b, that 
the variable Y0 describes the location of any point on the image 
of the source when the aperture screen is absent. With ga in 
place, each differential element of the line source will contrib-
ute a fringe system centered about its own image point, a dis-
tance Y0 from the origin on go. Moreover, its contribution to 
the flux-density pattern dI is proportional to the differential line 
element or, more conveniently, to its image, dY0, on go. Thus, 
using Eq. (9.31), the contribution to the total irradiance arising 
from dY0 becomes

dI = A dY0 cos2 cap
sl

 (Y - Y0)d

where A is an appropriate constant. This, in analogy to Eq. (12.5), 
is the expression for an entire fringe system of minute irradi-
ance centered at Y0 contributed by the tiny piece of the source 
whose image corresponds to dY0 at Y0. By integrating over the 

12.3 Visibility

The quality of the fringes produced by an interferometric sys-
tem can be described quantitatively using the visibility �, 
which, as first formulated by Michelson, is given by

 �( r$) K
Imax - Imin

Imax + Imin
 (12.4)

This is identical to the modulation of Eq. (11.89). Here Imax and 
Imin are the irradiances corresponding to the maximum and  
adjacent minimum in the fringe system. 

EXAMPLE 12.2

Go back to the discussion of interference arising from two point 
sources, Eq. (9.14), and show that the maximum possible value 
of the visibility is then 1.0. When does that happen? When is the 
visibility zero?

SOLUTION 

Eq. (9.14) is

I = I1 + I2 + 22I1I2 cos d

It has a maximum value of

Imax = I1 + I2 + 22I1I2

and a minimum value of

Imin = I1 + I2 - 22I1I2

Hence the visibility for two ideal sources is

�(  r$) =
Imax - Imin

Imax + Imin
= 2

2I1 I2

(I1 + I2)

Suppose I1 = CI2, where C is some number; then

�(  r$) =
22C I2

(C + 1)I2
=

22C
C + 1

and it’s easy to see that this peaks at C = 1 or I1 = I2 = I0, 
whereupon

�(  r$) =
2I0

2I0
= 1.0

The visibility is zero when Imax = Imin, that is, when the fringes 
vanish into a uniform field of light. Apparently the best setup 
for observing Young’s fringes requires that both apertures be 
illuminated equally, I1 = I2.

If we set up Young’s Experiment, we could again vary the 
separation of the apertures or the size of the primary qua-
simonochromatic thermal source, measure � as it changes  

*This treatment in part follows that given by Towne in Chapter 11 of Wave Phenomena. 
See Klein, Optics, Section 6.3, or Problem 12.13 for different versions.
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Figure 12.8  Young’s Experiment with an extended slit source.  
(e) A simple representation of how shifted fringes with the same spa-
tial frequency overlap and combine to form a net disturbance of that 
same spatial frequency with a reduced visibility (see Fig. 7.9). (f ) This 
is what the fringes look like as the visibility decreases (from top to 
bottom).
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596 Chapter 12 Basics of Coherence Theory

extent w of the image of the line source, we effectively integrate 
over the source and get the entire pattern:

I(Y) = A3+w>2

-w>2
 cos2 cap

sl
 (Y - Y0)d  dY0

After a good bit of straightforward trigonometric manipulation, 
this becomes

I(Y) =
Aw
2

+
A
2

 
sl
ap

 sin aap
sl

 wb cos a2 
ap
sl

 Yb

The irradiance oscillates about an average value of  I = Aw>2, 
which increases with w, which in turn increases with the width 
of the source slit. Accordingly,

 
I(Y)

I
= 1 + asin apw>sl

apw>sl b cos a2 
ap
sl

 Yb (12.6)

or  
I(Y)

I
= 1 + sinc aapw

sl
b cos a2 

ap
sl

 Yb (12.7)

It follows that the extreme values of the relative irradiance are 
given by

 
Imax

I
= 1 + ` sinc aapw

sl
b `  (12.8)

and 
Imin

I
= 1 - ` sinc aapw

sl
b `  (12.9)

When w is very small in comparison to the fringe width (sl>a), 
the sinc function approaches 1 and Imax>I = 2, while Imin>I = 0 
(see Fig. 12.9). As w increases, Imin begins to differ from zero, 
and the fringes lose contrast until they finally vanish entirely at 
w = sl>a. Between the arguments of p and 2p (i.e., w = sl>a 
and w = 2sl>a), the sinc is negative. As the primary slit source 
widens beyond w = sl>a, the fringes reappear but are shifted in 
phase; in other words, whereas previously there was a maxi-
mum at Y = 0, now there will be a minimum.

As a rule, the extent of the source (b) and the separation of 
the slits (a) are very small compared with the distances between 
the screens (l) and (s), and consequently we can make some 
simplifying approximations. While the above considerations 
were expressed in terms of w and s, it follows from Fig. 12.8c, 
using the central angle h, that b ≈ lh and w ≈ sh; hence 
w>s ≈ b>l. Accordingly, (apw>sl) ≈ (aph>l) ≈ (apb>ll). 
The visibility of the fringes follows from Eq. (12.4):

 � = ` sinc aapw
sl

b ` = ` sinc aapb
ll

b `  (12.10)

which is plotted in Fig. 12.10. Observe that � is a function of 
both the source breadth and the aperture separation a. Holding 
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I(Y)�I

Y
0

2

� = 1

sl�a >> w
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Figure 12.9  Fringes with varying source slit size. Here w is the width of 
the image of the slit, and sl>a is the peak-to-peak width of the fringes.
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Figure 12.10  The visibility as given by Eq. (12.10). This applies to a slit 
source of partially coherent light ( � 6 1).
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 12.4 The Mutual Coherence Function and the Degree of Coherence 597

either one of these parameters constant and varying the other 
will cause � to change in precisely the same way. Note that the 
visibility in Fig. 12.9a is equal to 1 because Imin = 0. Clearly, 
then, the visibility of the fringe system on the plane of observa-
tion is linked to the way the light is distributed over the aperture 
screen. If the primary source were in fact a point, b would equal 
zero, and the visibility would be a perfect 1. Shy of that, the small-
er (apb>ll) is, the better—that is, the bigger � is and the clearer 
the fringes are. We can think of � as a measure of the degree of 
coherence of the light from the primary source as spread over 
the aperture screen. Keep in mind that we have encountered the 
sinc function before, in connection with the diffraction pattern 
resulting from a rectangular aperture.

When the primary source is circular, the visibility is a good 
deal more complicated to calculate. It turns out to be proportional 
to a first-order Bessel function (Fig. 12.11). This too is quite rem-
iniscent of diffraction, this time at a circular aperture [Eq. 
(10.56)]. These similarities between expressions for � and the 
corresponding diffraction patterns for an aperture of the same 
shape are, as you might guess by now, a manifestation of the van 
Cittert–Zernike theorem; we will see that presently.

Figure 12.12 shows a sequence of fringe systems in which the 
circular thermal source is constant in size but the separation a 
between S1 and S2 is increased. The visibility decreases from (a) 
to (d) in the figure, then increases for (e) and decreases again at 
(ƒ) . All the associated �-values are plotted in Fig. 12.11. Note 
the shift in the peaks, that is, the change in phase at the center of 
the pattern for each point on the second lobe of Fig. 12.11 (the 
Bessel function is negative over that range). In other words, 

(a), (b), and (c) have a central maximum, while (d) and (e) have 
a central minimum, and (ƒ)  on the third lobe is back to a maxi-
mum. In the same way, for a slit source, the domain where 
sinc (apw>sl) in Eq. (12.7) is positive or negative will yield a 
maximum or minimum, respectively, in I(0)> I . These in turn 
correspond to the odd or even lobes of the visibility curve of 
Fig. 12.10. Bear in mind that we could define a complex visibil-
ity of magnitude �, having an argument corresponding to the 
phase shift—we’ll come back to this idea later.

Figure 12.13 results when the separation a is held constant 
while the primary thermal source diameter is increased. Alter-
natively, since the width of the fringes is inversely propor-
tional to a, the spatial frequency of the bright and dark bands 
increases as a increases from its value in (a) to that in (ƒ) in 
Fig. 12.12.

We should also mention that the effects of the finite band-
width will show up in a given fringe pattern as a gradually de-
creasing value of � with Y, as in Fig. 12.14 (see Problem 12.10). 
When the visibility is determined in these cases, using the central 
region of each of a series of patterns, the dependence of � on 
aperture separation will again match Fig. 12.11.

12.4  The Mutual Coherence Function 
and the Degree of Coherence

Let’s now carry the discussion a bit further in a more formal 
fashion. Again suppose we have a broad, narrow bandwidth 
source, which generates a light field whose complex representa-
tion is E ˜( r$, t). We’ll overlook polarization effects, and there-
fore a scalar treatment will do. The disturbances at two points in 
space S1 and S2 are then E ˜(S1, t) and E ˜(S2, t) or, more succinct-
ly, E ˜1(t) and E ˜2(t). If these two points are then isolated using an 
opaque screen with two circular apertures (Fig. 12.15), we’re 
back to Young’s Experiment. The two apertures serve as sources 
of secondary wavelets, which propagate out to some point-P on go. There the resultant field is

 E ˜P(t) = K ˜1E ˜1(t - t1) + K ˜2E ˜2(t - t2) (12.11)

where t1 = r1>c and t2 = r2>c. This says that the field at the 
space–time point (P, t) can be determined from the fields that 
existed at S1 and S2 at t1 and t2, respectively, these being the 
instants when the light, which is now overlapping, first emerged 
from the apertures. The quantities K ˜1 and K ˜2, which are known 
as propagators, depend on the size of the apertures and their 
relative locations with respect to P. They mathematically affect 
the alterations in the field resulting from its having traversed 
either of the apertures. For example, the secondary wavelets is-
suing from the pinholes in this setup are out-of-phase by p>2 
rad, with the primary wave incident on the aperture screen, ga 
(Section 10.3.1). Clearly, someone is going to have to tell 
E ˜( r$, t) to shift phase beyond ga—that’s just what the K ˜  factors 
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Figure 12.11  The visibility for a uniform circular source of partially 
coherent light (� 6 1).
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598 Chapter 12 Basics of Coherence Theory

It is now assumed that the wave field is stationary, as is almost 
universally the case in classical Optics; in other words, it does 
not alter its statistical nature with time, so that the time average 
is independent of whatever origin we select. Even though there 
are fluctuations in the field variables, the time origin can be 
shifted, and the averages in Eq. (12.13) will be unaffected. 
The particular moment over which we decide to measure I 
shouldn’t matter. Accordingly, the first two time averages can 
be rewritten as

IS1
= 8E ˜1(t)E ˜ *

1(t)9T and IS2
= 8E ˜2(t)E ˜ *

2(t)9T

where the origin was displaced by amounts t1 and t2, respec-
tively. The subscripts underscore the fact that these are the ir-
radiances at points-S1 and -S2. Furthermore, if we let t = t2 - t1, 
we can shift the time origin by an amount t2 in the last two terms 
of Eq. (12.13) and write them as

K ˜1K ˜ *
28E ˜1(t + t)E ˜ *

2(t)9T + K ˜ *
1K ˜28E ˜ *

1(t + t)E ˜2(t)9T

are for. Moreover, they reflect a reduction in the field that might 
arise from a number of physical causes: absorption, diffraction, 
and so forth. Here, since there is a p>2 phase shift in the field, 
which can be introduced by multiplying by exp ip>2, K ˜1 and 
K ˜2 are purely imaginary numbers.

The resultant irradiance at P measured over some finite time 
interval, which is long compared with the coherence time, is

 I = 8E ˜P(t)E ˜ *
P(t)9T (12.12)

It should be remembered that Eq. (12.12) is written sans several 
multiplicative constants. Hence using Eq. (12.11),

I = K ˜1K ˜ *
18E ˜1(t - t1)E ˜ *

1(t - t1)9T

+ K ˜2K ˜ *
28E ˜2(t - t2)E ˜ *

2 (t - t2)9T

+ K ˜1K ˜ *
28E ˜1(t - t1)E ˜ *

2 (t - t2)9T

 + K ˜ *
1K ˜28E ˜ *

1(t - t1)E ˜2 (t - t2)9T (12.13)

Figure 12.12  Double-beam interference patterns using partially coherent light. The photographs corre-
spond to a variation in visibility associated with changes in a, the separation between the apertures. In the 
theoretical curves Imax ∝ 1 + � 2 J1(u)>u �  and Imin ∝ 1 - � 2 J1(u)>u � . Several of the symbols will be  
discussed later. (B.J. Thompson and E. Wolf, J. Opt. Soc. Am. 47, 895 [1957])
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Note that when S1 and S2 are made to coincide, the mutual co-
herence function becomes

 Γ ˜11(t) = 8E ˜1(t + t) E ˜ *
1(t)9T

or  Γ ˜22(t) = 8E ˜2(t + t) E ˜ *
2(t)9T

We can imagine that two wavetrains emerge from this coalesced 
source point and somehow pick up a relative phase delay pro-
portional to t. In the present situation t becomes zero (since 
the optical path difference goes to zero), and these functions 
are reduced to the corresponding irradiances IS1

= 8E ˜1(t) E ˜ *
1(t)9T 

and IS2
= 8E ˜2(t) E ˜ *

2(t)9T on ga. Consequently,

Γ11(0) = IS1
 and Γ22(0) = IS2

and these are called self-coherence functions. Thus

I1 = 0K ˜1 02Γ11(0) and I2 = 0K ˜2 02Γ22(0)

Keeping Eq. (12.16) in mind, observe that

0K ˜1 0 0K ˜2 0 = 2I1 2I2>2Γ11(0) 2Γ22(0)

But this is a quantity plus its own complex conjugate and is 
therefore just twice its real part; that is, it equals

2 Re [K ˜1 K ˜ *
28E ˜1(t + t)E ˜ *

2(t)9T]

The K ˜ -factors are purely imaginary, and so K ˜1K ˜ *
2 = K ˜ *

1K ˜2 =  
0K ˜1 0 0K ˜2 0 . The time-average portion of this term is a cross-
correlation function [Section 11.3.4(iii)], which we denote by

 Γ̃12(t) K 8E ˜1(t + t)E ˜ *
2(t)9T (12.14)

and refer to as the mutual coherence function of the light field 
at S1 and S2. If we make use of all this, Eq. (12.13) takes the form

 I = 0K ˜1 02IS1
+ 0K ˜2 02IS2

+ 2 0K ˜1 0 0K ˜2 0  Re Γ̃12(t) (12.15)

The terms 0K ˜1 02IS1
 and 0K ˜2 02IS2

, if we again overlook multiplica-
tive constants, are the irradiance at P arising when one or the 
other of the apertures is open alone; in other words, K ˜2 =  0 or 
K ˜1 =  0, respectively. Denoting these as I1 and I2, Eq. (12.15) 
becomes

 I = I1 + I2 + 2 0K ˜1 0 0K ˜2 0  Re Γ ˜12(t) (12.16)
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600 Chapter 12 Basics of Coherence Theory

Figure 12.13  Double-beam interference patterns. Here the aperture separation was held constant,  
thereby yielding a constant number of fringes per unit displacement in each photo. The visibility was altered 
by varying the size of the primary incoherent source. (B.J. Thompson, J. Soc. Photo. Inst. Engr. 4, 7 [1965])

u
320

(a)

0.5

1−1−2−3−4

I

1.0

1.5

2.0

2.5

3.0

a12 = 0

a = 0.5 cm

� = �g12� = 0.703

u
320

(b)

0.5

1−1−2−3−4

I

1.0

2.5

a12 = p

a = 0.5 cm

� = �g12� = 0.132

1.5

2.0

u
320

(c)

0.5

1−1−2−3−4

I

1.0

a12 = 0

a = 0.5 cm

� = �g12� = 0.062

1.5

Figure 12.14  (a) A finite bandwidth results in a decreasing value of � with increasing Y. (b) This 
pattern was formed by a beam of slow neutrons passing through two narrow slits. (Am. J. Phys 59, (4), 316 

(1991), American Association of Physics Teachers.)
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 12.4 The Mutual Coherence Function and the Degree of Coherence 601

amount a12(t). If at the other extreme 0g ˜12(t) 0 = 0, I = I1 + I2, 
there is no interference, and the two disturbances are said to be 
incoherent. When 0 6 0g ˜12(t) 0 6 1 we have partial coherence, 
the measure of which is 0g ˜12(t) 0  itself; this is known as the  
degree of coherence. In summary then,

 0g ˜12 0 = 1 coherent limit

 0g ˜12 0 = 0 incoherent limit

 0 6 0g ˜12 0 6 1 partial coherence

The basic statistical nature of the entire process must be un-
derscored. Clearly Γ ˜12(t) and, therefore, g ˜12(t) are the key 
quantities in the various expressions for the irradiance distribu-
tion; they are the essence of what we previously called the inter-
ference term. It should be pointed out that E ˜1(t + t) and 
E ˜2(t) are in fact two disturbances occurring at different points in 
both space and time. We anticipate, as well, that the amplitudes 
and phases of these disturbances will somehow fluctuate in 
time. If these fluctuations at S1 and S2 are completely indepen-
dent, then Γ ˜12(t) = 8E ˜1(t + t) E ˜ *

2(t)9T will go to zero, since E ˜1 
and E ˜2 can be either positive or negative with equal likelihood, 
and their product averages to zero. In that case no correlation 
exists, and Γ ˜12(t) = g ˜12(t) = 0. If the field at S1 at a time 
(t + t) were perfectly correlated with the field at S2 at a time t, 
their relative phase would remain unaltered despite individual 
fluctuations. The time average of the product of the fields would 
certainly not be zero, just as it would not be zero even if the two 
were only slightly correlated.

Both 0g ˜12(t) 0  and a12(t) are slowly varying functions of t in 
comparison to cos 2pnt and sin 2pnt. In other words, as P is 
moved across the resultant fringe system, the point-by-point 
spatial variations in I are predominantly due to the changes in w 
as (r2 - r1) changes.

The maximum and minimum values of I occur when the co-
sine term in Eq. (12.21) is +1 and -1, respectively. The visibility 
at P (Problem 12.14) is then

 � =
22I1 2I2

I1 + I2
 0g ˜12(t) 0  (12.22)

Perhaps the most common arrangement occurs when things are 
adjusted so that I1 = I2, whereupon

 � = 0g ˜12(t) 0  (12.23)

That is, the modulus of the complex degree of coherence is identi-
cal to the visibility of the fringes (take another look at Fig. 12.12).

It is essential to realize that Eqs. (12.17) and (12.18) clearly 
suggest the way in which the real parts of Γ ˜12(t) and g ˜12(t) can 
be determined from direct measurement. When the flux densi-
ties of two disturbances are adjusted to be equal, Eq. (12.23) 
provides an experimental means of obtaining 0g ˜12(t) 0  from the 
resultant fringe pattern. Furthermore, the off-axis shift in the 
location of the central fringe (from w = 0) is a measure of 

The normalized form of the mutual coherence function (the 
normalized cross-correlation) is defined as

   g ˜12(t) K
Γ̃12(t)2Γ11(0)Γ22(0)

=
8E ˜1(t + t)E ˜ *

2(t)9T28 0E ˜1 029T8 0E ˜2 029T

 (12.17)

and it’s spoken of as the complex degree of coherence, for 
reasons that will be clear imminently. Equation (12.16) can then 
be recast as

 I = I1 + I2 + 2 2I1I2 Re g ˜12(t) (12.18)

which is the general interference law for partially coherent light.
For quasimonochromatic light, the phase-angle difference 

concomitant with the optical path difference is given by

 w =
2p

l
 (r2 - r1) = 2pnt (12.19)

where l and n are the mean wavelength and frequency. Now 
g ˜12(t) is a complex quantity expressible as 

 g ˜12(t) = 0g ˜12(t) 0eiΦ12(t) (12.20)

The phase angle of g ˜12(t) relates back to Eq. (12.14) and the 
phase angle between the fields. If we set Φ12(t) = a12(t) - w, 
then

Re g ˜12(t) = 0g ˜12(t) 0  cos [a12(t) - w]

Equation (12.18) is then expressible as

 I = I1 + I2 + 2 2I1I2 0  g ˜12(t) 0  cos [a12(t) - w] (12.21)

It can be shown from Eq. (12.17) and the Schwarz inequality that 
0 … 0g ˜12(t) 0 … 1. In fact, a comparison of Eqs. (12.21) and 
(9.14), the latter having been derived for the case of complete co-
herence, makes it evident that if 0g ˜12(t) 0 = 1, I is the same as that 
generated by two coherent waves out-of-phase at S1 and S2 by an 

Σ0

S S2

S1
E1(t)

E2(t) r2
Pr1

Imin
Imax

s

Σa

Figure 12.15  Young’s Experiment.
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602 Chapter 12 Basics of Coherence Theory

where ∆f = f(t + t) - f(t). For a strictly monochromatic 
plane wave of infinite coherence length, f(t) = k$ · r$ - vt, ∆f =
-vt, and

g ˜11(t) = cos vt - i sin vt = e-ivt

Hence 0g ˜11 0 = 1; the argument of g ˜11 is just -2pnt, and we 
have complete coherence. In contradistinction, for a qua-
simonochromatic wave where t is greater than the coherence 
time, ∆f will be random, varying between 0 and 2p such that 
the integral averages to zero, �g ˜11(t) � = 0, corresponding to 
complete incoherence. A path difference of 60 cm, produced 
when the two arms of a Michelson Interferometer differ in 
length by 30 cm, corresponds to a time delay between the re-
combining beams of t ≈ 2 ns. This is roughly the coherence 
time of a good isotope discharge lamp, and the visibility of the 
pattern under this sort of illumination will be quite poor. If 
white light is used instead, ∆n is large, ∆tc is very small, and the 
coherence length is less than one wavelength. In order for t to 
be less than ∆tc (i.e., in order that the visibility be good), the 
optical path difference will have to be a small fraction of a 
wavelength. The other extreme is laser light, in which ∆tc can 
be so long that a value of ct that will cause an appreciable de-
crease in visibility would require an impractically large inter-
ferometer.

We see that Γ̃11(t), being a measure of temporal coherence, 
must be intimately related to the coherence time and therefore 
the bandwidth of the source. Indeed, the Fourier transform of 
the self-coherence function, Γ̃11(t), is the power spectrum, 
which describes the spectral energy distribution of the light 
(Section 11.3.4).

If we go back to Young’s Experiment (Fig. 12.15) with a very 
narrow-bandwidth extended source, spatial coherence effects 
will predominate. The optical disturbances at S1 and S2 will dif-
fer, and the fringe pattern will depend on Γ ˜(S1, S2, t) = Γ ˜12(t). 
By examining the region about the central fringe where 
(r2 - r1) = 0, t = 0 and Γ ˜12(0)and g ˜12(0) can be determined. 
This latter quantity is the complex degree of spatial coherence 
of the two points at the same instant in time. Γ ˜12(0) plays a 
central role in the description of the Michelson stellar interfer-
ometer to be discussed forthwith.

There is a very convenient relationship between the complex 
degree of coherence in a region of space and the corresponding 
irradiance distribution across the extended source giving rise to 
the light fields. We shall make use of that relationship, the van 
Cittert–Zernike theorem, as a calculational aid without going 
through its formal derivation. Indeed, the analysis of Section 12.2 
already suggests some of the essentials. Figure 12.16 represents 
an extended quasimonochromatic thermal source, S, located on 
the plane g s and having an irradiance given by I(y, z). Also shown 
is an observation screen on which are two points, P1 and P2. These 
are at distances R1 and R2, respectively, from a tiny element of S. 
It is on this plane that we wish to determine g ˜12(0), which de-
scribes the correlation of the field vibrations at the two points. 

a12(t), the apparent relative retardation of the phase of the dis-
turbances at S1 and S2. Consequenty, measurements of the vis-
ibility and fringe position yield both the amplitude and phase of 
the complex degree of coherence.

By the way, it can be shown* that 0g ˜12(t) 0  will equal 1 for all 
values of t and any pair of spatial points, if and only if the opti-
cal field is strictly monochromatic, and therefore such a situation 
is unattainable. Moreover, a nonzero radiation field for which 
0g ˜12(t) 0 = 0 for all values of t and any pair of spatial points cannot 
exist in free space either.

12.4.1 Temporal and Spatial Coherence

Let’s now relate the ideas of temporal and spatial coherence to 
the above formalism.

If the primary source S in Fig. 12.15 shrinks down to a point 
source on the central axis having a finite frequency bandwidth, 
temporal coherence effects will predominate. The optical distur-
bances at S1 and S2 will then be identical. In effect, the mutual 
coherence [Eq. (12.14)] between the two points will be the self-
coherence of the field. Hence Γ ˜(S1, S2, t) = Γ ˜12(t) = Γ ˜11(t) or 
g ˜12(t) = g ˜11(t). The same thing obtains when S1 and S2 
coalesce, and g ˜11(t) is sometimes referred to as the complex 
degree of temporal coherence at that point for two instances 
of time separated by an interval t. This would be the case in an 
amplitude-splitting interferometer, such as Michelson’s, in 
which t equals the path length difference divided by c. The 
expression for I, that is, Eq. (12.18), would then contain g ˜11(t) 
rather than g ˜12(t). 

Suppose a lightwave is divided into two identical disturbances 
of the form

 E ˜(t) = E0eif(t) (12.24)

by an amplitude-splitting interferometer, which later recom-
bines them to generate a fringe pattern. Then

 g ˜11(t) =
8E ˜(t + t)E ˜*(t)9T

0E ˜ 02  (12.25)

or  g ˜11(t) = 8eif(t +t)e-if(t)9T

Hence

 g ˜11(t) = lim
T S ∞

 
1
T

 3T

0
 ei[f(t +t) -f(t)] dt (12.26)

and  g ˜11(t) = lim
T S ∞

 
1
T

 3T

0
 (cos ∆f + i sin ∆f) dt

*The proofs are given in Beran and Parrent, Theory of Partial Coherence,  
Section 4.2.
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 12.5 Coherence and Stellar Interferometry 603

Note that although the source is “incoherent,” the light reaching P1 
and P2 will generally be correlated to some degree, since each 
source element contributes to the field at each such point.

Calculation of g ˜12(0) from the fields at P1 and P2 results in 
an integral that has a familiar structure. The integral has the 
same form and will yield the same results as a well-known dif-
fraction integral, provided we reinterpret each term appropri-
ately. For instance, I(y, z) appears in that coherence integral 
where an aperture function would be if it were, in fact, a dif-
fraction integral. Thus, suppose that S is not a source but an 
aperture of identical size and shape, and suppose that I(y, z) is 
not a description of irradiance, but instead its functional form 
corresponds to the field distribution across that aperture. In 
other words, imagine that there is a transparency at the aper-
ture with amplitude transmission characteristics that corre-
spond functionally to I(y, z). Furthermore, imagine that the 
aperture is illuminated by a spherical wave converging toward 
the fixed point-P2 (see Fig. 12.16b), so that there will be a 
Fraunhofer diffraction pattern centered on P2. This diffracted 
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Figure 12.16  (a) The geometry of the van Cittert–Zernike theorem. (b) 
The normalized diffraction pattern corresponds to the degree of coherence. 
Here for a rectangular source slit the diffraction pattern is sinc (pby>ll).

A star is a collection of countless atoms randomly emitting a tumult of  
uncorrelated incoherent radiation. Yet at great distances from the star the 
light becomes coherent. Here 13 ducks randomly thrashing about in a pond 
produce waves that clearly become well organized as they move away from 
the “thermal” source. (W.H. Knox, M. Alonso and E. Wolf, “Spatial Coherence from Ducks,” 

Phys. Today 63, 11 (March 2010), courtesy American Institute of Physics)

field distribution, normalized to unity at P2, is everywhere (i.e., 
at P1) equal to the value of g ˜12(0) at that point. This is the van 
Cittert–Zernike theorem.

When P1 and P2 are close together and S is small compared 
with l, the complex degree of coherence equals the normal-
ized Fourier transform of the irradiance distribution across 
the source. Furthermore, if the source has a uniform irradiance, 
then g ˜12(0) is simply a sinc function when the source is a slit and 
a Bessel function when it’s circular. Observe that in Fig. 12.16b 
the sinc function corresponds to that used in Fig. 10.13, where 
b = (kb>2) sin u and u ≈ sin u. Thus if P1 is a distance y from 
P2, b = kbu>2 and u = y>l, hence 0g ˜12(0) 0 = 0 sinc (pby>ll) 0 . 
This result is explored further in the problem set. Suffice it to say 
that if you wish to produce a region with a high degree of coher-
ence using a circular or rectangular thermal source you need 
only operate within the area of the central maximum of the 
Fraunhofer diffraction pattern produced by that source on a dis-
tant screen.

12.5  Coherence and Stellar 
Interferometry

12.5.1  The Michelson Stellar Interferometer

In 1890 A. A. Michelson, following an earlier suggestion by 
Fizeau, proposed an interferometric device (Fig. 12.17) that is 
of interest here both because it was the precursor of some im-
portant modern techniques, and because it lends itself to an in-
terpretation in terms of coherence theory. The function of the 
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604 Chapter 12 Basics of Coherence Theory

the two fringe systems take on an increasing relative displace-
ment, until finally the maxima from one star overlap the min-
ima from the other, at which point, if their irradiances are 
equal, � = 0. Hence, when the fringes vanish, one need only 
measure h to determine the angular separation between the 
stars, u. Notice that the appropriate value of h varies inversely 
with u.

Note that even though the source points, the two stars, are 
assumed to be completely uncorrelated, the resulting optical 
fields at any two points ( M1 and M2) are not necessarily inco-
herent. For that matter, as h becomes very small, the light from 
each point source arrives with essentially zero relative phase at 
M1 and M2; � approaches 1, and the fields at those locations are 
highly coherent.

In much the same way as with a double star system, the an-
gular diameter (u = us) of certain single stars can be measured. 
Once again the fringe visibility corresponds to the degree of 
coherence of the optical field at M1 and M2. If the star is as-
sumed to be a circular distribution of incoherent point sources 
such that it has a uniform brilliance, its visibility is equivalent to 
that already plotted in Fig. 12.11. Earlier, we alluded to the fact 
that � for this sort of source was given by a first-order Bessel 
function, and in fact it is expressible as

 � = 0g ˜12(0) 0 = 2 ` J1(phus>l0)

phus>l0
`  (12.28)

Recall that J1(u)>u = 1
2 at u = 0, and the maximum value of  

� is 1. The first zero of � occurs when phus>l0 = 3.83, as in 
Fig. 10.36. Equivalently, the fringes disappear when

 h = 1.22 
l0

us
 (12.29)

and as before, one simply measures h to find us.

stellar interferometer, as it is called, is to measure the small 
angular dimensions of remote astronomical bodies.

Two widely spaced movable mirrors, M1 and M2, collect 
rays, assumed to be parallel, from a very distant star. The light 
is then channeled via mirrors M3 and M4 through apertures S1 
and S2 of a mask and thence into the objective of a telescope. 
The optical paths M1M3S1 and M2M4S2 are made equal, so that 
the relative phase-angle difference between a disturbance at M1 
and M2 is the same as that between S1 and S2. The two apertures 
generate the usual Young’s Experiment fringe system in the fo-
cal plane of the objective. Actually, the mask and openings are 
not really necessary; the mirrors alone could serve as apertures. 

Suppose we now point the device so that its central axis is 
directed toward one of the stars in a closely spaced double-star 
configuration. Because of the tremendous distances involved, 
the rays reaching the interferometer from either star are well 
collimated. Furthermore, we assume, at least for the moment, 
that the light has a narrow linewidth centered about a mean 
wavelength of l0. The disturbances arising at S1 and S2 from the 
axial star are in-phase, and a pattern of bright and dark bands 
forms, centered on P0. 

Similarly, rays from the other star arrive at some angle u, but 
this time the disturbances at M1 and M2 (and therefore at S1 and S2) 
are out-of-phase by approximately k0hu or, if you will, retarded 
by a time hu>c, as indicated in Fig. 12.17b. The resulting fringe 
system is centered about a point-P shifted by an angle u′ from 
P0 such that hu>c = au′>c. Since these stars behave as though 
they were incoherent point sources, the individual irradiance 
distributions simply overlap. The separation between the fring-
es set up by either star is equal and dependent solely on a. Yet 
the visibility varies with h. Thus, if h is increased from nearly 
zero until k0hu = p, that is, until

 h =
l0

2u
 (12.27)
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Figure 12.17  Michelson stellar interferometer.
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scope can resolve, at least in principle. Alas, Earth’s ever-swirling 
atmosphere limits even the largest telescopes to resolutions of 
roughly 0.5 arcsecond (as), just about that of a good amateur 
backyard instrument. 

To overcome that limitation, one installs an adaptive optics 
system (p. 240). Reconfigured in this way, the modern astro-
nomical telescope is back to approaching its theoretical resolv-
ing power, matching or even exceeding that of the Hubble 
Space Telescope. With such systems in place, instruments have 
attained resolutions of ≈50 milliarcseconds (mas). And the 
next generation of large scopes (p. 236) will do even better. But 
in the end, resolution is still constrained by the size of the pri-
mary optic and the costs accompanying construction of bigger 
and bigger telescopes. The larger the scope, the more challeng-
ing the technical construction issues become, and the more 
daunting the fight with gravity. We are not likely to see an im-
aging telescope the size of a football field for quite a while.

By comparison, from an engineering perspective, an interfer-
ometer can be as large as you care to make it. The resolution of 
a stellar interferometer depends on the separation of its mirrors, 
not on their size (Fig. 12.18). The CHARA Array on Mount Wilson, 
overlooking Los Angeles, where Michelson built his original 
device, uses six 1-meter telescopes separated by hundreds of 
meters. The light, traveling along evacuated piping, is brought to 
a central lab, where it is combined to form interference fringes, 
much as Michelson had done in 1920. The instrument itself must 
not introduce path differences of any more than a few tenths of a 
wavelength, or spurious effects will negate the observations. 
Moreover, any star being studied has to be tracked as it moves 
across the sky, but that typically changes its optical path length 
difference through the two telescopes by several wavelengths 
per second. This is corrected for using delay lines comprised of 
moving mirror-mounted carts rolling back and forth on hundreds 
of meters of precision track. With three or more telescopes col-
lecting light simultaneously, measurements can be made across 
different baselines, enabling a two-dimensional picture of the 
outline of a star to be pieced together.

The CHARA Array has a resolution of ≈1 mas; that’s about 
the angle subtended at an observer in Atlanta by a penny held up 
in Los Angeles.

12.5.2 Correlation Interferometry

Let’s return for a moment to the representation of a disturbance 
emanating from a thermal source, as discussed in Section 7.4.3. 
Again the word thermal connotes a light field arising predomi-
nantly from the superposition of spontaneously emitted waves 
issuing from a great many independent atomic sources.* A qua-
simonochromatic optical field can be represented by

 E(t) = E0(t) cos [e(t) - 2pnt] [7.65]

In Michelson’s arrangement, the two outrigged mirrors were 
movable on a long girder, which was mounted on the 100-inch 
reflector of the Mount Wilson Observatory. Betelgeuse (a Orionis) 
was the first star whose angular diameter was measured with 
the device. It’s the orange-looking star in the upper left of the 
constellation Orion. In fact, its name is a contraction for the 
Arabic phrase meaning the armpit of the central one (i.e., Orion). 
The fringes formed by the interferometer, one cold December 
night in 1920, were made to vanish at h = 121 inches, and  
with  l0 = 570 nm, us = 1.22(570 * 10-9)>121(2.54 * 10-2) =
22.6 * 10-8 rad, or 0.047 second of arc. Using its known dis-
tance, determined from parallax measurements, the star’s diam-
eter turned out to be about 240 million miles, or roughly 280 
times that of the Sun. Actually, Betelgeuse is an irregular variable 
star whose maximum diameter is so tremendous that it’s larger 
than the orbit of Mars about the Sun. The main limitation on the 
use of the stellar interferometer is due to the inconveniently 
long mirror separations required for all but the largest stars. 
This is true as well in radio astronomy, where an analogous 
setup has been widely used to measure the extent of celestial 
sources of radiofrequency emissions.

Incidentally, we assume, as is often done, that “good” coher-
ence means a visibility of 0.88 or better. For a disk source this 
occurs when phu>  l0 in Eq. (12.28) equals one, that is, when

 h = 0.32 
l0

us
 (12.30)

For a narrow-bandwidth source of diameter D a distance R away, 
there is an area of coherence equal to p(h>2)2 over which 
0g12 0 Ú 0.88. Since D>R = us,

 h = 0.32 
Rl0

D
 (12.31)

These expressions are very handy for estimating the required 
physical parameters in an interference or diffraction experi-
ment. For example, if we put a red filter over a 1-mm-diameter 
disk-shaped flashlight source and stand back 20 m from it, then

h = 0.32(20)(600 * 10-9)>10-3 = 3.8 mm

where the mean wavelength is taken as 600 nm. This means that 
a set of apertures spaced at about h or less should produce nice 
fringes.

Modern Astronomical Interferometry

Today Michelson’s stellar interferometer has morphed into a 
variety of magnificent ultra-high-resolution machines that are 
revolutionizing ground-based astronomy, and promising to do 
the same in space. The central issue is resolution, the ability to 
distinguish details on distant objects. The resolution of a mirror- 
or lens-based image-forming telescope increases with its aper-
ture; the bigger the main mirror or lens, the finer the details the 

*Thermal light is sometimes spoken of as Gaussian light because the amplitude of 
the field follows a Gaussian probability distribution.
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606 Chapter 12 Basics of Coherence Theory

Large fluctuations in e are generally accompanied by corre-
spondingly large fluctuations of E0. Presumably, knowledge 
of these amplitude fluctuations of the field could be related to 
the phase fluctuations and therefore to the correlation (i.e., co-
herence) functions. Accordingly, at two points in space–time 
where the phases of the field are correlated, we could expect 
the amplitudes to be related as well.

The amplitude is a relatively slowly varying function of time, 
as is the phase. For that matter, the wave might undergo tens 
of thousands of oscillations before either the amplitude (i.e., 
the envelope of the field vibrations) or the phase would 
change appreciably. Thus, just as the coherence time is a 
measure of the fluctuation interval of the phase, it is also a 
measure of the interval over which E0(t) is fairly predictable. 

Figure 12.18  A modern version of the stellar interferometer. Two or more telescopes separated by 
substantial distances output signals that are then combined to form interference patterns. (Peter Lawson/

Sky & Telescope Magazine)
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(Problem 12.18). These are the desired cross-correlations of the 
irradiance fluctuations. They exist as long as the field is par-
tially coherent at the two points in question. Incidentally, these 
expressions correspond to linearly polarized light. When the 
wave is unpolarized, a multiplicative factor of 1

2 must be intro-
duced on the right-hand side.

The validity of the principle of correlation interferometry 
was first established in the radiofrequency region of the 
spectrum, where signal detection was a fairly straightfor-
ward matter. Soon afterward, in 1956, Hanbury–Brown and 
Twiss proposed the optical stellar interferometer illustrated 
in Fig. 12.20. But the only suitable detectors that could be 

When a fringe pattern exists for the Michelson stellar inter-
ferometer, it is because the fields at M1 and M2, the apertures, 
are somehow correlated; that is, Γ ˜12(0) = 8E ˜1(t)E ˜ *

2(t)9T Z 0. If 
we could measure the field amplitudes at these points, their 
fluctuations would likewise show an interrelationship. Since 
this isn’t practicable because of the high frequencies in-
volved, we might instead measure and compare the fluctua-
tions in irradiance at the locations of M1 and M2 and from 
this, in some as yet unknown way, infer 0g ˜12(0) 0 . In other 
words, if there are values of t for which g ˜12(t) is nonzero,  
the field at the two points is partially coherent, and a correla-
tion between the irradiance fluctuations at these locations is 
implied. This is the essential idea behind a series of remark-
able experiments conducted in the years 1952 to 1956 by  
R. Hanbury–Brown in collaboration with R. Q. Twiss and 
others. The culmination of their work was the so-called cor-
relation interferometer.

Thus far we have evolved only an intuitive justification for 
the phenomenon rather than a firm theoretical treatment. Such 
an analysis, however, is beyond the scope of this discussion, 
and we shall have to content ourselves with merely outlining its 
salient features.* Just as in Eq. (12.14), we are interested in 
determining the cross-correlation function, this time, of the ir-
radiances at two points in a partially coherent field, 
8I1(t + t)I2(t)9T. The contributing wavetrains, which are again 
represented by complex fields, are assumed to have been ran-
domly emitted in accord with Gaussian statistics, with the final 
result that

 8I1(t + t)I2(t)9T = 8I19T8I29T + 0Γ ˜12(t) 02 (12.32)

or 8I1(t + t)I2(t)9T = 8I19T8I29T [1 + 0 g̃12(t) 02] (12.33)

The instantaneous irradiance fluctuations ∆I1(t) and ∆I2(t) are 
given by the variations of the instantaneous irradiances I1(t) and 
I2(t) about their mean values 8I1(t)9T and 8I2(t)9T, as in Fig. 12.19. 
Consequently, if we use

∆I1(t) = I1(t) - 8I19T and ∆I2(t) = I2(t) - 8I29T

and the fact that

8∆I1(t)9T = 0 and 8∆I2(t)9T = 0

Eqs. (12.32) and (12.33) become

 8∆I1(t + t)∆I2(t)9T = 0Γ ˜12(t) 02 (12.34)

or 8∆I1(t + t)∆I2(t)9T = 8I19T8I29T 0g ˜12(t) 02 (12.35)

*For a complete discussion, see, for example, L. Mandel, “Fluctuations of light 
beams,” Progress in Optics, Vol. II, p. 193, or Françon, Optical Interferometry, p. 182.
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Figure 12.20  Stellar correlation interferometer.
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608 Chapter 12 Basics of Coherence Theory

much better than trying to follow the field alternations at 1015 Hz. 
Even so, fast circuitry with roughly a 100-MHz pass bandwidth 
is required. In actuality the detectors have a finite resolving 
time T, so that the signal currents ℐ1 and ℐ2 are actually propor-
tional to averages of I1(t) and I2(t) over T and not their instanta-
neous values. In effect, the measured fluctuations are smoothed 
out, as illustrated by the dashed curve of Fig. 12.19b. For 
T 7 ∆tc, which is normally the case, this just leads to a  
reduction, by a factor of ∆tc>T , in the correlation actually  
observed:

 8∆ℐ1(t)∆ℐ2(t)9 = 8ℐ198ℐ29 
∆tc
T

 0g ˜12(0) 02 (12.36)

For example, in the preceding laboratory arrangement, the fil-
tered mercury light had a coherence time of about 1 ns, while the 
electronics had a reciprocal pass bandwidth or effective integra-
tion time of ≈40 ns. Note that Eq. (12.36) isn’t any different 
conceptually from Eq. (12.35)—it’s just been made a bit more 
realistic.

Shortly after their successful laboratory experiment, Hanbury–
Brown and Twiss constructed the stellar interferometer shown 
in Fig. 12.20. Searchlight mirrors were used to collect star-
light and focus it onto two photomultipliers. One arm con-
tained a delay line, so that the mirrors could physically be  
located at the same height, with compensation for any differ-
ences in the arrival times of the light. The measurement of 
8∆ℐ1(t)∆ℐ2(t)9T at various separations of the detectors al-
lowed the square of the modulus of the degree of coherence, 
0g ˜12(0) 02, to be deduced, and this in turn yielded the angular 
diameter of the source, just as it did with the Michelson stellar 
interferometer. This time, however, the separation h could be 
very large, because one no longer had to worry about messing 
up the phase of the waves, as was the case in the Michelson 
device. There, a slight shift in a mirror of a fraction of a wave-
length was fatal. Here, in contrast, the phase was discarded, so 
that the mirrors didn’t even have to be of high optical quality. 
The star Sirius was the first to be examined, and it was found 
to have an angular diameter of 0.006 9 second of arc. In 1965, 
a correlation interferometer (the equivalent of a Michelson 
stellar device with a baseline of 618 feet) was constructed  
in Narrabri, Australia. For certain stars, angular diameters of 
as little as 0.000 5 second of arc could be measured with this 
instrument—that’s a long way from the angular diameter of 
Betelgeuse (0.047 second of arc).*

The electronics involved in irradiance correlation could be 
greatly simplified if the incident light were very nearly mono-
chromatic and of considerably higher flux density. Laserlight 
isn’t thermal and doesn’t display the same statistical fluctuations, 

used at optical frequencies were photoelectric devices whose 
very operation is keyed to the quantized nature of the light 
field. Thus

. . . it was by no means certain that the correlation would be 
fully preserved in the process of photo-electric emission. For these 
reasons a laboratory experiment was carried out as described 
below.*

That experiment is shown in Fig. 12.21. Filtered light from a Hg 
arc was passed through a rectangular aperture, and different por-
tions of the emerging wavefront were sampled by two photo-
multipliers, PM1 and PM2. The degree of coherence was altered 
by moving PM1, that is, by varying h. The signals from the two 
photomultipliers were presumably proportional to the incident 
irradiances I1(t) and I2(t). These were then filtered and ampli-
fied, such that the steady, or DC, component of each of the sig-
nals (being proportional to 8I19T and 8I29T) was removed, leav-
ing only the fluctuations, in other words, ∆I1(t) = I1(t) - 8I19T 
and ∆I2(t) = I2(t) - 8I29T. The two signals were then multiplied 
together in the correlator, and the time average of the product, 
which was proportional to 8∆I1(t)∆I2(t)9T, was finally recorded. 
The values of 0g ˜12(0) 02 for various separations, h, as deduced 
experimentally via Eq. (12.35), were in fine agreement with 
those calculated from theory. For the given geometry, the corre-
lation definitely existed; moreover, it was preserved through 
photoelectric detection.

The irradiance fluctuations have a frequency bandwidth 
roughly equivalent to the bandwidth (∆n) of the incident light, 
in other words, (∆tc)

-1, which is about 100 MHz or more. This is 

Band-limited
ampli�er

Beamsplitter

Filtered
Hg light

Integrator

PM2

PM1

h

I2(t)

I1(t)

∆I1

∆I2

∆I1 ∆I2

〈∆I1 ∆I2〉

Band-limited
ampli�er Correlator

Figure 12.21  Hanbury–Brown and Twiss experiment.

*For a discussion of the photon aspects of irradiance correlation, see Garbuny, 
Optical Physics, Section 6.2.5.2, or Klein, Optics, Section 6.4.

*Taken from R. Hanbury–Brown and R. Q. Twiss, “Correlation between photons in 
two coherent beams of light,” Nature 127, 27 (1956).
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but it can nonetheless be used to generate pseudothermal* light. 
A pseudothermal source is composed of an ordinary bright 
source (a laser is most convenient) and a moving medium of 
nonuniform optical thickness, such as a rotating ground-glass 
disk. If the scattered beam emerging from a stationary piece of 
ground glass is examined with a sufficiently slow detector, the 
inherent irradiance fluctuations will be smoothed out completely. 
By setting the ground glass in motion, irradiance fluctuations 
appear with a simulated coherence time commensurate with the 
disk’s speed. In effect, one has an extremely brilliant thermal 
source of variable ∆tc (from, say, 1 s to 10-5 s), which can be 
used to examine a whole range of coherence effects. For ex-
ample, Fig. 12.22 shows the correlation function, which is pro-
portional to [2J1(u)>(u)]2, for a pseudothermal circular aperture 
source determined from irradiance fluctuations. The experi-
ment setup resembles that of Fig. 12.21, although the electron-
ics is considerably simpler.†

C
or

re
la

tio
n

h (mm)
0 2−2−4 4

Figure 12.22  A correlation function for a pseudothermal source.  
(From A.B. Harner and N.R. Isenor, Am J. Phys. 38, 748 (1970) American Journal of Physics.)

*See W. Martienssen and E. Spiller, “Coherence and fluctuations in light beams,” 
Am J. Phys. 32, 919 (1964), and A. B. Haner and N. R. Isenor, “Intensity correla-
tions from pseudothermal light sources,” Am. J. Phys. 38, 748 (1970). Both of 
these articles are well worth studying.

is reasonable. Then approximating As as d2
s , show that

Ac ≈
l2 l  

2
0

As

Notice that Ac gets larger as l gets larger.

12.4* A small thermal source of quasimonochromatic light with a 
mean wavelength of 500 nm, and an area of 1.0 * 10-6 m2, is used  
to illuminate an opaque screen containing two pinholes, each 0.10 mm 
in diameter. Two meters in front of this screen is the disk-shaped,  
uniform-irradiance source. Determine an order-of-magnitude value of 
the coherence area.

12.5* Let Ωs be the solid angle subtended by the source when viewed 
from the center of the aperture screen. Show that

Ac ≈
l  

2
0

Ωs

represents the coherence area. This equation is useful when we don’t 
know the distance to the source. Notice that the smaller the source, the 
larger is the coherence area.

Complete solutions to all problems—except those with an asterisk— 
can be found in the back of the book.

12.1* Two monochromatic point sources radiate in-phase. At the usual 
distant plane of observation (parallel to the line connecting the sources) 
the irradiance from one of them is 100 times the irradiance from the 
other. Show that in general the fringe pattern is such that

Imax = 12I1 + 2I222

and

Imin = 12I1 - 2I222

Draw a graph of the net irradiance versus distance from the central 
axis. What does the pattern actually look like? Determine the visibility.

12.2* With Fig. 12.3 in mind, establish that when two incoherent 
cosine-squared fringe systems, each of the form I0 cos2 a, overlap so 
that peaks fall on troughs, the resultant is I = I0—a uniform illumination.

12.3* Show that Eq. (12.2)

Ac ≈ al  0

us
b

2

PrOBLEMS

†A good overall reference for this chapter is the review article by L. Mandel  
and E. Wolf, “Coherence properties of optical fields,” Revs. Modern Phys. 
37, 231 (1965); this is rather heavy reading. Take a look at K. I. Kellermann, 
“Intercontinental radio astronomy,” Sci. Am. 226, 72 (February 1972).
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610 Chapter 12 Basics of Coherence Theory

12.13 Referring to the slit source and pinhole screen arrangement of 
Fig. P.12.13, show by integration over the source that

I(Y) ∝ b +
sin (pa>ll)b

pa>ll
 cos (2paY>ls)

12.6* The Sun’s disk subtends an angle of about 9.3 * 10-3 rad as 
seen from the Earth’s surface. If sunlight is filtered to a mean wave-
length of 550 nm, roughly what is the area of coherence on an Earth-
based aperture screen? How far apart will the pinholes in that screen be 
when the interference fringes they otherwise generate vanish? [Hint: 
Study Problem 12.5.]

12.7* Even though the coherence area increases as ga moves away 
from g s, there is a quantity that doesn’t change; that’s the solid angle 
Ωc subtended by the coherence area at the center of the source. Justify 
the expression

Ωc ≈
l2

0

As

for a distant object like a star. As ga moves away from g s, it intersects 
the cone of the solid angle, leading to larger and larger values of Ac.

12.8 Suppose we set up a fringe pattern using a Michelson Interfer-
ometer with a mercury vapor lamp as the source. Switch on the lamp in 
your mind’s eye and discuss what will happen to the fringes as the 
mercury vapor pressure builds to its steady-state value.

12.9* We wish to examine the irradiance produced on the plane of 
observation in Young’s Experiment when the slits are illuminated simul-
taneously by two monochromatic plane waves of somewhat different 
frequency, E1 and E2. Sketch these against time, taking l1 = 0.8 l2. 
Now draw the product E1E2 (at a point-P ) against time. What can you 
say about its average over a relatively long interval? What does 
(E1 + E2)2 look like? Compare it with E2

1 + E2
2. Over a time that is long 

compared with the periods of the waves, approximate 8(E1 + E2)29T.

12.10* With the previous problem in mind, now consider things 
spread across space at a given moment in time. Each wave separately 
would result in an irradiance distribution I1 and I2. Plot both on the 
same space axis and then draw their sum I1 + I2. Discuss the meaning 
of your results. Compare your work with Fig. 7.16. What happens to 
the net irradiance as more waves of different frequency are added 
in? Explain in terms of the coherence length. Hypothetically, what 
would happen to the pattern as the frequency bandwidth approached 
infinity?

12.11 With the previous problem in mind, return to the autocorrela-
tion of a sine function, shown in Fig. 11.51. Now suppose we have a 
signal composed of a great many sinusoidal components. Imagine that 
you take the autocorrelation of this complicated signal and plot the 
result (use three or four components to start with), as in part (e) of 
Fig. 11.51. What will the autocorrelation function look like when the 
number of waves is very large and the signal resembles random noise? 
What is the significance of the t = 0 value? How does this compare 
with the previous problem?

12.12* Imagine that we have the experimental setup of Young’s ex-
periment with an extended slit source. If the separation between the 
fringes (max. to max.) is 1 mm and if the projected width of the source 
slit is 0.25 mm, compute the visibility.

a

l s

O

P

Y

y

S�
S

b

S2

Σo

S1

Figure P.12.13

O�

O�

S�

S�

S2

Σo

S1

Figure P.12.15

12.14 Carry out the details leading to the expression for the visibility 
given by Eq. (12.22).

12.15 Under what circumstances will the irradiance on go in 
Fig. P.12.15 be equal to 4I0, where I0 is the irradiance due to either 
uncorrelated point source alone?

12.16* Suppose we setup Young’s double-pinhole experiment with a 
small circular hole of diameter 0.1 mm in front of a sodium lamp 
(lo = 589.3 nm) as the source. If the distance from the source to the 
aperture screen is 10 m, how far apart will the pinholes be when the 
fringe pattern disappears?

12.17* Look at the Young’s Experiment depicted in Fig. 9.10. Ther-
mal quasimonochromatic light, filtered to a mean of 500 nm, impinges 
from the left on the 0.10-mm-diameter hole in the source screen. 
Roughly how far apart at most will the two pinhole apertures be if 
fringes are to start being observed? The source is 1.0 m from the aper-
ture screen.

12.18 Show that Eqs. (12.34) and (12.35) follow from Eqs. (12.32) 
and (12.33).

12.19* Return to Eq. (12.21) and separate it into two terms represent-
ing a coherent and an incoherent contribution, the first arising from the 
superposition of two coherent waves with irradiances of 0 g ˜12(t) 0 I1 and 
0 g ˜12(t) 0  I2 having relative phase of a12(t) - w, and the second from 
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fringes formed on the plane of observation have minimum visibility 
when

a(a2 - a1) = 1
2 m

where m = ±1, ±3, ±5 . . . .

the superposition of incoherent waves of irradiance [1 - 0 g ˜12(t) 0 ]I1

and [1 - 0 g ˜12(t) 0 ]I2. Now derive expressions for Icoh>Iincoh and for 
Iincoh>Itotal. Discuss the physical significance of this alternative formu-
lation and how we might view the visibility of fringes in terms of it.

12.20 Imagine that we have the apparatus of Young’s experiment, 
where one of the two pinholes is now covered by a neutral-density  
filter that cuts the irradiance by a factor of 12 and the other hole is 
covered by a transparent sheet of glass, so there is no relative phase 
shift introduced. Compute the visibility in the hypothetical case of 
completely coherent  illumination.

12.21* Suppose that Young’s double slit apparatus is illuminated by a 
mean wavelength of 450 nm. Determine the separation of the slit that 
would cause the fringes to vanish.

12.22* Return to Fig. 12.8 and the broad, quasimonochromatic, long, 
rectangular source of light (l0 = 500 nm). How far apart should the 
two movable narrow aperture slits be if the fringe pattern on go is to 
disappear for the first time as that separation increases from near zero? 
The source is 1.0 m in front of the aperture screen, and the width of the 
source is 0.10 mm.

12.23* Return to Fig. 12.8 and the broad quasimonochromatic slit 
source. How wide should this source be if the fringe visibility is to be 
0.9? The source is 1.0 m in front of the aperture screen and 
l0 = 550 nm. The aperture slits are separated by 0.20 mm. [Hint: You 
might want to look at Table 1 in the back of the book. What’s the sinc 
of p>4?]

12.24 We wish to construct a double pin-hole setup illuminated by a 
uniform incoherent light of mean wavelength 510 nm and having a 
width b at a distance of 2 m from the aperture screen. If the pinholes 
are 0.60 mm apart, how wide can the source be if the visibility of the 
fringes on the plane of observation is not to be less than 85%?

12.25* Suppose that we have a quasimonochromatic, uniform thermal 
slit source of incoherent light, such as a discharge lamp with a mask and 
a filter in front of it. We wish to illuminate a region on an aperture 
screen 10.0 m away, such that the modulus of the complex degree of 
coherence everywhere within a region 1.0 m wide is equal to or greater 
than 90% when the wavelength is 400 nm. How wide can the slit be?

12.26* Figure P.12.26 shows two quasimonochromatic point sources 
of incoherent light illuminating two pinholes in a mask. Show that the 

S2

a
a2

a1

Σo

Σa

S1

l s

Figure P.12.26

12.27 Imagine that we have a wide quasimonochromatic source 
(l = 500 nm) consisting of series of vertical, incoherent, infinitesi-
mally narrow line sources, each separated by 500 mm. This is used to 
illuminate a pair of exceedingly narrow vertical slits in an aperture 
screen 5.0 m away. How far apart should the aperture to be create a 
fringe system of maximum visibility?

12.28* Earlier as an example we used dc ≈ l0>us to calculate the 
approximate lateral coherence distance for sunlight. Now find that 
same quantity, the diameter of the coherence area for a circular 
thermal source, using the more conservative notions that lead to 
Eq. (12.31).

12.29* Consider the Michelson stellar interferometer. Under what 
conditions will the fringes vanish when the light comes from two 
equally bright stars? Compare this to the situation in which there is 
only one uniformly bright star of adequately large angular size. Write 
expressions for the angles subtended at the device by the sources in 
both cases.

12.30* While studying the star Arcturus with a Michelson stellar in-
terferometer the fringes vanished when the two mirrows were 24 ft 
apart. Assuming light of a mean wavelength of 500 nm, what angle did 
the star subtend at the Earth? Give your answer in arcseconds.

 Problems 611
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13
13.1 Lasers and Laserlight

During the early 1950s a remarkable device known as the 
maser came into being through the efforts of a number of 
scientists. Principal among these people were Charles Hard 
Townes of the United States and Alexandr Mikhailovich 
Prokhorov and Nikolai Gennadievich Basov of the USSR, all 
of whom shared the 1964 Nobel Prize in Physics for their 
work. The maser, which is an acronym for Microwave Ampli-
fication by Stimulated Emission of Radiation, is, as the name 
implies, an extremely low-noise, microwave amplifier.* It 
functioned in what was then a rather unconventional way, 
making direct use of the quantum-mechanical interaction of 
matter and radiant energy. Almost immediately after its in-
ception, speculation arose as to whether or not the same 
technique could be extended into the optical region of the 
spectrum. In 1958 Townes and Arthur L. Schawlow prophet-
ically set forth the general physical conditions that would 
have to be met in order to achieve Light Amplification by 
Stimulated Emission of Radiation. And then in July of 1960 
Theodore H. Maiman announced the first successful opera-
tion of an optical maser or laser—certainly one of the great 
milestones in the history of Optics, and indeed in the history 
of science, had been achieved.

The laser is a quantum-mechanical device that manages to 
produce its “marvelous light” by taking advantage of the sub-
tle ways in which atoms interact with electromagnetic radia-
tion. To gain a solid, if only introductory, understanding of 
how the laser works and what makes its emissions so special, 
we’ll first lay out some basic theory about ordinary thermal 
sources, such as lightbulbs and stars. That will require an in-
troduction to blackbody radiation, but those insights are also 
basic to any treatment of the interaction of EM-radiation and 
matter. To that will be added a discussion of the Boltzmann 
distribution (p. 616) as applied to atomic energy levels. With 
this to stand on, we can appreciate the central notion of stimu-
lated emission via the Einstein A and B coefficients (p. 616); 
the rest, more or less, follows.

13.1.1  Radiant Energy and Matter in Equilibrium

It shouldn’t surprise anyone that if physics was to be turned on 
its head, it would be done while trying to figure out what light 
(i.e., radiant energy) was all about. Quantum theory had its earli-
est beginnings back in 1859 with the study of a seemingly ob-
scure phenomenon known as blackbody radiation. That year, 
Charles Darwin published The Origin of Species, and Gustav 
Robert Kirchhoff proffered an intellectual challenge that would 
lead to a revolution in physics. 

Kirchhoff was involved in analyzing the way bodies in ther-
mal equilibrium behave in the process of exchanging radiant en-
ergy. This thermal radiation is electromagnetic energy emitted 
by all objects, the source of which is the random motion of their 
constituent atoms. He characterized the abilities of a body to 
emit and absorb electromagnetic energy by an emission coeffi-
cient el and an absorption coefficient al. Epsilon is the energy 
per unit area per unit time emitted in a tiny wavelength range 
around l (in units of W>m2>m): thermal radiation comprises a 
wide range of frequencies, and an energy-measuring device by 
necessity admits a band of wavelengths. Alpha is the fraction of 
the incident radiant energy absorbed per unit area per unit time 
in that wavelength range; it’s unitless. The emission and absorp-
tion coefficients depend on both the nature of the surface of the 
body (color, texture, etc.) and the wavelength—a body that emits 
or absorbs well at one wavelength may emit or absorb poorly at 
another.

Consider an isolated chamber of some sort in thermal equi-
librium at a fixed temperature T. Presumably, it would be filled 
with radiant energy at a myriad of different wavelengths—think 
of a glowing furnace. Kirchhoff assumed there was some for-
mula, or distribution function Il(l), which depends on T and 
which provides values of the energy per unit area per unit time 
at each wavelength; call it the spectral flux density within the 
cavity (or spectral exitance when it leaves it). He concluded 
that the total amount of energy at all wavelengths being ab-
sorbed by the walls versus the amount emitted by them must be 
the same, or else T would change, and it doesn’t. Furthermore, 
Kirchhoff argued that if the walls were made of different mate-
rials (which behave differently with T ), that same balance 
would have to apply for each wavelength range individually. 
The energy absorbed at l, namely, alIl, must equal the energy 

Modern Optics: 
Lasers and  
Other Topics

612

*See James P. Gorden, “The Maser,” Sci. Am. 199, 42 (December 1958).
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 13.1 Lasers and Laserlight 613

cylinder, but instead of atoms, the active agency was electro-
magnetic waves. The resulting Stefan–Boltzmann Law for 
blackbodies (which is correct, though nowadays we would de-
rive it differently) is

 P = sAT4  (13.2)

where P is the total radiant power at all wavelengths, A is the 
area of the radiating surface, T is the absolute temperature in 
kelvins, and s is a universal constant now given as

s = 5.670 33 * 10-8 W>m2 · K4

radiated, el, and this is true for all materials no matter how 
different. Kirchhoff’s Radiation Law is therefore

 
el
al

= Il (13.1)

wherein the distribution Il, in units of J>m3 · s or W>m3, is a 
universal function the same for every type of cavity wall regard-
less of material, color, size, and shape and is only dependent on 
T and l. That’s quite extraordinary! Still, the British ceramist 
Thomas Wedgwood had commented long before (1792) that 
objects in a fired kiln all turned glowing red together along with 
the furnace walls, regardless of their size, shape, or material 
constitution.

Although Kirchhoff could not provide the energy distribu-
tion function in general, he did observe that a perfectly absorb-
ing body, one for which al = 1, will appear black and, in that 
special case, Il = el. Moreover, the distribution function for a 
perfectly black object is the same as for an isolated chamber at 
that same temperature (visualize such a blackbody at equilibri-
um inside a hot oven). The radiant energy distribution at equi-
librium within an isolated cavity is in every regard the same, “as 
if it came from a completely black body of the same tempera-
ture.” Therefore the energy that would emerge from a small 
hole in the chamber should be identical to the radiation com-
ing from a perfectly black object at the same temperature.

The scientific community accepted the challenge of experi-
mentally determining Il, but the technical difficulties were 
great and progress came slowly. The basic setup (Fig. 13.1a) is 
simple enough, although coming up with a reliable source was 
a daunting problem for a long time. Data must be extracted that 
is independent of the construction of the specific detector, and 
so the best thing to plot is the radiant energy per unit time, 
which enters the detector per unit area (of the entrance window) 
per unit wavelength range (admitted by the detector). The kind 
of curves that were ultimately recorded are shown in Fig. 13.1b, 
and each is a plot of Il at a specific temperature.

Stefan–Boltzmann Law

In 1865 John Tyndall published some experimental results, in-
cluding the determination that the total energy emitted by a 
heated platinum wire was 11.7 times greater when operating at 
1200°C (1473 K) than it was at 525°C (798 K). Rather amaz-
ingly, Josef Stefan (1879) noticed that the ratio of  
(1473 K)4 to (798 K)4 was 11.6, nearly 11.7, and he surmised 
that the rate at which energy is radiated is proportional to T 4. In 
this observation Stefan was quite right (and quite lucky); Tyn-
dall’s results were actually far from those of a blackbody. Still, 
the conclusion was subsequently given a theoretical foundation 
by L. Boltzmann (1884). His was a traditional treatment of the 
radiation pressure exerted on a piston in a cylinder using the 
laws of thermodynamics and Kirchhoff’s Law. The analysis 
progressed in much the same way one would treat a gas in a 

Figure 13.1  (a) A basic experimental setup for measuring blackbody 
radiation. (b) Values of Il at successive wavelengths as measured by a 
detector. Each curve corresponds to a specific source temperature.
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614 Chapter 13 Modern Optics: Lasers and Other Topics

At the moment when the filament of a lightbulb “blows,” the 
resistance, current, and temperature rise; it goes from its normal 
operating reddish white color to a bright flash of blue-white.

Wien Displacement Law

Perhaps the last notable success in applying classical theory to 
the problem of blackbody radiation came in 1893 at the hands 
of the German physicist and Nobel laureate Wilhelm Otto Fritz 
Franz Wien (1864–1928), known to his friends as Willy. He 
derived what is today called the Displacement Law. Each 
blackbody curve reaches a maximum height at a value of wave-
length (lmax) that is particular to it and therefore to the absolute 
temperature T. At that wavelength, the blackbody radiates the 
most energy. Wien was able to show that

 lmaxT = constant  (13.3)

where the constant was found experimentally to be 0.002 898 
m·K. The peak wavelength is inversely proportional to the tem-
perature. Raise the temperature, and the bulk of the radiation 
shifts to shorter wavelengths and higher frequencies (see the 
dashed curve in Fig. 13.2). As a glowing coal or a blazing star 
gets hotter, it goes from IR warm to red-hot to blue-white. A 
person or a piece of wood, both only roughly blackbodies, radi-
ates for the most part in the infrared and would begin to glow 
faintly in the visible only at around 600°C or 700°C, long after 
either had decomposed. The bright cherry red of a chunk of 
“red” hot iron sets in at around 1300°C.

In 1899 researchers greatly advanced the state of experimen-
tation by using, as a source of blackbody radiation, a small hole 
in a heated cavity (Fig. 13.3). Energy entering such an aperture 
reflects around inside until it’s absorbed. (The pupil of the eye 
appears black for precisely the same reason.) A near-perfect ab-
sorber is a near-perfect emitter, and the region of a small hole in 
the face of an oven is a wonderful source of blackbody radiation.

The total area under any one of the blackbody-radiation curves 
of Fig. 13.1b for a specific T is the power per unit area, and from 
Eq. (13.2) that’s just P>A = sT4.

Real objects are not perfect blackbodies; carbon black has an 
absorptivity of nearly 1, but only at certain frequencies (obvi-
ously including the visible). Its absorptivity is much lower in 
the far infrared. Nonetheless, most objects resemble a black-
body (at least at certain temperatures and wavelengths)—you, 
for instance, are nearly a blackbody for infrared. Because of 
that, it’s useful to write a similar expression for ordinary ob-
jects. This can be done by introducing a multiplicative factor 
called the total emissivity (e), which relates the radiated power 
to that of a blackbody for which e = 1, at the same tempera-
ture; thus

P = esAT4

Table 13.1 provides a few values of e (at room temperature), 
where 0 6 e 6 1. Note that emissivity is unitless.

If an object with a total absorptivity of a is placed in an en-
closure such as a cavity or a room having an emissivity ee and 
a temperature Te, the body will radiate at a rate esAT 4 and ab-
sorb energy inside the enclosure at a rate a(eesAT 4e). Yet at any 
temperature at which the body and enclosure are in equilibrium 
(i.e., T = Te), these rates must be equal; hence, aee = e and 
that has to be true for all temperatures. The net power radiated 
(when T 7 Te) or absorbed (when T 6 Te) by the body is then

P = esA(T4 - T4
e)

All bodies not at zero kelvin radiate, and the fact that T is 
raised to the fourth power makes the radiation highly sensitive 
to temperature changes. When a body at 0°C (273 K) is brought 
up to 100°C (373 K), it radiates about 3.5 times the previous 
power. Increasing the temperature increases the net power radi-
ated; that’s why it gets more and more difficult to increase the 
temperature of an object. (Try heating a steel spoon to 1300°C.) 
Increasing the temperature of an object also shifts the emitted 
distribution of energy among the various wavelengths present. 

TaBLE 13.1  Some Representative Values of  
Total Emissivity*

Material e

Aluminum foil 0.02

Copper, polished 0.03

Copper, oxidized 0.5

Carbon 0.8

White paint, flat 0.87

Red brick 0.9

Concrete 0.94

Black paint, flat 0.94

Soot 0.95

*T = 300 K, room temperature. 

I e
l

500 1000 1500 20000

6000 K5000 K
4000 K

3000 K

l (nm)Visible

Figure 13.2  Blackbody radiation curves. The hyperbola passing through 
peak points corresponds to Wien’s Law.
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devised. He assumed that the radiation in a chamber interacted 
with simple microscopic oscillators of some unspecified type. 
These vibrated on the surfaces of the cavity walls, absorbing 
and reemitting radiant energy independent of the material. (In 
fact, the atoms of the walls do exactly that. Because of their 
tightly packed configuration in the solid walls, the atoms inter-
act with a huge number of their neighbors. That completely 
blurs their usual characteristic sharp resonance vibrations, al-
lowing them to oscillate over a broad range of frequencies and 
emit a continuous spectrum.) Try as he might, Planck was un-
successful. At that time, he was a devotee of E. Mach, who had 
little regard for the reality of atoms, and yet the obstinate in-
solubility of the problem ultimately led Planck to “an act of 
desperation.” He hesitantly turned to Boltzmann’s “distasteful” 
statistical method, which had been designed to deal with the 
clouds of atoms that constitute a gas.

Boltzmann, the great proponent of the atom, and Planck were 
intellectual adversaries for a while. And now Planck was forced 
to use his rival’s statistical analysis, which—ironically—he 
would misapply. If Boltzmann’s scheme for counting atoms was 
to be applied to something continuous, such as energy, some 
adjustments would have to be made in the procedure. Thus, ac-
cording to Planck, the total energy of the oscillators had to be 
thought of, at least temporarily, as apportioned into “energy ele-
ments” so that they could be counted. These energy elements 
were given a value proportional to the frequency n of the resona-
tors. Remember that he already had the formula he was after, 
and in it there appeared the term hn. Planck’s Constant,

6.626 075 5 * 10-34 J · s or 4.135 669 2 * 10-15 eV · s

is a very small number and so hn, which has the units of energy, 
is itself a very small quantity. Accordingly, he set the value of 
the energy element equal to it: ℰ = hn.

This was a statistical analysis, and counting was central. 
Still, when the method was applied as Boltzmann intended, it 
naturally smoothed out energy, making it continuous as usual. 
Again, we needn’t worry about the details. The amazing thing 
was that Planck had stumbled on a hidden mystery of nature: 
energy is quantized—it comes in tiny bursts, but he didn’t re-
alize it then.

Planck derived the following formula for the spectral exi-
tance (or spectral irradiance)—which he had already arrived at 
by fitting curves to the data—and it’s the answer to Kirchhoff’s 
challenge:

 Il =
2phc2

l5 c
1

e
hc

lkBT - 1
d  (13.4)

where kB is Boltzmann’s Constant. Here Il is energy per unit 
time, per unit area, per unit wavelength interval. This is Planck’s 
Radiation Law, and, of course, it fit blackbody data splendidly 
(Fig. 13.4). Notice how the expression contains the speed of light, 
Boltzmann’s Constant, and Planck’s Constant (h). It bridges 
Electromagnetic Theory to the domain of the atom.

It was at this point in time that classical theory began to falter. 
All attempts to fit the entire radiation curve (Fig. 13.2) with 
some theoretical expression based on electromagnetism led 
only to the most limited successes. Wien produced a formula 
that agreed with the observed data fairly well in the short wave-
length region but deviated from it substantially at large l. Lord 
Rayleigh and later Sir James Jeans (1877–1946) developed a 
description in terms of the standing-wave modes of the field 
within the enclosure. But the resulting Rayleigh–Jeans formula 
matched the experimental curves only in the very long wave-
length region. The failure of classical theory was totally inexpli-
cable; a turning point in the history of physics had arrived.

Planck Radiation Law

Max Karl Ernst Ludwig Planck at 42 was the somewhat reluc-
tant father of quantum theory. Like so many other theoreticians 
at the turn of the century, he, too, was working on blackbody 
radiation. But Planck would succeed not only in producing 
Kirchhoff’s distribution function, but also in turning physics 
upside-down in the process. We cannot follow the details of his 
derivation here; besides, the original version was wrong. (Bose 
and Einstein corrected it years later.) Still, it had such a power-
ful impact that it’s worth looking at some of the features that 
are right.

Planck knew that if an arbitrary distribution of energetic 
molecules was injected into a constant-temperature chamber, it 
would ultimately rearrange itself into the Maxwell–Boltzmann 
distribution of speeds as it inevitably reached equilibrium. Pre-
sumably, if an arbitrary distribution of radiant energy is injected 
into a constant-temperature cavity, it, too, will ultimately rear-
range itself into the Kirchhoff distribution of energies as it in-
evitably reaches equilibrium.

In October 1900, Planck produced a distribution formula 
that was based on the latest experimental results. This mathe-
matical contrivance, concocted “by happy guesswork,” fit all 
the data available. It contained two fundamental constants, one 
of which (h) would come to be known as Planck’s Constant. 
That much by itself was quite a success, even if it didn’t explain 
anything. Although Planck had no idea of it at the time, he was 
about to take a step that would inadvertently revolutionize our 
perception of the physical Universe.

Naturally enough, Planck set out to construct a theoretical 
scheme that would logically lead to the equation he had already 

Figure 13.3  Radiant energy entering a  
tiny hole in a chamber will rattle around  
with little chance of ever emerging through 
the aperture, and so the hole looks black. 
In reverse, the aperture of a heated cham-
ber appears as a blackbody source.
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616 Chapter 13 Modern Optics: Lasers and Other Topics

and that their energies were quantized. Each oscillator could 
exist only with an energy that was a whole-number multiple 
of hn (a little like the gravitational-PE of someone walking 
up a flight of stairs). Moreover, radiant energy itself is quan-
tized, existing in localized blasts of an amount ℰ = hn.

13.1.2 Stimulated Emission

The LAser accomplishes “light amplification” by making use of 
energetic atoms in a medium to reinforce the light field. Let’s 
therefore examine the manner in which the energy states of a 
system of atoms at some arbitrary temperature is normally dis-
tributed. The problem is part of the broader discipline of Statis-
tical Mechanics and is addressed specifically in terms of the 
Maxwell–Boltzmann distribution.

Population of Energy Levels

Imagine a chamber filled with a gas in equilibrium at some tem-
perature T. If T is relatively low, as it is in a typical room, most 
of the atoms will be in their ground states, but a few will mo-
mentarily pick up enough energy to “rise” into an excited state. 
The classical Maxwell–Boltzmann distribution maintains that, 
on average, a number of atoms per unit volume, Ni, will be in 
any excited state of energy ℰi such that

Ni = N0e-ℰi>kBT

where N0 is a constant for a given temperature. The higher the 
energy state, that is, the greater the value of  ℰ (the smaller is 
the exponential) and the fewer atoms there will be in that state. 

Since we will be interested in atomic transition between ar-
bitrary states, consider the jth energy level where ℰj 7 ℰi. Then 
for it Nj = N0e-ℰj>kBT, and the ratio of the populations occupy-
ing these two states is 

 
Nj

Ni
=

e-ℰj>kBT

e-ℰi>kBT
 (13.5)

This is the relative population, and it follows that

 Nj = Nie
-(ℰj - ℰi)>kBT = Nie

-hnji>kBT (13.6)

where use was made of the fact that a transition for the jth-state 
to the ith-state corresponds to an energy change of (ℰj - ℰi) 
and since such transitions are accompanied by the emission of 
a photon of frequency nji, we can substitute (ℰj - ℰi) = hnji.

The Einstein A and B Coefficients

In 1916 Einstein devised an elegant and rather simple theoreti-
cal treatment of the dynamic equilibrium existing for a material 
medium bathed in electromagnetic radiation, absorbing and 
reemitting. The analysis was used to affirm Planck’s Radiation 

EXAMPLE 13.1

A blackbody having an area of 1.0 m2, at a comfortable tem-
perature of 300 K, radiates into space. Determine the amount of 
power it emits at 1.0 mm over a wavelength range of 0.10 mm.

SOLUTION 

The radiated power, P, is the energy emitted per unit time, 
which is 

P = Il∆l ∆A

Hence

P =
2phc2

l5 c 1

ehc/lkBT - 1
d∆l ∆A

or using the results of Problem 13.11

P =
3.742 * 10-25 ∆l ∆A

l5(e0.014 4>lT - 1)
 W>m2 · nm

Putting ∆l in nanometers and l in meters yields

P =
3.742 * 10-25(100 nm)(1)

1 * 10-30(7.017 * 1020 - 1)

And so P = 5.3 * 10-14 W 

This is a tiny amount of power.

Although Eq. (13.4) represents a great departure from pre-
vious ideas, Planck did not mean to break with classical theo-
ry. It would have been unthinkable for him even to suggest 
that radiant energy was anything but continuous. “That ener-
gy is forced, at the outset, to remain together in certain quan-
ta . . . ,” Planck later remarked, “was purely a formal assump-
tion and I really did not give it much thought.” It was only 
around 1905, at the hands of a much bolder thinker, Albert 
Einstein, that we learned that the atomic oscillators were real 
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Figure 13.4  The cosmic background radiation of the Universe. Since the 
creation of the Universe with the Big Bang, it has expanded and cooled. 
The data points (measured in the microwave spectrum) were detected by 
the Cosmic Background Explorer (COBE) satellite. The solid line is the 
Planck blackbody curve for a temperature of 2.735 ± 0.06 K.
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 13.1 Lasers and Laserlight 617

then dump its excess energy in-step with the incoming photon, 
in a process now called stimulated emission (Fig. 13.5).

In the case of absorption, the rate-of-change of the number 
of atoms in some initial state, as they leave to some higher state, 
must depend on the strength of the photon field inundating 
those atoms. In other words, it must depend on the energy den-
sity u, given by Eq. (3.34), but more specifically it must depend 
on the energy density in the frequency range driving the transi-
tion, that is, the spectral energy density un, which is the energy 
per unit volume per unit frequency interval, measured in units 
of joules per meter-cubed per inverse second (J · s>m3). (Note 
that if we consider the radiation field as a photon gas, the spec-
tral energy density can be thought of as the photon density per 
unit frequency range.) The rate-of-change of the number of at-
oms, the transition rate, will also be proportional to the popu-
lation, that is, the number density of atoms in that state (Ni); the 
more there are, the more can leave (via absorption) per second. 
Because the process is driven by the photon field, let’s call it 
stimulated absorption, whereupon the transition rate is

[stimulated absorption] adNi

dt
b

ab
= -BijNiun (13.7)

Here Bij is a constant of proportionality, the Einstein absorption 
coefficient, and the minus arises because Ni is decreasing. Simi-
larly, for stimulated emission

[stimulated emission] adNj

dt
b

st
= -BjiNjun (13.8)

The constant Bji is the Einstein stimulated emission coefficient. 
In the case of spontaneous emission, the process is independent 
of the field environment and

[spontaneous emission] adNj

dt
b

sp
= -AjiNj (13.9)

This is the rate of decrease of the higher-energy population, Nj, 
due to spontaneous emission. And Aji is the Einstein spontane-
ous emission coefficient associated with a drop from energy 
level-j to level-i. Because the rate of stimulated emission de-
pends on un and the rate of spontaneous emission does not, 
when the energy density is high—as it would be in a laser—we 
can expect stimulated emission to dominate.

EXAMPLE 13.2

A 10-mW laser is emitting at a mean wavelength of 500 nm. 
Determine the rate of occurence of stimulated emission.

SOLUTION 

We have that the laser puts out 10 * 10-3 J>s. We need to find 
out how much energy (E) each photon carries off. Since E = hn 
and c = ln

E =
hc
l

=
(6.626 * 10-34)(2.998 * 108)

500 * 10-9

Law, but more importantly it also created the theoretical foun-
dation for the laser. The reader should already be familiar with 
the basic mechanism of absorption (see Fig. 3.35). Suppose the 
atom is in its lowest energy or ground-state configuration. A 
photon having an adequate amount of energy interacts with the 
atom, imparting that energy to the atom, thereby causing the 
electron cloud to take on a new configuration. The atom jumps 
into a higher-energy excited state (Fig. 13.5). In a dense medi-
um, the atom is likely to interact with its jiggling neighbors and 
pass off its bounty of energy via collisions.

Such an excess-energy configuration is usually (though not 
always) exceedingly short-lived, and in 10 ns or so, without the 
intercession of any external influence, the atom will emit its 
overload of energy as a photon. As it does, it reverts to a stable 
state in a process called spontaneous emission (Fig. 13.5b).

The remarkable thing is that there is a third alternative pro-
cess, one first appreciated by Einstein and crucial to the opera-
tion of the laser—which wasn’t invented until almost a half 
century later. For a medium inundated with EM-radiation, it’s 
possible for a photon to interact with an excited atom while that 
atom is still in its higher-energy configuration. The atom can 

hnji

hnji

hnji

hnji

hn ji

�j

�i

�i

�j

�j

�i

Initial Final

Stimulated
absorption

Spontaneous
emission

Stimulated
emission

(a)

(b)

(c)

Figure 13.5  A schematic representation of (a) stimulated absorption,  
(b) spontaneous emission, and (c) stimulated emission.
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618 Chapter 13 Modern Optics: Lasers and Other Topics

Following Einstein’s lead, we assume (1) that thermodynamic 
equilibrium exists between the radiation field and the atoms 
in it at any T; (2) that the energy density has the characteris-
tics of a blackbody at T; and (3) that the number densities of 
the two states are in accord with the Maxwell–Boltzmann 
distribution.

Given that the system is in equilibrium, the rate of upward 
(i S j) transitions must equal the rate of downward transitions 
( j S i):

BijNiun = BjiNjun + AjiNj

Dividing both sides by Ni and rearranging terms yields

Nj

Ni
=

Bijun
Aji + Bjiun

Making use of Eq. (13.6), that is, what we found from the ap-
plication of the Maxwell–Boltzmann distribution, this becomes

e-hnji>kBT =
Bijun

Aji + Bjiun

and solving for un leads to

 un =
Aji>Bji

(Bij>Bji)e
hnji>kBT - 1

 (13.10)

Here Einstein pointed out that as T S ∞ , the spectral energy 
density, that is, the spectral photon density, approaches infinity. 
Figure 13.2 shows that Il increases with T, and that implies that 
un will behave in a like fashion. In fact, In = 1

4 cun, a point we will 
address presently. In any event, since e0 = 1, the only way un will 
be large is if

Bij = Bji = B

for large T, but since these constants are temperature indepen-
dent, they must be equal at all T. The probabilities of stimulated 
emission and absorption are �st = Bjiun and �ab = Bijun, re-
spectively. Hence, the probability of stimulated emission is 
identical to the probability of stimulated absorption; an 
atom in the lower state is just as likely to make a stimulated 
transition up as an excited atom is to make a stimulated transi-
tion down.

and E = 3.973 * 10-19 J emitted per photon. The rate of pho-
ton emission is then

10 * 10-3 J>s
3.973 * 10-19 J

= 2.52 * 1016 photons>s

where we can assume it’s essentially all due to stimulated emission.

Keep in mind that the transition rate, the number of atoms mak-
ing transitions per second, divided by the number of atoms, is 
the probability of a transition occurring per second, �. Conse-
quently, the probability per second of spontaneous emission is 
�sp = Aji.

For a single excited atom making a spontaneous transition to 
a lower state, the inverse of the transition probability per second 
is the mean life or lifetime of the excited state t. Thus (operat-
ing under conditions that exclude any other mechanism but 
spontaneous emission), if N atoms are in that excited state, the 
total rate of transitions, that is, the number of emitted photons 
per second, is N�sp = NAji = N>t. A low-transition probability 
means a long lifetime. Generally an electron in a high energy 
level can decay down to several different lower levels, as shown 
in Fig. 13.6. There will then be different values of the radiative 
transition probability for each different drop, and the total prob-
ability is the sum, gAji, of all of those individual probabilities. 
Transitions that are likely to happen are known as allowed; 
those far less likely are forbidden. In the visible, Aji values for 
allowed transitions are in the range from 106 s-1 to 108 s-1, 
whereas for forbidden transitions they’re less than 104 s-1.

EXAMPLE 13.3

Suppose a sample exists where there are Nj excited electrons 
per unit volume in energy level-j just above the ground state 
level-i. Show that the population of energy level-j falls expo-
nentially as electrons leave via spontaneous emission. What can 
be said about the lifetime of level-j?

SOLUTION 

From Eq. (13.9)

dNj

dt
= -Aji Nj

Therefore
dNj

Nj
= -Aji dt

and integrating both sides

Nj = Nj(0)e-Ajit

where Nj(0) is Nj at t = 0.

The population drops to 1>e of its original value in a time 
t = 1>Aji.

Cadmium+

A = 1.6 × 105 s−1

353.6 nm

325.0 nm   
A = 7.8 × 105 s−1

2d3�2

2p3�2

2p1�2

Figure 13.6  Two strong emission transitions occurring in the He-Cd laser.
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 13.1 Lasers and Laserlight 619

EXAMPLE 13.4

The 632.8-nm beam from a 2-mW He-Ne laser is 1.5 mm in 
diameter. Determine the value of the ratio of Einstein’s A to B 
coefficients.

SOLUTION 

From Eq. 13.14

A
B

=
8phn3

c3 =
8ph

l3

and so

A
B

=
8p 6.626 * 10-34 J · s

(632.8 * 10-9m)3

Then

A
B

= 6.572 * 10-14 J · s>m3

Imagine a system of atoms in thermal equilibrium having 
only two possible states. Furthermore, require that the atoms 
have a long mean life so that we can ignore spontaneous emis-
sion. When the system is inundated by photons of the proper 
energy, stimulated absorption depopulates the lower i-level, 
while stimulated emission depopulates the upper j-level. The 
number of photons vanishing from the system per second via 
stimulated absorption is proportional to �abNi, and the num-
ber entering it via stimulated emission is proportional to �stNj, 
but from the equality of the B-coefficients it follows that 
�st = �ab. Therefore �abNj = �stNj. However, if the system is 
in thermal equilibrium, Ni 7 Nj, which means that the number 
of photons vanishing per second exceeds the number entering 
per second; there’s a net absorption of photons by the lower 
state because there are more atoms in the lower state at any 
given temperature. The reverse would be true if we could 
create a situation—a population inversion—in which Ni 6 Nj; 
then stimulated emission would dominate over stimulated 
absorption.

13.1.3 The Laser

Consider an ordinary medium in which a few atoms are in some 
excited state; call it 0  j9 to conform with quantum-mechanical 
notation. If a photon in an incident beam is to trigger one of 
these excited atoms into stimulated emission, it must have the 
frequency nji, as in Fig. 13.5c. A remarkable feature of this pro-
cess is that the emitted photon is in-phase with, has the polar-
ization of, and propagates in the same direction as, the stimu-
lating radiation. The emitted photon is said to be in the same 
radiation mode as the incident wave and tends to add to it, in-
creasing its flux density. However, since most atoms are ordi-
narily in the ground state, absorption is usually far more likely 
than stimulated emission. 

Simplifying the notation (let A = Aji), Eq. (13.10) becomes

 un =
A
B

 c 1

ehnji>kBT-1
d  (13.11)

The ratio A>B can be expressed via basic quantities by com-
paring this equation with

 Il =
2phc2

l5 c
1

e
hc

lkBT - 1
d  [13.4]

But first transform Il into In where these are expressions for 
exitance (which is irradiance going outward) per interval dl 
and dn, respectively. Using the fact that l = c>n, differentiating 
yields dl = -cdn>n2. Because Il dl = In dn, and dropping the 
sign (since it just says that one differential increases while the 
other decreases), we get Ilc>n2 = In; and so

 In =
2phn3

c2 c
1

e
hn
kBT - 1

d  (13.12)

Now as a last step we need only to compare the spectral en-
ergy density un in the chamber with the spectral exitance,

 In =
c
4

 un (13.13)

emerging from it. Rather than burden the reader with a com-
plete derivation of this relationship, let it suffice merely to jus-
tify it. Keep in mind that In corresponds to a flow of energy 
across a unit normal area, in one side and out the other—a beam 
leaving the chamber. In Section 3.3.1 we saw that the instanta-
neous flow of power per unit normal area, the Poynting vector, 
was given by S = cu, and so on average I = cu for a beam. In-
side a chamber, however, with light traveling in every direction, 
not all the photons that contribute to u will contribute to the 
exitance in a particular direction. Presumably, inside the cham-
ber a unit area held horizontally would have as much energy 
flowing up through it as down. Moreover, only the components 
perpendicular to the area contribute to S, so a factor of 1>4 is 
not unreasonable.

From Eqs. (13.11), (13.12), and (13.14) it follows that

 
A
B

=
8phn3

c3  (13.14)

The probability of spontaneous emission is proportional to the 
probability of stimulated emission; an atom susceptible to one 
mechanism is proportionately susceptible to the other. Lasers 
work by stimulated emission, and anything that enhances spon-
taneous emission (i.e., A) at the price of stimulated emission 
(i.e., B) can be expected to work to the detriment of the process. 
Because the ratio of A>B varies as n3, it would seem that X-ray 
lasers ought to be difficult to build—they are!
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620 Chapter 13 Modern Optics: Lasers and Other Topics

Notice how neatly everything works out. The broad absorp-
tion bands make the initial excitation rather easy, while the long 
lifetime of the metastable state facilitates the population inversion. 
The atomic system in effect consists of (1) the absorption bands, 
(2) the metastable state, and (3) the ground state. Accordingly, it is 
spoken of as a three-level laser.

Today’s ruby laser is generally a high-power source of 
pulsed coherent radiation still used mostly for removing tattoos 
and in holography. Such devices operate with coherence lengths 
ranging from 0.1 m to 10 m. Modern configurations usually 
have flat external mirrors, one totally and the other partially 
reflecting. As an oscillator, the ruby laser generates millisecond 

This raises an intriguing point: What would happen if a sub-
stantial percentage of the atoms could somehow be excited into 
an upper state, leaving the lower state all but empty? For obvi-
ous reasons this is known as population inversion. An incident 
photon of the proper frequency could then trigger an avalanche 
of stimulated photons—all in-phase. The initial wave would 
continue to build, so long as there were no dominant competi-
tive processes (such as scattering) and provided the population 
inversion could be maintained. In effect, energy (electrical, 
chemical, optical, etc.) would be pumped in to sustain the inver-
sion, and a beam of light would be extracted after sweeping 
across the active medium.

The First (Pulsed Ruby) Laser To see how all of this is ac-
complished in practice, let’s take a look at Maiman’s original 
device (Fig. 13.7). The first operative laser had as its active 
medium a small, cylindrical, synthetic, pale pink ruby, that is, 
an Al2O3 crystal containing about 0.05 percent (by weight) of 
Cr2O3. Ruby, which is still a common crystalline laser media, 
had been used earlier in maser applications and was suggested 
for use in the laser by Schawlow. The rod’s end faces were pol-
ished flat, parallel and normal to the axis. Then both were sil-
vered (one only partially) to form a resonant cavity. 

It was surrounded by a helical gaseous discharge flash-
tube, which provided broadband optical pumping. Ruby ap-
pears red because the chromium atoms have absorption bands 
in the blue and green regions of the spectrum (Fig. 13.8a). 
Firing the flashtube generates an intense burst of light lasting 
a few milliseconds. Much of this energy is lost in heat, but 
many of the Cr3+ ions are excited into the absorption bands. 
A simplified energy-level diagram appears in Fig. 13.8b. The 
excited ions rapidly relax (in about 100 ns), giving up energy 
to the crystal lattice and making nonradiative transitions. 
They preferentially drop “down” to a pair of closely spaced, 
especially long-lived, interim states. They remain in these so-
called metastable states for up to several milliseconds ( ≈3 
ms at room temperature) before randomly, and in most cases 
spontaneously, dropping down to the ground state. This is ac-
companied by the emission of the characteristic red fluores-
cent radiation of ruby. The lower-level transition dominates, 
and the resulting emission occurs in a relatively broad spec-
tral range centered about 694.3 nm; it emerges in all direc-
tions and is incoherent. 

When the pumping rate is increased somewhat, a population 
inversion occurs, and the first few spontaneously emitted pho-
tons stimulate a chain reaction. One quantum triggers the rapid, 
in-phase emission of another, dumping energy from the meta-
stable atoms into the evolving lightwave (Fig. 13.7b). The wave 
continues to grow as it sweeps back and forth across the active 
medium (provided enough energy is available to overcome loss-
es at the mirrored ends). Since one of those reflecting surfaces 
was partially silvered, an intense pulse of red laser light (lasting 
about 0.5 ms and having a linewidth of about 0.01 nm) emerges 
from that end of the ruby rod. 

Flashtube

Trigger
electrode

(a)

Ruby

Beam

Pumping energy

Mirror
Active
medium

Partial
mirror

(b)

Figure 13.7  The first ruby-laser configuration, just about life-sized.
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 13.1 Lasers and Laserlight 621

Since the lightbeam in a laser builds as it sweeps back and 
forth, the process has naturally been described, much like an 
electronic amplifier would be, in terms of a quantity known as 
“gain.” The gain of an amplifier is the ratio of the strength of the 
output signal over that of the input signal. Accordingly, con-
sider a weak signal, a lightbeam, entering an active laser medi-
um (i.e., the gain medium) at one end and emerging somewhat 
amplified at the other end. The laser medium is the immediate 
source of the energy imparted to the beam via stimulated emis-
sion of its constituent atoms. 

Suppose that the laser medium is an excited gas. The light 
emitted by a gas discharge, within which atoms are flying 
around at great speeds, is shifted in frequency due to the Doppler 
effect. The atomic transition emission, which would otherwise 
be confined to a very narrow frequency range centered around no, 
is now spread out into a wide Gaussian-shaped frequency band. 
This process, called Doppler broadening, is a determinant of the 
behavioral characteristics of the gas laser. Indeed, gain is pro-
portional to the Doppler width of the emission. In other words, 
gain depends on the line shape, or frequency distribution, of the 
spontaneously emitted light suffusing the laser medium. An 
atom in a specific excited state can be stimulated to emit by a 
photon in the optical field. That photon has to have precisely the 
frequency (energy) associated with the atom’s impending transi-
tion to a lower energy state. Doppler broadening changes the 
availability of those photons and thereby influences the gain. For 
a system with a moderate amount of gain a Gaussian bell-shaped 
curve will nicely represent the frequency-dependent gain profile 
(Fig. 13.9a). Thus, for a weak signal the peak value of the gain 
profile, which corresponds to the center of the Doppler curve, is 
the peak unsaturated gain, or just the gain.

Now if we put the active medium between mirrors to create a 
resonant cavity, several loss mechanisms will come into play: there 
will be leakage of energy out of the mirrors, absorption and scat-
tering by imperfections, and so forth. Let’s assume that the gain 
coefficient g (in units of cm-1) obtains when the beam traverses 
1.0 cm of the laser medium. Similarly, let a (in units of cm-1) 
be the inclusive loss coefficient per centimeter for all possible 
loss mechanisms (not including the lack of perfect reflection at 
the mirrors, which is easily measured). Then take the reflectance 
of those end mirrors to be R1 and R2. A beam of irradiance I0 
starts at the first mirror and reaches the second as I = I0 exp 
[(g - a)L]. After reflection from mirror-2 it goes back to mirror-1, 
having traversed the active region twice, whereupon 

I = I0 R1R2 exp [2(g - a)L]

The total two-pass gain G, which equals I0>I, is then

G = R1R2 exp [2(g - a)L]

The laser will begin to oscillate when the gain just exceeds 
the losses, that is, when G = 1.0. Hence the threshold gain 
coefficient is

gth = a + (1>2L) ln (1>R1R2)

pulses in the energy range from around 50 J to 100 J, but by us-
ing a tandem oscillator-amplifier setup, energies well in excess 
of 100 J can be produced. The commercial ruby laser typically 
operates at a modest overall efficiency of less than 1%, produc-
ing a beam that has a diameter ranging from 1 mm to about  
25 mm, with a divergence of from 0.25 mrad to about 7 mrad. 
There are so many different kinds of lasers now available that 
the ruby laser has lost its one-time dominance.

Optical Resonant Cavities The resonant cavity, which in 
this case is of course a Fabry–Perot etalon, plays a significant 
role in the operation of the laser. In the early stages of the la-
ser process, spontaneous photons are emitted in every direc-
tion, as are the stimulated photons. But all of these, with the 
singular exception of those propagating very nearly along the 
cavity axis, quickly pass out of the sides of the ruby. In con-
trast, the axial beam continues to build as it bounces back and 
forth across the active medium. This accounts for the amazing 
degree of collimation of the issuing laserbeam, which is then 
effectively a coherent plane wave. Although the medium acts 
to amplify the wave, the optical feedback provided by the cav-
ity converts the system into an oscillator and hence into a light 
generator—the acronym is thus somewhat of a misnomer.
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622 Chapter 13 Modern Optics: Lasers and Other Topics

and nm =
mv
2L

 (13.15)

There are therefore an infinite number of possible oscillatory 
longitudinal cavity modes, each with a distinctive frequency 
nm. Consecutive modes are separated by a constant difference,

 nm + 1 - nm = ∆n =
v

2L
 (13.16)

which is the free spectral range of the etalon [Eq. (9.79)] and, 
incidentally, the inverse of the round-trip time. For a gas laser 1 m 
long, ∆n ≈ 150 MHz. 

The resonant modes of the cavity are considerably narrower 
in frequency than the bandwidth of the normal spontaneous 
atomic transition (Fig. 13.9d). These modes, whether the device 
is constructed so that there is one or more, will be the ones that 
are sustained in the cavity, and hence the emerging beam is re-
stricted to a region close to those frequencies. In other words, the 
radiative transition makes available a relatively broad range of 
frequencies out of which the cavity will select and amplify only 
certain narrow bands and, if desired, even only one such band. 
This is the origin of the laser’s extreme quasimonochromaticity. 
Thus, while the bandwidth of the ruby transition to the ground 
state is roughly a rather broad 0.53 nm (330 GHz)—because of 
interactions of the chromium ions with the lattice—the corre-
sponding laser cavity bandwidth, the frequency spread of the 
radiation of a single resonant mode, is a much narrower 0.000 05 
nm (30 MHz). This situation is depicted in Fig. 13.9, which 
shows a typical transition lineshape and a series of correspond-
ing cavity spikes—in case each is separated by v>2L, and in the 
case of ruby each is 30 MHz wide. Only those cavity modes that 

Typically, in gas lasers a is negligible. Consequently, if 
L = 15 cm, R1 = 98%, and R2 =  95%, the equation yields  
gth = 2.4 * 10-3 cm-1. 

If the operation of any laser is to be stable, the peak gain of 
the active medium must be large enough that the energy made 
available via the medium exceeds the total of all of the energy 
losses plus the output beam energy. 

The disturbance propagating within the cavity takes on a 
standing-wave configuration determined by the separation (L) 
of the mirrors (Fig. 13.9b). The cavity resonates (i.e., standing 
waves exist within it) when there is an integer number (m) of 
half wavelengths spanning the region between the mirrors. The 
idea is simply that there must be a node at each mirror, and this 
can happen only when L equals a whole-number multiple of 
l>2 (where l = l0>n). Thus

m =
L
l>2
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 13.1 Lasers and Laserlight 623

to say, the beam is segmented in its cross section into one or 
more regions. Each such array is associated with a given TEM 
mode, as shown in Figs. 13.13 and 13.14. The lowest order, or 
TEM00, transverse mode is perhaps the most widely used, and 
this for several compelling reasons: the flux density is ideally 

fall within the so-called active region—the gray area in Fig. 
13.9c—will be sustained and emitted as laser emanations.

EXAMPLE 13.5

Doppler broadening for a He-Ne laser operating at 632.8 nm is 
1.5 * 109 Hz; this is essentially the gain bandwidth. Suppose 
the laser’s mirrors are 0.8 m apart; calculate the approximate 
number of longitudinal modes. Assume the index of refraction 
of the gas mixture is 1.0.

SOLUTION 

The separation between successive modes is given by Eq. 
(13.16) and so

∆n =
v

2L
=

3 * 108 m>s
2(0.8 m)

This solves to ∆n = 187.5 MHz. Therefore dividing 1.5 *  
109 Hz (which corresponds to the full width at half the maxi-
mum value) by ∆n,

1.5 * 109 Hz

0.187 5 * 109 Hz
= 8

There can be 8 frequency intervals, each ∆n wide. And with one 
mode at either extreme, that brings it up to 9. (See Fig. 13.9.)

A possible way to generate only a single mode in the cavity 
would be to have the mode separation, as given by Eq. (13.16), 
exceed the transition bandwidth. Then only one mode would fit 
within the range of available frequencies provided by the broad-
ened transition (Fig. 13.10). For a helium-neon laser operating 
at 632.8 nm we’ll need a cavity length of about 10 cm to ensure 
single longitudinal mode output. The drawback of this particu-
lar approach is that it limits the length of the active region con-
tributing energy to the beam and so limits the output power of 
the laser.

In addition to the longitudinal or axial modes of oscillation, 
which correspond to standing waves set up along the cavity or 
z-axis, transverse modes can be sustained as well (Figs. 13.11 
and 13.12). Since the fields are very nearly normal to z, these are 
known as TEMmn modes (transverse electric and magnetic). The 
m and n subscripts are the integer number of transverse nodal 
lines in the x- and y-directions across the emerging beam. That is 
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Figure 13.11  

Figure 13.13  Mode patterns (without the faint interference fringes this is 
what the beam looks like in cross section). (Used with permission of Alcatel-Lucent 

USA Inc.)

Figure 13.12  Three operation configurations for a c-w gas laser:  
(a) illustrates several longitudinal modes under a roughly Gaussian  
envelope, (b) shows several longitudinal and transverse modes, and finally  
(c) depicts a single longitudinal mode. (E.H.)

(a) (b) (c)
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624 Chapter 13 Modern Optics: Lasers and Other Topics

Gaussian over the beam’s cross section (Fig. 13.15); there are no 
phase shifts in the electric field across the beam, as there are in 
other modes, and so it is completely spatially coherent; the 
beam’s angular divergence is the smallest; and it can be focused 
down to the smallest-sized spot. Note that the amplitude in this 
mode is actually not constant over the wavefront, and it is conse-
quently an inhomogeneous wave.

TEM10 TEM 20

TEM 01 TEM11 TEM 21

TEM 00

Figure 13.14  Mode configurations (rectangular symmetry). Circu larly 
symmetrical modes are also observable, but any slight asymmetry (such as 
Brewster windows) destroys them.

Figure 13.15  (a) Gaussian irradiance distribution. (b) An actual laserbeam profile for a 405-nm, 
20-mW, c-w laser diode. This look a lot better in color running from red at the peak to blue at the 
base. (S.J. Bentley, Aldephi University Quantum & Nonlinear Optics Lab.)

y

x

I(x, y)

(a) (b)

A complete specification of each mode has the form TEMmnq, 
where q is the longitudinal mode number. For each transverse 
mode (m, n) there can be many longitudinal modes (i.e., values of q). 
Often, however, it’s unnecessary to work with a particular longi-
tudinal mode, and the q subscript is usually simply dropped.*

Several additional cavity arrangements are of considerably 
more practical significance than is the original plane-parallel 
setup (Fig. 13.16). For example, if the planar mirrors are re-
placed by identical concave spherical mirrors separated by a dis-
tance very nearly equal to their radius of curvature, we have the 
confocal resonator. The focal points are then almost coincident 
on the axis midway between mirrors—ergo the name confocal. 

If one of the spherical mirrors is made planar, the cavity is 
termed a hemispherical or hemiconcentric resonator. Both of 
these configurations are considerably easier to align than is the 
plane-parallel form. Laser cavities are either stable or unstable 
to the degree that the beam tends to retrace itself and so remain 
relatively close to the optical axis (Fig. 13.17). A beam in an 
unstable cavity will “walk out,” going farther from the axis on 
each reflection until it quickly leaves the cavity altogether. By 
contrast, in a stable configuration (with mirrors that are, say, 
100% and 98% reflective) the beam might traverse the resona-
tor 50 times or more. Unstable resonators are commonly used in 

*Take a look at R. A. Phillips and R. D. Gehrz, “Laser mode structure experiments 
for undergraduate laboratories,” Am. J. Phys. 38, 429 (1970).
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 13.1 Lasers and Laserlight 625

circuit. A high-Q, low-loss circuit meant a narrow bandpass and 
a sharply tuned radio. If an optical cavity is somehow disrupted, 
as for example by the displacement or removal of one of the 
mirrors, the laser action generally ceases. When this is done 
deliberately in order to delay the onset of oscillation in the laser 
cavity, it’s known as Q-spoiling or Q-switching. The power out-
put of a laser is self-limited in the sense that the population in-
version is continuously depleted through stimulated emission 
by the radiation field within the cavity. However, if oscillation 
is prevented, the number of atoms pumped into the (long-lived) 
metastable state can be considerably increased, thereby creating 
a very extensive population inversion. When the cavity is 
switched on at the proper moment, a tremendously powerful 
giant pulse (perhaps up to several hundred megawatts) will 
emerge as the atoms drop down to the lower state almost in 
unison. A great many Q-switching arrangements utilizing vari-
ous control schemes, for example, bleachable absorbers that 
become transparent under illumination, rotating prisms and 
mirrors, mechanical choppers, ultrasonic cells, or electro-optic 
shutters such as Kerr or Pockels cells, have all been used.

Gaussian Laserbeams The TEM00 mode that develops with-
in a resonator has a Gaussian profile (Fig. 13.15); that is, the 
strength of the beamlike wave falls off transversely following 
a bell-shaped curve that’s symmetrical around the central axis 
(Fig. 13.18a). Recall that a Gaussian is a negative exponential 
that’s a function of the square of the variable, in this case, the 
distance (r) measured, in a transverse plane, from the central 
axis of propagation (z). Because the beam trails off radially it’s 
useful to put an arbitrary boundary to its width. Accordingly, 
let r = w be the beam half-width, the distance at which the 
electric field of the beam drops from its maximum axial value 

high-power lasers, where the fact that the beam traces across a 
wide region of the active medium enhances the amplification 
and allows for more energy to be extracted. This approach will 
be especially useful for media (like carbon dioxide or argon) 
wherein the beam gains a good deal of energy on each sweep of 
the cavity. The needed number of sweeps is determined by the 
so-called small-signal gain of the active medium. The actual 
selection of a resonator configuration is governed by the spe-
cific requirements of the system—there is no universally best 
arrangement.

The decay of energy in a cavity is expressed in terms of the 
Q or quality factor of the resonator. The origin of the expres-
sion dates back to the early days of radio engineering, when it 
was used to describe the performance of an oscillating (tuning) 

R1 R2

(a) Nearly planar (convex)
−R1, −R2 >> L
unstable

R1 R2

(c) Nearly planar (convex)
R1, R2 >> L
stable

R1 R2

(d) Nearly confocal
R1, R2 ≳ L
stable

(b) Planar
R1 = R2 = ∞
marginally stable

R1 R2

(e) Confocal
R1 = R2 = L
marginally stable

R1 R2

(f) Nearly concentric
R1 ≳ L�2; R2 ≳ L�2
stable

R1 R2

(g) Concentric
R1 = R2 = L�2
marginally stable

R1 R2

(h) Nearly concentric
R1 ≲ L�2; R2 ≲ L�2
unstable

R1

(i) Hemi-concentric
R1 = L; R2 = ∞
marginally stable

Figure 13.16  Laser cavity config-
urations. (Based on O’Shea, Callen, and 

Rhodes, An Introduction to Lasers and Their 

Applications. Addison-Wesley/Pearson Education, 

Inc.)

M1

M1

M2

M2

(a)
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Figure 13.17  Stable and unstable laser resonators. (Based on O’Shea, Callen, and 

Rhodes, An Introduction to Lasers and Their Applications. Addison-Wesley/Pearson Education, Inc.)
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626 Chapter 13 Modern Optics: Lasers and Other Topics

for the half-width at any location z where w0 is the minimum 
radius. The shape of the beam as specified by this expression 
for w(z) is a hyperbola of revolution about the z-axis. A practi-
cal measure of the divergence of the beam is the distance over 
which its cross-sectional area doubles, or equivalently, the val-
ue of z for which w(z) = 12w0. This special distance, zR, is 
known as the Rayleigh range, and from the above equation for 
w(z) we see that

 zR =
pw2

0 

l
 

Accordingly, consider a confocal cavity formed by two concave 
mirrors, each with a radius of curvature R separated by a dis-
tance L. If R = L = 2zR it follows from the geometry that the 
minimum radius is 

 w0 = A lL
2p

 (13.18)

Many lasers can operate in the TEM00 mode where the emitted 
beam is Gaussian.

The smaller the waist (or equivalently, the smaller the 
minimum cross-sectional area), the smaller the Rayleigh 
range and the faster the beam diverges. At large distances 
from the waist (z 7 7  zR) the full-angular width of the beam 
(Θ, in radians) approaches 2w(z)>z. In other words, as the line 
of length z  rotates through the angle Θ, its endpoint sweeps 
out a distance of ≈2w(z). Consequently, when z is large and 
w0 is small, the second term in the expression for w(z) is much 
greater than 1 and

w(z) ≈ w0 ca lz

pw2
0
b

2

d
1>2

≈
lz
pw0

Since Θ S 2w(z)>z,

Θ =
2l
pw0

= 0.637 
l

w0

of E0 to E0>e or 37%E0. At r = w the beam’s irradiance, which 
depends on the square of the amplitude, is then I0>e2, which is 
only 14%I0. Most of the energy of the beam resides within this 
imaginary cylinder of radius w, where (Fig. 13.18b)

I = I0e-2r2>w2

and I = I0e-2, as it’s supposed to, at r = w.
As can be seen in Fig. 13.17a, when curved mirrors form 

the laser cavity there is a tendency to “focus” the beam, giving 
it a minimum cross section or waist of radius w0. Under such 
circumstances, the external divergence of the laserbeam is 
essentially a continuation of the divergence out from this 
waist (Figs. 13.19 and 13.20). In general, there will be a beam 
waist somewhere between the mirrors of a laser resonator; its 
exact location depends on the specific design. For example, a 
confocal resonator (Fig. 13.16) has a waist halfway between 
the mirrors.

A more complete analysis of EM-waves in the cavity, setting 
z = 0 at the beam waist, yields the expression

 w(z) = w0 c1 + a lz

pw2
0
b

2

d
1>2

 (13.17)

r
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I = I0e−2r2�w2
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Figure 13.18  A Gaussian beamlike wave propa-
gating in the z-direction.
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Figure 13.19  Instantaneous irradiance of a Gaussian beam: w = 40 mm, 
l = 30 mm. (Etoombs@en.wikipedia.)
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Θ ≈ 2.44l>D
By comparison, far from the region of minimum cross section, 
the full-angular width of a waisted laserbeam is

 Θ ≈ 1.27l>D0 (13.19)

where D0 = 2w0, the beam-waist diameter, can be calculated 
from the particular cavity configuration.

The Helium-Neon Laser Maiman’s announcement of the 
first operative laser came at a New York news conference on 
July 7, 1960.* By February of 1961 Ali Javan and his as-
sociates W. R. Bennett, Jr., and D. R. Herriott had reported 
the successful operation of a continuous-wave (c-w) helium-
neon, gas laser at 1152.3 nm. The He-Ne laser (Fig. 13.21) 
is still widely used, most often providing a few milliwatts of 
continuous power in the visible (632.8 nm). Its appeal (be-
yond the fact that it’s pedalogically interesting) arises primar-
ily because it’s easy to construct, relatively inexpensive, and 
fairly reliable and in most cases can be operated by a flick of 
a single switch. Pumping is usually accomplished by electri-
cal discharge (via either dc, ac, or electrodeless rf excitation). 
Free electrons and ions are accelerated by an applied field 
and, as a result of collisions, cause further ionization and ex-
citation of the gaseous medium (typically, a mixture of about 
0.8 torr of He and about 0.1 torr of Ne). Many helium atoms, 
after dropping down from several upper levels, accumulate 
in the long-lived 21S- and 23S-states. These are metastable 
states (Fig. 13.22) from which there are no allowed radiative 
transitions. The excited He atoms inelastically collide with 
and transfer energy to ground-state Ne atoms, raising them in 
turn to the 5s- and 4s-states. These are the upper laser levels, 
and there then exists a population inversion with respect to 
the lower 4p- and 3p-states. Transitions between the 5s- and 
4s-states are forbidden. Spontaneous photons initiate stimulated 

Again, the smaller w0 is, the larger will be Θ, the beam diver-
gence. In part, that’s why people used to use megaphones—
waves emerging from a larger aperture diverge less. 

EXAMPLE 13.6

A helium-neon laser in the TEM00 mode emits a 632.8-nm beam. 
The laser’s symmetrical confocal cavity has a mirror-to-mirror 
length of 28.0 cm. Determine the internal minimum radius of the 
beam. Find the angle at which it diverges from the laser.

SOLUTION 

The minimum radius w0 is given by Eq. (13.18):

w0 = A lL
2p

= c(632.8 * 10-9)(28 * 10-2)

2p
d

1>2

and so

w0 = 0.168 mm

As for the angular divergence of the beam,

Θ = 0.637
l

w0
= 0.637 

632.8 * 10-9

0.168 * 10-3

and Θ = 2.399 m rad, or 0.137°.

While two plane mirrors forming a laser cavity will produce 
a beam that is aperture limited via diffraction, this will not now 
be the case. Recall Eq. (10.58), q1 ≈ 1.22ƒl>D, where D is the 
aperture diameter. This expression describes the radius of the Airy 
disk, and divide both sides by ƒ to get the half-angular width of 
the diffracted circular beam of initial diameter D. Doubling this 
yields Θ, the full-angular width, or divergence of an aperture-
limited laserbeam:

zR

w0

rr

I(r) I(r)

z = 0

w(z)√2 w0

Beam waist

Θ

Figure 13.20  The spreading of a Gaussian beam. Imagine 
two concave mirrors separated by a distance d = 2zR forming 
a confocal cavity. With one mirror partially silvered, the beam 
will emerge with an angular divergence Θ.
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Figure 13.21  A simple, early He-Ne laser configuration.

*His initial paper, which would have made his findings known in a more traditional 
fashion, was rejected for publication by the editors of Physical Review Letters—
this to their everlasting chagrin.
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628 Chapter 13 Modern Optics: Lasers and Other Topics

mechanism in the cavity, to the ultimate exclusion of the 
orthogonal polarization.*

Epoxying the windows to the ends of the laser tube and 
mounting the mirrors externally was a typical though dreadful 
approach used commercially until the mid-1970s. Inevitably, 
the epoxy leaked, allowing water vapor in and helium out. To-
day, such lasers are hard sealed; the glass is bonded directly to 
metal (Kovar) mounts, which support the mirrors within the 
tube. The mirrors (one of which is generally ≈100% reflec-
tive) have modern resistive coatings so they can tolerate the dis-
charge environments within the tube. Operating lifetimes of 
20 000 hours and more are now the rule (up from only a few 
hundred hours in the 1960s). Brewster windows are usually op-
tional, and most commercial He-Ne lasers generate more or less 
“unpolarized” beams. The typical mass-produced He-Ne laser 
(with an output of from 0.5 mW to 5 mW) operates in the 
TEM00 mode, has a coherence length of around 25 cm, a beam 
diameter of approximately 1 mm, and a low overall efficiency 
of only 0.01% to about 0.1%. Although there are infrared and 
green (543.5 nm) He-Ne lasers, the bright red 632.8-nm version 
remains the most popular.

a Survey of Laser Developments

Laser technology is so dynamic a field that what was a labora-
tory breakthrough a year or two ago may be a commonplace 
off-the-shelf item today. The whirlwind will certainly not pause 
to allow descriptive terms like “the smallest,” “the largest,” “the 
most powerful,” and so on to be applicable for very long. With 
this in mind, we briefly survey the existing scene without trying 
to anticipate the wonders that will surely come after this type is 
set (see Table 13.2). Laserbeams have already been bounced off 
the Moon; they have spot welded detached retinas; generated 
fusion neutrons; stimulated seed growth; served as communica-
tions links; read CD discs; guided milling machines, missiles, 
ships, and grating engines; carried color television pictures; 
drilled holes in diamonds; levitated tiny objects†; and intrigued 
countless among the curious.

Solid-State Lasers Along with ruby there are a great 
many other solid-state lasers whose outputs range in wave-
length from roughly 170 nm to 3900 nm. Such lasers use 
a glass or crystal rod doped with ions capable of supply-
ing the needed energy states. Recall that ruby is corundum 
doped with chromium. The trivalent rare earths Nd3+, Ho3+,  

emission, and the chain reaction begins. The dominant la-
ser transitions correspond to 1152.3 nm and 3391.2 nm in 
the infrared and, of course, the ever-popular 632.8 nm in the 
visible (bright red). The p-states drain off into the 3s-state, 
thus themselves remaining uncrowded and thereby continu-
ously sustaining the inversion. The 3s-level is metastable, so 
that 3s-atoms return to the ground state after losing energy 
to the walls of the enclosure. This is why the plasma tube’s 
diameter inversely affects the gain and is, accordingly, a sig-
nificant design parameter. In contrast to the ruby, where the 
laser transition is down to the ground state, stimulated emis-
sion in the He-Ne laser occurs between two upper levels. The 
significance of this, for example, is that since the 3p-state is 
ordinarily only sparsely occupied, a population inversion is 
very easily obtained, and this without having to half empty 
the ground state.

Return to Fig. 13.21, which pictures the relevant features 
of a basic early He-Ne laser. The mirrors are coated with a 
multilayered dielectric film having a reflectance of over 
99%. The laser output is made linearly polarized by the in-
clusion of Brewster end windows (i.e., plates tilted at the 
polarization angle) terminating the discharge tube. If these 
end faces were instead normal to the axis, reflection losses 
(4% at each interface) would become unbearable. By tilting 
them at the polarization angle, the windows presumably 
have 100% transmission for light whose electric-field com-
ponent is parallel to the plane-of-incidence (the plane of the 
drawing). This polarization state rapidly becomes dominant, 
since the normal component is partially reflected off-axis at 
each transit of the windows. Linearly polarized light in the 
plane-of-incidence soon becomes the preponderant stimulating 

Figure 13.22 He-Ne laser energy levels.
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*Half of the output power of the laser is not lost in reflections at the Brewster  
windows when the transverse �-state light is scattered. Energy simply isn’t  
continuously channeled into that polarization component by the cavity. If it’s 
reflected out of the plasma tube, it’s not present to stimulate further emission.

†See M. Lubin and A. Fraas, “Fusion by laser,” Sci. Am. 224, 21 (June 1971);  
R. S. Craxton, R. L. McCrory, and J. M. Soures, “Progress in laser fusion,”  
Sci. Am. 255, 69 (August 1986); and A. Ashkin, “The pressure of laser light,”  
Sci. Am. 226, 63 (February 1972).

The Helium-Neon Laser
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TaBLE 13.2  a Sample of Existing Lasers and Some of 
Their Emission Wavelengths 

Solid-State Lasers

Type Wavelengths (nm) 

Cr:Al2O3 (Ruby) 694.3

Cr:BeAl2O3 (Alexandrite) 700–830

Cr:LiCaF 700–830

Cr:LiSrAlF 800–1050

Cr:ZnSe 2200–2800

Er:YAG 2940

Ho:YAG 2100

Nd:Glass 1080, 1062, 1054

Nd:YAG 1064.1, 266, 355, 532, 1320 
Nd:YCOB ≈1060

Nd:YLF 1047, 1053

Nd:YVO4 1064

Pr:Glass 933, 1098

Sm:CaF2 708.5

Ti:sapphire 650–1180

Tm:YAG 2000 

U:CaF2 2500 

Yb:Glass 1030 

Yb:YAG 1030

Gas Lasers 

Type Wavelengths (nm) 

Argon ion 488.0, 514.5, 275, 363.8, 457.9, 465.8, 528.7

Carbon dioxide 10600, 9600 

Carbon monoxide 4700 – 8200, 2500 – 4200 

Helium-cadmium 441.6, 330.0

Helium-neon 632.8, 543.5, 593.9, 1523

Hydrogen cyanide (HCN) 337 000

Krypton ion 647.1, 676.4, 416, 530.9, 568.2, 752.5, 799.3

Nitrogen 337.1

Water vapor 28 000, 118 600 

Xenon ion 540

Excimer (Exciplex) lasers

ArCl 169, 175

ArF  193.4

ArO 558

F2 157

HgBr 499–504.6

KrCl  222

KrF  248

XeBr  282

XeCl  308

XeF  353

XeO 537.6, 544.2

Metal-Vapor Lasers

Type Wavelengths (nm) 

Copper vapor 510.5, 578.2

Gold vapor 627.8

Lead vapor 722.9

HeAg 224.3

HeCd 441.56, 352.0, 353.6 

HeHg 567, 615

HeSe 497.5, 499.2, 506.8, 517.6, 522.7, 530.5

NeCu 248.6

Strontium vapor 430.5

Semiconductor Lasers

Type Wavelengths (nm) 

AlGaAs 630 –900

AlGaInP 630 –900

GaAlAs/GaAS 720 –900

GaAs/GaAS 904

GaInPAs/GaAS 670 – 680

GaN/SiC 423, 405–425

InGaAsP/InP 1000 –1700

PbSnSe 8000–30 000 

Quantum cascade mid- to far-IR

Liquid Lasers

Type Wavelengths (nm) 

Coumarin ≈460 –558

Dicyanomethylene 610 –705

Eu ion chelate 613.1

Kiton red 600 – 650

Rhodamine  ≈528 – 640

Stilbene ≈391– 465

Chemical Lasers

Type Wavelengths (nm) 

AGIL (all gas-phase  1315 
iodine laser) 

COIL (chemical oxygen- 1315 
iodine laser)

DF-CO2 10 600

DF ≈2700 – ≈4200

HBr 4000

HF 2700 –2900
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630 Chapter 13 Modern Optics: Lasers and Other Topics

Tremendous power outputs in pulsed systems have been 
obtained by operating several lasers in tandem. The first laser 
in the train serves as a Q-switched oscillator that fires into the 
next stage, which functions as an amplifier; and there may be 
one or more such amplifiers in the system. By reducing the 
feedback of the cavity, a laser will no longer be self-oscillatory, 
but it will amplify an incident wave that has triggered stimu-
lated emission. Thus the amplifier is, in effect, an active me-
dium, which is pumped, but for which the end faces are only 
partially reflecting or even nonreflecting. Ruby systems of 
this kind, delivering a few GW (gigawatts, i.e., 109 W) in the 
form of pulses lasting several nanoseconds, are available 
commercially. 

On December 19, 1984, the largest laser then in existence, 
the Nova at the Lawrence Livermore National Laboratory in 
California, fired all 10 of its beams at once for the first time, 
producing a warm-up shot of a mere 18 kJ of 350-nm radia-
tion in a 1-ns pulse. This immense neodymium-doped glass 
laser was designed to focus up to 120 TW onto a fusion  
pellet—that’s roughly 500 times more power than all the 
electrical generating stations in the United States—albeit 
only for about 10-9 s. In the late 1990s, the last years of its 
operation, using just one beamline of the Nova, LLNL  
researchers were able to produce 1.25-PW pulses, each last-
ing 490 fs and carrying 580 J.

Nova’s successor, which came on line in 1980 (with 24 
solid-state lasers), is housed in the Laboratory for Laser  
Energetics (LLE) at the University of Rochester. At present, 
LLE operates the 30- to 45-kJ Omega laser and is one of the 
world’s premier laser fusion research facilities. Upgraded in 
1995, Omega is a 60-beam ultraviolet frequencey–tripled 

Gd3+, Tm3+, Er3+, Pr3+, and Eu3+ undergo laser action in a host 
of hosts, such as CaWO4, Y2O3, SrMoO4, LaF3, yttrium alu-
minum garnet (YAG for short), and glass, to name only a few. 
Of these, neodymium-doped glass and neodymium-doped YAG 
are of particular importance. Both constitute high-powered la-
ser media operating at approximately 1060 nm. Nd:YAG lasers 
generating in excess of a kilowatt of continuous power have 
long been available. 

Nd:YAG (Nd:Y3Al5O12) lasers are among the most widely used 
solid-state laser. They find applications in surgery, target designa-
tion, range finding, frequency doubling, and material processing, 
among others. Somewhat newer are the high-power, neodymium 
doped yttrium lithium fluoride (Nd:YLF) and neodymium-doped 
yttrium orthovanadate (Nd:YVO4) lasers, also operating in the IR 
(1064 nm). A few AAA cells can power an inexpensive IR diode 
laser that can pump a small Nd:YVO4 crystal located in an optical 
cavity. Put a KTP frequency-doubling crystal in the cavity and you 
have a well-collimated green-light laser pointer. 

Similarly, there are a variety of ytterbium-doped laser media 
like Yb:YAG and Yb:KGW that usually operate at substantial 
power levels in the wavelength range from 1020 nm to 1050 nm. 
The holmium YAG (Ho:YAG) laser at 2100 nm is often used to 
blast gall stones and kidney stones and to destroy cancerous tu-
mors. Along with it the erbium YAG (Er:YAG) laser at 2940 nm 
is a favorite in dentistry. And these represent just a small sam-
pling of the variety of solid-state lasers available today.

EXAMPLE 13.7

A Nd:YAG laser rod is composed of Nd ions doped at a 1% 
concentration into an yttrium aluminum garnet host. That cor-
responds to a Nd+3 ion density in the laser rod of about 
1.38 * 1026 m-3. Suppose all of these ions are pumped to their 
upper 4F3>2 levels essentially all at once. From there they cas-
cade downward, emitting radiation at 1060 nm. Determine the 
energy radiated per cubic meter of rod.

SOLUTION
Let’s first determine the energy of each photon. Then if we as-
sume all the Nd ions radiate, we can find the total energy emit-
ted. At 1060 nm the photon energy is

E = hn =
hc
l

=
(6.626 * 10-34 J · s)(2.998 * 108 m>s)

1060 * 10-9m

and

E = 1.874 * 10-19 J

Now if there are 1.38 * 1026 ions>m3, each radiating a 
1.874 * 10-19 J photon, the total amount of energy emitted per 
cubic meter is

ET = (1.874 * 10-19 J)(1.38 * 1026 m-3)
and

ET = 25.9 * 106 J>m3

The Nova laser. (Lawernce Livemore National Laboratory.)
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Gas Lasers

A large group of gas lasers operate across the spectrum from 
the far IR to the UV (1 mm to 150 nm). Primary among these 
are helium-neon, argon, and krypton, as well as several mo-
lecular gas systems, such as carbon dioxide, hydrogen fluo-
ride, and molecular nitrogen (N2). Argon lases mainly in the 
violet, blue-green, and green (predominantly at 457.9, 488.0, 
and 514.5 nm, respectively) in either pulsed or continuous op-
eration. Although its output is usually several watts c-w, it has 
gone as high as 150 W c-w. The argon ion laser is similar in 
some respects to the He-Ne laser, although it evidently differs 
in its usually greater power, shorter wavelength, broader line-
width, and higher price. The TEA (transverse electrical dis-
charge in gas at atmosphetic pressure) laser is an inexpensive 
source of UV at 337.1 nm. All of the noble gases (He, Ne, Ar, 
Kr, Xe) have been made to lase individually, as have the gas-
eous ions of many other elements, but the former grouping has 
been studied most extensively.

The CO2 molecule, which lases between vibrational modes, 
emits in the IR at 10.6 mm, with typical c-w power levels of from 
a few watts to several kilowatts. Its efficiency can be an unusu-
ally high ≈15% when aided by additions of N2 and He. While it 
once took a discharge tube nearly 200 m long to generate 10 kW 
c-w, considerably smaller “table models” have long been avail-
able commercially. For a while in the 1970s, the record output 
belonged to an experimental gas-dynamic laser utilizing thermal 
pumping on a mixture of CO2, N2, and H2O to generate 60 kW 
c-w at 10.6 mm in multimode operation.

The pulsed nitrogen laser operates at 337.1 nm in the UV, as 
does the c-w helium-cadmium laser (325 nm). Several other 
metal ion (or metal-vapor) lasers generate deep UV emissions 
such as HeAg at 224 nm and NeCu at 248.6 nm. Still others, like 
copper vapor (510.6 nm, 578.2 nm) and gold vapor (627 nm), 
emit in the visible. The He-Cd laser radiates at 325.0 nm and 

neodymium-doped phosphate glass laser that can concentrate 
60 * 1012 W of radiant power onto a pinhead-sized target. To 
accomplish that feat, the initial laser output is split repeatedly 
and each beam is subsequently amplified using Nd:glass 
disks and rods. Just before reaching the target the several 
beams are frequency-tripled to 351 nm using KDP crystals 
(Section 13.4.2). Supplying the needs of a variety of research-
ers, Omega is being operated at its maximum rate of one 
shoot per hour.

Omega’s successor is housed in the Department of Energy’s 
immense National Ignition Facility (NIF) in Livermore, California. 
The device, which was designed to use 192 beams to produce 
500-TW blasts of radiant energy, performed its first ignition 
experiments in 2010. 

At NIF the radiant energy stream begins as a low-power 
flash (a few nanojoules) of infrared (1053 nm) from an ytterbi-
um-doped optical fiber laser. That’s split into numerous beams 
that are sent through neodymium glass preamplifiers, from 
which they emerge with an energy of about 6 J. The main series 
of glass amplifiers, pumped by 7680 xenon flash lamps, boosts 
the total beam energy up to a nominal 4 MJ. Spatial filters clean 
up the beams, removing any variations introduced along the 
way by imperfections in the optics, ensuring that they will be 
highly uniform when they arrive at the target.

Infrared is very efficiently absorbed by electrons in the hot 
target, thereby seriously interfering with the compression of the 
deuterium-tritium fuel and its subsequent thermonuclear ignition. 
Consequently, before reaching the target the beams are converted 
into UV by passing successively through two sheets of single 
crystal potassium dihydrogen phosphate. The first sheet converts 
IR at 1053 nm into green light at 527 nm. The second sheet con-
verts that into UV at 351 nm. This process is only about 50% ef-
ficient, reducing the total deliverable energy to roughly 1.8 MJ.

NIF fired its full complement of 192 beams into the target 
chamber, delivering 1.1 MJ of UV for the first time in 2009, 
thereby becoming the most powerful laser on the planet.

A portion of the NIF laser–based inertial confinement fusion device that  
essentially became operational in 2010. (Lawrence Livermore National Laboratory.) Inside the target chamber of the LLE laser-fusion device. Fusion reactions 

take place in tiny target-sphere filled with deuterium/tritium and irradiated by 
the 30-kJ Omega laser. (University of Rochester’s Laboratory for Laser Energestic, Eugene 

Kowaluk, Image specialist.)
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632 Chapter 13 Modern Optics: Lasers and Other Topics

system lase, the light emitted from the diode is retained within 
a resonant cavity, and that’s usually accomplished by simply 
polishing the end faces perpendicular to the junction channel.

Nowadays semiconductor lasers are created to meet specific 
needs, and there are many designs producing wavelengths rang-
ing from around 400 nm to about 30 mm. The early 1970s saw 
the introduction of the c-w GaAs>GaAlAs laser. Operating at 
room temperature in the 750-nm to 900-nm region (depending 
on the relative amounts of aluminum and gallium), the tiny di-
ode chip is usually about a sixteenth of a cubic centimeter in 
volume. Figure 13.23b shows a typical heterostructure (a device 
formed of different materials) diode laser of this kind. Here the 
beam emerges in two directions from the 0.2-mm-thick active 
layer of GaAs. These little lasers usually produce upward of 20 
mW of continuous-wave power. To take advantage of the low-
loss region (l ≈ 1.3 mm) in fiberoptic glass the GaInAsP>InP 
laser was devised in the mid-1970s with an output of 1.2 mm to 
1.6 mm. The gallium nitride (GaN) diode laser emits violet light 
at 405 nm. It’s used to read and write Blu-ray disks. The quantum 
cascade laser radiates in the mid- to far-IR region. In 2006 a 

441.6 nm. These are transitions of the cadmium ion arising after 
excitation resulting from collisions with metastable helium  
atoms.

The excimer laser is a kind of gas laser energized by an elec-
tric discharge. As a rule excimer lasers use a combination of one 
of the noble gases like xenon, krypton, or argon, with a reactive 
gas like fluorine, chlorine, or bromine. An excimer is a pseudo-
molecule that exists in only an energized state. Excimer lasers 
like XeF (351 nm), XeCl (308 nm), XeBr (282 nm), KrF (248 
nm), KrCl (222 nm), and ArF (193 nm) typically emit tens of 
milliwatts in the UV. They’re often used in LASIK eye surgery 
and precision micromachining, and in the production of semi-
conductor integrated circuits.

As was discussed earlier, titanium-doped sapphire (Ti:sapphire) 
mode-locked lasers are very stable infrared (650–1100 nm) de-
vices that are highly tunable. They’re ideally suited to produce 
powerful ultrashort pulses and find numerous applications, es-
pecially in spectroscope and in LIDAR (Light Detection And 
Ranging) systems.

Semiconductor Lasers

The semiconductor laser—alternatively known as the junction 
or diode laser—was invented in 1962, soon after the develop-
ment of the light-emitting diode (LED). Today it serves a cen-
tral role in electro-optics, primarily because of its spectral pu-
rity, high efficiency (≈100%), ruggedness, ability to be 
modulated at extremely rapid rates, long lifetimes, and moder-
ate power (as much as 200 mW) despite its pinhead size. Junc-
tion lasers have been used in the millions in fiberoptic commu-
nications, CD (780 nm) and DVD (650 nm) systems, laser pointers, 
and so forth.

The first such lasers were made of one material, gallium ar-
senide, appropriately doped to form a p–n junction. The associ-
ated high lasing threshold of these so-called homostructures 
limited them to pulsed mode operation and cryogenic tempera-
tures; otherwise the heat developed in their small structures 
would destroy them. The first tunable lead-salt diode laser was 
developed in 1964, but it was not until almost a dozen years 
later that it became commercially available. It operates at liquid 
nitrogen temperatures, which is certainly inconvenient, but it 
could scan from 2 mm to 30 mm.

Later advances have since allowed a reduction in the thresh-
old and resulted in the advent of the continuous-wave (c-w), 
room temperature diode laser. Transitions occur between the 
conduction and valence bands, and stimulated emission results 
in the immediate vicinity of the p–n junction (Fig. 13.23). Quite 
generally, as a current flows in the forward direction through a 
semiconductor diode, electrons from the n-layer conduction 
band will recombine with p-layer holes, thereupon emitting en-
ergy in the form of photons. This radiative process, which com-
petes for energy with the existing absorption mechanisms (such 
as phonon production), comes to predominate when the recom-
bination layer is small and the current is large. To make the 
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Figure 13.23  (a) An early GaAs p–n junction laser. (b) A more modern 
diode laser.
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but it was not until 1969 that a continuous-wave chemical laser 
was developed. The deuterium fluoride-carbon dioxide (DF-
CO2) laser is self-sustaining in that it requires no external power 
source. In brief, the reaction F2 + D2 S 2DF, which occurs on 
the mixing of these two fairly common gases, generates enough 
energy to pump a CO2 laser. The hydrogen fluoride laser emits 
at 2700–2900 nm, while the deuterium laser emits at 3800 nm.

There are solid-state, gaseous, liquid, and vapor (e.g., H2O) 
lasers; there are semiconductor lasers, free electron (600 nm to 
3 mm) lasers, X-ray lasers, doped glass fiber lasers, color center 
lasers, and lasers with very special properties, such as those that 
generate extremely short pulses, or those that have extraordi-
nary frequency stability. These latter devices are very useful in 
the field of high-resolution spectroscopy, but there is a growing 
need for them in other research areas as well (e.g., in the inter-
ferometers used to attempt to detect gravity waves). In any 
event, these lasers must have precisely controlled cavity con-
figurations despite the disturbing influences of temperature 
variations, vibrations, and even sound waves. A laser at the Joint 
Institute for Laboratory Astrophysics in Boulder, Colorado, 
maintains a frequency stability of nearly 1 part in 1014.

13.1.4 The Light Fantastic

Laserbeams differ somewhat from one type of laser to another; 
yet there are several remarkable features that are displayed, to 
varying degrees, by all of them. Quite apparent is the fact that 
most laserbeams are exceedingly directional, or if you will, 
highly collimated. One need only blow some smoke into the 
otherwise invisible, visible laserbeam to see (via scattering) a 
fantastic thread of light stretched across a room. A He-Ne beam 
in the TEM00 mode generally has a divergence of only about 

broadly tunable version became commercially available, and 
the QC laser is now an especially useful research tool.

The cleaved–coupled-cavity laser is shown in the accompa-
nying photo. In it the number of axial modes is controlled in 
order to produce very-narrow-bandwidth tunable radiation. 
Two cavities coupled together across a small gap restrict the 
radiation to the extremely narrow bandwidth that can be sus-
tained in both resonant chambers.*

Liquid Lasers

The first liquid laser was operated in January of 1963.† All of 
the early devices of this sort were exclusively chelates (i.e., 
metallo-organic compounds formed of a metal ion with organic 
radicals). That original liquid laser contained an alcohol solu-
tion of europium benzoylacetonate emitting at 613.1 nm. The 
discovery of laser action in nonchelate organic liquids was 
made in 1966. It came with the fortuitous lasing (at 755.5 nm) 
of a chloroaluminum phthalocyanine solution during a search 
for stimulated Raman emission in that substance.‡

A great many fluorescent dye solutions of such families as 
the fluoresceins, coumarins, and rhodamines have since been 
made to lase at frequencies from the IR into the UV. These have 
usually been pulsed, although c-w operation has been obtained. 
There are so many organic dyes that it would seem possible to 
build such a laser at any frequency in the visible. Moreover, 
these devices are distinctive in that they inherently can be tuned 
continuously over a range of wavelengths (of perhaps 70 nm or 
so, although a pulsed system tunable over 170 nm exists). In-
deed, there are other arrangements that will vary the frequency 
of a primary laserbeam (i.e., the beam enters with one color and 
emerges with another, Section 13.4), but in the case of the dye 
laser, the primary beam itself is tuned internally. This is accom-
plished, for example, by changing the concentration or the length 
of the dye cell or by adjusting a diffraction grating reflector at 
the end of the cavity. Multicolor dye laser systems, which can 
easily be switched from one dye to another and thereby operate 
over a very broad frequency range, are available commercially.

Chemical Lasers

A chemical laser is one that is pumped with energy released via 
a chemical reaction. The first of this kind was operated in 1964, 

*See Y. Suematsu, “Advances in semiconductor lasers,” Phys. Today, 32 (May 
1985). For a discussion of heterostructure diode lasers, refer to M. B. Panish  
and I. Hayashi, “A new class of diode lasers,” Sci. Am. 225, 32 (July 1971).

†See Adam Heller, “Laser action in liquids,” Phys. Today (November 1967), p. 35, 
for a more detailed account.

‡P. Sorokin, “Organic lasers,” Sci. Am. 220, 30 (February 1969).

An early cleaved–coupled-cavity laser. (Used with permission of Alcatel-Lucent USA Inc.)
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firmly established a new field of research known as ultrafast 
phenomena. The most effective way to study the progression of 
a process that occurs exceedingly rapidly (e.g., carrier dynamics 
in semiconductors, fluorescence, photochemical biological pro-
cesses, and molecular configuration changes) is to examine it on 
a time scale that is comparatively short with respect to what’s 
happening. Pulses lasting ≈10 fs allow an entirely new access 
into previously obscure areas in the study of matter.

Pulses lasting a mere 8 fs (10-15 s), which corresponds to 
wavetrains only about 4 wavelengths of red light in length, can 
be produced routinely. One of the techniques that make these 
femtosecond wavegroups possible is based on an idea used in 
radar work in the 1950s called pulse compression. Here an ini-
tial laser pulse has its frequency spectrum broadened, thereby 
allowing the inverse or temporal pulse width to be shortened—
remember that ∆n and ∆t are conjugate Fourier quantities [Eq. 
(7.63)]. The input pulse (several picoseconds long) is passed 
into a nonlinear dispersive medium, namely, a single-mode op-
tical fiber. When the light intensity is high enough, the index of 
refraction has an appreciable nonlinear term (Section 13.4), and 
the carrier frequency of the pulse experiences a time-dependent 
shift. On traversing perhaps 30 m of fiber, the frequency of the 
pulse is drawn out, or “chirped.” That is, a spread occurs in the 
spectrum of the pulse, with the low frequencies leading and  
the high frequencies trailing. Next the spectrally broadened 
pulse is passed through another dispersive system (a delay line), 
such as a pair of diffraction gratings. By traveling different 
paths, the blue-shifted trailing edge of the pulse is made to catch 
up to the red-shifted leading edge, creating a time-compressed 
output pulse.

The Speckle Effect

A rather striking and easily observable manifestation of the 
spatial coherence of laserlight is its granular appearance on 

one minute of arc or less. Recall that in that mode the emission 
closely approximates a Gaussian irradiance distribution; that is, 
the flux density drops off from a maximum at the central axis of 
the beam and has no side lobes. The typical laserbeam is quite 
narrow, usually issuing at no more than a few millimeters in 
diameter. Since the beam resembles a truncated plane wave, it is 
of course highly spatially coherent. In fact, its directionality 
may be thought of as a manifestation of that coherence. Laser-
light is quasimonochromatic, generally having an exceedingly 
narrow frequency bandwidth (p. 323). In other words, it is highly 
temporally coherent.

Another attribute is the large flux or radiant power that can 
be delivered in that narrow frequency band. As we’ve seen, the 
laser is distinctive in that it emits all its energy in the form of a 
narrow beam. In contrast, a 100-W incandescent lightbulb may 
pour out considerably more radiant energy in toto than a lower-
power c-w laser, but the emission is incoherent, spread over a 
large solid angle, and it has a broad bandwidth as well. A good 
lens* can totally intercept a laserbeam and focus essentially all 
of its energy into a minute spot (whose diameter varies directly 
with l and the focal length and inversely with the beam diame-
ter). Spot diameters of just a few thousandths of an inch can 
readily be attained with lenses that have a conveniently short 
focal length. And a spot diameter of a few hundred-millionths of 
an inch is possible in principle. Thus flux densities can readily be 
generated in a focused laserbeam of over 1017 W>cm2, in con-
trast to, say, an oxyacetylene flame having roughly 103 W>cm2. 
To get a better feel for these power levels, note that a focused 
CO2 laserbeam of a few kilowatts c-w can burn a hole through a 
quarter-inch stainless steel plate in about 10 seconds. By com-
parison, a pinhole and filter positioned in front of an ordinary 
source will certainly produce spatially and temporally coherent 
light, but only at a minute fraction of the total power output.

Femtosecond Optical Pulses

The advent of the mode-locked dye laser in the early part of the 
1970s gave a great boost to the efforts then being made at generat-
ing extremely short pulses of light.† Indeed, by 1974 subpicosec-
ond (1 ps = 10-12 s) optical pulses were already being produced, 
although the remainder of the decade saw little significant prog-
ress. In 1981 two separate advances resulted in the creation of 
femtosecond laser pulses (i.e., 60.1 ps or 6100 fs)—a group at 
Bell Labs developed a colliding-pulse ring dye laser, and a team 
at IBM devised a new pulse-compression scheme. 

Above and beyond the implications in the practical domain of 
electro-optical communications, these accomplishments have 

*Spherical aberration is usually the main problem, since laserbeams are, as a rule, 
both quasimonochromatic and incident along the axis of the lens.

†See Chandrashekhar Joshi and Paul Corkum, “Interactions of ultra-intense laser 
light with matter,” Phys. Today 36 (January 1995).

X-ray diffraction pattern of a Mimivirus using the world’s most powerful free-
electron X-ray laser at the Linac Coherent Light Source. (Tomas Ekeberg, Uppsala 

University, SLAC National Accelerator Laboratory, Stanford University.)
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change rapidly and randomly in time, washing out the large-
scale interference pattern.

A real system of fringes is formed of the scattered waves that 
converge in front of the screen. The fringes can be viewed by 
intersecting the interference pattern with a sheet of paper at a 
convenient location. After forming the real image in space, the 
rays proceed to diverge, and any region of the image can there-
fore be viewed directly with the eye appropriately focused. In 
contrast, rays that initially diverge appear to the eye as if they 
had originated behind the scattering screen and thus form a vir-
tual image.

It seems that as a result of chromatic aberration, normal and 
farsighted eyes tend to focus red light behind the screen. Con-
trarily, a nearsighted person observes the real field in front of 
the screen (regardless of wavelength). Thus if the viewer moves 
her head to the right, the pattern will move to the right in the first 
instance (where the focus is beyond the screen) and to the left in 
the second (focus in front). The pattern will follow the motion 
of your head, if you’re viewing it very close to the surface. The 
same apparent parallax motion can be seen by looking through 
a window; outside objects will seem to move with your head, 
inside ones opposite to it. The brilliant, narrow-bandwidth, spa-
tially coherent laserbeam is ideally suited for observing the 
granular effect, although other means are certainly possible.* In 
unfiltered sunlight the grains are minute, on the surface, and 
multicolored. The effect is easy to observe on a smooth, flat-
black material (e.g., poster-painted paper), but you can see it on 
a fingernail or a worn coin as well.

Although it provides a marvelous demonstration, both aes-
thetically and pedagogically, the granular effect can be a real 
practical nuisance in coherently illuminated systems. For ex-
ample, in holographic imagery the speckle pattern corresponds 
to troublesome background noise. Incidentally, very much the 
same kind of thing is observable when listening to a mobile ra-
dio where the signal strength fluctuates from one location to the 
next, depending on the environment and the resulting interfer-
ence pattern.

The Spontaneous Raman Effect

It is possible that an excited atom will not return to its initial 
state after the emission of a photon. This kind of behavior had 
been observed and studied extensively by George Stokes prior 
to the advent of quantum theory. Since the atom drops down to 
an interim state, it emits a photon of lower energy than the inci-
dent primary photon, in what is usually referred to as a Stokes 
transition. If the process takes place rapidly (roughly 10-7 s), it 
is called fluorescence, whereas if there is an appreciable delay 
(in some cases seconds, minutes, or even many hours), it is known 

reflection from a diffuse surface. Using a He-Ne laser (632.8 
nm), expand the beam a bit by passing it through a simple lens 
and project it onto a wall or a piece of paper. The illuminated 
disk appears speckled with bright and dark regions that spar-
kle and shimmer in a dazzling psychedelic dance. Squint and 
the grains grow in size; step toward the screen and they shrink; 
take off your eyeglasses and the pattern stays in perfect focus. 
In fact, if you are nearsighted, the diffraction fringes caused 
by dust on the lens blur out and disappear, but the speckles do 
not. Hold a pencil at varying distances from your eye so that 
the disk appears just above it. At each position, focus on the 
pencil; wherever you focus, the granular display is crystal 
clear. Indeed, look at the pattern through a telescope; as you 
adjust the scope from one extreme to the other, the ubiquitous 
granules remain perfectly distinct, even though the wall is 
completely blurred.

The spatially coherent light scattered from a diffuse surface 
fills the surrounding region with a stationary interference pat-
tern ( just as in the case of the wavefront-splitting arrangements 
of Section 9.3). At the surface the granules are exceedingly 
small, and they increase in size with distance. At any location in 
space, the resultant field is the superposition of many contribut-
ing scattered wavelets. These must have a constant relative phase 
determined by the optical path length from each scatterer to the 
point in question, if the interference pattern is to be sustained. 
The accompanying photo illustrates this point rather nicely. It 
shows a cement block illuminated in one case by laserlight and 
in the other by collimated light from a Hg arc lamp, both of 
about the same spatial coherence. While the laser’s coherence 
length is much greater than the height of the surface features, the 
coherence length of the Hg light is not. In the former case, the 
speckles in the photograph are large, and they obscure the sur-
face structure; in the latter, despite its spatial coherence, the 
speckle pattern is not observable in the photograph, and the sur-
face features predominate. Because of the rough texture, the op-
tical path length difference between two wavelets arriving at a 
point in space, scattered from different surface bumps, is gener-
ally greater than the coherence length of the mercury light. This 
means that the relative phases of the overlapping wavetrains 

Speckle patterns. (a) A cement block illuminated by a mercury arc and (b) a 
He-Ne laser. (B.J. Thompson, J. Soc. Photo. Inst. Engr. 4, 7 [1965].)

*For further reading on this effect, see L. I. Goldfischer, J. Opt. Soc. Am. 55, 247 
(1965); D. C. Sinclair, J. Opt. Soc. Am. 55, 575 (1965); J. D. Rigden and E. I. 
Gordon, Proc. IRE 50, 2367 (1962); B. M. Oliver, Proc. IEEE 51, 220 (1963). 

(a) (b)
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636 Chapter 13 Modern Optics: Lasers and Other Topics

Figure 13.25, for comparison’s sake, depicts Rayleigh Scatter-
ing where ns = ni.

The laser is an ideal source for spontaneous Raman Scattering. 
It is bright, quasimonochromatic, and available in a wide range 
of frequencies. Figure 13.26 illustrates a typical laser–Raman 
system. Complete research instruments of this sort are commer-
cially available, including the laser (usually helium-neon, argon, 
or krypton), focusing lens systems, and photon-counting electron-
ics. The double scanning monochromator provides the needed 
discrimination between ni and ns, since unshifted laserlight (ni) 
is scattered along with the Raman spectra (ns). Although Raman 
Scattering associated with molecular rotation was observed prior 
to the use of the laser, the increased sensitivity now available 
makes the process easier and allows even the effects of electron 
motion to be examined.

The Stimulated Raman Effect

In 1962 Eric J. Woodbury and Won K. Ng rather fortuitously 
discovered a remarkable related effect known as Stimulated 
Raman Scattering. They had been working with a million-watt 

as phosphorescence. Using ultraviolet quanta to generate a flu-
orescent emission of visible light has become an accepted occur-
rence in our everyday lives. Any number of commonplace mate-
rials (e.g., detergents, organic dyes, and tooth enamel) will emit 
characteristic visible photons so that they appear to glow under 
ultraviolet illumination; ergo the widespread use of the phenom-
enon for commercial display purposes and for “whitening” cloths.

If quasimonochromatic light is scattered from a substance, it 
will thereafter consist mainly of light of the same frequency. Yet 
it is possible to observe very weak additional components hav-
ing higher and lower frequencies (side bands). Moreover, the 
difference between the side bands and the incident frequency ni 
is found to be characteristic of the material and therefore sug-
gests an application to spectroscopy. The Spontaneous Raman 
Effect, as it is now called, was predicted in 1923 by Adolf Sme-
kal and observed experimentally in 1928 by Sir Chandrasekha-
ra Vankata Raman (1888–1970), then professor of physics at 
the University of Calcutta. The effect was difficult to put to ac-
tual use, because one needed strong sources (usually Hg dis-
charges were used) and large samples. Often the ultraviolet 
from the source would further complicate matters by decom-
posing the specimen. And so it is not surprising that little sus-
tained interest was aroused by the promising practical aspects 
of the Raman Effect. The situation was changed dramatically 
when the laser became a reality. Raman spectroscopy is now a 
unique and powerful analytical tool.

To appreciate how the phenomenon operates, let’s review the 
germane features of molecular spectra. A molecule can absorb 
radiant energy in the far-infrared and microwave regions, con-
verting it to rotational kinetic energy. Furthermore, it can ab-
sorb infrared photons (i.e., ones within a wavelength range 
from roughly 10-2 mm down to about 700 nm), transforming 
that energy into vibrational motion of the molecule. Finally, a 
molecule can absorb energy in the visible and ultraviolet re-
gions through the mechanism of electron transitions, much like 
those of an atom. Suppose then that we have a molecule in some 
vibrational state, which, using quantum-mechanical notation, 
we call 0 b9, as indicated diagrammatically in Fig. 13.24a. This 
need not necessarily be an excited state. An incident photon of 
energy hni is absorbed, raising the system to some intermediate 
or virtual state, whereupon it immediately makes a Stokes tran-
sition, emitting a (scattered) photon of energy hns 6 hni. In 
conserving energy, the difference hni - hns = hncb goes into 
exciting the molecule to a higher vibrational energy level 0 c9. It 
is possible that electronic or rotational excitation results as well. 

Alternatively, if the initial state is an excited one ( just heat 
the sample), the molecule, after absorbing and emitting a pho-
ton, may drop back to an even lower state (Fig. 13.24b), there-
by making an anti-Stokes transition. In this instance hns 7 hni, 
which means that some vibrational energy of the molecule  
(hnba = hns - hni) has been converted into radiant energy. In 
either case, the resulting differences between ns and ni corre-
spond to specific energy-level differences for the substance 
under study and as such yield insights into its molecular structure. 

Figure 13.24  Spontaneous Raman Scattering.
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Figure 13.25  Rayleigh Scattering.
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 13.1 Lasers and Laserlight 637

occur in solids, liquids, or dense gases under the influence of 
focused high-energy laser pulses (Fig. 13.27). The effect is 
schematically depicted in Fig. 13.28. Here two photon beams 
are simultaneously incident on a molecule, one corresponding 
to the laser frequency ni, the other having the scattered frequen-
cy ns. In the original setup, the scattered beam was reflected 
back and forth through the specimen, but the effect can occur 
without a resonator. The laserbeam loses a photon hni, while the 

pulsed ruby laser incorporating a nitrobenzene Kerr cell shutter 
(see Section 8.11.3). They found that about 10% of the incident 
energy at 694.3 nm was shifted in wavelength and appeared as 
a coherent scattered beam at 766.0 nm. It was subsequently de-
termined that the corresponding frequency shift of about 40 
THz was characteristic of one of the vibrational modes of the 
nitrobenzene molecule, as were other new frequencies also 
present in the scattered beam. Stimulated Raman Scattering can 

Figure 13.26  A laser–Raman system.
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Figure 13.27  Stimulated Raman Scattering. (Source: See R. W. 

Minck, R. W. Terhune, and C.C. Wang, Proc. IEEE 54, 1357, [1966].)
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638 Chapter 13 Modern Optics: Lasers and Other Topics

alteration in voltage that might appear across a pair of termi-
nals at some fixed location in space. By comparison, in Op-
tics we are most often concerned with information spread 
across a region of space at a fixed location in time. For ex-
ample, we can think of the scene depicted in Fig. 13.29a as a 
two-dimensional flux-density distribution. It might be an il-
luminated transparency, a television picture, or an image 

scattered beam gains a photon hns and is subsequently ampli-
fied. The remaining energy (hni - hns = hnba) is transmitted to 
the sample. The chain reaction in which a large portion of the 
incident beam is converted into stimulated Raman light can 
occur only above a certain high-threshold flux density of the 
exciting laserbeam.

Stimulated Raman Scattering provides a whole new range of 
high flux-density coherent sources extending from the infrared 
to the ultraviolet. It should be mentioned that in principle each 
spontaneous scattering mechanism (e.g., Rayleigh and Brillouin 
Scattering) has its stimulated counterpart.*

13.2  Imagery—The Spatial Distribution 
of Optical Information

The manipulation of all sorts of data via optical techniques has 
already become a technological fait accompli. The literature 
since the 1960s reflects, in a diversity of areas, this far-reaching 
interest in the methodology of optical data processing. Practical 
applications have been made in the fields of television and pho-
tographic image enhancement, radar and sonar signal process-
ing (phased and synthetic array antenna analysis), as well as in 
pattern recognition (e.g., aerial photointerpretation and finger-
print studies), to list only a very few.

Our concern here is to develop the nomenclature and some 
of the ideas necessary for an appreciation of this contemporary 
thrust in Optics.

13.2.1 Spatial Frequencies

In electrical processes one is most frequently concerned 
with signal variations in time, that is, the moment-by-moment 

Figure 13.28  Energy-level diagram of Stimulated Raman Scattering.
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*For further reading on these subjects you might try the review-tutorial paper  
by Nicolaas Bloembergen, “The Stimulated Raman Effect,” Am. J. Phys. 35, 989 
(1967). It contains a fairly good bibliography as well as a historical appendix. 
Many of the papers in Lasers and Light also deal with this material and are highly 
recommended reading. Figure 13.29  A two-dimensional irradiance distribution.
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 13.2 Imagery—The Spatial Distribution of Optical Information 639

are effectively one-dimensional. The spatial frequency spec-
trum of Fourier components needed to synthesize the square 
wave is shown in Fig. 7.40. On the other hand, I(y, z) for the 
wine bottle candelabra scene is two-dimensional, and we 
have to think in terms of two-dimensional Fourier transforms 
(Sections 7.4.4 and 11.2.2). We might mention as well that, at 
least in principle, we could have recorded the amplitude of 
the electric field at each point of the scene and then per-
formed a similar decomposition of that signal into its Fourier 
components.

Recall (Section 11.3.3) that the far-field or Fraunhofer dif-
fraction pattern is essentially identical to the Fourier transform 
of the aperture function �(y, z). The aperture function is pro-
portional to eA(y, z), the source strength per unit area [Eq. 
(10.37)] over the input or object plane. In other words, if the 
field distribution on the object plane is given by �(y, z), its 
two-dimensional Fourier transform will appear as the field dis-
tribution E(Y, Z) on a very distant screen. As in Figs. 7.52 and 
10.3, we can introduce a lens (Lt) after the object in order to 
shorten the distance to the image plane. That objective lens is 
commonly referred to as the transform lens, since we can 
imagine it as if it were an optical computer capable of generat-
ing instant Fourier transforms. Now, suppose we illuminate a 
somewhat idealized transmission grating with a spatially co-
herent, quasimonochromatic wave, such as the plane wave 
emanating from a laser or a collimated, filtered Hg arc source 
(Fig. 13.31). In either case, the amplitude of the field is as-
sumed to be fairly constant over the incident wavefront. The 
aperture function is then a periodic step function (Fig. 13.32); 
in other words, as we move from point to point on the object 
plane, the amplitude of the field is either zero or a constant. If 
a is the grating spacing, it is also the spatial period of the step 
function, and its reciprocal is the fundamental spatial frequency 
of the grating. The central spot (m = 0) in the diffraction pat-
tern is the Dc term corresponding to a zero spatial frequency—
it’s the bias level that arises from the fact that the input �(y) is 
everywhere positive. This bias level can be shifted by con-
structing the step-function pattern on a uniform gray back-
ground. As the spots in the image (or in this case the transform) 
plane get farther from the central axis, their associated spatial 
frequencies (m>a) increase in accord with the grating equation 
sin um = l(m>a). A coarser grating would have a larger value of 
a, so that a given order (m) would be concomitant with a lower 
frequency, (m>a), and the spots would all be closer to the cen-
tral or optical axis.

Had we used as an object a transparency resembling the sine 
target (Fig. 13.30a), such that the aperture function varied si-
nusoidally, there would ideally have only been three spots on 
the transform plane, these being the zero-frequency central 
peak and the first order or fundamental (m = ±1) on either 
side of the center. Extending things into two dimensions, a 
crossed grating (or mesh) yields the diffraction pattern shown 
in the photo on p. 640. Note that in addition to the obvious 
periodicity horizontally and vertically across the mesh, it is 

projected on a screen; in any event there is presumably some 
function I(y, z), which assigns a value of I to each point in 
the picture. To simplify matters a bit, suppose we scan across 
the screen on a horizontal line (z = 0) and plot point-by-point 
variations in irradiance with distance, as in Fig. 13.29b. The 
function I( y, 0) can be synthesized out of harmonic func-
tions, using the techniques of Fourier analysis treated in 
Chapters 7 and 11. In this instance, the function is rather 
complicated, and it would take many terms to represent it 
adequately. Yet if the functional form of I(y, 0) is known, the 
procedure is straightforward enough. Scanning across an-
other line, for example, z = a, we get I( y, a), which is drawn 
in Fig. 13.29c and which just happens to turn out to be a se-
ries of equally spaced square pulses. This function is one 
that was considered at length in Section 7.3, and a few of its 
constituent Fourier components are roughly sketched in Fig. 
13.29d. If the peaks in (c) are separated, center to center, by 
say, 1-cm intervals, the spatial period equals 1 cm per cycle, 
and its reciprocal, which is the spatial frequency, equals 1 
cycle per cm.

Quite generally, we can transform the information associ-
ated with any scan line into a series of sinusoidal functions of 
appropriate amplitude and spatial frequency. In the case of 
either of the simple sine- or square-wave targets of Fig. 13.30, 
each such horizontal scan line is identical, and the patterns 

Figure 13.30  (a) Sine-wave target and (b) square-wave target.
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640 Chapter 13 Modern Optics: Lasers and Other Topics

also repetitive, for example, along diagonals. A more involved 
object, such as a transparency of the surface of the Moon, 
would generate an extremely complex diffraction pattern.  
Because of the simple periodic nature of the grating, we could 
think of its Fourier-series components, but now we will cer-
tainly have to think in terms of Fourier transforms. In any case, 
each spot of light in the diffraction pattern denotes the pres-
ence of a specific spatial frequency, which is proportional to its 

Figure 13.31  Diffraction pattern of a grating. (E.H.)
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We can envision the points-S0, -S1, -S2, and so forth in the 
transform plane of Fig. 13.33a as if they were point emitters of 
Huygens wavelets, and the resulting diffraction pattern on g t is 
then the grating’s image. In other words, the image arises from 
a double diffraction process. Alternatively, we can imagine that 
the incoming wave is diffracted by the object, and the resulting 
diffracted wave is then diffracted once again by the objective 
lens. If that lens were not there, a diffraction pattern of the ob-
ject would appear on g i in place of the image.

distance from the optical axis (zero-frequency location). Fre-
quency components of positive and negative sign appear dia-
metrically opposite each other about the central axis. If we 
could measure the electric field at each point in the transform 
plane, we would indeed observe the transform of the aperture 
function, but this is not practicable. Instead, what will be de-
tected is the flux-density distribution, where at each point the 
irradiance is proportional to the time average of the electric 
field squared or equivalently to the square of the amplitude of 
the particular spatial frequency contribution at that point.

13.2.2 abbe’s Theory of Image Formation

Consider the system depicted in Fig. 13.33a, which is just an 
elaborated version of Fig. 13.33b. Plane monochromatic wave-
fronts emanating from the collimating lens (Lc) are diffracted 
by a grating. The result is a distorted wavefront, which we re-
solve into a new set of plane waves, each corresponding to a 
given order m = 0, ±1, ±2, . . . or spatial frequency and each 
traveling in a specific direction (Fig. 13.33b). The objective lens 
(Lt) serves as a transform lens, forming the Fraunhofer diffrac-
tion pattern of the grating on the transform plane g t (which is 
also the back focal plane of Lt). The waves, of course, propa-
gate beyond g t and arrive at the image plane g i. There they 
overlap and interfere to form an inverted image of the grating. 
Accordingly, points-G1 and -G2 are imaged at P1 and P2, respec-
tively. The objective lens forms two distinct patterns of interest. 
One is the Fourier transform on the focal plane conjugate to the 
plane of the source, and the other is the image of the object, 
formed on the plane conjugate to the object plane. Figure 13.34 
shows the same setup for a long, narrow, horizontal slit coherently 
illuminated.

Figure 13.33  Image formation.
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642 Chapter 13 Modern Optics: Lasers and Other Topics

might be mentioned as well that there is a basic nonlinearity 
associated with optical imaging systems operating at high spa-
tial frequencies.†

13.2.3 Spatial Filtering

Suppose we actually set up the system shown in Fig. 13.33a, us-
ing a laser as a plane-wave source. If the points-S0, -S1, -S2, and 
so on are to be the sources of a Fraunhofer pattern, the image 
screen must presumably be located at x = ∞  (although 30 or 40 
ft will often do). At the risk of being repetitious, recall that the 
reason for using Lt originally was to bring the diffraction pattern 
of the object in from infinity. We now introduce an imaging lens 
Li (Figs. 13.35 and 13.36) in order to bring in from infinity the 
diffraction pattern of the set of source points-S0, -S1, -S2, . . . , 
thereby relocating g i at a convenient distance. The transform 
lens causes the light from the object to converge in the form of 
a diffraction pattern on the plane g t; that is, it produces on g t 
a two-dimensional Fourier transform of the object. To wit, the 
spatial frequency spectrum of the object is spread across the 
transform plane. Thereafter, Li (the “inverse” transform lens) 
projects the diffraction pattern of the light distributed over g t 
onto the image plane. In other words, it diffracts the diffracted 
beam, which effectively means that it generates an (inverted) 
inverse transform. Thus essentially an inverse transform of the 
data on g t appears as the final image. 

Quite frequently, in practice Lt and Li are identical (ƒt = ƒi) 
well-corrected multi-element lenses (for quality work these 
might have resolutions of about 150 line pairs>mm—one line 
pair being a period in Fig. 13.30b). For less demanding applica-
tions, two projector objectives of large aperture (about 100 mm) 
having convenient focal lengths of roughly 30 or 40 cm serve 
quite nicely. One of these lenses is then merely turned around so 
that both their back focal planes coincide with g t. Incidentally, 
the input or object plane need not be located a focal length away 
from Lt; the transform still appears on g t. Moving g0 affects 
only the phase of the amplitude distribution, and that is gener-
ally of little interest. The device shown in Figs. 13.35 and 13.36 

These ideas were first propounded by Professor Ernst Abbe 
(1840–1905) in 1873.* His interest at the time concerned the 
theory of microscopy, whose relationship to the above discus-
sion is clear if we consider Lt as a microscope objective. More-
over, if the grating is replaced by a piece of some thin translu-
cent material (i.e., the specimen being examined), which is 
illuminated by light from a small source and condenser, the 
system certainly resembles a microscope.

Carl Zeiss (1816–1888), who in the mid-1800s was running 
a small microscope factory in Jena, realized the shortcomings 
of the trial-and-error development techniques of that era. In 
1866 he enlisted the services of Ernst Abbe, then lecturer at the 
University of Jena, to establish a more scientific approach to 
microscope design. Abbe soon found by experimentation that a 
larger aperture resulted in higher resolution, even though the 
apparent cone of incident light filled only a small portion of the 
objective. Somehow the surrounding “dark space” contributed 
to the image. Consequently, he took the approach that the then 
well-known diffraction process that occurs at the edge of a lens 
(leading to the Airy pattern for a point source) was not operative 
in the same sense as it was for an incoherently illuminated tele-
scope objective. Specimens, whose size was of the order of l, 
were apparently scattering light into the “dark space” of the mi-
croscope objective. Observe that if, as in Fig. 13.33b, the aper-
ture of the objective is not large enough to collect all of the 
diffracted light, the image does not correspond exactly to that 
object. Rather, it relates to a fictitious object whose complete 
diffraction pattern matches the one collected by Lt. We know 
from the previous section that these lost portions of the outer 
region of the Fraunhofer pattern are associated with the higher 
spatial frequencies. And, as we shall see presently, their remov-
al will result in a loss in image sharpness and resolution.

Practically speaking, unless the grating considered earlier 
has an infinite width, it cannot be strictly periodic. This means 
that it has a continuous Fourier spectrum dominated by the usu-
al discrete Fourier-series terms, the other being much smaller in 
amplitude. Complicated, irregular objects clearly display the 
continuous nature of their Fourier transforms. In any event, it 
should be emphasized that unless the objective lens has an infi-
nite aperture, it functions as a low-pass filter rejecting spatial 
frequencies above a given value and passing all those below 
(the former being those that extend beyond the physical bound-
ary of the lens). Consequently, all practical lens systems will be 
limited in their ability to reproduce the high spatial frequency 
content of an actual object under coherent illumination.† It 

†Refer to H. Volkmann, “Ernst Abbe and his work,” Appl. Opt. 5, 1720 (1966), for 
a more detailed account of Abbe’s many accomplishments in Optics.

†R. J. Becherer and G. B. Parrent, Jr., “Nonlinearity in optical imaging systems,”  
J. Opt. Soc. Am. 57, 1479 (1967).

*An alternative and yet ultimately equivalent approach was put forth in 1896 by 
Lord Rayleigh. He envisaged each point on the object as a coherent source whose 
emitted wave was diffracted by the lens into an Airy pattern. Each of these in turn 
was centered on the ideal image point (on g i) of the corresponding point source. 
Thus g i was covered with a distribution of somewhat overlapping and interfering 
Airy patterns.

Figure 13.35  Object, transform, and image planes.

Lt Li ΣiΣtΣo

M13_HECH6933_05_GE_C13.indd   642 26/08/16   5:20 PM



 13.2 Imagery—The Spatial Distribution of Optical Information 643

Plane wave

Object
plane

Transform
plane

Image
plane

Z

kZ

ft

ft

fi

fi

y

Y   
kY

Σo

Σt

Lt

Σi

Li

z

z�

y�

Σo

Σi

(a) (b) (c) (d)

(e) (f) (g)

Figure 13.36  The Fourier 
transform of the letter E via an 
optical computer. Parts (a) 
through (g) show more and more 
of the detail of the transform as 
the exposure time is increased.  
(E.H.) 
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644 Chapter 13 Modern Optics: Lasers and Other Topics

large frequency range. There will also be a comparatively 
low-frequency, concentric ring–like structure. The trans-
forms of disks and rings and the like will obviously be circu-
larly symmetrical. Similarly, a horizontal elliptical aperture 
will generate vertically oriented concentric elliptical bands. 
Most often, far-field patterns possess a center of symmetry 
(see Problems 10.25 and 11.37).

We are now in a better position to appreciate the process of 
spatial filtering and to that end will consider an experiment sim-
ilar to one published in 1906 by A. B. Porter. Figure 13.37a 
shows a fine wire mesh whose periodic pattern is disrupted by a 
few particles of dust. With the mesh at g0, Fig. 13.37b shows 
the transform as it would appear on g t. Now the fun starts—
since the transform information relating to the dust is located in 
an irregular cloud-like distribution about the center point, we can 
easily eliminate it by inserting an opaque mask at g t. If the 
mask has holes at each of the principal maxima, thus passing on 
only those frequencies, the image appears dustless (Fig. 13.38a). 
At the other extreme, if we just pass the cloud-like pattern near 
center, very little of the periodic structure appears, leaving an 
image consisting of essentially just the dust particles (Fig. 
13.38b). Passing only the zero-order central spot generates a 
uniformly illuminated (DC) field, just as if the mesh were no 
longer in position. Observe that as more and more of the higher 
frequencies are eliminated, the detail of the image deteriorates 
markedly [(d), (e), and ( ƒ ) in Fig. 13.38]. This can be under-
stood quite simply by remembering how a function, with what 
we might call “sharp edges,” was synthesized out of harmonic 
components. The square wave of Fig. 7.34 serves to illustrate the 
point. It is evident that the addition of higher harmonics serves 
predominantly to square up the corners and flatten out the peaks 
and troughs of the profile. In this way, the high spatial frequen-
cies contribute to the sharp edge detail between light and dark 
regions of the image. The removal of the high-frequency terms 
causes a rounding out of the step function and a consequent loss 
of resolution in the two-dimensional case.

is referred to as a coherent optical computer. It allows us to in-
sert obstructions (i.e., masks or filters) into the transform plane 
and in so doing partially or completely block out certain spatial 
frequencies, stopping them from reaching the image plane. This 
process of altering the frequency spectrum of the image is known 
as spatial filtering (see Section 7.4.4). 

From our earlier discussion of Fraunhofer diffraction we 
know that a long narrow slit at g0, regardless of its orientation 
and location, generates a transform at g t consisting of a series 
of dashes of light lying along a straight line perpendicular to the 
slit (see Fig. 10.6) and passing through the origin. Consequent-
ly, if the straight-line object is described by y = mz + b, the 
diffraction pattern lies along the line Y = -Z>m or equivalently, 
from Eqs. (11.64) and (11.65), kY = -kZ>m. With this and the 
Airy pattern in mind, we should be able to anticipate some of 
the gross structure of the transforms of various objects. Be 
aware as well that these transforms are centered about the zero-
frequency optical axis of the system. For example, a transparent 
plus sign whose horizontal line is thicker than its vertical one 
has a two-dimensional transform again shaped more or less like 
a plus sign. The thick horizontal line generates a series of short 
vertical dashes, while the thin vertical element produces a line 
of long horizontal dashes. Remember that object elements with 
small dimensions diffract through relatively large angles. Along 
with Abbe, one could think of this entire subject in these terms 
rather than using the concepts of spatial frequency filtering and 
transforms, which represent the more modern influence of 
communication theory.

The vertical portions of the symbol E in Fig. 13.36 gener-
ate the broad frequency spectrum appearing as the horizontal 
pattern. Note that all parallel line sources on a given object 
correspond to a single linear array on the transform plane. 
This, in turn, passes through the origin on g t (the intercept 
is zero), just as in the case of the grating. A transparent fig-
ure 5 will generate a pattern consisting of both a horizontal 
and vertical distribution of spots extending over a relatively 

(a) (b)

Figure 13.37  A fine, slightly dusty mesh and its transform. (D. Dutton, M.P. Givens, and  

R.E. Hopkins, Spectra-Physics Laser Technical Bulletin Number 3.)
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white will become grayish, as is shown in the photo on  
p. 646.

Let’s now examine some of the possible applications of this 
technique. Figure 13.39a shows a composite photograph of the 
Moon consisting of film strips pieced together to form a single 
mosaic. The video data were telemetered to Earth by Lunar 
Orbiter 1. Clearly, the grating-like regular discontinuities be-
tween adjacent strips in the object photograph generate the 
broad-bandwidth, vertical-frequency distribution evident in 
Fig. 13.39c. When these frequency components are blocked, 
the enhanced image shows no sign of having been a mosaic. In 

What would happen if we took out the Dc component 
(Fig. 13.38c) by passing everything but the central spot? A 
point on the original image that appears black in the photo 
denotes a near-zero irradiance and perforce a near-zero field 
amplitude. Presumably, all of the various optical field com-
ponents completely cancel each other at that point—ergo, no 
light. Yet with the removal of the Dc term, the point in ques-
tion must certainly then have a nonzero field amplitude. 
When squared (I ∝ E2

0>2) this will generate a nonzero irra-
diance. It follows that regions that were originally black in 
the photo will now appear whitish, while regions that were 

(a) (b)

(c) (d)

(e) (f )

Figure 13.38  Images resulting when various portions of the diffraction pattern of Fig. 13.37b are obscured by 
the accompanying masks or spatial filters. (D. Dutton, M.P. Givens, and R.E. Hopkins, Spectra-Physics Laser Technical Bulletin Number 3.)

Altered image Filtered Transform Filtered TransformAltered image
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646 Chapter 13 Modern Optics: Lasers and Other Topics

yields an image in shades of gray (Fig. 13.41) showing none 
of the discontinuous nature of the original. One could con-
struct a precise filter to obstruct only the square mesh frequen-
cies by actually using a negative transparency of the transform 
of the basic checkerboard array. Alternatively, it usually suf-
fices to use a low-pass circular aperture filter, and in so doing 
inadvertently discard some of the high-frequency detail of the 
original scene, at least as long as the mesh frequency is com-
paratively high. 

The same procedure can be used to remove the graininess of 
highly enlarged photographs, which is of value, for example, in 
aerial photo reconnaissance. In contrast, we could sharpen up 
the details in a slightly blurred photograph by emphasizing its 
high-frequency components. This could be done with a filter 
that preferentially absorbed the low-frequency portion of the 
spectrum. A great deal of effort, beginning in the 1950s, has 
gone into the study of photographic image enhancement, and 
the ensuing successes have been notable indeed. Prominent 
among these contributors was A. Maréchal of the Institut 
d’Optique, Université de Paris, who combined absorbing and 
phase-shifting filters to reconstitute the detail in badly blurred 
photographs. These filters are transparent coatings deposited on 
optical flats so as to retard the phase of various portions of the 
spectrum (Section 13.2.4).

As this work in optical data processing continues into the 
coming decades, we will surely see the replacement of the pho-
tographic stages, in increasingly many applications, by real-
time electro-optical devices (e.g., arrays of ultrasonic light 
modulators forming a multichannel input are already in use).† 

The coherent optical computer will reach a certain maturity, be-
coming an even more powerful tool when the input, filtering, 
and output functions are performed electro-optically. A contin-
uous stream of real-time data could flow into and out of such a 
device.

13.2.4 Phase Contrast

It was mentioned briefly in the last section that the reconstruct-
ed image could be altered by introducing a phase-shifting filter. 
Probably the best-known example of this technique dates back 
to 1934 and the work of the Dutch physicist Frits Zernike, who 
invented the method of phase contrast and applied it in the 
phase-contrast microscope.

An object can be “seen” because it stands out from its  
surroundings—it has a color, tone, or lack of color, which pro-
vides contrast with the background. This kind of structure is 

very much the same way, one can suppress extraneous data in 
bubble chamber photographs of subatomic particle tracks.* 
These photographs are made difficult to analyze because of 
the presence of the unscattered beam tracks (Fig. 13.40), 
which, since they are all parallel, are easily removed by spatial 
filtering.

Consider the familiar half-tone or facsimile process by which 
a printer can create the illusion of various tones of gray while 
using only black ink and white paper (take a close look at a 
newspaper photograph). If a transparency of such a facsimile is 
inserted at g0 in Fig. 13.35, its frequency spectrum will appear 
on g t. Once again the relatively high-frequency components 
arising from the half-tone mesh can easily be eliminated. This 

Part (b) is a filtered version of (a) where the zeroth order was removed.  
(D. Dutton, M.P. Givens, and R.E. Hopkins, Spectra-Physics Laser Technical Bulletin Number 3.)

(a)

(b)

*D. G. Falconer, “Optical processing of bubble chamber photographs,” Appl. Opt. 
5, 1365 (1966), includes some additional uses for the coherent optical computer.

†We have only touched on the subject of optical data processing; a more extensive 
discussion of these matters is given, for example, by Goodman in Introduction to 
Fourier Optics, Chapter 7. That text also includes a good reference list for further 
reading in the journal literature. Also see P. F. Mueller, “Linear multiple image  
storage,” Appl. Opt. 8, 267 (1969). Here, as in much of modern Optics, the  
frontiers are fast moving, and obsolescence is a hard rider.
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(a) (b)

(c) (d)

Figure 13.39  Spatial filtering. (a) A Lunar Orbiter composite photo of the Moon.  
(b) Filtered version of the photo sans horizontal lines. (c) A typical unfiltered transform 
(power spectrum) of a moonscape. (d) Diffraction pattern with the vertical dot pattern 
filtered out. (D. A. Ansley, W. A. Blikken, The Conductron Corporation, and NASA.)

(a)

(b)

Figure 13.40  Unfiltered and filtered bubble 
chamber tracks.

known as an amplitude object, because it is observable by dint of 
variations that it causes in the amplitude of the lightwave. The 
wave that is either reflected or transmitted by such an object  
becomes amplitude modulated in the process. In contradistinction, 
it is often desirable to “see” phase objects, that is, ones that are 

transparent, thereby providing practically no contrast with their 
environs and altering only the phase of the detected wave. The 
optical thickness of such objects generally varies from point to 
point as either the refractive index or the actual thickness, or both, 
vary. Obviously, since the eye cannot detect phase variations, 

M13_HECH6933_05_GE_C13.indd   647 26/08/16   5:20 PM



648 Chapter 13 Modern Optics: Lasers and Other Topics

diverging from the object, these higher-order spa-
tial frequency terms (see Section 13.2.2) are caused 
to converge on the image plane. The direct and dif-
fracted waves recombine out-of-phase by p>2, 
again forming the phase-modulated wave. Since 
the amplitude of the reconstructed wave EPM( r$, t) 
is everywhere the same on g i, even though the 
phase varies from point to point, the flux density is 
uniform, and no image is perceptible. Likewise, 
the zeroth-order spectrum of a phase grating will 
be p>2 out-of-phase with the higher-order spectra.

If we could somehow shift the relative phase be-
tween the diffracted and direct beams by an addi-
tional p>2 prior to their recombination, they would 
still be coherent and could then interfere either con-
structively or destructively (Fig. 13.44). In either 

case, the reconstructed wavefront over the region of 
the image would then be amplitude modulated—the 
image would be visible.

We can see this in a very simple analytical way 
where

 Ei (x, t) 0 x =  0 = E0 sin vt 

is the incoming monochromatic lightwave at go without the 
specimen in place. The particle will induce a position-dependent 
phase variation f( y, z) such that the wave just leaving it is

 EPM( r$, t) 0 x =  0 = E0 sin [vt + f( y, z)] (13.20)

This is a constant-amplitude wave, which is essentially the 
same on the conjugate image plane. That is, there are some 
losses, but if the lens is large and aberration-free and we neglect 
the orientation and size of the image, Eq. (13.20) will suffice to 
represent the PM wave on either go or g i. Reformulating that 
disturbance as

EPM(y, z, t) = E0 sin vt cos f + E0 cos vt sin f

and limiting ourselves to very small values of f, we obtain

EPM(y, z, t) = E0 sin vt + E0f(y, z) cos vt

The first term is independent of the object, while the second 
term obviously isn’t. Thus, as above, if we change their relative 
phase by p>2, that is, either change the cosine to sine or vice 
versa, we get

 EAM(y, z, t) = E0[1 + f(y, z)] sin vt (13.21)

which is an amplitude-modulated wave. Observe that f(y, z) 
can be expressed in terms of a Fourier expansion, thereby in-
troducing the spatial frequencies associated with the object. 
Incidentally, this discussion is precisely analogous to the one 
proposed in 1936 by E. H. Armstrong for converting AM ra-
dio waves to FM [f(t) could be thought of as a frequency 
modulation wherein the zeroth-order term is the carrier]. An 
electrical bandpass filter was used to separate the carrier from 

such objects are invisible. This is the problem that led biologists 
to develop techniques for staining transparent microscope speci-
mens and in so doing to convert phase objects into amplitude 
objects. But this approach is unsatisfactory in many respects, for 
example, when the stain kills the specimen whose life processes 
are under study, as is all too often the case.

Recall that diffraction occurs when a portion of the surface 
of constant phase is obstructed in some way, that is, when a re-
gion of the wavefront is altered (either in amplitude or phase, 

i.e., shape). Suppose then 
that a plane wave passes 
through a transparent parti-
cle, which retards the phase 
of a region of the front. The 
emerging wave is no longer 
perfectly planar but contains 
a small indentation corre-
sponding to the area retard-
ed by the specimen; the 
wave is phase modulated.

Taking a rather simplistic view of things, we can imagine 
the phase-modulated wave EPM( r$, t) (Fig. 13.42) to consist of 
the original incident plane wave Ei (x, t) plus a localized distur-
bance Ed ( r$, t). (The symbol r$ means that EPM and Ed depend 
on x, y, and z; i.e., they vary over the yz-plane, whereas Ei is 
uniform and does not.) Indeed, if the phase retardation is very 
small, the localized disturbance is a wave of very small ampli-
tude, E0d, lagging by just about l0>4, as in Fig. 13.43. There 
the difference between EPM( r$, t) and Ei (x, t) is shown to be 
Ed ( r$, t). The disturbance Ei (x, t) is called the direct or zeroth-
order wave, while Ed ( r$, t) is the diffracted wave. The former 
produces a uniformly illuminated field at g i, which is unaf-
fected by the object, while the latter carries all of the informa-
tion about the optical structure of the particle. After broadly 

Figure 13.41  A self-portrait of K. E. Bethke consisting of only black and white 
regions as in a halftone. When the high frequencies are filtered out, shades of gray 
appear and the sharp boundaries vanish. (R.A. Phillips, Am. J. Phys. 37, 536 [1969].)

Frits Zernike (1888–1966) won the 
Nobel Prize for Physics in 1953. (E.H.)
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Figure 13.42  Phase-contrast setup.
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the remaining information spectrum so that the p>2 phase 
shift could be accomplished. Zernike’s method of doing es-
sentially the same thing is as follows. He inserted a spatial 
filter in the transform plane g t of the objective, which was 
capable of inducing the p>2 phase shift. Observe that the di-
rect light actually forms a small image of the source on the 
optical axis at the location of g t. The filter could then be a 

Ed(t)

Ei(t)Ei(t)

Ed(t)
Eo Eod

EPM(t)

EPM(t)

Phase object

Phase-modulated wave

Phase modulated
Eo

Plane wave
Eo Phasors

Note ≈ 90° difference in phase

Snapshot at
some time t

Localized
wave

Eod
Localized wave

Plane wave

x

x
Ei(t)

Figure 13.43  Wavefronts in the phase-contrast process.
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Figure 13.44  Effect of phase shifts.
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650 Chapter 13 Modern Optics: Lasers and Other Topics

reduced with respect to the higher orders, and the contrast 
improves. Or, if you like, E0 is reduced to a value compara-
ble with that of the diffracted wave E0d. Generally, a micro-
scope will come with an assortment of these phase plates hav-
ing different absorptions.

In the parlance of modern Optics (the still-blushing bride of 
communications theory), phase contrast is simply the process 
whereby we introduce a p>2 phase shift in the zeroth-order 
spectrum of the Fourier transform of a phase object (and  
perhaps attenuate its amplitude as well) through the use of an 
appropriate spatial filter.

The phase-contrast microscope, which earned Zernike the 
Nobel Prize in 1953, has found extensive applications (see photo), 
perhaps the most fascinating of which is the study of the life 
functions of otherwise invisible organisms.

13.2.5  The Dark-Ground and Schlieren Methods

Suppose we go back to Fig. 13.42, where we were examining a 
phase object, and this time rather than retard and attenuate the 
central zeroth order, we remove it completely with an opaque 
disk at So. Without the object in place, the image plane will be 
completely dark—ergo the name dark ground. With the object in 

small circular indentation of depth d etched in a transparent 
glass plate of index ng. Ideally, only the direct beam would 
pass through the indentation, and in so doing it would take on 
a phase advance with respect to the diffracted wave of 
(ng - 1)d, which is made to equal l0>4. A filter of this sort is 
known as a phase plate, and since its effect corresponds to 
Fig. 13.44b, that is, destructive interference, phase objects 
that are thicker or have higher indices appear dark against a 
bright background. If, instead, the phase plate had a small 
raised disk at its center, the opposite would be true. The former 
case is called positive-phase contrast; the latter, negative-phase 
contrast.

In actual practice, a brighter image is obtained by using 
a broad, rather than a point, source along with a substage 
condenser. The emerging plane waves illuminate an annular 
diaphragm (Fig. 13.45), which, since it is the source plane, is 
conjugate to the transform plane of the objective. The zeroth-
order waves, shown in the figure, pass through the object 
according to the tenets of Geometrical Optics. They then tra-
verse the thin annular region of the phase plate located at 
Σt. That region of the plate is quite small, and so the cone 
of diffracted rays, for the most part, misses it. By making 
the annular region absorbing as well (a thin metal film will 
do), the very large uniform zeroth-order term (Fig. 13.46) is 
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Figure 13.45  Phase contrast (only zeroth order shown).
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negative. Inasmuch as irradiance is proportional to the amplitude 
squared, this will result in somewhat of a contrast reversal from 
that which would have been seen in phase contrast (see Section 
13.2.3). In general, this technique has not been as satisfactory as 
the phase-contrast method, which generates a flux-density distri-
bution across the image that is directly proportional to the phase 
variations induced across the object.

In 1864 A. Toepler introduced a procedure for examining 
defects in lenses, which has come to be known as the schlieren 
method.* We will discuss it here because of the widespread 
current usage of the method in a broad range of fluid dynamics 
studies and furthermore because it is another beautiful example 
of the application of spatial filtering. Schlieren systems are 
particularly useful in ballistics, aerodynamics, and ultrasonic 
wave analysis (see photo on p. 652)—indeed, wherever it is 
desirable to examine pressure variations as revealed by refrac-
tive-index mapping.

Suppose that we set up any one of the possible arrange-
ments for viewing Fraunhofer diffraction (e.g., Fig. 10.3 or 
P.10.4). But now, instead of using an aperture of some sort as 
the diffracting amplitude object, we insert a phase object, for 
example, a gas-filled chamber (Fig. 13.47). Again a Fraunhofer 
pattern is formed in g t, and if that plane is followed by the 
objective lens of a camera, an image of the chamber is formed 
on the film plane. We would then photograph any amplitude 
objects within the test area, but, of course, phase objects would 
still be invisible. Imagine that we now introduce a knife edge at g t, raising it from below until it obstructs (sometimes only 
partially) the zeroth-order light and therefore all the higher or-
ders on the bottom side as well. Just as in the dark-ground 
method, phase objects are then perceptible. Inhomogeneities in 
the test chamber windows and flaws in the lenses are also no-
ticeable. For this reason and because of the large field of view 

position, only the localized diffracted wave will appear at g i to 
form the image. (This can also be accomplished in microscopy 
by illuminating the object obliquely so that no direct light enters 
the objective lens.) Observe that by eliminating the DC contribu-
tion, the amplitude distribution (as in Fig. 13.46) will be lowered 
and portions that were near zero prior to filtering will become 

Figure 13.46  Field amplitude over a circular region on the image 
plane. In one case there is no absorption in the phase plate, and the irra-
diance would be a small ripple on a great plateau. With the zeroth order 
attenuated, the contrast increases.
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(a) (b)

(a) A conventional photomicrograph of diatoms, 
fibers, and bacteria. (b) A phase photomicrograph 
of the same scene. (T.J. Lowery and R. Hawley.)

*The word Schlieren in German means streaks or striae. It’s frequently capitalized 
because all nouns are capitalized in German and not because there was a Mr. 
Schlieren.
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A schlieren photo of a spoon in a candle flame. (E.H.)
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(b)
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Figure 13.47  A schlieren setup.

usually required, mirror systems (Fig. 13.48) have not become 
commonplace.

Quasimonochromatic illumination is generally made use 
of when resulting data are to be analyzed electronically, for 
example, with a photodetector. Sources with a broad spectrum, 

on the other hand, allow us to exploit the considerable color 
sensitivity of photographic emulsions, and a number of color 
schlieren systems have been devised.

13.3 Holography

The technology of photography has been with us for a long time, 
and we’ve all grown accustomed to seeing the three-dimensional 
world compressed into the flatness of a scrapbook page. The 
depthless television pitchman who smiles out of a myriad of 
phosphorescent flashes, although inescapably there, seems no 
more palpable than a postcard image of the Eiffel Tower. Both 
share the severe limitation of being simply irradiance map-
pings. In other words, when the image of a scene is ordinarily 
reproduced, by whatever traditional means, what we ultimately 
see is not an accurate reproduction of the light field that once 
inundated the object, but rather a point-by-point record of just 
the square of the field’s amplitude. The light reflecting off a pho-
tograph carries with it information about the irradiance but noth-
ing about the phase of the wave that once emanated from the 
object. Indeed, if both the amplitude and phase of the original 
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or reference wave interfered with the diffracted wave from the 
small semitransparent object, S—which was, in those early 
days, often a piece of microfilm. The key point is that the inter-
ference pattern or hologram contains, by way of the fringe con-
figuration, information corresponding to both the amplitude 
and phase of the wave scattered by the object.

Admittedly, it’s not at all obvious that by now shining a 
plane wave through the processed hologram one could recon-
struct an image of the original object. Suffice it to say for the 
moment that if the object were very small, the scattered wave 
would be nearly spherical, and the interference pattern a series 
of concentric rings (centered about an axis through the object 
and normal to the plane wave). Except for the fact that the cir-
cular fringes would vary gradually in irradiance from one to the 
next, the resulting flux-density distribution would correspond 
to a conventional Fresnel zone plate (Section 10.3.5). Recall 
that a zone plate functions somewhat like a lens in that it dif-
fracts collimated light into a beam converging to a real focal 
point, Pr. In addition, it produces a diverging wave, which ap-
pears to come from the point-Pr and constitutes a virtual image. 
Thus we can imagine, albeit rather simplistically, that each 
point on an extended object generates its own zone plate dis-
placed from the others and that the ensemble of all such par-
tially overlapping zone plates forms the hologram.* 

During the reconstruction step, each constituent zone plate 
forms both a real and virtual image of a single object point, and 

wave could be reconstructed somehow, the resulting light field 
(assuming the frequencies are the same) would be indistin-
guishable from the original. This means that you would then see 
(and could photograph) the re-formed image in perfect three-
dimensionality, exactly as if the object were there before you, 
actually generating the wave.

13.3.1 Methods

Dennis Gabor had been thinking along these lines for a number 
of years prior to 1947, when he began conducting his now fa-
mous experiments in holography at the Research Laboratory of 
the British Thomson–Houston Company. His original setup, 
depicted in Fig. 13.49, was a two-step lensless imaging process 
in which he first photographically recorded an interference pat-
tern, generated by the interaction of scattered quasimonochro-
matic light from an object and a coherent reference wave. The 

resulting pattern was something he called 
a hologram, after the Greek word holos, 
meaning whole. The second step in the 
procedure was the reconstruction of the 
optical field or image, and this was done 
through the diffraction of a coherent 
beam by a transparency, which was the 
developed hologram. In a way quite rem-
iniscent of Zernike’s phase-contrast tech-
nique (Section 13.2.4), the hologram was 
formed when the unscattered background 

Parabolic
mirror

Condenser High-pressure
Hg arc

Zeroth order

A diffracted wave

Test chamber

Parabolic
mirror

Filter

Camera
objective

Focal plane
(photographic plate)

Knife edge

Figure 13.48  A schlieren setup 
using mirrors.

*See M. P. Givens, “Introduction to holography,” Am. J. Phys. 35, 1056 (1967).

Dennis Gabor  
(1900–1979) 
Hungarian-born British 
physicist won the Nobel 
Prize in 1971. (E.H.)
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S

S

RECORDING
Fine-grain
photo plate

Zone plate fringes

Conjugate image

Hologram

True image

Reconstructing wave

Pv

Pv

RECONSTRUCTION

Pr

Pr

ΣH
Hologram

Figure 13.49  Holographic (in-line) recording and reconstruction of an image.

in this way, point by point, the hologram regenerates the origi-
nal light field. When the reconstructing beam has the same 
wavelength as the initial recording beam (which need not nec-
essarily be the case, and quite often isn’t), the virtual image is 
undistorted and appears at the location formerly occupied by 
the object. Thus it is the virtual image field that actually corre-
sponds to the original object field. As such, the virtual image is 

sometimes spoken of as the true image, while the other is the 
real or, perhaps more fittingly, the conjugate image. In any 
event, we envision the hologram as a composite of interference 
patterns, and at least for this very simple configuration, those 
patterns resemble zone plates. As we will see presently, the si-
nusoidal grating is an equally fundamental fringe system mak-
ing up complex holograms.
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What’s happening here can be appreciated in two ways—an 
essentially pictorial, Fourier-optical way and, alternatively, a 
direct mathematical way. We will look from both perspectives, 
because they complement each other. First, this is at heart an 
interference (or, if you like, a diffraction) problem, and we can 

Gabor’s research, which won him the 1971 Nobel Prize in 
Physics, had as its motivation an improvement in electron mi-
croscopy. His work initially generated some interest, but all in 
all it remained in a state of quasi-unnoticed oblivion for about 
15 years. In the early 1960s there was a resurgence of interest in 
Gabor’s wavefront reconstruction process and, in particular, 
in its relation to certain radar problems. Soon, aided by an abun-
dance of the new coherent laserlight and extended by a number 
of technological advances, holography became a subject of 
widespread research and tremendous promise. This rebirth had 
its origin in the Radar Laboratory of the University of Michi-
gan, with the work of Emmett N. Leith and Juris Upatnieks. 
Among other things, they introduced an improved arrangement 
for generating holograms, which is illustrated in Fig. 13.50.  
Unlike Gabor’s in line-configuration, where the conjugate im-
age was inconveniently located in front of the true image, the 
two were now satisfactorily separated off-axis, as shown in the 
diagram. Once again, the hologram is an interference pattern 
arising from a coherent reference wave and a wave scattered 
from the object (this type is sometimes referred to as a side-band 
Fresnel hologram). Figure 13.51 shows the equivalent arrange-
ment for producing side-band Fresnel holograms from transparent 
objects.

EO

EB

y

z

x

ΣH

Mirror

Object

Hologram

Virtual image Real imageRECONSTRUCTION

Photo plate
ER

Figure 13.50  Holographic (side-band) recording and reconstruction of an image.

Mirrors

Object Photo plate

EO

EB

Figure 13.51  A side-band Fresnel holographic setup for a 
transparent object.
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To see how this occurs, examine the simplified two-wave 
version depicted in Fig. 13.52. At the moment shown, the refer-
ence wave happens to have a crest along the face of the film 
plane, and the scattered object wavelet, coming in at an angle u, 
similarly has crests at points A, B, and c. These correspond to 
points where interference maxima will occur at the moment 
shown. But as both waves progress to the right, they will remain 
in-phase at these points, trough will overlap trough, and the 
maxima will remain fixed at A, B, and c. Similarly, between 
these points, trough overlaps crest, and minima exist. The rela-
tive phase (f) of these two waves, which varies from point to 
point along the film, can be written as a function of x. Since f 
changes by 2p as x goes the length of AB, f>2p = x>AB. No-
tice that sin u = l>AB, and so getting rid of the specific length 
AB, the phase in general becomes

 f(x) = (2px sin u)>l (13.22)

If the two waves are assumed to have the same amplitude E0, the 
resultant field follows from Eq. (7.17):

E = 2E0 cos 12 f sin (vt - kx - 1
2 f)

and the irradiance distribution, which is proportional to the field 
amplitude squared, by way of Eq. (3.44), has the form

I(x) = 1
2 cP0(2E0 cos 12 f)2 = 2cP0E2

0 cos2 12 f

or I(x) = 2cP0E2
0 + 2cP0E2

0 cos f. (13.23)

What we have is a cosinusoidal irradiance distribution across 
the film plane with a spatial period of AB and a spatial fre-
quency (1>AB) of sin f>l.

Upon processing the film so that the amplitude transmission 
profile corresponds to I(x), the result is a cosinusoidal grating. 
When this simple hologram (which essentially corresponds to a 
structureless object with no information) is illuminated by a 
plane wave identical to the original reference wave (Fig. 13.52c) 
three beams will emerge: one zeroth and two first order. One of 
these first-order beams will travel in the direction of the original 
object beam and corresponds to its reconstructed wavefront.

Now suppose we go one step beyond this most basic holo-
gram and examine an object that has some optical structure.  
Accordingly, let’s use as the object a transparency with a simple 
periodic structure that has a single spatial frequency—a cosine 
grating. A slightly idealized representation (which leaves out the 
weak higher-order terms due to the finite size of the beam and 
grating) is depicted in Fig. 13.53, which shows the illuminated 
grating, the three transmitted beams, and the reference beam. 
What results is three slightly different versions of Fig. 13.47, 
where each of the three transmitted waves makes a slightly differ-
ent angle (u) with the reference wave. Consequently, each of the 
three overlap areas will correspond to a set of cosine fringes of a 
slightly different spatial frequency, from Eq. (13.22). Again when 
we play back the resulting hologram, Fig. 13.53a and b, we have 
three pieces of business: the undiffracted wave, the virtual image, 
and the real image. Observe that it is only where the three beams 

Figure 13.52  The interference of two plane waves to create 
a cosine grating.

u

Reference
wave

C

X

B

A

D

B

A

Object
wavelet

(a)

(c)

(b)

l

again return to the notion of the complicated object wavefront 
being composed of Fourier-component plane waves (Figs. 7.52 
and 10.7d) traveling in directions associated with the different 
spatial frequencies of the object’s light field, reflected or trans-
mitted. Each one of these Fourier plane waves interferes with 
the reference wave on the photographic plate and thus preserves 
the information associated with that particular spatial frequency 
in the form of a characteristic fringe pattern.
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come together to contribute their spatial frequency content that 
images of the original grating are formed.

When a still more complex object is used, we can antici-
pate that the relative phase between the object and reference 
waves (f) will vary from point to point in a complicated way, 
thereby modulating the basic carrier signal (Fig. 13.54) pro-
duced by two plane waves when no object is present. We can 
generalize from Fig. 13.53 and conclude that the phase-angle 
difference f (which varies with u) is encoded in the configura-
tion of the fringes. Furthermore, had the amplitudes of the ref-
erence and object waves been different, the irradiance of those 
fringes would have been altered accordingly. Thus we can 
guess that the amplitude of the object wave at every point on 
the film plane will be encoded in the visibility of the resulting 
fringes.

The process depicted in Fig. 13.50 can be treated analyti-
cally as follows. Suppose that the xy-plane is the plane of the 
hologram, gH. Then

 EB(x, y) = E0B cos [2pnt + f(x, y)] (13.24)

describes the planar background or reference wave at gH, over-
looking considerations of polarization. Its amplitude, E0B, is 
constant, while the phase is a function of position. This just 
means that the reference wavefront is tilted in some known 
manner with respect to gH. For example, if the wave were ori-
ented such that it could be brought into coincidence with gH by 
a single rotation through an angle of u about y, the phase at any 
point on the hologram plane would depend on its value of x. 
Thus f would again have the form

f =
2p
l

 x sin u = kx sin u

being, in that particular case, independent of n and varying lin-
early with x. For the sake of simplicity, we’ll just write it, quite 
generally, as f(x, y) and keep in mind that it’s a simple known 

Figure 13.53  Notice that there are three regions with different spatial 
frequencies. Each of these on the reilluminated hologram generates three 
waves.

Reference wave

Object waves

Cosine grating

Virtual
image

Real
image

Photo plate

Reconstruction
wave

(a)

Hologram(b)

Figure 13.54  Various degrees of modulation of hologram fringes. (Photos by Emmett N. Leith. Reproduced 

with permission. Copyright © 2016 Scientific American, Inc. All rights reserved.)

(a) (b) (c)
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and concentric ring systems that arise from diffraction by dust 
and the like on the optical elements.

The amplitude transmission profile of the processed holo-
gram can be made proportional to I(x, y). In that case, the final 
emerging wave, EF  

(x, y), is proportional to the product  
I(x, y)ER(x, y), where ER(x, y) is the reconstructing wave inci-
dent on the hologram. Thus if the reconstructing wave, of fre-
quency n, is incident obliquely on gH, as was the background 
wave, we can write

 ER(x, y) = E0R cos [2pnt + f(x, y)] (13.28)

The final wave (except for a multiplicative constant) is the prod-
uct of Eqs. (13.26) and (13.28):

EF  

(x, y) = 1
2 E0R(E2

0B + E2
0O) cos [2pnt + f(x, y)]

+ 1
2 E0RE0BE0O cos (2pnt + 2f - fO)

 + 1
2 E0RE0BE0O cos (2pnt + fO) (13.29)

Three terms describe the light issuing from the hologram; the 
first can be rewritten as

1
2 (E2

0B + E2
0O)ER(x, y)

and is an amplitude-modulated version of the reconstructing 
wave. In effect, each portion of the hologram functions as a dif-
fraction grating, and this is again the zeroth-order, undeflected, 
direct beam. Since it contains no information about the phase of 
the object wave, fO, it is of little concern here.

The next two or side-band waves are the sum and difference 
terms, respectively. These are the two first-order waves diffracted 
by the grating-like hologram. The first of these (i.e., the sum 
term) represents a wave that, except for a multiplicative con-
stant, has the same amplitude as the object wave E0O(x, y). 
Moreover, its phase contains a 2f(x, y) contribution, which, as 
you recall, arose from tilting the background and reconstructing 
wavefronts with respect to gH. It’s this phase factor that pro-
vides the angular separation between the real and virtual images. 
Furthermore, rather than containing the phase of the object 
wave, the sum term contains its negative. Thus it’s a wave car-
rying all of the appropriate information about the object but in 
a way that is not quite right. Indeed, this is the real image 
formed in converging light in the space beyond the hologram, 
that is, between it and the viewer. The negative phase is mani-
fest in an inside-out image something like the pseudoscopic ef-
fect occurring when the elements of a photographic stereo pair 
are interchanged. Bumps appear as indentations, and object 
points that were in front of and nearer to gH are now imaged 
nearer to but beyond gH. Thus a point on the original subject 
closest to the observer appears farthest away in the real image. 
The scene is turned in on itself along one axis in a way that 
perhaps must be seen to be appreciated. 

For example, imagine you are looking down the holographic 
conjugate image of a bowling alley. The “back” row of pins, 

function. The wave scattered from the object can, in turn, be 
expressed as

 EO(x, y) = E0O(x, y) cos [2pnt + fO(x, y)] (13.25)

where both the amplitude and phase are now complicated 
functions of position corresponding to an irregular wavefront. 
From the communications-theoretic point of view, this is an 
amplitude- and phase-modulated carrier wave bearing all of the 
available information about the object. Note that this informa-
tion is encoded in spatial rather than temporal variations of the 
wave. The two disturbances EB and EO superimpose and inter-
fere to form an irradiance distribution, which is recorded by the 
photographic emulsion. The resulting irradiance, except for a 
multiplicative constant, is I(x, y) = 8(EB + EO)29T, which, from 
Section 9.1, is given by

 I(x, y) =
E2

0B

2
+

E2
0O

2
+ E0BE0O cos (f - fO) (13.26)

Observe once again that the phase of the object wave deter-
mines the location on gH of the irradiance maxima and mini-
ma. Moreover, the contrast or fringe visibility

 � K (Imax - Imin)>(Imax + Imin) [12.4]

across the hologram plane, which is

 � = 2E0BE0O>(E2
0B + E2

0O) (13.27)

contains the appropriate information about the object wave’s 
amplitude.

Once more, in the parlance of communications theory, we 
might observe that the film plate serves as both the storage de-
vice and detector or mixer. It produces, over its surface, a distri-
bution of opaque regions corresponding to a modulated spatial 
waveform. Accordingly, the third or difference frequency term 
in Eq. (13.27) is both amplitude and phase modulated by way of 
the position dependence of E0O(x, y) and fO(x, y).

Figure 13.54b is an enlarged view of a portion of the fringe 
pattern that constitutes the hologram for a simple, essentially 
two-dimensional, semitransparent object. Were the two inter-
fering waves perfectly planar (as in Fig. 13.54a), the evident 
variations in fringe position and irradiance, which represent the 
information, would be absent, yielding the traditional Young’s 
pattern (Section 9.3). The sinusoidal transmission-grating con-
figuration (Fig. 13.54a) may be thought of as the carrier wave-
form, which is then modulated by the signal. Furthermore, we 
can imagine that the coherent superposition of countless zone-
plate patterns, one arising from each point on a large object, 
have metamorphosed into the modulated fringes of Fig. 13.54b. 
When the amount of modulation is further greatly increased, as 
it would be for a large, three-dimensional, diffusely reflecting 
object, the fringes lose the kind of symmetry still discernible in 
Fig. 13.54b and become considerably more complicated. Inci-
dentally, holograms are often covered with extraneous swirls 
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is itself just an image) actually change, just as they would in 
“real” life with a “real” lens and “real” print. In the case of an 
extended scene having considerable depth, your eyes would 
have to refocus as you viewed different regions of it at various 
distances. In precisely the same way, a camera lens would have 
to be readjusted if you were photographing different regions of 
the virtual image (see photo).

Holograms display other extremely important and interest-
ing features. For example, if you were standing close to a win-
dow, you could obscure all of it with, say, a piece of cardboard, 
except for a tiny area through which you could then peer and 
still see the objects beyond. The same is true of a hologram, 
since each small fragment of it contains information about the 
entire object, at least as seen from the same vantage point, and 
each fragment can reproduce, albeit with diminishing resolu-
tion, the entire image.

Figure 13.55 summarizes pictorially much of what’s been 
said so far while also providing a convenient setup for actually 
making and viewing a hologram. Here the photographic emul-
sion is shown having some depth, as compared with Fig. 13.52, 
where it was treated as though it were purely two-dimensional. 

even though partially obscured by the “front” rows, are none-
theless imaged closer to the viewer than is the one-pin. Despite 
this, bear in mind that it’s not as if you were looking at the array 
from behind. No light from the very backs of the pins was ever 
recorded—you’re seeing an inside-out front view. As a conse-
quence, the conjugate image is usually of limited utility, al-
though it can be made to have a normal configuration by form-
ing a second hologram with the real image as the object.

The difference term in Eq. (13.29), except for a multiplicative 
constant, has precisely the form of the object wave E0O(x, y). If 
you were to peer into (not at) the illuminated hologram, as if it 
were a window looking out onto the scene beyond, you would 
“see” the object exactly as if it were truly sitting there. You 
could move your head a bit and look around an item in the 
foreground in order to see the view it had previously been 
obstructing. In other words, in addition to complete three-
dimensionality, parallax effects are apparent as they are in no 
other reproducing technique (see photo). Imagine that you are 
viewing the holographic image of a magnifying glass focused 
on a page of print. As you move your eye with respect to the 
hologram plane, the words being magnified by the lens (which 

Parts (b) through (d) are three different 
views photographed from the same  
holographic image generated by the  
hologram in (a). (Smith, Principles of Holography/

John Wiley & Sons.)

(a) (b)

(c) (d)
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Figure 13.55  (a) The creation of a transmission hologram of a toy locomotive. (b) Replay  
of a transmission hologram.

Of course, any emulsion must certainly have a finite thickness. 
Typically, it would be about 10 mm thick, as compared with the 
spatial period of the fringes, which might average around 1 mm 
or so. Figure 13.56a is closer to the point, showing the kind of 
three-dimensional fringes that actually exist throughout the 
emulsion. For plane waves, these straight parallel fringe-planes 

are oriented so as to bisect the angle between the reference and 
object waves. Realize that all the holograms considered up to 
now have been viewed by looking through them; they’re all 
transmission holograms, and in each case they were made by 
causing the reference wave and the object wave to traverse the 
film from the same side.
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The zone-plate interpretation has been applicable to the various 
holographic schemes we’ve considered thus far, and this regard-
less of whether the diffracted wave was of the near- or far-field 
variety (i.e., whether we had Fresnel or Fraunhofer holograms, 
respectively). Indeed, it applies generally where the interferogram 
results from the superpositioning of the scattered spherical wave-
lets from each object point and a coherent plane or even spherical 
reference wave (provided the latter’s curvature is different from 
that of the wavelets). An inherent problem, which these schemes 
therefore have in common, arises from the fact that the zone-plate 
radii, Rm, vary as m1>2 from Eq. (10.91). Thus the zone fringes are 
more densely packed farther from the center of each zone lens 
(i.e., at larger values of m). This is tantamount to an increasing 

Something similar happens when the reference and object 
waves traverse the emulsion from opposite sides, as in Fig. 13.56b. 
If for simplicity we again let both waves be planar, the resulting 
pattern can be visualized by sliding two pencils along with the 
fronts; it should then be clear that the fringes are straight bands 
(planes) lying parallel to the face of the film plate. When an 
actual, highly contorted, object wave is made to overlap a pla-
nar, coherent, reference wave, these fringes become modulated 
with the information describing the object. The corresponding 
three-dimensional diffraction grating is called a reflection  
hologram. During playback it scatters the reilluminating beam 
back out toward the viewer, and one sees a virtual image behind 
the hologram (as if looking into a mirror).

(a) (b)

Figure 13.56  (a) The interference of two plane waves traveling toward 
the same side to create a transmission hologram. (b) The interference of 
two plane waves traveling toward opposite sides to create a reflection 
hologram. Refraction has been omitted.

A reconstructed holograph-
ic image of a model auto-
mobile. The camera posi-
tion and plane of focus 
were changed between  
(a) and (b). (Photos from 

O’Shea, Callen, and Rhodes, An 

Introduction to Lasers and Their 

Applications. Pearson Education, Inc.)

(a) (b)

M13_HECH6933_05_GE_C13.indd   661 26/08/16   5:20 PM
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spatial frequency of bright and dark rings, which must be recorded 
by the photographic plate. The same thing can be appreciated in 
the cosine-grating representation, where the spatial frequency in-
creases with u. Since film, no matter how fine-grained, is limited 
in its spatial frequency response, there will be a cutoff beyond which 
it cannot record data. All of this represents a built-in limitation on 
resolution. In contrast, if the mean frequency of the fringes could 
be made constant, the limitations imposed by the photographic 
medium would be considerably reduced, and the resolution 
correspondingly increased. As long as it could record the aver-
age spatial fringe frequency, even a coarse emulsion, such as  
Polaroid P>N, could be used without extensive loss of resolution. 
Figure 13.57 shows an arrangement that accomplishes just this by 
having the diffracted object wavelets interfere with a spherical ref-
erence wave of about the same curvature. The resulting interfero-
gram is known as a Fourier-transform hologram (in this specific 
instance, it’s of the high-resolution lensless variety). This scheme 
is designed to have the reference wave cancel the quadratic (zone-
lens type) dependence of the phase with position on gH. But that 
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Hologram
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(b)

Incident plane wave

Reconstruction

Transparent
object

Point
reference
hole

EO

EB

ΣH
Hologram

Image
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f

PPoin
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Figure 13.57  Lensless Fourier-
transform holography (a transparent 
object).

*See DeVelis and Reynolds, Theory and Applications of Holography; Stroke, An 
Introduction to Coherent Optics and Holography; Goodman, Introduction to 
Fourier Optics; Smith, Principles of Holography; or perhaps The Engineering Uses 
of Holography, edited by E. R. Robertson and J. M. Harvey.

will occur precisely only for a planar two-dimensional object. 
In the case of a three-dimensional object (Fig. 13.58) this only 
happens over one plane, and the resulting hologram is therefore 
a composite of both types, that is, a zone lens and Fourier trans-
form. Unlike the other arrangements, both images generated by 
a Fourier-transform hologram are virtual, in the same plane, and 
oriented as if reflected through the origin (see photo).

The grating-like nature of all previous holograms is evident 
here as well. In fact, if you look through a Fourier-transform 
hologram at a small white-light source (a flashlight in a dark 
room works beautifully), you see the two mirror images, but 
they are extremely vague and surrounded by bands of spectral 
colors. The similarity with white light that has passed through a 
grating is unmistakable.*
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itself might last on the order of a minute or so. That was the 
still-life era of holography. But now, with the use of new, more 
sensitive films and the short duration (≈40 ns) high-power 
light flashes from a single-mode pulsed ruby laser, even por-
traiture and stop-action holography have become a reality* 
(see photo above).

Throughout the 1960s and much of the 1970s, the emphasis 
in the field was on the obvious visual wonders of holography. 
This continued in the 1980s with the mass production of over a 
hundred million inexpensive plastic reflection holograms (bonded 
to credit cards; tucked in candy packages; decorating magazine 
covers, jewelry, and record albums). The development of a pho-
topolymer that is stable, cheap, and able to produce high-quality 
images has stimulated the manufacture of even more of these 
throwaway holograms. Still, there is now a widespread recogni-
tion of the potential of holography as a nonpictorial instrumen-
tality, and that new direction is finding increasingly important 
applications.

Volume Holograms

Yuri Nikolayevitch Denisyuk of the Soviet Union, in 1962, in-
troduced a scheme for generating holograms that was conceptu-
ally similar to the early (1891) color photographic process of 
Gabriel Lippmann. In brief, the object wave is reflected from 
the subject and propagates backward, overlapping the incoming 
coherent background wave. In so doing, the two waves set up a 
three-dimensional pattern of standing waves, as in Fig. 13.56. 
The spatial distribution of fringes is recorded by the photoemul-
sion throughout its entire thickness to form what has become 
known as a volume hologram. Several variations have since 
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Lens and pinhole

Mirror

3-D
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Photo plate

EB
ΣH
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Figure 13.58  Lensless Fourier-transform holography (an opaque object).

A reconstruction of a Fourier-transform hologram. (G.W. Stroke, D. Brumm,  

and A. Funkauser, J. Opt. Soc. Am. 55, 1327 [1965].)

13.3.2 Developments and applications

For years holography was an invention in search of application, 
that notwithstanding certain obvious possibilities, such as the 
all too inevitable 3-D billboard. Fortunately, several significant 
technological developments have in recent times begun what 
will surely be an ongoing extension of the scope and utility of 
holography. The early efforts in the field were typified by count-
less images of toy cars and trains, chess pieces and statuettes—
small objects resting on giant blocks of granite. They had to be 
small because of limited laser power and coherence length, 
while the ever-present massive granite platform served to iso-
late the slightest vibrations that might blur the fringes and 
thereby degrade or obliterate the stored data. A loud sound or 
gust of air could result in deterioration of the reconstructed  
image by causing the photographic plate, object, or mirrors to 
shift several millionths of an inch during the exposure, which 

A reconstruction of a holographic portrait. (L.D. Siebert.)

*L. D. Siebert, Appl. Phys. Letters 11, 326 (1967), and R. G. Zech and L. D. 
Siebert, Appl. Phys. Letters 13, 417 (1968).
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664 Chapter 13 Modern Optics: Lasers and Other Topics

used to generate separate, cohabitating, component holograms of 
the object, and this can be done one at a time or all at once. When 
these are illuminated simultaneously by the various constituent 
beams, a multicolored image results.

Another important and highly promising scheme, devised 
by G. W. Stroke and A. E. Labeyrie, is known as white-light 
reflection holography. Here, the reconstructing wave is an or-
dinary white-light beam from, say, a flashlight or projector, 
having a wavefront similar to the original quasimonochromatic 
background wave. When illuminated on the same side as the 
viewer, only the specific wavelength that enters the volume  
hologram at the proper Bragg angle is reflected off to form a 
reconstructed 3-D virtual image. Thus, if the scene were re-
corded in red laserlight, only red light would presumably be 
reflected as an image. It is of pedagogical interest to point out, 
however, that the emulsion may shrink during the fixing pro-
cess, and if it is not swollen back to its original form chemi-
cally (with, say, triethylnolamine), the spacing of the Bragg 
planes, d, decreases. That means that at a given angle u, the 
reflected wavelength will decrease proportionately. Hence, a 
scene recorded in He-Ne red might play back in orange or even 
green when reconstructed by a beam of white light.

If several overlapping holograms corresponding to dif-
ferent wavelengths are stored, a multicolored image will 
result. The advantages of using an ordinary source of white 
light to reconstruct full-color 3-D images are obvious and 
far-reaching.

Optoelectronic Image Reconstruction

Consider the procedure for producing a simple hologram: a 
plane wave incident on a group of objects (e.g., a chess set) 
reflects as a wiggly wavefield. Distortions of the wavefronts 
correspond to the features of the objects and their locations in 
space. The reflected wave is then made to interfere with a ref-
erence plane wave identical to the original illuminating wave. 
The resulting interference pattern is the heart of the hologram, 
and it’s usually recorded on a sheet of fine-grain photographic 
film. The wiggly wave coming from the chess set is what we 
would “see” looking directly at the scene. By overlapping this 

been introduced, but the basic ideas are the same; rather than 
generating a two-dimensional grating-like scattering structure, 
the volume hologram is a three-dimensional grating. In other 
words, it’s a three-dimensional, modulated, periodic array of 
phase or amplitude objects, which represent the data. It can be 
recorded in several media, for example, in thick photoemul-
sions wherein the amplitude objects are grains of deposited sil-
ver; in photochromic glass; with halogen crystals, such as KBr, 
which respond to irradiation via color-center variations; or with 
a ferroelectric crystal, such as lithium niobate, which undergoes 
local alterations in its index of refraction, thus forming what 
might be called a phase volume hologram. In any event, one is 
left with a volume array of data, however stored in the medium, 
which in the reconstruction process behaves very much like a 
crystal being irradiated by X-rays. It scatters the incident (re-
constructing) wave according to Bragg’s Law. This isn’t very 
surprising, since both the scattering centers and l have simply 
been scaled up proportionately.

One important feature of volume holograms is the interde-
pendence [via Bragg’s Law, 2d sin u = ml, Eq. (10.71)] of the 
wavelength and the scattering angle; that is, only a given color 
light will be diffracted at a particular angle by the hologram. 
Another significant property is that by successively altering the 
incident angle (or the wavelength), a single-volume medium 
can store a great many coexisting holograms at one time. This 
latter property makes such systems extremely appealing as 
densely packed memory devices. For example, an 8-mm-thick 
hologram has been used to store 550 pages of information, 
each individually retrievable. In theory, a single lithium nio-
bate crystal is capable of easily storing thousands of holo-
grams, and any one of them could be replayed by addressing 
the crystal with a laserbeam at the appropriate angle. Current 
research is also focusing on potassium tantalate niobate (KTN) 
as a potential photorefractive crystal-storage medium. Imagine 
a 3-D holographic motion picture; a library; or everyone’s vital 
statistics—beauty marks, credit cards, taxes, bad habits, in-
come, life history, and so on, all recorded on a handful of small 
transparent crystals.

Multicolored reconstructions have been formed using (black 
and white) volume holographic plates. Two, three, or more differ-
ent colored and mutually incoherent overlapping laserbeams are 

Three different views of a U.S. postage stamp consisting of a full-color reflection hologram. (E.H.)
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Holographic Interferometry

One of the most innovative and practical of recent holographic 
advances is in the area of interferometry. Three distinctive ap-
proaches have proved to be quite useful in a wealth of nonde-
structive testing situations where, for example, one might wish 
to study microinch distortions in an object resulting from strain, 
vibration, heat, and so on. In the double exposure technique, one 
simply makes a hologram of the undisturbed object and then, 
before processing, exposes the hologram for a second time to the 
light coming from the now distorted object. The ultimate result 
is two overlapping reconstructed waves, which proceed to form 
a fringe pattern indicative of the displacements suffered by the 
object, that is, the changes in optical path length (see photo). 
Variations in index such as those arising in wind tunnels and the 
like will generate the same sort of pattern.

In the real-time method, the subject is left in its original 
position throughout; a processed hologram is formed, and 
the resulting virtual image is made to overlap the object pre-
cisely (Fig. 13.59). Any distortions that arise during subse-
quent testing show up, on looking through the hologram, as 
a system of fringes, which can be studied as they evolve in 
real time. The method applies to both opaque and transparent 
objects. Motion pictures can be taken to form a continuous 
record of the response.

The third method is the time-average approach and is particu-
larly applicable to rapid, small-amplitude, oscillatory systems. 
Here the film plate is exposed for a relatively long duration, 
during which time the vibrating object has executed a number 
of oscillations. The resulting hologram can be thought of as a 

reflected object wave with a reference plane wave the conse-
quent interference pattern carries all the needed information 
about the amplitude and phase of the object wave. Once devel-
oped, the film, covered in minute fringes, constitutes the holo-
gram. When illuminated by the reference wave, the hologram 
transmits the reconstructed wiggly chess-set wave. We look 
into the hologram, much as we might look into a window, and 
see the scene in 3-D as if the chess set was still there reflecting 
light.

Now suppose, instead, that we remove the chess set and re-
place the scene entirely with a translucent device that could 
somehow reshape an incoming plane wave so as to precisely 
reproduce the original wiggly wave. That ersatz object wave 
could go on to produce a hologram of the chess set even though 
the set was never there. In fact, if this so-called spatial light 
modulator (SLM) were rapidly variable, and if we could record 
the resulting interference patterns in real time, we could create 
3-D holographic movies. We’re not quite there yet, but low-cost 
liquid crystal spatial light modulators (LC-SLM) are now com-
mercially available. Such devices usually consist of an ordered, 
two-dimensional array of electronically addressable, tiny, tightly 
packed, nematic liquid crystal cells. Moreover, without having 
to wait for film to be processed, holograms can be recorded im-
mediately within crystals like Fe:Ce:Ti-doped LiNbO3.

The above photo was retrieved from a volume holographic 
data storage system. A laserbeam, spatially digitally sculpted by 
an LC-SLM, carried the input image information in the form of 
wavefront variations to a photorefractive crystal, where it was 
met by a reference plane wave. The consequent interference pat-
tern, the data, was stored in the crystal as a myriad of refractive 
index gratings. Later, reconstructed by a playback laserbeam 
the image was then simply photographed.

A hologram created using an LC-SLM. (Andreas Hermerschmidt and HOLOEYE Photonics 

AG, Berlin.)

Double exposure holographic interferogram. (S. M. Zivi and G. H. Humberstone, “Chest 

motion visualized by holographic interferometry,” Medical Research Eng. p. 5 [June 1970].) 
Compare this with the radar photo on page 451.
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see something that resembled an X-ray motion picture of the 
fish. The accompanying photo is the image of a penny formed 
via acoustical holography using ultrasound at a frequency of 
48 MHz. In water, that corresponds to a wavelength of roughly 
30 mm, and so each fringe contour reveals a change in elevation 
of 12 l or 15 mm.

Holographic Optical Elements

Evidently, when two plane waves overlap, as in Fig. 13.52, they 
produce a cosine grating. This suggests the rather obvious no-
tion that holography can be used for nonpictorial purposes, like 
making diffraction gratings. Indeed, the holographic optical 

superposition of a multiplicity of images, with the effect that a 
standing-wave pattern emerges. Bright areas reveal undeflected 
or stationary nodal regions, while contour lines trace out areas 
of constant vibrational amplitude.

Today holographic testing of mechanical systems is a well-
established practice in industry. It continues to serve in a broad 
range of applications, from noise reduction in automobile trans-
missions to routine jet engine inspections.

acoustical Holography

In acoustical holography, an ultra-high-frequency sound wave 
(ultrasound) is used to create the hologram initially, and a laser-
beam then serves to form a recognizable reconstructed image. 
In one application, the stationary ripple pattern on the surface of 
a water body produced by submerged coherent transducers 
corresponds to a hologram of the object beneath (Fig. 13.60). 
Photographing it creates a hologram that can be illuminated 
optically to form a visual image. Alternatively, the ripples can 
be irradiated from above with a laserbeam to produce an instan-
taneous reconstruction in reflected light.

The advantages of acoustical techniques reside in the fact 
that sound waves can propagate considerable distances in dense 
liquids and solids where light cannot. Thus acoustical holo-
grams can record such diverse things as underwater submarines 
and internal body organs.* In the case of Fig. 13.60, one would 

Laser

Lens and pinhole

Lens and pinhole

Mirror

Mirror

Viewer

Processed
hologram

Beamsplitter Object overlapped
by virtual image

Figure 13.59  Real-time holographic interferometry.

*See A. F. Metherell, “Acoustical holography,” Sci. Am. 36, 221,  (October 1969). 
Refer to A. L. Dalisa et al., “Photoanodic engraving of holograms on silicon,”  
Appl. Phys. Letters 17, 208 (1970), for another interesting use of surface relief 
patterns.

Laser

Figure 13.60  Acoustical holography.

Interferometric image of a penny via acoustical holography. (Holosonics, Inc.)
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object appropriately illuminated in a hypothetical recording 
session. A computer-controlled plotter drawing or cathode ray 
tube read-out of the interferogram is then photographed, thence 
to serve as the actual hologram. The result upon illumination is 
a three-dimensional reconstructed image of an object that never 
had any real existence in the first place. More practically, computer-
generated HOEs are now routinely being produced, often to 
serve as references for optical testing. Since this mating of tech-
nologies can in principle generate wavefronts otherwise essen-
tially impossible to produce, the future is very promising.

13.4 Nonlinear Optics

Generally, the domain of nonlinear optics is understood to en-
compass those phenomena for which electric and magnetic 
field intensities of higher powers than the first play a dominant 
role. The Kerr Effect (Section 8.11.3), which is a quadratic vari-
ation of refractive index with applied voltage, and thereby elec-
tric field, is typical of several long-known nonlinear effects.

The usual classical treatment of the propagation of light—
superposition, reflection, refraction, and so forth—assumes a 
linear relationship between the electromagnetic light field and 
the responding atomic system constituting the medium. But just 
as an oscillatory mechanical device (e.g., a weighted spring) 
can be overdriven into nonlinear response through the applica-
tion of large enough forces, so too we might anticipate that an 
extremely intense beam of light could generate appreciable 
nonlinear optical effects. 

The electric fields associated with lightbeams from ordinary 
or, if you will, traditional sources are far too small for such be-
havior to be easily observable. It was for this reason, coupled 
with an initial lack of technical prowess, that the subject had to 
await the advent of the laser in order that sufficient brute force 
could be brought to bear in the optical region of the spectrum. As 
an example of the kinds of fields readily obtainable with the cur-
rent technology, consider that a good lens can focus a laserbeam 
down to a spot having a diameter of about 10-3 inch or so, which 
corresponds to an area of roughly 10-9 m2. A 200-megawatt 
pulse from, say, a Q-switched ruby laser would then produce a 
flux density of 20 * 1016 W>m2. It follows (Problem 13.37) 
that the corresponding electric-field amplitude is given by

 E0 = 27.4 a I
n
b

1>2
 (13.30)

In this particular case, for n ≈ 1, the field amplitude is about 
1.2 * 108 V>m. This is more than enough to cause the break-
down of air (roughly 3 * 106 V>m) and just several orders of 
magnitude less than the typical fields holding a crystal together, 
the latter being roughly about the same as the cohesive field on 
the electron in a hydrogen atom (5 * 1011 V>m). The availability 
of these and even greater (1012 V>m) fields has made possible a 

element (HOE) is any diffractive device consisting of a “fringe” 
system (i.e., a distribution of diffracting amplitude or phase ob-
jects) created either directly by interferometry or by computer 
simulation thereof. Holographic diffraction gratings, both blazed 
and sinusoidal, are available commercially (with up to around 
3600 lines>mm). Although generally less efficient than ruled 
gratings, they do produce far less stray light, which can be im-
portant in many applications.

Suppose we record the interference pattern of a converging 
beam using a planar reference wave. Upon reilluminating the 
resulting transmission hologram with a matching plane wave, 
out will come a recreated converging wave—the hologram will 
function like a lens (see Fig. 13.49). Similarly, if the reference 
beam is a diverging wave from a point source and the object is 
a plane wave, the resulting hologram, reilluminated by the point 
source, will play back a plane wave. In this way a holographic 
optical element can perform the tasks of a complex lens with 
the added benefit of allowing for an inexpensive, lightweight, 
compact system design. 

Holographic optical elements are already in use inside super-
market check-out scanners that automatically read the bar pat-
terns of the Universal Product Code (UPC) on merchandise. A 
laserbeam passes through a rotating disk composed of a number 
of holographic lens-prism facets. These rapidly refocus, shift, 
and scan the beam across a volume of space, ensuring that the 
code will be read on the first pass across the device. HOEs are 
used in so-called heads-up displays in airplane cockpits. These 
allow reflected data to appear on an otherwise transparent screen 
in front of the pilot’s face and yet not obscure the view. They’re 
also in office copy machines and solar concentrators.

As matched spatial filters, HOEs are used in optical correla-
tors to spot defects in semiconductors and tanks in reconnais-
sance pictures. In such cases the HOE is a hologram formed 
using the Fourier transform of the target (e.g., a picture of a tank 
or perhaps a printed word) as the object. Suppose the problem 
is to find a word on a printed page automatically, using an opti-
cal computer like that in Fig. 13.35, that is, to cross-correlate 
the word and the page of words. The target-transform hologram 
is placed in the transform plane and illuminated with the trans-
form of an entire page of print. The field amplitude emerging 
from this HOE-filter will then be proportional to the product of 
the transforms of the page and the word. The transform of this prod-
uct, generated by the last lens and displayed on the image plane, is 
the desired cross-correlation (recall the Wiener–Khintchine theo-
rem). If the word is on the page, there will be a high correlation, 
and a bright spot of light will appear superimposed in the final 
image everywhere the target word occurs.*

It is possible to synthesize, point by point, a hologram of a 
fictitious object. In other words, in the most direct approach 
holograms can be produced by calculating, with a digital com-
puter, the irradiance distribution that would arise were some 

*See A. Ghatak and K. Thyagarajan, Contemporary Optics, p. 214.
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As the harmonic lightwave sweeps through the medium, it cre-
ates what might be thought of as a polarization wave, that is, an 
undulating redistribution of charge within the material in re-
sponse to the field. If only the linear term were effective, the 
electric polarization wave would correspond to an oscillatory 
current following along with the incident light. The light there-
after reradiated in such a process would be the usual refracted 
wave generally propagating with a reduced speed v and having 
the same frequency as the incident light. In contrast, the pres-
ence of higher-order terms in Eq. (13.33) implies that the polar-
ization wave does not have the same harmonic profile as the 
incident field. In fact, Eq. (13.34) can be likened to a Fourier 
series representation of the distorted profile of P(t).

13.4.1 Optical Rectification

The second term in Eq. (13.34) has two components of great 
interest. First, there is a Dc or constant bias polarization vary-
ing as E0

2. Consequently, if an intense plane-polarized beam tra-
verses an appropriate (piezoelectric) crystal, the presence of the 
quadratic nonlinearity will, in part, be manifest by a constant 
electric polarization of the medium. A voltage difference, pro-
portional to the beam’s flux density, will accordingly appear 
across the crystal. This effect, in analogy to its radiofrequency 
counterpart, is known as optical rectification.

13.4.2 Harmonic Generation

The cos 2vt term [Eq. (13.34)] corresponds to a variation in 
electric polarization at twice the fundamental frequency (i.e., at 
twice that of the incident wave). The reradiated light that arises 
from the driven oscillators also has a component at this same 
frequency, 2v, and the process is spoken of as second-harmonic 
generation, or SHG for short. In terms of the photon represen-
tation, we can envision two identical photons of energy Uv 
coalescing within the medium to form a single photon of energy 
U2v. Peter A. Franken and several coworkers at the University 
of Michigan in 1961 were the first to observe SHG experi-
mentally. They focused a 3-kW pulse of red (694.3 nm) ruby 
laserlight onto a quartz crystal. Just about 1 part in 108 of this 
incident wave was converted to the 347.15-nm ultraviolet 
second harmonic.

Notice that, for a given material, if P(E) is an odd function, 
that is, if reversing the direction of the E$-field simply reverses the 
direction of P$, the even powers of E in Eq. (13.32) must vanish. 
But this is just what happens in an isotropic medium, such as 
glass or water—there are no special directions in a liquid. 
Moreover, in crystals like calcite, which are so structured as 
to have what’s known as a center of symmetry or an inversion 
center, a reversal of all of the coordinate axes must leave the 
interrelationships between physical quantities unaltered. Thus 
no even harmonics can be produced by materials of this sort. 
Third-harmonic generation (THG), however, can exist and has 

wide range of important new nonlinear phenomena and devices. 
We shall limit this discussion in the consideration of several non-
linear phenomena associated with passive media (i.e., media that 
act essentially as catalysts without making their own characteris-
tic frequencies evident). Specifically, we’ll consider optical recti-
fication, optical harmonic generation, frequency mixing, and 
self-focusing of light. In contrast, Stimulated Raman, Rayleigh, 
and Brillouin Scattering exemplify nonlinear optical phenomena 
arising in active media that do impose their characteristic fre-
quencies on the lightwave.*

As you may recall, the electromagnetic field of a lightwave 
propagating through a medium exerts forces on the loosely 
bound outer or valence electrons. Ordinarily, these forces are 
quite small, and in a linear isotropic medium the resulting elec-
tric polarization is parallel with and directly proportional to the 
applied field. In effect, the polarization follows the field; if the 
latter is harmonic, the former will be harmonic as well. Conse-
quently, one can write

 P = P0xE (13.31)

where x is a dimensionless constant known as the electric sus-
ceptibility, and a plot of P versus E is a straight line. Quite obvi-
ously in the extreme case of very high fields, we can expect that 
P will become saturated; in other words, it simply cannot in-
crease linearly indefinitely with E ( just as in the familiar case of 
ferromagnetic materials, where the magnetic moment becomes 
saturated at fairly low values of H). Thus we can anticipate a 
gradual increase of the ever-present, but usually insignificant, 
nonlinearity as E increases. Since the directions of PP$ and E$  co-
incide in the simplest case of an isotropic medium, we can ex-
press the polarization more effectively as a series expansion:

 P = P0(xE + x2E2 + x3E3 + g) (13.32)

The usual linear susceptibility, x, is much greater than the coef-
ficients of the nonlinear terms x2, x3, and so on, and hence the 
latter contribute noticeably only at high-amplitude fields. Now 
suppose that a lightwave of the form

E = E0 sin vt

is incident on the medium. The resulting electric polarization

P = P0xE0 sin vt + P0x2E2
0 sin2 vt

 + P0x3E3
0 sin3 vt + g (13.33)

can be rewritten as

P = P0xE0 sin vt +
P0x2

2
 E2

0 (1 - cos 2vt)

 +
P0x3

4
 E3

0(3 sin vt - sin 3vt) + g (13.34)

*For a more extensive treatment than is possible here, see N. Bloembergen, 
Nonlinear Optics, or G. C. Baldwin, An Introduction to Nonlinear Optics.
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birefringent. Furthermore, it has the interesting property that if 
the fundamental light is a linear polarized ordinary wave, the 
resulting second harmonic will be an extraordinary wave. As 
can be seen from Fig. 13.62, if light propagates within a KDP 
crystal at the specific angle u0 with respect to the optic axis, the 
index, n0v, of the ordinary fundamental wave will precisely 
equal the index of the extraordinary second harmonic ne2v. The 
second-harmonic wavelets will then interfere constructively, 
thereupon increasing the conversion efficiency by several orders 
of magnitude. Second-harmonic generators, which are simply 
appropriately cut and oriented crystals, are available commer-
cially, but do keep in mind that u0 is a function of l, and each 
such device performs at one frequency. Not long ago, a continu-
ous 1-W second-harmonic beam at 532.3 nm was obtained by 
placing a barium sodium niobate crystal within the cavity of a 
1-W 1.06m laser. The fact that the v-wave sweeps back and forth 
through the crystal increases the net conversion efficiency.

Optical harmonic generation soon lost its initial exotic qual-
ity and became a routine commercial process by the early 
1980s. Still, there were exciting technical accomplishments, 

been observed in several materials, including calcite. The re-
quirement for SHG that a crystal not have inversion symmetry 
is also necessary for it to be piezoelectric. Under pressure a 
piezoelectric crystal [such as quartz, potassium dihydrogen 
phosphate (KDP), or ammonium dihydrogen phosphate (ADP)] 
undergoes an asymmetric distortion of its charge distribution, 
thus producing a voltage. Of the 32 crystal classes, 20 are of this 
kind and may therefore be useful in SHG. The simple scalar 
expression [Eq. (13.32)] is actually not an adequate description 
of a typical dielectric crystal. Things are a good deal more com-
plicated, because the field components in several different di-
rections in a crystal can affect the electric polarization in any 
one direction. A complete treatment requires that P$ and E$  be 
related not by a single scalar but by a group of quantities ar-
ranged in the particular form of a tensor, namely, the suscepti-
bility tensor.*

A major difficulty in generating copious amounts of second-
harmonic light arises from the frequency dependence of the re-
fractive index, that is, dispersion. At some initial point where the 
incident, or v-wave, generates the second-harmonic, or 2v-wave, 
the two are coherent. As the v-wave propagates through the 
crystal, it continues to generate additional contributions of second-
harmonic light, which all combine totally constructively only if 
they maintain a proper phase relationship. Yet the v-wave travels 
at a phase velocity vv, which is ordinarily different from the 
phase velocity, v2v, of the 2v-wave. Thus the newly emitted 
second harmonic periodically falls out-of-phase with some of 
the previously generated 2v-waves. When the irradiance of the 
second harmonic, I2v, emerging from a plate of thickness / is 
computed,† it turns out to be

 I2v ∝
sin2 [2p(nv - n2v)/>l0]

(nv - n2v)2  (13.35)

(see Fig. 13.61). This yields the result that I2v has its maximum 
value when / = /c, where

 /c =
1
4

 
l0

0 nv - n2v 0  (13.36)

This is commonly known as the coherence length (although a 
different name would be better), and it’s usually of the order of 
only about 20l0. Despite this, efficient SHG can be accom-
plished by a procedure known as index matching, which negates 
the undesirable effects of dispersion; in short, one arranges 
things so that nv = n2v. A commonly used SHG material is KDP. 
It is piezoelectric, transparent, and also negatively uniaxially 

*Incidentally, there is nothing extraordinary about this kind of behavior—it comes 
up all the time. There are inertia tensors, demagnetization coefficient tensors, 
stress tensors, and so forth.

†See, for example, B. Lengyel, Introduction to Laser Physics, Chapter VII. This is a 
fine elementary treatment.
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Figure 13.61  Second-harmonic generation as a function of u for a 
0.78-mm-thick quartz plate. Peaks occur when the effective thickness is an 
even multiple of /c. (Reprinted with permission from P. D. Maker, R. W. Terhune, M. Nisenoff, 

and C.M Savage. Effects of Dispersion and Focusing on the Production of Optical Harmonics Phys. 

Rev. Lett. 8, 21—Published 1 January 1962. Copyright 1962 by the American Physical Society  

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.8.21)
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crystal layer and are orthogonally polarized. The third harmon-
ic (blue light at 0.35 mm) is created by reorienting the assembly 
to the appropriate phase-matching angle so as to shift about 
two-thirds of the beam energy into the second harmonic as it 
traverses the first crystal layer. The second layer mixes the re-
maining IR and the second-harmonic green light to produce 
third-harmonic blue.

13.4.3 Frequency Mixing

Another situation of considerable practical interest involves the 
mixing of two or more primary beams of different frequencies 
within a nonlinear dielectric. The process can most easily be 
appreciated by substituting a wave of the form

 E = E01 sin v1t + E02 sin v2t (13.37)

into the simplest expression for P given by Eq. (13.32). The 
second-order contribution is then

P0x2(E2
01 sin2 v1t + E2

02 sin2 v2t + 2E01E02 sin v1t sin v2t)

The first two terms can be expressed as functions of 2v1 and 
2v2, respectively, while the last quantity gives rise to sum and 
difference terms, v1 + v2 and v1 - v2.

As for the quantum picture, the photon of frequency 
v1 + v2 simply corresponds to a coalescing of the two original 
photons into a new photon, just as it did in the case of SHG, 
where both quanta had the same frequency. The energy and 
momentum of the annihilated photons are carried off by the 
created sum photon. The generation of an v1 - v2 difference-
photon is a little more involved. Conservation of energy and 
momentum requires that on interacting with an v2-photon, 
only the higher-frequency v1-photon vanishes, thereby creating 
two new quanta, one an v2-photon and the other a difference-
photon.

such as the 74-cm-diameter harmonic conversion array (see 
photo) built for the Nova laser-fusion program, which led to the 
Omega’s frequency-tripling system a decade later. Its function 
was to convert upwards of 80% of the infrared (1.05 mm) emis-
sion from the neodymium–glass laser into more efficient high-
frequency radiation. Because of its great size, the converter was 
an aligned mosaic of smaller KDP single-crystal panels form-
ing two layers, one behind the other. To generate the second 
harmonic (green light at 0.53 mm), the array is positioned so 
that each layer functions independently to produce two overlap-
ping frequency-shifted components. These arise one from each 
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Figure 13.62  Refractive index surface for KDP. (b) l2v versus crystal  
orientation in KDP. (Reprinted with permission from P. D. Maker, R. W. Terhune, M. Nisenoff, 

and C.M Savage. Effects of Dispersion and Focusing on the Production of Optical Harmonics Phys. 
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The KDP frequency converter  
for the Nova laser. (Lawrence 

Livermore National Laboratory.)
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barium sodium niobate. The optical parametric oscillator is a 
laser-like, broadly tunable source of coherent radiant energy in 
the IR to the UV.

13.4.4 Self-Focusing of Light

When a dielectric is subjected to an electric field that varies in 
space, in other words, when there is a gradient of the field 
parallel to PP$, an internal force will result. This has the effect 
of altering the density, changing the permittivity, and thereby 
varying the refractive index, and this in both linear and nonlin-
ear isotropic media. Suppose then that we shine an intense 
laserbeam with a transverse Gaussian flux-density distribu-
tion onto a specimen. The induced refractive-index variations 
will cause the medium in the region of the beam to function 
much as if it were a positive lens. Accordingly, the beam con-
tracts, the flux density increases even more, and the contrac-
tion continues in a process known as self-focusing. The effect 
can be sustained until the beam reaches a limiting filament 
diameter (of about 5 * 10-6 m), being totally internally re-
flected as if it were in a fiberoptic element embedded within 
the medium.*

As an application of this phenomenon, suppose we beat, 
within a nonlinear crystal, a strong wave of frequency vp, called 
the pump light, with a weak signal wave of lower frequency vs, 
which is to be amplified. Pump light is thereby converted into 
both signal light and a difference wave, called idler light, of 
frequency vi = vp - vs. If the idler light is then made to beat 
with the pump light, the latter is converted into additional 
amounts of idler and signal light. In this way both the signal and 
idler waves are amplified. This is actually an extension into the 
optical-frequency region of the well-known concept of para-
metric amplification, whose use in the microwave spectrum 
dates back to the late 1940s. The first optical-parametric oscil-
lator, which was operated in 1965, is depicted in Fig. 13.63. 
The flat parallel end faces of a nonlinear crystal (lithium nio-
bate) were coated to form an optical Fabry–Perot cavity. The 
signal and idler frequencies (both about 1000 nm) corresponded 
to two of the resonant frequencies of the cavity. When the flux 
density of the pumping light was high enough, energy was 
transferred from it into the signal and idler oscillatory modes, 
with the consequent buildup of those modes and emission of 
coherent radiant energy at those frequencies. This transfer of 
energy from one wave to another within a lossless medium typ-
ifies parametric processes. By changing the refractive index of 
the crystal (via temperature, electric field, etc.), the oscillator 
becomes tunable. Various oscillator configurations have since 
evolved, with other nonlinear materials used as well, such as *See J. A. Giordmaine, “Nonlinear optics,” Phys. Today, 39 (January 1969).

Figure 13.63  An optical parametric oscillator. (After J. A. Giordmaine and R.C. Miller, Phys. Rev. Letters 4, 973 [1965].)
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Use the fact that 3∞

0
 xn 

dx
ex - 1

= Γ(n + 1)Z(n + 1) where the gamma 

function is given by Γ(n + 1) = n! and the Riemann zeta function  

for n = 3 is Z(4) =
p4

90
 .]

13.11* Start with Eq. (13.4) and show that it’s equivalent to

Il =
3.742 * 10-25

l5(e0.014 4/lT - 1)
 W/m2 · nm

where l is in meters, T is in kelvins, and the wavelength interval ∆l 
should be in nanometers. Then Il is the number of joules per second, 
per meter-squared, per nanometer.

13.12* In the atomic domain, energy is often measured in electron-
volts. Arrive at the following expression for the energy of a light-quantum 
in eV when the wavelength is in nanometers:

ℰ =
1239.8 eV · nm

l

What is the energy of a quantum of 600-nm light?

13.13 Figure P.13.13 shows the spectral irradiance impinging on a 
horizontal surface, for a clear day, at sea level, with the Sun at the zenith. 
What is the most energetic photon we can expect to encounter (in eV 
and in J)?

Complete solutions to all problems—except those with an  
asterisk—can be found in the back of the book.

13.1* After a while, a cube of rough steel (10 cm on a side)  reaches 
equilibrium inside a furnace at a temperature of 400°C. Knowing that 
its total emissivity is 0.97, determine the rate at which the cube radiates 
energy from each face.

13.2 A somewhat typical person has a total naked area of about 1.4 m2 
and an average skin temperature of 33°C. Determine the net power 
radiated per unit area, the irradiance or more precisely the exitance, 
if the person’s total emissivity is 97% and the environment is room 
temperature (20°C). How much energy does that body radiate per 
second?

13.3 Suppose that we measure the emitted exitance from a small hole 
in a furnace to be 22.8 W>cm2, using an optical pyrometer of some 
sort. Compute the internal temperature of the furnace.

13.4 The temperature of an object resembling a blackbody is raised 
from 200 K to 2000 K. By how much does the amount of energy it 
radiates increase?

13.5* Your average skin temperature is about 34°C. Assuming you 
radiate as does a blackbody at that temperature, at what wavelength 
will you emit the maximum energy?

13.6* What is the wavelength that carries away the most energy when an 
object resembling a blackbody radiates energy into a room-temperature 
(21°C) environment?

13.7* The surface temperature of a class O blue-white star is around 
42 * 103 K. At what frequency will it radiate most of its energy?

13.8* When the Sun’s spectrum is photographed, using rockets to 
range above the Earth’s atmosphere, it is found to have a peak in its 
spectral existence at roughly 470 nm. Compute the Sun’s surface tem-
perature assuming it to be a blackbody.

13.9* An object resembling a blackbody emits a maximum amount of 
energy per unit wavelength in the red end of the visible spectrum 
(l = 700 nm). What is its surface temperature?

13.10* The energy per unit area per unit time per unit wavelength 
interval emitted by a blackbody at a temperature T is given by

Il =
2phc2

l5 c
1

e
hc

lkBT - 1
d

At a specific temperature, the total power radiated per unit area of the 
blackbody is equal to the area under the corresponding Il versus l 
curve. Use this to derive the Stefan–Boltzmann Law. [Hint: To clean 
up the exponential, change variables in the integral so that 

x =
hc

lkBT

Problems

13.14* Suppose we have a 100-W yellow lightbulb (550 nm) 100 m 
away from a 3-cm-diameter shuttered aperture. Assuming the bulb to 
have a 2.5% conversion to radiant power, how many photons will pass 
through the aperture if the shutter is opened for 1

1000 s?
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13.25* Referring to Fig. 13.6, which shows two transitions for the 
He-Cd laser, determine the lifetime of the higher-energy d-state.

13.26* The helium-neon laser is famous for its red-light emission at 
632.8 nm. But electrons in that same high-energy level can jump down 
to nine other lower levels (each with appreciable probabilities), emitting 
radiant energy at wavelengths shown in Table 13.3. Determine the life-
time of that upper energy level. Which transition is most likely to take 
place? Which should be the brightest visible emission?

13.15 The solar constant is the radiant flux density at a spherical 
surface centered on the Sun having a radius equal to that of the Earth’s 
mean orbital radius; it has a value of 0.133–0.14 W>cm2. If we assume 
an average wavelength of about 700 nm, how many photons at most 
will arrive on each square meter per second of a solar cell panel just 
above the atmosphere?

13.16 A 50.0-cm3 chamber is filled with argon gas to a pressure of 
20.3 Pa at a temperature of 0°C. All but a negligible number of these 
atoms are initially in their ground states. A flash tube surrounding the 
sample energizes 1.0% of the atoms into the same excited state having 
a mean life of 1.4 * 10-8 s. What is the maximum rate at which pho-
tons are subsequently emitted by the gas (of course, it falls off with 
time)? Assume both that spontaneous emission is the only mechanism 
at work and that the medium is an ideal gas.

13.17* Show that for a system of atoms and photons in equilibrium at 
a temperature T the ratio of the transition rates of stimulated to sponta-
neous emission is given by

c
1

e
hn

kBT - 1
d

13.18* A system of atoms in thermal equilibrium is emitting and ab-
sorbing 2.0-eV light photons. Determine the ratio of the transition rates 
of stimulated emission to spontaneous emission at a temperature of 
300 K. Discuss the implications of your answer. [Hint: See the previ-
ous problem.]

13.19 Redo the previous problem for a temperature of 30.0 * 103 K
and compare the results of both calculations.

13.20* Given a two-level atomic system where level-2 is more energetic 
than the ground state level-1, what is the meaning of the expression

dN2

dt
= B12un N1 - B21un N2 - A21N2

When in thermal equilibrium show that 

A21N2 + B21un N2 = B12un N1

13.21* Determine the rate at which stimulated emission is happening 
in a 100-mW He-Cd laser emitting at 441.56 nm.

13.22* For a system of atoms (in equilibrium) having two energy lev-
els, show that at high temperatures where kBT 7 7  ℰj - ℰi, the num-
ber densities of the two states tend to become equal. [Hint: Form the 
ratio of the transition rates for total emission to absorption.]

13.23* Radiation at 21 cm pours down on the Earth from outer space. 
Its origin is great clouds of hydrogen gas. Taking the background tem-
perature of space to be 3.0 K, determine the ratio of the transition rates 
of stimulated emission to spontaneous emission and discuss the result.

13.24* With the Example 13.7 in mind, determine the average power 
per cubic meter radiated by the Nd:YAG laser rod, given that the transi-
tion occurs with an upper-level lifetime of 230 ms.

TaBLE 13.3  He-Ne Laser Emissions

l (nm) Aji (s
- 1)

 60.0  259 * 105

543.4  283 * 105

593.9 2.00 * 105

604.6 2.26 * 105

611.8 6.09 * 105

629.4 6.39 * 105

632.8 33.9 * 105

635.2 3.45 * 105

640.1 13.9 * 105

730.5 2.55 * 105

13.27* The beam (l = 632.8 nm) from a He-Ne laser, which is ini-
tially 3.0 mm in diameter, shines on a perpendicular wall 100 m away. 
Given that the system is aperture (diffraction) limited, how large is the 
circle of light on the wall?

13.28* Make a rough estimate of the amount of energy that can be 
delivered by a ruby laser whose crystal is 5.0 mm in diameter and 
0.050 m long. Assume the pulse of light lasts 5.0 * 10-6 s. The den-
sity of aluminum oxide (Al2O3) is 3.7 * 103 kg>m3. Use the data in 
the discussion of Fig. 13.7 and the fact that the chromium ions make a 
1.79 eV lasing transition. How much power is available per pulse?

13.29 What is the transition rate for the neon atoms in a He-Ne laser 
if the energy drop for the 632.8 nm emission is 1.96 eV and the power 
output is 1.0 mW?

13.30* A solid-state laser has an active region consisting of a rod 10 mm 
in diameter and 0.20 m long that is operating with an efficiency of 2.0%. 
The rod contains 4.0 * 1019 participating ions per cubic centimeter. 
The laser emits pulses at 701 nm. Determine the energy of a single 
such pulse.

13.31* Given that a ruby laser operating at 694.3 nm has a frequency 
bandwidth of 50 MHz, what is the corresponding linewidth?

13.32* Determine the frequency difference between adjacent axial 
resonant cavity modes for a typical gas laser 25 cm long (n ≈ 1).

13.33* The 488.0-nm line from an argon ion laser is Doppler broad-
ened to 2.7 * 109 Hz. Given that the laser’s mirrors are 1.0 m apart, 
determine the approximate number of longitudinal modes. Assume the 
index of refraction of the gas is 1.0.
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13.41 Repeat the previous problem using Fig. P.13.41 instead.13.34* A gas laser has a Fabry–Perot cavity of length 40 cm. The index 
of refraction of the gas is 1.0. Operating at 600 nm, determine the mode 
number, that is, the number of half-cycles fitting within the cavity.

13.35* A He-Ne c-w laser has a Doppler-broadened transition 
bandwidth of about 1.4 GHz at 632.8 nm. Assuming n = 1.0, deter-
mine the maximum cavity length for single-axial mode operation. 
Make a sketch of the transition linewidth and the corresponding 
cavity modes.

13.36* Determine the threshold gain coefficient for a semiconductor 
laser where a ≈ 10  cm-1, the resonator is 0.03 cm long, and the “mir-
ror” reflectances are both only 0.4.

13.37 Show that the maximum electric-field intensity, Emax, that ex-
ists for a given irradiance I is

Emax = 27.4 a I
n
b

1>2
 in units of V>m

where n is the refractive index of the medium.

13.38* A He-Ne laser operating at 632.8 nm has an internal beam-
waist diameter of 0.60 mm. Calculate the full-angular width, or diver-
gence, of the beam.

13.39 What would the pattern look like for a laserbeam diffracted by 
the three crossed gratings of Fig. P.13.39?

Figure P.13.39

13.40 Make a rough sketch of the Fraunhofer diffraction pattern that 
would arise if a transparency of Fig. P.13.40a served as the object. 
How would you filter it to get Fig. P.13.40b?

Figure P.13.40 (E.H.)

(a) (b)

Figure P.13.41 (R. A. Phillips)

(a) (b)

13.42* Repeat the previous problem using Fig. P.13.42 this time.

Figure P.13.42   
(R. A. Phillips)

(a)

(b)

13.43 Returning to Fig. 13.37, what kind of spatial filter would pro-
duce each of the patterns shown in Fig. P.13.43?

13.44 With Fig. 13.36 in mind, show that the transverse magnifica-
tion of the system is given by -ƒi>ƒt and draw the appropriate ray dia-
gram. Draw a ray up through the center of the first lens at an angle u 
with the axis. From the point where that ray intersects Σt, draw a ray 
downward that passes through the center of the second lens at an angle 
Φ. Prove that Φ>u = ƒt>ƒi. Using the notion of spatial frequency, from 
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13.47 Suppose we insert a mask in the transform plane of the previ-
ous problem, which obscures everything but the m = +1 diffraction 
contribution. What will the reformed image look like on g i? Explain 
your reasoning. Now suppose we remove only the m = +1 or the 
m = -1 term. What will the re-formed image look like?

13.48* Referring to the previous two problems with the cosine 
grating oriented horizontally, make a sketch of the electric-field am-
plitude along y′ with no filtering. Plot the corresponding image ir-
radiance distribution. What will the electric field of the image look 
like if the DC term is filtered out? Plot it. Now plot the new irradi-
ance distribution. What can you say about the spatial frequency of 
the image with and without the filter in place? Relate your answers 
to Fig. 11.14.

13.49 Replace the cosine grating in the previous problem with a 
“square” bar grating, that is, a series of many fine alternating opaque 
and transparent bands of equal width. We now filter out all terms in the 
transform plane but the zeroth and the two first-order diffraction spots. 
These we determine to have relative irradiances of 1.00, 0.36, and 
0.36: compare them with Figs. 7.40a and 7.42. Derive an expression 
for the general shape of the irradiance distribution on the image 
plane—make a sketch of it. What will the resulting fringe system look 
like?

13.50 A fine square wire mesh with 50 wires per cm is placed verti-
cally in the object plane of the optical computer of Fig. 13.50. If the 
lenses each have 1.00-m focal lengths, what must be the illuminating 
wavelength, if the diffraction spots on the transform plane are to have 
a horizontal and vertical separation of 2.0 mm? What will be the mesh 
spacing as it appears on the image plane?

13.51* Imagine that we have an opaque mask into which are punched 
an ordered array of circular holes, all of the same size, located as if at 
the corners of the boxes of a checkerboard. Now suppose our robot 
puncher goes mad and makes an additional batch of holes essentially 
randomly all across the mask. If this screen is now made the object in 
Problem 13.49, what will the diffraction pattern look like? Given that 
the ordered holes are separated from their nearest neighbors on the 
object by 0.1 mm, what will be the spatial frequency of the correspond-
ing dots in the image? Describe a filter that will remove the random 
holes from the final image.

13.52* Imagine that we have a large photographic transparency on 
which there is a picture of a student made up of a regular array of small 
circular dots, all of the same size, but each with its own density, so that 
it passes a spot of light with a particular field amplitude. Considering 
the transparency to be illuminated by a plane wave, discuss the idea of 
representing the electric-field amplitude just beyond it as the product 
(on average) of a regular two-dimensional array of top-hat functions 
(Fig. 11.4) and the continuous two-dimensional picture function: the 
former like a dull bed of nails, the latter an ordinary photograph.  
Applying the frequency convolution theorem, what does the distribu-
tion of light look like on the transform plane? How might it be filtered 
to produce a continuous output image?

Eq. (11.64), show that kO at the object plane is related to kI at the im-
age plane by

kI = kO(ƒt>ƒi)

What does this mean with respect to the size of the image when ƒi 7 ƒt? 
What can then be said about the spatial periods of the input data as 
compared with the image output?

Figure P.13.43   
(D. Dutton, M. P. 

Givens, and R. E. 

Hopkins.)

(a)

(b)

13.45 A diffraction grating having a mere 50 grooves per cm is the 
object in the optical computer shown in Fig. 13.41. If it is coherently 
illuminated by plane waves of green light (543.5 nm) from a He-Ne 
laser and each lens has a 100-cm focal length, what will be the spacing 
of the diffraction spots on the transform plane?

13.46* Imagine that you have a cosine grating (i.e., a transparency 
whose amplitude transmission profile is cosinusoidal varying between 
0 and 1) with a spatial period of 0.01 mm. The grating is illuminated 
by quasimonochromatic plane waves of l = 500 nm, and the setup is 
the same as that of Fig. 13.36, where the focal lengths of the transform 
and imaging lenses are 2.0 m and 1.0 m, respectively.

a)  Discuss the resulting pattern and design a filter that will pass only 
the first-order terms. Describe it in detail.

b) What will the image look like on g i with that filter in place?

c)  How might you pass only the Dc term, and what would the image 
look like then?
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13.54 What would happen to the speckle pattern if a laserbeam were 
projected onto a suspension such as milk rather than onto a smooth 
wall?

13.53* The arrangement shown in Fig. P.13.53 is used to convert a 
collimated laserbeam into a spherical wave. The pinhole cleans up the 
beam; that is, it eliminates diffraction effects due to dust and the like on 
the lens. How does it manage it?

(c)

Laserbeam

Microscope
objective

Pinhole

Figure P.13.53  (a) and (b) A high-power laserbeam before and after 
spatial filtering. (Lawrence Livermore National Laboratory.)

(a) (b)
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MAXWELL’S EQUATIONS IN DIFFERENTIAL FORM

The set of integral expressions that have come to be known as Max-
well’s Equations are 

 C
C
E$ ~ dO $ = - 6

A

0B $
0t

  ~ dS $ [3.5]

 C
C
 
B$
m

  ~ dO $ = 6
A
aJ $ + P

0E $
0t
b ~ dS $ [3.13]

 T
A
PE$ ~ dS $ = 9

V
 r dV  [3.7]

and

 T
A
B$ ~ dS $ = 0 [3.9]

where the units, as usual, are SI.
Maxwell’s Equations can be written in a differential form, which 

is more useful for deriving the wave aspects of the electromagnetic 
field. This transition can readily be accomplished by making use of two 
theorems from vector calculus, namely, Gauss’s Divergence Theorem,

 T
A
F$ ~ dS$ = 9

V
� ~F$ dV  (A1.1)

and Stokes’s Theorem

 C
C
F$ ~ dO $ = 6

A
� : F $ ~ dS $ (A1.2)

Here the quantity F$ is not one fixed vector but a function that depends 
on the position variables. It is a rule that associates a single vector, for 
example, in Cartesian coordinates, F$(x, y, z), with each point (x, y, z)  
in space. Vector-valued functions of this kind, such as E$  and B$ , are 
known as vector fields.

Applying Stokes’s Theorem to the electric-field intensity, we have

 C  E$ ~ dO $ = 6� : E $ ~ dS $ (A1.3)

If we compare this with Eq. (3.5), it follows that

 6� : E $ ~ dS $ = - 6 0B$
0t

~ dS $ (A1.4)

This result must be true for all surfaces bounded by the path C. This 
can be the case only if the integrands are themselves equal, that is, if

 � : E$ = -  
0B$
0t

 (A1.5)

A similar application of Stokes’s Theorem to B$ , using Eq. (3.13),  
results in

 � : B$ = m  aJ$ + P
0E$
0t
b (A1.6)

Gauss’s Divergence Theorem applied to the electric-field intensity 
yields

 TE$ ~ dS$ = 9� ~E$ dV  (A1.7)

If we make use of Eq. (3.7), this becomes

 9
V

� ~E$ dV =
1
P 9

V
 r dV  (A1.8)

and since this is to be true for any volume (i.e., for an arbitrary closed 
domain), the two integrands must be equal. Consequently, at any point 
(x, y, z, t) in space–time

 � ~E$ =
r

P
 (A1.9)

In the same fashion, Gauss’s Divergence Theorem applied to the  
B$-field and combined with Eq. (3.9) yields

 � ~B$ = 0 (A1.10)

Equations (A1.5), (A1.6), (A1.9), and (A1.10) are Maxwell’s Equa-
tions in differential form. Refer back to Eqs. (3.18) through (3.21) for 
the simple case of Cartesian coordinates and free space (r = J = 0, 
P = P0, m = m0).
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physically at rest. By making use of the constitutive relations, we can 
rewrite Maxwell’s Equations as

 � ~E$ =
r

P
 [A1.9]

 � ~B$ = 0 [A1.10]

 � : E$ = -  
0B$
0t

 [A1.5]

and � : B$ = msE$ + mP
0E$
0t

 (A1.16)

If these expressions are somehow to yield a wave equation (2.61), we 
had best form some second derivatives with respect to the space vari-
ables. Taking the curl of Eq. (A1.16), we obtain

 � : (� : B$) = ms(� : E$) + mP 
0
0t

 (� : E$) (A1.17)

where, since E$  is assumed to be a well-behaved function, the space 
and time derivatives can be interchanged. Equation (A1.5) can be sub-
stituted to obtain the needed second derivative with respect to time:

 � : (� : B$) = -ms 
0B$
0t

- mP 
02B$
0t2  (A1.18)

The vector triple product can be simplified by making use of the opera-
tor identity

 � : (� : ) = �(� ~ ) - ∇2 (A1.19)

so that

� : (� : B$) = �(� ~B$) - ∇2B$

where in Cartesian coordinates

(� ~ �)B$ = ∇2B$ K
02B$
0x2 +

02B$
0y2 +

02B$
0z2

Since the divergence of B$  is zero, Eq. (A1.18) becomes

 ∇2B$ = mP 
02B$
0t2 - ms 

0B$
0t

= 0 (A1.20)

A similar equation is satisfied by the electric field intensity. 
Following essentially the same procedure as above, take the curl of 
Eq. (A1.5):

� : (� : E$) = -  
0
0t

 (� : B$)

Eliminating B$  this becomes

� : (� : E$) = -ms 
0E$
0t

- mP
02E$
0t2

and then by making use of Eq. (A1.19), we arrive at

∇2E$ - mP 
02E$
0t2 - ms

0E$
0t

= �(r>P)

ELECTROMAGNETIC WAVES

To derive the electromagnetic wave equation in its most general form, 
we must again consider the presence of some medium. We saw in  
Section 3.5.1 that there is a need to introduce the polarization vector P$, 
which is a measure of the overall behavior of the medium, in that it is 
the resultant electric dipole moment per unit volume. Since the field 
within the material has been altered, we are led to define a new field 
quantity, the displacement D$ :

 D$ = P0 E$ + P$ (A1.11)

Clearly, then, E$ =
D$
P0

-
P$
P0

 

The internal electric field E$  is the difference between the field D$ >P0,  
which would exist in the absence of polarization, and the field  
P$>P0 arising from polarization.

For a homogeneous, linear, isotropic dielectric, P$ and E$  are in 
the same direction and are mutually proportional. It follows that D$  is 
therefore also proportional to E$ :

 D$ = PE$  (A1.12)

Like E$ , D$  extends throughout space and is in no way limited to the 
region occupied by the dielectric, as is P$ . The lines of D$  begin and 
end on free, movable charges. Those of E$  begin and end on either free 
charges or bound polarization charges. If no free charge is present, 
as might be the case in the vicinity of a polarized dielectric or in free 
space, the lines of D$  close on themselves.

Since in general the response of optical media to B$-fields is only 
slightly different from that of a vacuum, we need not describe the pro-
cess in detail. Suffice it to say that the material will become polarized. 
We can define a magnetic polarization or magnetization vector M$  as 
the magnetic dipole moment per unit volume. In order to deal with 
the influence of the magnetically polarized medium, we introduce an 
auxiliary vector H$ , traditionally known as the magnetic field intensity

 H$ = m0
-1B$ - M$  (A1.13)

For a homogeneous, linear (nonferromagnetic), isotropic medium, B$  
and H$  are parallel and proportional:

 H$ = m-1B$  (A1.14)

Along with Eqs. (A1.12) and (A1.14), there is one more constitutive 
equation,

 J$ = sE$  (A1.15)

Known as Ohm’s Law, it is a statement of an experimentally deter-
mined rule that holds for conductors at constant temperatures. The 
electric-field intensity, and therefore the force acting on each elec-
tron in a conductor, determines the flow of charge. The constant of 
proportionality relating E$  and J$ is the conductivity of the particular 
medium, s.

Consider the rather general environment of a linear (nonferroelec-
tric and nonferromagnetic), homogeneous, isotropic medium, which is 
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and similarly

 ∇2H$ - mP 
02H$
0t2 = 0 (A1.24)

and ∇2D$ - mP 
02D$
0t2 = 0 (A1.25)

In the special nonconducting medium of a vacuum (free space) where

r = 0  s = 0  Ke = 1  Km = 1

these equations become simply

 ∇2E$ = m0P0 
02E$
0t2  (A1.26)

and ∇2B$ = m0P0 
02B$
0t2  (A1.27)

Both of these expressions describe coupled space- and time-dependent 
fields, and both have the form of the differential wave equation (see 
Section 3.2 for further discussion).

having utilized the fact that

�(� ~E$) = �(r>P)

For an uncharged medium (r = 0) and

 ∇2E$ - mP 
02B$
0t2 - ms 

0E$
0t

= 0 (A1.21)

Equations (A1.20) and (A1.21) are known as the equations of  
telegraphy.*

In nonconducting media s = 0, and these equations become

 ∇2B$ - mP 
02B$
0t2 = 0 (A1.22)

 ∇2E$ - mP 
02E$
0t2 = 0 (A1.23)

*For a pair of parallel wires that might serve as a telegraph line, the finite 
wire resistance results in a power loss and joule heating. An electromagnetic 
wave advancing along the line has less and less energy available to it. The 
first-order time derivatives in Eqs. (A1.20) and (A1.21) arise from the conduc-
tion current and lead to the dissipation or damping.
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To solve the Helmholtz Equation [Eq. (10.113)], suppose that we have 
two scalar functions U1 and U2 for which Green’s theorem is

9
V
 (U1∇2U2 - U2∇2U1)dV

= T
S
 (U1�U2 - U2�U1) ~ d S$ (A2.1)

It is clear that if U1 and U2 are solutions of the Helmholtz Equation, 
that is, if

∇2U1 + k2U1 = 0

and ∇2U2 + k2U2 = 0 

then T
S
 (U1�U2 - U2�U1) ~ d S$ = 0 (A2.2)

Let U1 = ℰ ˜ , the space portion of an unspecified scalar optical distur-
bance [Eq. (10.112)]. And let

U2 =
eikr

r

where r is measured from a point-P. Both of these choices clearly sat-
isfy the Helmholtz Equation. There is a singularity at point-P, where 
r = 0, so that we surround it by a small sphere in order to exclude P 
from the region enclosed by S (see Fig. A2.1). Equation (A2.2) now 
becomes

 T
S
cℰ ˜ �aeikr

r
b -

eikr

r
�ℰ ˜ d ~ d S$ 

 + T
S′
cℰ ˜ �aeikr

r
b -

eikr

r
�ℰ ˜ d ~ d S$ = 0 (A2.3)

Now expand out the portion of the integral corresponding to S′. On 
the small sphere, the unit normal n̂ points toward the origin at P, and

�aeikr

r
b = a 1

r2 -
ik
r
b eikr n̂

since the gradient is directed radially outward. In terms of the solid 
angle (dS = r2dΩ) measured at P, the integral over S′ becomes

 T
S′

 aℰ̃ - ikℰ̃r + r 
0ℰ̃
0r

b eikr dΩ (A2.4)

where �ℰ ˜ ~ d  S$ = - (0ℰ ˜ >0r)r2dΩ. As the sphere surrounding P shrinks, 
r S 0 on S′ and exp (ikr) S 1. Because of the continuity of ℰ ˜  its value 
at any point on S′ approaches its value at P, that is, ℰ ˜p. The last two 
terms in Eq. (A2.4) go to zero, and the integral becomes 4pℰ ˜p. Finally, 
then, Eq. (A2.3) becomes

 ℰ ˜p =
1

4p
 cT

S
 
eikr

r
 �ℰ ˜ ~ d  S$ - T

S
ℰ ˜ �aeikr

r
b ~ d  S$d  [10.114]

which is known as the Kirchhoff Integral Theorem.

Appendix 2

The Kirchhoff Diffraction Theory

680
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Figure A2.1
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THE SINC FUNCTION

(sin u)>u
u 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 1.000000 0.999983 0.999933 0.999850 0.999733 0.999583 0.999400 0.999184 0.998934 0.998651
0.1 0.998334 0.997985 0.997602 0.997186 0.996737 0.996254 0.995739 0.995190 0.994609 0.993994
0.2 0.993347 0.992666 0.991953 0.991207 0.990428 0.989616 0.988771 0.987894 0.986984 0.986042
0.3 0.985067 0.984060 0.983020 0.981949 0.980844 0.979708 0.978540 0.977339 0.976106 0.974842
0.4 0.973546 0.972218 0.970858 0.969467 0.968044 0.966590 0.965105 0.963588 0.962040 0.960461
0.5 0.958851 0.957210 0.955539 0.953836 0.952104 0.950340 0.948547 0.946723 0.944869 0.942985
0.6 0.941071 0.939127 0.937153 0.935150 0.933118 0.931056 0.928965 0.926845 0.924696 0.922518
0.7 0.920311 0.918076 0.915812 0.913520 0.911200 0.908852 0.906476 0.904072 0.901640 0.899181
0.8 0.896695 0.894182 0.891641 0.889074 0.886480 0.883859 0.881212 0.878539 0.875840 0.873114
0.9 0.870363 0.867587 0.864784 0.861957 0.859104 0.856227 0.853325 0.850398 0.847446 0.844471

1.0 0.841471 0.838447 0.835400 0.832329 0.829235 0.826117 0.822977 0.819814 0.816628 0.813419
1.1 0.810189 0.806936 0.803661 0.800365 0.797047 0.793708 0.790348 0.786966 0.783564 0.780142
1.2 0.776699 0.773236 0.769754 0.766251 0.762729 0.759188 0.755627 0.752048 0.748450 0.744833
1.3 0.741199 0.737546 0.733875 0.730187 0.726481 0.722758 0.719018 0.715261 0.711488 0.707698
1.4 0.703893 0.700071 0.696234 0.692381 0.688513 0.684630 0.680732 0.676819 0.672892 0.668952
1.5 0.664997 0.661028 0.657046 0.653051 0.649043 0.645022 0.640988 0.636942 0.632885 0.628815
1.6 0.624734 0.620641 0.616537 0.612422 0.608297 0.604161 0.600014 0.595858 0.591692 0.587517
1.7 0.583332 0.579138 0.574936 0.570725 0.566505 0.562278 0.558042 0.553799 0.549549 0.545291
1.8 0.541026 0.536755 0.532478 0.528194 0.523904 0.519608 0.515307 0.511001 0.506689 0.502373
1.9 0.498053 0.493728 0.489399 0.485066 0.480729 0.476390 0.472047 0.467701 0.463353 0.459002

2.0 0.454649 0.450294 0.445937 0.441579 0.437220 0.432860 0.428499 0.424137 0.419775 0.415414
2.1 0.411052 0.406691 0.402330 0.397971 0.393612 0.389255 0.384900 0.380546 0.376194 0.371845
2.2 0.367498 0.363154 0.358813 0.354475 0.350141 0.345810 0.341483 0.337161 0.332842 0.328529
2.3 0.324220 0.319916 0.315617 0.311324 0.307036 0.302755 0.298479 0.294210 0.289947 0.285692
2.4 0.281443 0.277202 0.272967 0.268741 0.264523 0.260312 0.256110 0.251916 0.247732 0.243556
2.5 0.239389 0.235231 0.231084 0.226946 0.222817 0.218700 0.214592 0.210495 0.206409 0.202334
2.6 0.198270 0.194217 0.190176 0.186147 0.182130 0.178125 0.174132 0.170152 0.166185 0.162230
2.7 0.158289 0.154361 0.150446 0.146546 0.142659 0.138786 0.134927 0.131083 0.127253 0.123439
2.8 0.119639 0.115854 0.112084 0.108330 0.104592 0.100869 0.097163 0.093473 0.089798 0.086141
2.9 0.082500 0.078876 0.075268 0.071678 0.068105 0.064550 0.061012 0.057492 0.053990 0.050506

3.0 0.047040 0.043592 0.040163 0.036753 0.033361 0.029988 0.026635 0.023300 0.019985 0.016689
3.1 0.013413 0.010157 0.006920 0.003704 0.000507 -0.002669 -0.005825 -0.008960 -0.012075 -0.015169
3.2 -0.018242 -0.021294 -0.024325 -0.027335 -0.030324 -0.033291 -0.036236 -0.039160 -0.042063 -0.044943
3.3 -0.047802 -0.050638 -0.053453 -0.056245 -0.059014 -0.061762 -0.064487 -0.067189 -0.069868 -0.072525
3.4 -0.075159 -0.077770 -0.080358 -0.082923 -0.085465 -0.087983 -0.090478 -0.092950 -0.095398 -0.097823
3.5 -0.100224 -0.102601 -0.104955 -0.107285 -0.109591 -0.111873 -0.114131 -0.116365 -0.118575 -0.120761
3.6 -0.122922 -0.125060 -0.127173 -0.129262 -0.131326 -0.133366 -0.135382 -0.137373 -0.139339 -0.141282
3.7 -0.143199 -0.145092 -0.146960 -0.148803 -0.150622 -0.152416 -0.154186 -0.155930 -0.157650 -0.159345
3.8 -0.161015 -0.162661 -0.164281 -0.165877 -0.167448 -0.168994 -0.170515 -0.172011 -0.173482 -0.174929
3.9 -0.176350 -0.177747 -0.179119 -0.180466 -0.181788 -0.183086 -0.184358 -0.185606 -0.186829 -0.188027

4.0 -0.189201 -0.190349 -0.191473 -0.192573 -0.193647 -0.194698 -0.195723 -0.196724 -0.197700 -0.198652
4.1 -0.199580 -0.200483 -0.201361 -0.202216 -0.203046 -0.203851 -0.204633 -0.205390 -0.206124 -0.206833
4.2 -0.207518 -0.208179 -0.208817 -0.209430 -0.210020 -0.210586 -0.21l128 -0.211647 -0.212142 -0.212614
4.3 -0.213062 -0.213487 -0.213888 -0.214267 -0.214622 -0.214955 -0.215264 -0.215550 -0.215814 -0.216055
4.4 -0.216273 -0.216469 -0.216642 -0.216793 -0.216921 -0.217028 -0.217112 -0.217174 -0.217214 -0.217232
4.5 -0.217229 -0.217204 -0.217157 -0.217089 -0.217000 -0.216889 -0.216757 -0.216604 -0.216430 -0.216235
4.6 -0.216020 -0.215784 -0.215527 -0.215250 -0.214953 -0.214635 -0.214298 -0.213940 -0.213563 -0.213166
4.7 -0.212750 -0.212314 -0.211858 -0.211384 -0.210890 -0.210377 -0.209846 -0.209296 -0.208727 -0.208140
4.8 -0.207534 -0.206911 -0.206269 -0.205609 -0.204932 -0.204236 -0.023524 -0.202794 -0.202046 -0.201282
4.9 -0.200501 -0.199702 -0.198887 -0.198056 -0.197208 -0.196344 -0.195464 -0.194568 -0.193656 -0.192728

Table 1
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TABLE 1 (CONTINUED)

(sin u)>u
u 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

5.0 -0.191785 -0.190826 -0.189853 -0.188864 -0.187860 -0.186841 -0.185808 -0.184760 -0.183699 -0.182622
5.1 -0.181532 -0.180428 -0.179311 -0.178179 -0.177035 -0.175877 -0.174706 -0.173522 -0.172326 -0.171117
5.2 -0.169895 -0.168661 -0.167415 -0.166158 -0.164888 -0.163607 -0.162314 -0.161010 -0.159695 -0.158369
5.3 -0.157032 -0.155684 -0.154326 -0.152958 -0.151579 -0.150191 -0.148792 -0.147384 -0.145967 -0.144540
5.4 -0.143105 -0.141660 -0.140206 -0.138744 -0.137273 -0.135794 -0.134307 -0.132812 -0.131309 -0.129798
5.5 -0.128280 -0.126755 -0.125222 -0.123683 -0.122137 -0.120584 -0.119024 -0.117459 -0.115887 -0.114310
5.6 -0.112726 -0.111137 -0.109543 -0.107943 -0.106338 -0.104728 -0.103114 -0.101495 -0.099871 -0.098243
5.7 -0.096611 -0.094976 -0.093336 -0.091693 -0.090046 -0.088396 -0.086743 -0.085087 -0.083429 -0.081768
5.8 -0.080104 -0.078438 -0.076770 -0.075100 -0.073428 -0.071755 -0.070080 -0.068404 -0.066726 -0.065048
5.9 -0.063369 -0.061689 -0.060009 -0.058329 -0.056648 -0.054967 -0.053287 -0.051606 -0.049927 -0.048248

6.0 -0.046569 -0.044892 -0.043216 -0.041540 -0.039867 -0.038195 -0.036524 -0.034856 -0.033189 -0.031525
6.1 -0.029863 -0.028203 -0.026546 -0.024892 -0.023240 -0.021592 -0.019947 -0.018305 -0.016667 -0.015032
6.2 -0.013402 -0.011775 -0.010152 -0.008533 -0.006919 -0.005309 -0.003703 -0.002103 -0.000507 0.001083
6.3 0.002669 0.004249 0.005824 0.007393 0.008956 0.010514 0.012066 0.013612 0.015151 0.016684
6.4 0.018211 0.019731 0.021244 0.022751 0.024250 0.025743 0.027228 0.028706 0.030177 0.031640
6.5 0.033095 0.034543 0.035983 0.037414 0.038838 0.040253 0.041661 0.043059 0.044449 0.045831
6.6 0.047203 0.048567 0.049922 0.051268 0.052604 0.053931 0.055249 0.056558 0.057857 0.059146
6.7 0.060425 0.061695 0.062955 0.064204 0.065444 0.066673 0.067892 0.069101 0.070299 0.071487
6.8 0.072664 0.073830 0.074986 0.076130 0.077264 0.078386 0.079498 0.080598 0.081688 0.082765
6.9 0.083832 0.084887 0.085930 0.086962 0.087982 0.088991 0.089987 0.090972 0.091945 0.092906

7.0 0.093855 0.094792 0.095717 0.096629 0.097530 0.098418 0.099293 0.100157 0.101008 0.101846
7.1 0.102672 0.103485 0.104286 0.105074 0.105849 0.106611 0.107361 0.108098 0.108822 0.109533
7.2 0.110232 0.110917 0.111589 0.112249 0.112895 0.113528 0.114149 0.114756 0.115350 0.115931
7.3 0.116498 0.117053 0.117594 0.118122 0.118637 0.119138 0.119627 0.120102 0.120563 0.121012
7.4 0.121447 0.121869 0.122277 0.122673 0.123055 0.123423 0.123779 0.124121 0.124449 0.124765
7.5 0.125067 0.125355 0.125631 0.125893 0.126142 0.126378 0.126600 0.126809 0.127005 0.127188
7.6 0.127358 0.127514 0.127658 0.127788 0.127905 0.128009 0.128100 0.128178 0.128243 0.128295
7.7 0.128334 0.128360 0.128373 0.128373 0.128361 0.128335 0.128297 0.128247 0.128183 0.128107
7.8 0.128018 0.127917 0.127803 0.127677 0.127539 0.127388 0.127224 0.127049 0.126861 0.126661
7.9 0.126448 0.126224 0.125988 0.125739 0.125479 0.125207 0.124923 0.124627 0.124320 0.124000

8.0 0.123670 0.123328 0.122974 0.122609 0.122232 0.121845 0.121446 0.121036 0.120615 0.120183
8.1 0.119739 0.119286 0.118821 0.118345 0.117859 0.117363 0.116855 0.116338 0.115810 0.115272
8.2 0.114723 0.114165 0.113596 0.113018 0.112429 0.111831 0.111223 0.110605 0.109978 0.109341
8.3 0.108695 0.108040 0.107376 0.106702 0.106019 0.105327 0.104627 0.103918 0.103200 0.102473
8.4 0.101738 0.100994 0.100243 0.099483 0.098714 0.097938 0.097154 0.096362 0.095562 0.094755
8.5 0.093940 0.093117 0.092287 0.091450 0.090606 0.089755 0.088896 0.088031 0.087159 0.086280
8.6 0.085395 0.084503 0.083605 0.082701 0.081790 0.080874 0.079951 0.079023 0.078089 0.077149
8.7 0.076203 0.075253 0.074296 0.073335 0.072369 0.071397 0.070421 0.069439 0.068453 0.067463
8.8 0.066468 0.065468 0.064465 0.063457 0.062445 0.061429 0.060410 0.059386 0.058359 0.057328
8.9 0.056294 0.055257 0.054217 0.053173 0.052127 0.051077 0.050025 0.048970 0.047913 0.046853

9.0 0.045791 0.044727 0.043660 0.042592 0.041521 0.040449 0.039375 0.038300 0.037223 0.036145
9.1 0.035066 0.033985 0.032904 0.031821 0.030738 0.029654 0.028569 0.027484 0.026399 0.025313
9.2 0.024227 0.023141 0.022055 0.020970 0.019884 0.018799 0.017714 0.016630 0.015547 0.014464
9.3 0.013382 0.012301 0.011222 0.010143 0.009066 0.007990 0.006916 0.005843 0.004772 0.003703
9.4 0.002636 0.001570 0.000507 -0.000554 -0.001612 -0.002669 -0.003722 -0.004774 -0.005822 -0.006868
9.5 -0.007911 -0.008950 -0.009987 -0.011021 -0.012051 -0.013078 -0.014101 -0.015121 -0.016138 -0.017150
9.6 -0.018159 -0.019164 -0.020165 -0.021161 -0.022154 -0.023142 -0.024126 -0.025106 -0.026081 -0.027051
9.7 -0.028017 -0.028977 -0.029933 -0.030884 -0.031830 -0.032771 -0.033707 -0.034637 -0.035562 -0.036482
9.8 -0.037396 -0.038304 -0.039207 -0.040104 -0.040995 -0.041881 -0.042760 -0.043633 -0.044500 -0.045361
9.9 -0.046216 -0.047064 -0.047906 -0.048741 -0.049570 -0.050392 -0.051208 -0.052017 -0.052819 -0.053614
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 Appendix 2 The Kirchhoff Diffraction Theory 683

TABLE 1 (CONTINUED)

(sin u)>u
u 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

10.0 -0.054402 -0.055183 -0.055957 -0.056724 -0.057484 -0.058237 -0.058982 -0.059720 -0.060450 -0.061173
10.1 -0.061888 -0.062596 -0.063296 -0.063988 -0.064673 -0.065350 -0.066019 -0.066680 -0.067333 -0.067978
10.2 -0.068615 -0.069244 -0.069865 -0.070477 -0.071082 -0.071678 -0.072266 -0.072845 -0.073416 -0.073979
10.3 -0.074533 -0.075078 -0.075615 -0.076143 -0.076663 -0.077174 -0.077677 -0.078170 -0.078655 -0.079131
10.4 -0.079599 -0.080057 -0.080507 -0.080947 -0.081379 -0.081802 -0.082216 -0.082620 -0.083016 -0.083403
10.5 -0.083781 -0.084149 -0.084509 -0.084859 -0.085200 -0.085532 -0.085855 -0.086169 -0.086473 -0.086768
10.6 -0.087054 -0.087331 -0.087599 -0.087857 -0.088106 -0.088346 -0.088576 -0.088797 -0.089009 -0.089212
10.7 -0.089405 -0.089589 -0.089764 -0.089929 -0.090085 -0.090232 -0.090370 -0.090498 -0.090617 -0.090727
10.8 -0.090827 -0.090919 -0.091001 -0.091073 -0.091137 -0.091191 -0.091236 -0.091272 -0.091299 -0.091316
10.9 -0.091324 -0.091324 -0.091314 -0.091295 -0.091267 -0.091229 -0.091183 -0.091128 -0.091064 -0.090990

11.0 -0.090908 -0.090817 -0.090717 -0.090608 -0.090490 -0.090364 -0.090228 -0.090084 -0.089931 -0.089770
11.1 -0.089599 -0.089420 -0.089233 -0.089037 -0.088832 -0.088619 -0.088397 -0.088167 -0.087929 -0.087682
11.2 -0.087427 -0.087163 -0.086891 -0.086612 -0.086324 -0.086027 -0.085723 -0.085411 -0.085091 -0.084763
11.3 -0.084426 -0.084083 -0.083731 -0.083371 -0.083004 -0.082630 -0.082247 -0.081857 -0.081460 -0.081055
11.4 -0.080643 -0.080223 -0.079796 -0.079362 -0.078921 -0.078473 -0.078017 -0.077555 -0.077086 -0.076609
11.5 -0.076126 -0.075636 -0.075140 -0.074637 -0.074127 -0.073611 -0.073088 -0.072559 -0.072023 -0.071481
11.6 -0.070934 -0.070379 -0.069819 -0.069253 -0.068681 -0.068103 -0.067519 -0.066929 -0.066334 -0.065733
11.7 -0.065127 -0.064515 -0.063898 -0.063275 -0.062647 -0.062014 -0.061376 -0.060733 -0.060084 -0.059431
11.8 -0.058773 -0.058111 -0.057443 -0.056771 -0.056095 -0.055414 -0.054728 -0.054039 -0.053345 -0.052646
11.9 -0.051944 -0.051238 -0.050528 -0.049814 -0.049096 -0.048375 -0.047650 -0.046921 -0.046189 -0.045453

12.0 -0.044714 -0.043972 -0.043227 -0.042479 -0.041727 -0.040973 -0.040216 -0.039456 -0.038694 -0.037929
12.1 -0.037161 -0.036391 -0.035618 -0.034844 -0.034067 -0.033288 -0.032506 -0.031723 -0.030938 -0.030152
12.2 -0.029363 -0.028573 -0.027781 -0.026988 -0.026193 -0.025398 -0.024600 -0.023802 -0.023003 -0.022202
12.3 -0.021401 -0.020599 -0.019796 -0.018992 -0.018188 -0.017384 -0.016578 -0.015773 -0.014967 -0.014161
12.4 -0.013355 -0.012549 -0.011743 -0.010937 -0.010131 -0.009326 -0.008521 -0.007716 -0.006912 -0.006109
12.5 -0.005306 -0.004504 -0.003702 -0.002902 -0.002103 -0.001304 -0.000507 0.000289 0.001083 0.001877
12.6 0.002668 0.003459 0.004248 0.005035 0.005820 0.006603 0.007385 0.008164 0.008942 0.009717
12.7 0.010491 0.011262 0.012030 0.012797 0.013560 0.014321 0.015080 0.015836 0.016589 0.017339
12.8 0.018087 0.018831 0.019572 0.020311 0.021046 0.021778 0.022506 0.023231 0.023953 0.024671
12.9 0.025386 0.026097 0.026804 0.027507 0.028207 0.028903 0.029594 0.030282 0.030966 0.031645

13.0 0.032321 0.032992 0.033658 0.034321 0.034978 0.035632 0.036281 0.036925 0.037564 0.038199
13.1 0.038829 0.039454 0.040075 0.040690 0.041300 0.041905 0.042506 0.043101 0.043690 0.044275
13.2 0.044854 0.045428 0.045996 0.046559 0.047117 0.047669 0.048215 0.048756 0.049291 0.049820
13.3 0.050344 0.050861 0.051373 0.051879 0.052379 0.052873 0.053361 0.053843 0.054319 0.054788
13.4 0.055252 0.055709 0.056160 0.056605 0.057043 0.057476 0.057901 0.058321 0.058733 0.059140
13.5 0.059540 0.059933 0.060320 0.060700 0.061073 0.061440 0.061800 0.062154 0.062500 0.062840
13.6 0.063174 0.063500 0.063820 0.064132 0.064438 0.064737 0.065029 0.065314 0.065593 0.065864
13.7 0.066128 0.066385 0.066636 0.066879 0.067115 0.067344 0.067566 0.067781 0.067989 0.068190
13.8 0.068384 0.068570 0.068750 0.068922 0.069087 0.069245 0.069396 0.069540 0.069677 0.069806
13.9 0.069929 0.070044 0.070152 0.070253 0.070346 0.070433 0.070512 0.070584 0.070649 0.070707

14.0 0.070758 0.070801 0.070838 0.070867 0.070889 0.070904 0.070912 0.070913 0.070907 0.070893
14.1 0.070873 0.070846 0.070811 0.070770 0.070721 0.070666 0.070603 0.070534 0.070457 0.070374
14.2 0.070284 0.070186 0.070082 0.069971 0.069854 0.069729 0.069598 0.069460 0.069315 0.069163
14.3 0.069005 0.068840 0.068668 0.068490 0.068305 0.068114 0.067916 0.067712 0.067501 0.067283
14.4 0.067060 0.066829 0.066593 0.066350 0.066101 0.065845 0.065584 0.065316 0.065042 0.064762
14.5 0.064476 0.064183 0.063885 0.063581 0.063271 0.062954 0.062633 0.062305 0.061971 0.061632
14.6 0.061287 0.060936 0.060580 0.060218 0.059851 0.059478 0.059100 0.058717 0.058328 0.057933
14.7 0.057534 0.057129 0.056719 0.056304 0.055884 0.055459 0.055029 0.054594 0.054154 0.053710
14.8 0.053260 0.052806 0.052347 0.051884 0.051416 0.050944 0.050467 0.049985 0.049500 0.049010
14.9 0.048516 0.048017 0.047515 0.047008 0.046497 0.045983 0.045464 0.044942 0.044416 0.043886
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684  Appendix 2 The Kirchhoff Diffraction Theory

TABLE 1 (CONTINUED)

(sin u)>u
u 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

15.0 0.043353 0.042815 0.042275 0.041730 0.041183 0.040632 0.040077 0.039520 0.038959 0.038395
15.1 0.037828 0.037257 0.036684 0.036108 0.035529 0.034948 0.034363 0.033776 0.033187 0.032595
15.2 0.032000 0.031403 6.030803 0.030202 0.029598 0.028992 0.028383 0.027773 0.027161 0.026547
15.3 0.025931 0.025313 0.024693 0.024072 0.023450 0.022825 0.022199 0.021572 0.020944 0.020314
15.4 0.019683 0.019051 0.018418 0.017783 0.017148 0.016512 0.015875 0.015237 0.014599 0.013960
15.5 0.013320 0.012680 0.012040 0.011399 0.010758 0.010116 0.009475 0.008833 0.008191 0.007549
15.6 0.006907 0.006266 0.005624 0.004983 0.004342 0.003702 0.003062 0.002422 0.001783 0.001145
15.7 0.000507 -0.000130 -0.000766 -0.001401 -0.002035 -0.002668 -0.003300 -0.003931 -0.004561 -0.005190
15.8 -0.005817 -0.006443 -0.007067 -0.007690 -0.008311 -0.008931 -0.009549 -0.010166 -0.010780 -0.011393
15.9 -0.012004 -0.012613 -0.013219 -0.013824 -0.014427 -0.015027 -0.015625 -0.016221 -0.016814 -0.017405

16.0 -0.017994 -0.018580 -0.019163 -0.019744 -0.020322 -0.020898 -0.021470 -0.022040 -0.022607 -0.023170
16.1 -0.023731 -0.024289 -0.024843 -0.025395 -0.025943 -0.026488 -0.027030 -0.027568 -0.028103 -0.028634
16.2 -0.029162 -0.029686 -0.030207 -0.030724 -0.031237 -0.031747 -0.032252 -0.032754 -0.033252 -0.033746
16.3 -0.034236 -0.034722 -0.035204 -0.035682 -0.036156 -0.036626 -0.037091 -0.037552 -0.038009 -0.038461
16.4 -0.038909 -0.039352 -0.039792 -0.040226 -0.040656 -0.041081 -0.041502 -0.041918 -0.042330 -0.042737
16.5 -0.043139 -0.043536 -0.043928 -0.044315 -0.044698 -0.045076 -0.045448 -0.045816 -0.046179 -0.046536
16.6 -0.046889 -0.047236 -0.047578 -0.047915 -0.048247 -0.048574 -0.048895 -0.049212 -0.049522 -0.049828
16.7 -0.050128 -0.050423 -0.050713 -0.050997 -0.051275 -0.051548 -0.051816 -0.052078 -0.052335 -0.052586
16.8 -0.052831 -0.053071 -0.053306 -0.053535 -0.053758 -0.053975 -0.054187 -0.054393 -0.054594 -0.054789
16.9 -0.054978 -0.055161 -0.055339 -0.055511 -0.055677 -0.055837 -0.055992 -0.056141 -0.056284 -0.056421

17.0 -0.056553 -0.056678 -0.056798 -0.056912 -0.057021 -0.057123 -0.057220 -0.057310 -0.057395 -0.057474
17.1 -0.057548 -0.057615 -0.057677 -0.057732 -0.057782 -0.057826 -0.057865 -0.057897 -0.057924 -0.057944
17.2 -0.057959 -0.057968 -0.057972 -0.057969 -0.057961 -0.057947 -0.057927 -0.057902 -0.057870 -0.057833
17.3 -0.057790 -0.057742 -0.057688 -0.057628 -0.057562 -0.057491 -0.057414 -0.057331 -0.057243 -0.057149
17.4 -0.057049 -0.056944 -0.056834 -0.056717 -0.056596 -0.056468 -0.056336 -0.056197 -0.056054 -0.055905
17.5 -0.055750 -0.055590 -0.055425 -0.055254 -0.055078 -0.054897 -0.054710 -0.054518 -0.054321 -0.054119
17.6 -0.053912 -0.053699 -0.053481 -0.053258 -0.053031 -0.052798 -0.052560 -0.052317 -0.052069 -0.051816
17.7 -0.051558 -0.051296 -0.051028 -0.050756 -0.050479 -0.050198 -0.049911 -0.049620 -0.049324 -0.049024
17.8 -0.048719 -0.048410 -0.048096 -0.047778 -0.047455 -0.047128 -0.046796 -0.046461 -0.046121 -0.045776
17.9 -0.045428 -0.045075 -0.044718 -0.044358 -0.043993 -0.043624 -0.043251 -0.042875 -0.042494 -0.042110

18.0 -0.041722 -0.041330 -0.040934 -0.040535 -0.040132 -0.039726 -0.039316 -0.038902 -0.038485 -0.038065
18.1 -0.037642 -0.037215 -0.036785 -0.036351 -0.035915 -0.035475 -0.035033 -0.034587 -0.034139 -0.033687
18.2 -0.033233 -0.032775 -0.032315 -0.031853 -0.031387 -0.030919 -0.030449 -0.029976 -0.029500 -0.029022
18.3 -0.028541 -0.028059 -0.027574 -0.027086 -0.026597 -0.026105 -0.025612 -0.025116 -0.024619 -0.024119
18.4 -0.023618 -0.023114 -0.022610 -0.022103 -0.021594 -0.021085 -0.020573 -0.020060 -0.019546 -0.019030
18.5 -0.018512 -0.017994 -0.017474 -0.016953 -0.016431 -0.015908 -0.015384 -0.014859 -0.014333 -0.013806
18.6 -0.013278 -0.012750 -0.012220 -0.011691 -0.011160 -0.010629 -0.010098 -0.009566 -0.009033 -0.008501
18.7 -0.007968 -0.007435 -0.006901 -0.006368 -0.005834 -0.005301 -0.004767 -0.004234 -0.003701 -0.003168
18.8 -0.002635 -0.002102 -0.001570 -0.001038 -0.000507 0.000024 0.000554 0.001083 0.001612 0.002140
18.9 0.002668 0.003194 0.003720 0.004245 0.004769 0.005292 0.005813 0.006334 0.006853 0.007371

19.0 0.007888 0.008404 0.008918 0.009431 0.009942 0.010452 0.010960 0.011466 0.011971 0.012474
19.1 0.012976 0.013475 0.013973 0.014468 0.014962 0.015454 0.015944 0.016431 0.016917 0.017400
19.2 0.017881 0.018360 0.018836 0.019310 0.019782 0.020251 0.020717 0.021181 0.021643 0.022102
19.3 0.022558 0.023011 0.023462 0.023910 0.024355 0.024797 0.025236 0.025672 0.026105 0.026535
19.4 0.026962 0.027386 0.027807 0.028224 0.028638 0.029049 0.029457 0.029861 0.030262 0.030659
19.5 0.031053 0.031444 0.031831 0.032214 0.032594 0.032970 0.033342 0.033711 0.034076 0.034437
19.6 0.034794 0.035148 0.035497 0.035843 0.036185 0.036522 0.036856 0.037186 0.037512 0.037833
19.7 0.038151 0.038464 0.038774 0.039079 0.039379 0.039676 0.039968 0.040256 0.040540 0.040820
19.8 0.041095 0.041365 0.041632 0.041893 0.042151 0.042404 0.042652 0.042896 0.043135 0.043370
19.9 0.043600 0.043826 0.044047 0.044263 0.044475 0.044682 0.044885 0.045082 0.045275 0.045464

Based on L. Levi, Applied Optics, John Wiley & Sons, New York, 1968.
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Chapter 2

2.6 Number of waves, N = d/l = (100 *  10-6)>(532 *  10-9) ≈188. 
D = Nl = Nc>n = 188(3 * 108)>(2.45 * 109) ≈23 m

2.11 In air: l = v>n = 343>440; l≈78 cm. In water: l = v /n =
1500>440; l≈3.41 m.

2.21 c = A sin 2p (kx + nt), c1 = 5 sin 2p (0.4x + 2t)

 (a) n = 2  (b) l = 1>0.4 = 2.5 (c) t = 1>2 = 0.5
 (d) A = 5 (e) v = 5  (f) negative x
 c = A sin (kx - vt), c2 = 2 sin (5x - 1.5t)
 (a) n = 1.5>2p (b) l = 2p>5 (c) t = 2p>1.5
 (d) A = 2 (e) v = 1.5>5  (f) positive x

2.27 vy = -vA cos (kx - vt + e), ay = -v2y. Simple harmonic mo-
tion, since ay ∝ y.

2.28 t = 2.2 * 10-15 s; therefore n = 1>t = 4.5 * 1014 Hz; v = nl, 
3 * 108 m>s = (4.5 * 1014 Hz)l; l = 6.6 * 10-7 m and k = 2p>l =
9.5 * 106 m-1. c(x, t) = (103 V>m)   cos [9.5 * 106 m-1 * (x + 3 *  
108 m>s t)]. It’s cosine because cos 0 = 1.

2.29 y(x, t) = C>[2 + (x + vt)2].

2.37  c(z, 0) = A sin (kz + e);

c(-l>12, 0) = A sin (-p>6 + e) = 0.866

c(l>6, 0) = A sin (p>3 + e) = 1>2
c(l>4, 0) = A sin (p>2 + e) = 0

A sin (p>2 + e) = A(sin p>2 cos e + cos p>2 sin e)

= A cos e = 0, e = p>2
A sin (p>3 + p>2) = A sin (5p>6) = 1>2

therefore A = 1, hence c(z, 0) = sin (kz + p>2).

2.38 Both (a) and (b) are waves, since they are twice differentiable 
functions of (z - vt) and (x + vt), respectively. Thus for (a) c =   
a2(z - bt>a)2 and the velocity is b>a in the positive z-direction. For (b)  
c = a2(x + bt>a + c>a)2 and the velocity is b>a in the negative  
x-direction.

2.40 c(x, t) = 5.0 exp [-a(x + 1b>at)2], the propagation direction 
is negative x; v = 1b>a = 0.6 m>s. c(x, 0) = 5.0 exp (-25x2);

Solutions to 

Selected Problems

685

t = 0t = 2
C�2

321−1−2 0

v = 1m�s

x

y

2.31 None of the presented functions can be differentiated twice in 
a nontrivial way (the second derivatives are just zero in all cases). So 
they cannot be valid wavefunctions.

2.34 
dc

dt
=

0c
0x

 
dx
dt

+
0c
0y

 
dy

dt
 and let y = t, whereupon 

dc

dt
=

0c
0x

 (±v) +  

0c
0t

= 0 and the desired result follows immediately.

2.35 
dw

dt
= a0w

0x
b adx

dt
b +

0w
0t

= k adx
dt
b - kv. This is zero when 

dx
dt

= v  

which is what it should be. Using it in Problem 2.32, we have 

a0w
0z
b (v) +

0w
0t

= 0 and thus p2 * 104(v) - p6 *  1012 = 0 and from 

here v = 3 * 108 m>s.

2.42 180° corresponds to l2 or (1>2)3 * 108>5 * 1014 = 300 nm.

2.43 c = A sin 2p a z
l

±
t
t
b

c = 60 sin 2p a z

400 * 10-9 -
t

1.33 * 10-15
b

l = 400 nm

v = 400 * 10-9>1.33 * 10-15 = 3 * 108 m>s
 n = (1>1.33) * 10+15 Hz, t = 1.33 * 10-15 s

t = 0

0.2
0

0.60.4−0.2−0.4−0.6
x

c
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686 Solutions to Selected Problems

3.15 8cos2 (k$ ~ r$ - vt)9 =
1
T

 3t + T

t
cos2 (k$ ~ r$ - vt′) dt′.

Let k$ ~ r$ - nt′ = x; then 

8cos2 (k$ ~ r$ - vt)9 =
1

-vT
 3cos2 x dx

=
1

-vT
 3 

1 + cos 2x
2

 dx

= -    

1
vT

 cx
2

+
sin 2x

4
d

k$ ~ r$ - v(t + T)

                                                                                         
k$ ~ r$ - vt

3.25 E$0 = (E0>22)(- î + ĵ), k$ = (2p>22l)( î + ĵ), hence 

E$0 = (8>22)(- î + ĵ) cos[(22p>l)(x + y) -  vt] and

I = cP0E0
2>2 = 0.083 W>m2.

3.26 
(a) L = c∆t = (3 * 108 m>s) * (3 * 10-9 s) = 0.9 m.

(b)  The volume of one pulse is V = pLR2 = 0.9 * (2 * 10-3)2 *  
p = 11.3 * 10-6 m3

Energy Density = 5.0 J>11.3 * 10-6 m3 = 4.4 * 105 J>m3.

3.28 

   = 0.848 * 10-5 J>m3

 u = 8.5 * 10-6 J>m3

3.30 h = 6.63 * 10-34, E = hn

I
E

=
I

hn
=

19.88 * 10-2

(6.63 * 10-34)(200 * 106)

= 1.5 * 1024 photons>m2 s

Number of photons crossing the unit volume, 
n = (1>c)(I>E) = 2 * 1016 photons>m3.

3.32 Pe = iV = (0.25)(4.0) = 1.0 W. This is the electrical power dis-
sipated. The power available as light is PL = (0.01)Pe = 0.01 W.

(a) Photon flux

 = PL>hn = (0.01)l>hc

 = 0.01(550 * 10-9)>(6.63 * 10-34) 3 * 108

 = 2.8 * 1016 photons>s 

(b) There are 2.8 * 1016 in volume (3 * 108)(1 s)(10-3 m2)

2.8 * 1016

3 * 105
= 0.93 * 1011 photons>m3.

(c) I = 0.01 W>10 * 10-4 m2 = 10 W>m2.

3.34 Imagine two concentric cylinders of radius r1 and r2 surrounding 
the wave. The energy flowing per second through the first cylinder 
must pass through the second cylinder; that is, 8S192pr1 = 8S292pr2, 
and so 8S92pr = constant and 8S9 varies inversely with r. Therefore, 
since 8S9 ∝ E0

2, E0 varies as 11>r.

u =
(power)(t)

volume
=

(2 * 10-3 W)(t)

(pr2)(t)
=

2 * 10-3 (W)

3 * 108(p)(10-3)2 * (0.5)2

2.48 c = A exp i(kxx + kyy + kzz)

 kx = ka  ky = kb  kz = kg

�k$� = [(ka)2 + (kb)2 + (kg)2]1>2 = k[a2 + b2 + g2]1�2

2.52 l = h>(mv) = 6.62 * 10-34>(3.31 * 10-3 * 500)

=  4 * 10-34 m 

n = v>l = 500>(4 * 10-34) = 1.25 * 1036 Hz.

2.53 k$  can be constructed by forming a unit vector in the proper direc-
tion and multiplying it by k. The unit vector is 

[(4 - 0) î + (2 - 0)ĵ + (1 - 0)k̂]>242 + 22 + 12

 = (4î + 2ĵ + k̂)>221

and k$ = k(4î + 2ĵ + k̂)>221.

r$ = xî + yĵ + zk̂

hence c(x, y, z, t) = A sin [(4k>221)x + (2k>221)y +  

(k>221) z - vt].

2.55 c( r$1, t) = c[ r$2 - ( r$2 - r$1), t] = c( k $ ~ r$1, t)

 = c[k$ ~ r$2 - k$ ~ ( r$2 - r$1), t]

 = c(k$ ~ r$2, t) = c( r$2, t)

since k$ ~ (r$2 - r$1) = 0.

Chapter 3

3.1 Ey = 4 cos [2p * 1014(t - x>c) +  p>2]

 Ey = A cos [2pn(t - x>v) + p>2]

(a)  n = 1014 Hz, v = c, and l = c>n = 3 * 108>1014 = 3 * 10- 6 m, 
moves in the positive x-direction, A = 4 V>m, e = p>2 linearly 
polarized in y-direction.

(b) Bx = 0, By = 0, Bz = Ey =
4
c

 cos [2p * 1014(t - x>c) + p>2].

3.2 Ez = 0, Ey = Ex = E0 sin (kz - vt) or cosine; Bz = 0, By =
-Bx = Ey>c, or if you like,

E$ =
E022

 ( î + ĵ) sin (kz - vt), B$ =
E0

c22
 (ĵ - î) sin (kz - vt)

3.6 The field is linearly polarized in the y-direction and varies sinu-
soidally from zero at z = 0 to zero at z = z0. Using the wave equation

02Ey

0x2 +
02Ey

0y2 +
02Ey

0z2 -
1

c2 
02Ey

0t2 = 0

c-k2 -
p2

z0
2 +

v2

c2 d  E0 sin 
pz
z0

 cos (kx - vt) = 0

and since this is true for all x, z, and t, each term must equal zero

and so k =
v

c
 B1 - a cp

vz0
b

2

.

Moreover, v =
v

k
=

cB1 - a cp
vz0

b
2
.
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3.61 With v in the visible, (v0
2 - v2) is smaller for lead glass and 

larger for fused silica. Hence n(v) is larger for the former and smaller 
for the latter.

3.63 C1 is the value that n approaches as l gets larger.

3.64 The horizontal values of n(v) approached in each region between 
absorption bands increase as v decreases.

Chapter 4

4.1 E0s ∝
VE0i

r
= K 

VE0i

r
; thus 

VK
r

 must be unitless, and so K has 

units of (length)-2. The only quantity unaccounted for is l, and so we

conclude that K = l-2, and 
Is

Ii
∝ K2 ∝ l-4.

4.4 x0(-v2 + v0
2 + igv) = (qeE0>me)e

ia = (qeE0>me) (cos a + i sin a); 
squaring the magnitude of both sides yields x0

2[(v0
2 - v2)2 + g2v2] =  

(qeE0>me)
2(cos2 a + sin2 a)—x0 follows immediately. As for a, divide 

the imaginary parts of both sides of the first equation above, namely, 
x0gv = (qeE0>me) sin a, by the real parts, x0(v0

2 - v2) = (qeE0>me) *   
cos a, to get a = tan-1[gv>(v0

2 - v2)]. a ranges continuously from 0 
to p>2 to p.

4.5 The phase angle is retarded by an amount (n∆y 2p>l) - ∆y 2p>l  
or (n - 1)∆y v>c. Thus 

Ep = E0 exp iv[t - (n - 1)∆y>c - y>c]

or Ep = E0 exp [- iv(n - 1)∆y>c] exp iv(t - y>c) 

if n ≈ 1 or ∆y 6 6  1. Since e 

x ≈ 1 + x for small x,

 exp [- iv(n - 1)∆y>c] ≈ 1 - iv(n - 1)∆y>c
and since exp (- ip>2) = - i,

Ep = Eu +
v(n - 1)∆y

c
 Eue-ip�2

4.11  ng sin ut = ni sin ui

1.7 sin ut = sin 39°
ut = sin-1[(sin 39°)>1.7]

ut ≈  21.7°

4.17 n =
c

vGe
=
nlvac

nlGe
=
lvac

lGe
.

Therefore, lGe = lvac>n = 10.6>4 = 2.65 mm

sin ut = sin 40°>4 ≈ 0.161,

ut = sin-1(0.161) ≈ 9.3°

3.36 h dp

dt
i =

1
c

 h dW
dt

i

A = area.  8�9 =
1
A

 h dp

dt
i =

1
Ac

 h dW
dt

i =
I
c

 

3.39 ℰ = 100 W(10 s) = 1000 J

p = ℰ>c = 103>3 * 108 = 3.3 * 10-6 kg · m>s.

3.40
(a)  8�9 = 28S9>c = (2 * 1.3 * 103 W>m2)>(3 * 108 m>s) = 8.6 *  

10-6 N>m2.

(b)  S, and therefore �, both drop off with the inverse square of the 
distance, and hence 8S9 = [(0.7 * 109 m)-2>(1.5 * 1011 m)-2] 
(1.3 * 103 W>m2) = 6.0 * 107 W>m2, and 8�9 = 0.213 N>m2.

3.43 8S9 = 1400 W>m2

8�9 = 2(1400 W>m2>3 * 108 m>s) = 9.3 * 10-6 N>m2

8F9 = A8�9 = 9.3 * 10-6 N>m2 * 2500 m2 = 2.33 * 10-2 N

3.44 8S9 = (100 * 103 W)(500 * 2 * 10-6 s)>A(1 s)

8F9 = A8�9>c = 3.4 * 10-7 N

3.45 8F9 = A8�9 = A8S9>c =
20 W

3 * 108 m>s = 6.6 * 10-8 N

 a = 6.6 * 10-8>100 kg = 6.6 * 10-10 m>s2

 v = at = 6.6 * 10-10(t) = 10 m>s
 t = 1.5 * 1010 s = 475.64 years.

3.46 B$  surrounds v$ in circles, and E$  is radial; hence E$ : B$  is tangent 
to the sphere, and no energy radiates outward from it.

3.51 n = c>v = (3 * 108 m>s)>(1.24 * 108 m>s) = 2.41

3.56 Thermal agitation of the molecular dipoles causes a marked re-
duction in Ke but has little effect on n. At optical frequencies n is pre-
dominantly due to electronic polarization, rotations of the molecular 
dipoles having ceased to be effective at much lower frequencies.

3.57 From Eq. (3.70), for a single resonant frequency we get

n = c1 +
Nqe

2

P0 me
 a 1

v0
2 - v2bd

1�2

since for low-density materials n ≈ 1, the second term is 6 6  1, and 
we need only retain the first two terms of the binomial expansion of n. 
Thus 11 + x ≈ 1 + x>2 and 

n = 1 +
1
2

 
Nqe

2

P0 me
 a 1

v0
2 - v2b

3.59 The normal order of the spectrum for a glass prism is R, O, Y, G, 
B, V, with red (R) deviated the least and violet (V) deviated the most. 
For a fuchsin prism, there is an absorption band in the green, and so 
the indices for yellow and blue on either side (nY and nB) of it are ex-
tremes, as in Fig. 3.26; that is, nY is the maximum, nB the minimum, 
and nY 7 nO 7 nR 7 nV 7 nB. Thus the spectrum in order of increas-
ing deviation is B, V, black band, R, O, Y.

v
R O Y G B V

n(v)
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4.34 Since ui = ur, k̂ix = k̂rx and k̂iy = - k̂ry, and since (k̂t ~ ûn)ûn=  
k̂iy, k̂i - k̂r = 2(k̂i ~ ûn)ûn.

4.21 

4.30 The number of waves per unit length along AC on the interface 
equals (BC>li)>(BC sin ui) = (AD>lt)(AD>sin ut). Snell’s Law fol-
lows on multiplying both sides by c>n.

4.32 Let t be the time for the wave to move along a ray from b1 to b2, from 
a1 to a2, and from a1 to a3. Thus a1a2 = b1b2 = vit and a1a3 = vit.

sin ui = b1b2>a1b2 = vi>a1b2

sin ut = a1a3>a1b2 = vt>a1b2

sin ur = a1a2>a1b2 = vi>a1b2

 
sin ui

sin ut
=

vi

vt
=

nt

ni
 = nti and ui = ur

4.33 ni sin ui = nt sin ut

ni (k̂i : ûn) = nt (k̂t : ûn)

where k̂i, k̂t are unit propagation vectors. Thus

nt(k̂t : ûn) - ni(k̂i : ûn) = 0

 (ntk̂t - nik̂i) : ûn = 0

Let ntk̂t - nik̂i = �$ = Γûn.

Γ is often referred to as the astigmatic constant; �$ = the difference 
between the projections of nt k̂t and ni k̂i on ûn; in other words, take dot 
product �$ ~ ûn:

Γ = nt cos ut - ni cos ui

un

ki

kt

ntkt

niki

ui

ut

�

ui−ut

4.35 Since SB′ 7 SB and B′P 7 BP, the shortest path corresponds to 
B′ coincident with B in the plane-of-incidence.

un
kt

krki

x

y

un

P

B

B�

S

Interface

ui

ut

ui�

ut�

d

a

n1 A

n1

n2

ui

ut

a
C

B

ui − ut

4.38  n1 sin ui = n2 sin ut ut = u′i
 n2 sin ui′ = n1 sin ut′

 n1 sin ui = n1 sin ut′  and  ui = u′t

 cos ut = d>AB

 sin (ui - ut) = a>AB

 sin (ui - ut) =
a
d

 cos ut

 
d sin (ui - ut)

cos ut
= a

4.40 Rather than propagating from B$  point-S to point-P in a straight 
line, the ray traverses a path that crosses the plate at a sharper angle. 
Although in so doing the path lengths in air are slightly increased, the 
decrease in time spent within the plate more than compensates. This 
being the case, we might expect the displacement a to increase with n21.  
As n21 gets larger for a given ui, ut decreases, (ui - ut) increases, and 
from the results of Problem 4.34, a clearly increases.

4.42 Transmission angle from Snell’s law  -sin ut =  sin 20°>1.62 =
 0.211; ut = 12.2°. Applying Eqns (4.42) and (4.44),

0 90°

41.8°

ui

ut
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4.71
r# = -

sin(ui - ut)

sin(ui + ut)
= -

sin 7.8°
sin 32.2°

= -0.255 and 

t# =
2 sin ut cos ui

 sin (ui + ut)
=

2 sin 12.2° cos 20°
 sin 32.2°

= 0.745

4.43 Starting with Eq. (4.34), divide top and bottom by ni and replace 
nti with sin ui>sin ut to get

r# =
sin ut cos ui - sin ui cos ut

sin ut cos ui + sin ui cos ut

which is equivalent to Eq. (4.42). Equation (4.44) follows in exactly 
the same way. To find ri start the same way with Eq. (4.40) and get

ri =
sin ui cos ui - cos ut sin ut

cos ut sin ut + sin ui cos ui

There are several routes that can be taken now: one is to rewrite ri as

ri =
(sin ui cos ut - sin ut cos ui)(cos ui cos ut - sin ui sin ut)

(sin ui cos ut + sin ut cos ui)(cos ui cos ut + sin ui sin ut)

and so ri =
sin (ui - ut) cos (ui + ut)

sin (ui + ut) cos (ui - ut)
=

tan (ui - ut)

tan (ui + ut)
 .

We can find ti, which has the same denominator, in a similar way.

4.63 [E0r]# + [E0i]# = [E0t]#; tangential field in incident medium 
equals that in transmitting medium, 

[E0t>E0i]# - [E0r>E0i]# = 1,  t# - r# = 1

Alternatively, from Eqs. (4.42) and (4.44),

+sin (ui - ut) + 2 sin ut cos ui

sin (ui + ut)
≟ 1

sin ui cos ut - cos ui sin ut + 2 sin ut cos ui

sin ui cos ut + cos ui sin ut
= 1

4.66 ui + ut = 90° when ui = up

ni sin up = nt sin ut = nt cos up

 tan up = nt>ni = 1.52,  up = 56°40′ [8.29]

4.68 tan up = nt>ni = n2>n1

tan u′p = n1>n2 

,  tan up = 1>tan u′p

sin up

cos up
=

cos u′p
sin u′p

 6 sin up sin u′p - cos up cos u′p = 0

cos (up + u′p) = 0,  up + u′p = 90°

4.69 From Eq. (4.92)

tan gr = r#[E0i]#>ri[E0i]i =
r#
ri

  tan gi

and from Eqs. (4.42) and (4.43)

tan gr = -  
cos (ui - ut)

cos (ui + ut)
 tan gi

33.7°
0.0

0.04

0.5

1.0

R
e�

ec
ta

nc
e

41.8° 90°

R⊥ R∣∣

ui

4.72 T# = ant cos ut

ni cos ui
b

 
t2
#. From Eq. (4.44) and Snell’s Law,

T# = asin ui cos ut

sin ut cos ui
b a4 sin2 ut cos2 ui

sin2 (ui + ut)
b =

sin 2ui sin 2ut

sin2 (ui + ut)

Similarly for Ti  .

4.74 If Φi is the incident radiant flux or power and T is the transmit-
tance across the first air–glass boundary, the transmitted flux is then 
TΦi . From Eq. (4.68), at normal incidence the transmittance from 
glass to air is also T. Thus a flux TΦiT emerges from the first slide, 
and ΦiT

2N from the last one. Since T = 1 - R, Tt = (1 - R)2N from 
Eq. (4.67).

R = (0.5>2.5)2 = 4%,  T = 96%

Tt = (0.96)6 ≈ 78.3%

4.75 T =
I(y)

I0
= e-ay,  T1 = e-a,  T = (T1)y

Tt = (1 - R)2N(T1)d

4.76 At ui = 0, R = Ri = R# = ant - ni

nt + ni
b

2

. [4.67]

As nti S 1, nt S ni and clearly R S 0.

At ui = 0,

T = Ti = T#
4ntni

(nt + ni)
2

and since nt S ni , lim
nti S 1

 T = 4ni
2>(2ni)

2 = 1.

From Problem 4.91, and the fact that as nt S ni Snell’s Law says that 
ut S ui, we have

lim
nti S 1

Ti =
sin2 2ui

sin2 2ui
= 1,  lim

nti S 1
T# = 1

From Eq. (4.43) and the fact that Ri = r i
2 and ut S ui, lim

nti S 1
 R‘ = 0.

Similarly, from Eq. (4.42) lim
nti S 1

 R# = 0.

4.78 For ui 7 uc, Eq. (4.70) can be written

r# =
cos ui - i(sin2 ui - nti

2)1�2

cos ui + i(sin2 ui - nti
2)1�2

r#r#* =
cos2 ui + sin2 ui - nti

2

cos2 ui + sin2 ui - nti
2 = 1

Similarly r‘r#* = 1.
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Similarly, t#t′# = T#

r2
i = ctan (u1 - u2)

tan (u1 + u2)
d

2

= c- tan (u2 - u1)

tan (u1 + u2)
d

2

r′i
2 = ctan (u2 - u1)

tan (u1 + u2)
d

2

= r2
i = Ri

4.101 From Eq. (4.45)

t′i(u′p)ti(up) = c 2 sin up cos u′p
sin (up + u′p) cos (u′p - up)

d

* c 2 sin u′p cos up

sin (up + u′p) cos (up - u′p)
d

=
sin 2u′p sin 2up

cos2 (up - u′p)
 , since up + u′p = 90°

=
sin2 2up

cos2
  (up - u′p)

 , since sin 2u′p = sin 2up

=
sin2 2up

cos2 (2up - 90°)
= 1

Chapter 5

5.1 All OPLs from S to P must be equal; therefore /on1 + /in2 =  
son1 + sin2 = constant; drop a perpendicular from A to the optical axis, 
the point where it touches is B. BP = so + si - x and the rest follows 
from the Pythagorean Theorem.

5.2 Using /on1 + /in2 = constant, /o + /i 3>2 = constant, 5 +
(6) 3>2 = 14. Therefore 2/o + 3/i = 28 when /o = 6, /i = 5.3, 
/o = 7, /i = 4.66. Note that the arcs centered on S and P have to inter-
cept for physically meaningful values of /o and /i 

.

4.86 From Eq. (4.73) we see that the exponential will be in the form 
k(x - vt), provided that we factor out kt sin ui>nti 

, leaving the second 
term as vntit>kt sin ui 

, which must be vtt. Hence vnt>(2p>lt)ni *   
sin ui = vt and so vt = c>ni sin ui = vi>sin ui .

4.87 From the defining equation b = kt[(sin2 ui>n2
ti) - 1]1>2 =  

3.702 * 106 m-1, and since yb = 1, y = 2.7 * 10-7 m.

4.91 The beam scatters off the wet paper and is mostly transmit-
ted until the critical angle is attained, at which point the light is re-
flected back toward the source. tan uc = (R>2)>d, and so nti = 1>ni =  
sin[tan-1 (R>2d)].

4.92 1.000 29 sin 88.7° = n sin 90°
 (1.000 29)(0.999 74) = n;  n = 1.000 03

4.93 Can be used as a mixer to get various proportions of the two 
incident waves in the emitted beams. This could be done by adjusting 
gaps. [For some further remarks, see H. A. Daw and J. R. Izatt, J. Opt. 
Soc. Am. 55, 201 (1965).]

E0 tr�3t�

E0 tr�2t�

E0 tr�4

E0 tr�3

4.94 Light traverses the base of the prism as an evanescent wave, 
which propagates along the adjustable coupling gap. Energy moves 
into the dielectric film when the evanescent wave meets certain re-
quirements. The film acts like a waveguide, which will support char-
acteristic vibration configurations or modes. Each mode has associ-
ated with it a given speed and polarization. The evanescent wave will 
couple into the film when it matches a mode configuration.

4.95 From Fig. 4.69 the obvious choice is silver. Note that in the vi-
cinity of 300 nm, nI ≈ nR ≈ 0.6, in which case Eq. (4.83) yields  
R ≈ 0.18. Just above 300 nm nI increases rapidly, while nR decreases 
quite strongly, with the result that R ≈ 1 across the visible and then some.

4.99

 ti =
2 sin u2 cos u1

sin (u1 + u2) cos (u1 - u2)

 ti′ =
2 sin u1 cos u2

sin (u1 + u2) cos (u2 - u1)

 tit′i =
sin 2u1 sin 2u2

sin2 (u1 + u2) cos2 (u1 - u2)

 = Ti from Eq. (4.98)

7

6

4.66

5.33

P
S

5.4 From Fig. 5.4 a plane wave impinging on a concave elliptical 
surface becomes spherical. If the second spherical surface has that 
same curvature, the wave will have all rays normal to it and emerge 
unaltered.
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5.8 Using Eq. (5.8) 
n1

so
+

n2

si
=

n2 - n1

R
. For the first surface 

1
1.5

+
1.33

si
=

1.33 - 1
0.15

, si ≈ 0.869 m producing a real image to the

right of the first vertex. For the second surface so = 0.30 - 0.869
=  -0.569 m indicating a virtual object (the rays from the first  surface

have not yet coalesced). The formula is 
1.33

-0.569
+

1
si

=
1 - 1.33

-0.15
 and 

si ≈ 0.220 m. The image is 22 cm from the back vertex of the 
 spherical tank.

5.13 For the first surface, 1>0.1 + 1.5>si = (1.5 - 1)>0.1. 
Thus si = -0.3 m For the second surface, so = 0.35 m. The equa-
tion is 1.5>0.35 + 1>si = (1.5 - 1)>-0.5. Thus si = -0.304 m. 
The image is virtual, erect, and magnified. Magnification 
MT = -si>so = - (-0.304>0.1) = 3.04. The image would be just over  
6 cm tall. The thin-lens formula gives us 1

0.1 + 1
si = (1.5 - 1)( 1

0.1 - 1
- 0.5). 

So si = 0.25 m.

5.15 We need to minimize so + si. From the Gaussian lens formula, 

si = so f
so - f  . 

d
dso

 (so + sof
so - f) = 1 + f (so - f  ) - so f

(so - f  )2 = 1 - (
f

so - f)
2. Setting 

this to zero we find that the minimum occurs for so = 2f , which also 

gives us si = 2f . Thus the minimum distance is 4f = -80 cm.

5.16 (5.17) 1>so + 1>si = 1>ƒ from this Si = so f>so -  ƒ. (5.23) 
xi xo = f 2 from this xi = f 2> xo. (5.25) MT = -si>so from this 
MT = f>f -  so. (5.24) MT = yi>yo from this yi = MT yo

(a)  so = 0.1 m; xo = -0.1 m so Si = so f>so -  ƒ = 0.1(0.2)>0.1 - 0.2
=  -0.2 m; xi = (0.2)2>-0.1 = -0.4 m; MT = f>f -  so = 0.2> 
0.2 - 0.1 = 2. yi = MT yo = 2(5) = 10 cm. The image is virtual, 
erect and 10 cm tall.

(b)  so = 0.3 m; xo = 0.1 m so Si = so f>so -  ƒ = 0.3(0.2)>0.3 - 0.2
=  0.6 m; xi = (0.2)2>-0.1 = -0.4 m; MT = f>f -  so = 0.2> 
0.2 - 0.3 = -2. yi = MT yo = -2(5) = -10 cm. The image is 
real, inverted and 10 cm tall.

(c)  so = 0.5 m; xo = 0.3 m so Si = so f>so -  ƒ = 0.5(0.2)>0.5 - 0.2
=  0.333 m; xi = (0.2)2>0.3 = 0.133 m; MT = f>f -  so = 0.2> 
0.2 - 0.5 = -0.667. yi = MT yo = -0.667(5) = -3.33 cm. The 
image is real, inverted and 3.33 cm tall.

5.17 1>so + 1>si = 1>ƒ

C R 1
so

1
si

f 2f

2f

+ 1
f

=

0

f

3f
so

si

5.20 Since the lens is negative, the image will be virtual. It is present 
on the same side as the object. Image distance, si = -0.20 m. By the 
lens formula, 1>0.6 + 1>(-0.2) = 1>f , f = -0.3 m.

5.23 For this lens, R1 = 0.25 m and R1 = ∞ . By the thin lens for-
mula, 1>f = (1.6 - 1)(1>0.25 - 1>∞ ), f ≈ 41.7 cm. Optical power, 
� = 1>f = 2.4 D

5.31 

(a) From the Gaussian lens equation

1
15.0 m

+
1
si

=
1

3.00 m

 and si = +3.75 m.

(b) Computing the magnification, we obtain

MT = -  
si

so
= -  

3.75 m
15.0 m

= -0.25

  Because the image distance is positive, the image is real. Because the 
magnification is negative, the image is inverted, and because the abso-
lute value of the magnification is less than 1, the image is minified.

(c) From the definition of magnification, it follows that 
yi = MTyo = (-0.25)(2.25 m) = -0.563 m

 where the minus sign reflects the fact that the image is inverted.

(d) Again from the Gaussian equation

1
17.5 m

+
1
si

=
1

3.00 m

 and si = +3.62 m. The entire equine image is only 0.13 m long.

5.38 Relative refractive index for glass in water, ngw = ng>nw = 1.2.  
As the geometry of the lens is the same, we divide the two thin-lens 
equation and we get (1>fair)>(1>fwater) = (ng - 1)>(ngw - 1). Thus, 
fwater = (ng - 1)>(ngw - 1) fair = 60 cm. For the image of the fish  
located at si, 1>0.8 + 1>si = 1>0.6; si = 2.4 m. Magnification, MT = -3. 
The image will be real, inverted and magnified 3 times.

5.39 The image will be inverted if it’s to be real, so the set must be 
upside down or else something more will be needed to flip the image; 
MT = -3 = -si>so; 1>so + 1>3so = 1>0.60 m; so = 0.80 m, hence 
0.80 m + 3(0.80 m) = 3.2 m.
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obtained from (-4)(xi) = 81, xi = -20.2 cm; in other words, the im-
age is 11.2 cm to the right of L1. MT = 20.2>9 = 2.2; hence the edge 
of L2 is imaged 4.4 cm above the axis. Thus its subtended angle at S is 
tan-1 4.4>(12 + 11.2) or 9.8°. Accordingly, the diaphragm is the A.S., 
and the entrance pupil (its image in L1) has a diameter of 1.5 cm at 
4.5 cm behind L1. The image of the diaphragm in L2 is the exit pupil. 
Consequently, 1

2 + 1>si = 1
3 and si = -6, that is, 6 cm in front of L2. 

MT = 6
2 = 3, so that the exit pupil diameter is 3 cm.

5.40  
1
ƒ

= (nlm - 1) a 1
R1

-
1
R2

b
1
ƒw

=
(nlm - 1)

(nl - 1)
 
1
ƒa

=
1.5>1.33 - 1

1.5 - 1
 
1
ƒa

=
0.125
0.5

 
1
ƒa

 ƒw = 4ƒa

5.44 1>ƒ = 1>ƒ1 + 1>ƒ2 , 1>50 = 1>ƒ1 - 1>50, ƒ1 = 25 cm. If R11
and R12 , and R21 and R22 , are the radii of the first and second lenses, 
respectively,

1>ƒ1 = (nl - 1)(1>R11 - 1>R12),  1>25 = 0.5(2>R11)

R11 = -R12 = -R21 = 25 cm

1>ƒ2 = (nl - 1)(1>R21 - 1>R22)

-1>50 = 0.55[1>(-25) - 1>R22]

R22 = -275 cm

5.45 MT1
= -si1>so1 = -ƒ1>(so1 - ƒ1)

 MT2
= -si2>so2 = -si2>(d - si1)

 MT = ƒ1si2>(so1 - ƒ1)(d - si1)

From Eq. (5.30), on substituting for si1, we have

MT =
ƒ1si2

(so1 - ƒ1)d - so1ƒ1

5.47 First lens: 1>si1 = 1>30 - 1>30 = 0, si1 = ∞ . Second lens: 
1>si2 = 1>(-20) - 1>(- ∞ ); the object for the second lens is to the 
right at ∞ , that is, so2 = - ∞ . si2 = -20 cm, virtual, 10 cm to the left 
of first lens.

MT = (- ∞ >30)(+20>- ∞ ) =
2
3

or from Eq. (5.34)

MT =
30(-20)

10(30 - 30) - 30(30)
=

2
3

5.51

fo
fe

5.55 The angle subtended by L1 at S is tan-1 3>12 = 14°. To find 
the image of the diaphragm in L1 we use Eq. (5.23): xo xi = ƒ2, 
(-6)(xi) = 81, xi = -13.5 cm, so that the image is 4.5 cm behind L1. 
The magnification is -xi>ƒ = 13.5>9 = 1.5, and thus the image (of 
the edge) of the hole is (0.5)(1.5) = 0.75 cm in radius. Hence the an-
gle subtended at S is tan-1 0.75>16.5 = 2.6°. The image of L2 in L1 is  

9

14°

L1

L2

3
3 3

4.5
5

9

3
2

12

S

5.57 Either the margin of L1 or L2 will be the A.S.; thus, since no 
lenses are to the left of L1, either its periphery or P1 corresponds to 
the entrance pupil. Beyond (to the left of) point-A, L1 subtends the 
smallest angle and is the entrance pupil; nearer in (to the right of A), P1 
marks the edge of the entrance pupil. In the former case P2 is the exit 
pupil; in the latter (since there are no lenses to the right of L2) the exit 
pupil is the edge of L2 itself.

P1
P2

(image of edge
of L1 formed by L2)

(image of edge
of L2 formed by L1)

L2

L1

Fo1 Fo2 Fi1 Fi2A

5.58 The A.S. is either the edge of L1 or L2. Thus the entrance pupil is 
either marked by P1 or P2. Beyond Fo1, P1 subtends the smaller angle; 
thus Σ1 locates the A.S. The image of the A.S. in the lenses to its right, 
L2, locates P3 as the exit pupil.

P1

P3

P2

O

L1
L2

Σ1
Σ3

Σ2

Fo1 Fi2
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5.60 Draw the chief ray from the tip to L1 such that when extended 
it passes through the center of the entrance pupil. From there it goes 
through the center of the A.S., and then it bends at L2 so as to extend 
through the center of the exit pupil. A marginal ray from S extends to the 
edge of the entrance pupil, bends at L1 so it just misses the edge of 
A.S., and then bends at L2 so as to pass by the edge of the exit pupil.

S

L1

L2
A.S.

Image

Exit
pupil

Entrance
pupil

5.61

S

5.62 No—although she might be looking at you.

5.63 The mirror is parallel to the plane of the painting, and so the 
girl’s image should be directly behind her and not off to the right.

5.64 1>so + 1>si = -2>R. Let R S ∞ : 1>so + 1>si = 0, so = -si , 
and MT = +1. Image is virtual, same size, and erect.

5.71 From Eq. (5.49), 1>100 + 1>si = -2>80, and so 
si = -28.5 cm. Virtual (si 6 0), erect (MT 7 0), and mini-
fied. (Check with Table 5.5.)

5.74 Image on screen must be real 6 si is +

1
25

+
1

100
= -  

2
R

 , 
5

100
= -  

2
R

,  R = -40 cm

5.75 The image is erect and minified. That implies (Table 5.5) a convex 
spherical mirror.

5.80 To be magnified and erect, the mirror must be concave, and the 
image virtual; MT = 2.0 = si>(0.015 m), si = -0.03 m, and hence 
1>ƒ = 1>(0.015 m) + 1>(-0.03 m); ƒ = 0.03 m and ƒ = -R>2;  
R = -0.06 m.

5.81 MT = yi>yo = -si>so; using Eq. (5.50), si = ƒso>(so - ƒ), and 
since ƒ = -R>2, MT = -ƒ>(so - ƒ) = - (-R>2)>(so + R>2) =  
R>(2so + R).

5.84 MT = -si>25 cm = -0.064; si = 1.6 cm. 1>25 cm +  1>1.6 cm =  
-2>R, R = -3.0 cm.

5.89 f = R>2 = 60>2 = 30 cm, 1>50 + 1>si = 1>30, 1>si = 1>30 -
1>50, si = 75 cm. MT = -75>50 = -1.5. The image is real, inverted 
(MT 6 0), located 75 cm from the mirror and 7.5 cm tall.

5.92 Image rotated through 180°.
5.93 From Eq. (5.61)

NA = (2.624 - 2.310)1>2 = 0.550

umax = sin-1 0.550 = 33°22′
Maximum acceptance angle is 2umax = 66°44′. A ray at 45° would 
quickly leak out of the fiber; in other words, very little energy fails to 
escape, even at the first reflection.

5.95 Considering Eq. (5.62), log 0.5 = -0.30 = -aL>10, and so 
L = 15 km.

5.98 From Eq. (5.61) NA ≈  0.180 and Nm = 158

5.101 MT = -ƒ>xo = -1>xo�. For the human eye � ≈ 58.6 diopters.

xo = 230000 * 1.61 = 371 * 103 km

MT = -1>3.71 * 106(58.6) = 4.6 * 10-11

yi = 2160 * 1.61 * 103 * 4.6 * 10-11 = 0.16 mm

5.103 1>20 + 1>sio = 1>4,  sio = 5 m

1>0.3 + 1>sie = 1>0.6,  sie = -0.6 m

MTo = -5>10 = -0.5

MTe = - (-0.6)>0.5 = +1.2

MToMTe = -0.6

5.107 Ray-1 in the figure next page misses the eye-lens, and there is, 
therefore, a decrease in the energy arriving at the corresponding image 
point. This is vignetting.

Eye relief

CR

CR

Exit pupilEye lensField lensObjective
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6.3 From Eq. (6.2), 1>ƒ = 0 when - (1>R1 - 1>R2) = (nl - 1) *   
d>nlR1R2. Thus d = nl(R1 - R2)>(nl - 1).

6.5 1>f = 0.6[1>10 - 1>15 + (0.6)2>1.6(10)15] and f ≈ 43.48 cm. 
h1 = -29.6(0.6)2>15(1.6) = -2.17 cm and h2 = -29.6(0.6)2>
10(1.6) = -3.26 cm

6.7 ƒ = 1
2 nR>(n - 1); h1 = +R, h2 = -R.

6.11 f = R + 0.05, so = R + 0.5, and si = R + 0.1. Substituting in 
the Gaussian formula, 1>(R + 0.05) = 1>(R + 0.5) + 1>(R + 0.1); 
R = 0.1 m and R = -0.2 m. Discarding the negative result, the radius 
of the sphere is 10 cm. Thus f = 15 cm. Using the formula for the focal 
length obtained in problem 6.7, n = 1.5.

6.13 

so f ≈ 21.04 cm. h1 = -21.04(1.586 - 1)3>(-50)1.586 ≈  0.47 cm 
and h2 = -21.04(1.586 - 1)3>(16)1.586 ≈ -1.46 cm. so = 50.47 cm 
so 1>50.47 + 1>si = 1>21.04 and si ≈ 36.08 cm. The image is locat-

ed 36.08 - 1.46 = 34.62 cm behind the lens.

6.22 h1 = ni1(1 - a11)>-a12 = (�2d21>nt1)ƒ

= - (nt1 - 1)d21ƒ>R2nt1

from Eq. (5.71) where nt1 = nl ;

h2 = nt2(a22 - 1)>-a12

= - (�1d21>nt1)ƒ from Eq. (5.70)

= - (ni1 - 1)d21ƒ>R1nt1

6.23 � � = ℛ ℛ2� �21ℛ ℛ1, but for the planar surface

ℛ ℛ2 = c1 -�2

0 1
d

and �2 = (nt1 - 1)>(-R2) but R2 = ∞

ℛ ℛ2 = c1 0
0 1

d
which is the unit matrix, hence � � = � �21ℛ ℛ1.

1>f = (1.586 - 1)(1>16 - 1>-0.5 + (1.586 - 1)3>1.586(16)(-50))

5.108 Rays that would have missed the eye-lens in the previous problem 
are made to pass through it by the field-lens. Note how the field-lens bends 
the chief rays a bit so that they cross the optical axis slightly closer to the 
eye-lens, thereby moving the exit pupil and shortening the eye relief. (For 
more on the subject, see Modern Optical Engineering, by Smith.)

2f �
3

3f �
4

f �
2

f �
2

f �
4

F.S.

H2 H1

Eye relief

CR
CR

2

1

Exit pupilEye lensObjective

5.117 �l -
�c

1 + �c d
=

3.2D
1 + (3.2D)(0.017 m)

= +3.03D

or to two figures +3.0D. ƒ1 = 0.330 m, and so the far point is  
0.330 m - 0.017 m = 0.313 m behind the eye lens. For the contact 
lens ƒc = 1>3.2 = 0.313 m. Hence the far point at 0.31 m is the same 
for both, as it indeed must be.

5.119 

(a)  The intermediate image-distance is obtained from the lens formula 
applied to the objective:

1
27 mm

+
1
si

=
1

25 mm

  and si = 3.38 * 102 mm. This is the distance from the ob-
jective to the intermediate image, to which must be added 
the focal length of the eyepiece to get the lens separation: 
3.38 * 102 mm + 25 mm = 3.6 * 102 mm.

(b)  MTo = -si>so = -3.38 * 102 mm>27 mm = -12.5* , while the 
eyepiece has a magnification of do� = (254 mm)(1>25 mm) =  
10.2* . Thus the total magnification is MP = (-12.5)(10.2) =  
-1.3 * 102; the minus sign just means the image is inverted.

Chapter 6

6.2 From Eq. (6.8),

1>ƒ = 1>ƒ′ + 1>ƒ′ - d>ƒ′ƒ′ = 2>ƒ′ - 2>3ƒ′,  ƒ = 3ƒ′>4
From Eq. (6.9), H11H1 = (3ƒ′>4)(2ƒ′>3)>ƒ′ = ƒ′>2.

From Eq. (6.10), H22H2 = - (3ƒ′>4)(2ƒ′>3)>ƒ′ = -ƒ′>2.
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7.8 E = E1 = E2 = E01{sin[vt - k(x + ∆x) + sin(vt - kx)}.

Since sin b + sin g = 2 sin 12 (b + g) cos 12 (b - g)

E = 2E01 cos 
k∆x

2
 sin cvt - k ax +

∆x
2
bd

7.9 E = E0 Re [ei(kx +vt) - ei(kx -vt)]

 = E0 Re[eikx(eivt - e-ivt)] 

 = E0 Re [eikx2i sin vt]
 = E0 Re [2i cos kx sin vt - 2 sin kx sin vt]

and E = -2E0 sin kx sin vt. Standing wave with node at x = 0.

7.13  
0E
0x

= -  
0B
0t

Integrate to get

B(x, t) = -3 
0E
0x

 dt = -2E0k cos kx3 cos vt dt

 = -  
2E0k

v
 cos kx sin vt

But E0 k>v = E0>c = B0; thus

B(x, t) = -2B0 cos kx sin vt

6.24 �1 = (1.5 - 1)>0.06 = 8.33 m-1; �2 = (1.5 - 1)> - (-0.25) =  

2 m-1. � = c1 - (2)0.03>1.5 -8.33 - 2 + 8.33(2)0.03>1.5
0.03>1.5 1 - (8.33)0.03>1.5

d  and 

� = c0.96 - 10
0.02 0.833

d . The determinant of this matrix (rounded to three 

decimal places) is exactly 1.000, which confirms our calculations.

6.30 See E. Slayter, Optical Methods in Biology. PC>CA =  
(n1>n2)R>R = n1>n2, while CA>P′C = n1>n2. Therefore triangles ACP 
and ACP′ are similar; using the sine law

sin ∡ PAC

PC
=

sin ∡ APC

CA

or
n2 sin ∡ PAC = n1 sin ∡ APC

but ui = ∡ PAC, thus ut = ∡ APC = ∡ P′AC, and the refracted ray  
appears to come from P9.

6.31 From Eq. (5.6), let cos w = 1 - w2>2; then

/o = [R2 + (so + R)2 - 2R(so + R) + R(so + R)w2]1>2

 /o
-1 = [so

2 + R(so + R)w2]-1>2

 /i
-1 = [si

2 - R(si - R)w2]-1>2

where the first two terms of the binomial series are used,

 /o
-1 ≈ so

-1 - (so + R)h2>2so
3R  where w ≈ h>R,

 /i
-1 ≈ si

-1 + (si - R)h2>2si
3R

Substituting into Eq. (5.5) leads to Eq. (6.46).

6.32

Chapter 7

7.1 E2
0 = 64 + 100 + 2 · 8 · 10 cos p>3 = 244, E0 = 15.6; 

tan a = 10
8 , a = 51.3° 5 0.9 rad

E = 15.6 sin (200pt + 0.90)

7.5 (a) 
0.8 m

540 nm
= 0.15 * 107 waves

 (b)  In the glass 
0.1
l0>n =

0.1(1.5)

540 * 10-9 = 2.78 * 105 waves

 In air, 0.7>540 * 10-9 = 0.13 * 107 waves

 Total: 2.78 * 105 + 0.13 * 107 = 0.158 * 107 waves

 (c) OPD = [(1.5)(0.1) + (1)(0.7)] - (1)(0.8)

 OPD = (0.15 + 0.7) - 0.8 = 0.05 m

 (d) Λ>l0 = 0.05>540 * 10-9 = 0.9 * 105 waves
 (b) -  (a) = 0.8 * 105 waves

z

y

B

E

x

7.21 E = E0 cos vct + E0a cos vmt cos vct

 = E0 cos vct +
E0a

2
 [cos (vc - vm)t + cos (vc + vm)t]

Audible range nm = 20 Hz to 20 * 103 Hz. Maximum modulation  
frequency nm(max) = 20 * 103 Hz.

nc - nm(max) … n … nc + nm(max)

∆n = 2nm(max) = 40 * 103 Hz

7.22 v = v>k = 2 ak2,    vg = dv>dk =  (2a) (3k2) = 6ak2

7.29 v = A gl

2p
= 1g>k

 vg = v + k 
dv
dk

 [7.38]

 
dv
dk

= -  
1
2kAg

k
= -  

v
2k

 vg = v>2
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7.50 ƒ′(x) =
1
p3

a

0
 E0L 

sin kL>2
kL>2  cos kx dk

 =
E0L

p2 3b

0
 
sin (kL>2 + kx)

kL>2  dk

 +
E0L

p2 3b

0
 
sin (kL>2 - kx)

kL>2  dk

Let kL>2 = w, (L>2) dk = dw, kx = wx′.

ƒ′(x) =
E0

p 3b

0
  

sin (w + wx′)
w

 dw +
E0

p
 3b

0
 
sin(w - wx′)

w
 dw

where b = aL>2. Let w + wx′ = t, dw>w = dt>t. 0 … w … b and  
0 … t … (x′ + 1)b. Let w - wx′ = - t in the other integral. 0 … w … b 
and 0 … t … (x′ - 1)b.

ƒ′(x) =
E0

p
 3(x′ + 1)b

0
 
sin t

t
 dt -

E0

p
 3(x′ - 1)b

0
 
sin t

t
 dt

ƒ′(x) =
E0

p
 Si[b(x′ + 1)] -

E0

p
 Si [b(x′ - 1)],  x′ = 2x>L

7.31 vg = v + k 
dv
dk

 and 
dv
dk

=
dv
dv

 
dv
dk

= vg
dv
dv 

.

Since v = c>n,  
dv
dv

=
dv
dn

 
dn
dv

= -  
c

n2 
dn
dv 

vg = v -
vgck

n2  
dn
dv

=
v

1 + (ck>n2)(dn>dv)
=

c
n + v(dn>dv)

7.40 v 7 7  vi, n
2 = 1 -

Nqe
2

v2P0me
 ^ƒi = 1 -

Nqe
2

v2P0 me
.

Using the binomial expansion, we have

(1 - x)1>2 ≈ 1 -
1
2

 x for x 6 6  1

n = 1 - Nqe
2>v2P0 me2,    dn>dv = Nqe

2>P0 mev
3

 vg =
c

n + v(dn>dv)

=
c

1 - Nqe
2>v2P0 me2 + Nqe

2>P0 mev
2

 =
c

1 + Nqe
2>P0 mev

22

and vg 6 c,

v = c>n =
c

1 - Nqe
2>P0 mev

22

Binomial expansion

 (1 - x)-1 ≈ 1 + x,  x 6 6  1

 v = c[1 + Nqe
2>P0 mev

22];  v vg = c2

7.43 3l
0

 sin akx sin bkx dx

=
1
2k

 c3l
0

 cos [(a - b)kx]k dx - 3l
0

 cos [(a + b)kx]k dxd

 =
1
2k

 
sin(a - b)kx

a - b
 `
l

0
 -

1
2k

 
sin (a + b)kx

a + b
 `
l

0

 = 0 if a Z b

Whereas if a = b

3l
0

 sin2 akx dx =
1
2k3

l

0
 (1 + cos 2akx)k dx =

l

2

The other integrals are similar.

7.44 Even function, therefore Bm = 0.

A0 =
2
l

 3l>a-l>a
 dx =

2
l

 al
a

+
l

a
b =

4
a

 Am =
2
l

 3l>a
-l>a

 (1) cos mkx dx

 Am =
2

mkl
 sin mkx d

l>a

-l>a

 Am =
2

mp
 sin 

m2p
a

p 2p

p�2

−p�2

u

Si(u)

7.54 By analogy with Eq. (7.61),

A(v) =
∆t
2

 E0 sinc (vp - v) 
∆t
2

From Table 1 (p. 681) sinc (p>2) = 63.7%. Not quite 50% actually,

sinc a p

1.65
b = 49.8%

` (vp - v) 
∆t
2
` 6

p

2
 or -  

p

∆t
6 (vp - v) 6

p

∆t

Thus appreciable values of A(v) lie in a range ∆v ∼ 2p>∆t and 
∆n ∆t ≈ 1. The power spectrum is proportional to A2(v), and [sinc 
(p>2)]2 = 40.6%.

7.55 ∆lc = c ∆tc, ∆lc ≈ c>∆n. But ∆v>∆k0 = v>k0 = c; thus 
� ∆n>∆l0 �  =  n>l0,

 ∆lc ≈
cl0

∆l0n
  ∆lc ≈ l 0

2>∆l0

Or try using the uncertainty principle:

∆l ≈
h

∆p
 where p = h>l and ∆l0 6 6  l0
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Let E0 + E′0 = E″0x and E0 - E′0 = E″0y; then E$ = îE″0x cos (kz - vt) +   
ĵE″0y sin (kz - vt). From Eqs. (8.11) and (8.12) it is clear that we have 
an ellipse where e = -p>2 and a = 0.

8.7 E0y = E0 cos 30; E0z = E0 sin 30;

 E$(x, t) = (0.87ĵ + 0.5k̂)E0 cos (kx - vt + 1
2 p).

8.9 E$ = E0[ĵ sin (kx - vt) - k̂ cos (kx - vt)].

8.15 In natural light each HN-38 filter will allow only 38% of the in-
cident beam to pass through it. If the flux density of the incident beam 
of light is Ii, then the light passing through the first filter will have flux 
density 0.38Ii . Thus, for the second filter, the initial flux density of 
the incident light beam is 0.38Ii. Thus the light transmitted from the 
second filter will have a flux density It = (0.38)(0.38)Ii = 0.144Ii.

8.30 From the figure, it follows that

 I = 1
2 E2

01 sin2 u cos2 u =
E2

01

8
 (1 - cos 2u)(1 + cos 2u)

 =
E2

01

8
 (1 - cos2 2u) =

E2
01

8
 [1 - (1

2 cos 4u + 1
2)]

 =
E2

01

16
 (1 - cos 4u) =

I1

8
 (1 - cos 4u)  u = vt

7.57  ∆lc = c ∆tc = 3 * 108 m>s * 10-8 s = 3 m

 ∆l0 ≈ l0
2>∆lc = (500 * 10-9 m)2>3 m

 ∆l0 ≈ 8.3 * 10-14 m = 8.3 * 10-5 nm

∆l0>l0 = ∆n>n = 8.3 * 10-5>500 =  1.6 * 10-7

 ≈ 1 part in 107

7.58 ∆n = 54 * 103 Hz

 ∆n>n =
(54 * 103)(10 600 * 10-9 m)

(3 * 108 m>s)

 = 1.91 * 10-9

 ∆lc = c ∆tc ≈ c>∆n

 ∆lc ≈
(3 * 108 m>s)

(54 * 103 Hz)
= 5.55 * 103 m

7.60 ∆lc = c ∆tc = 3 * 108 * 10-10 = 3 * 10-2 m

 ∆n ≈ 1>∆tc = 1010 Hz

 ∆l0 ≈ l 0
2>∆lc (see Problem 7.55)

 = (632.8 nm)2>3 * 10-2 m = 0.013 nm

 ∆n = 1015 Hz, ∆lc = c * 10-15 = 300 nm

 ∆l0 ≈ l 0
2>∆lc = 1334.78 nm

Chapter 8

8.4 

(a)  E$ = îE0 cos (kz - vt) + ĵE0 cos (kz - vt + p). Equal amplitudes, 
Ey lags Ex by p. Therefore �-state at 135° or -45°.

(b)  E$ = îE0 cos (kz - vt - p>2) + ĵE0 cos (kz - vt + p>2). Equal 
amplitudes, Ey lags Ex by p. Therefore same as (a).

(c)  Ex leads Ey by p>4. They have equal amplitudes. Therefore it is an 
ellipse tilted at +45° and is left-handed.

(d)  Ey leads Ex by p>2. They have equal amplitudes. Therefore it is 
an ℛ-state.

8.5  E$x = î cos vt,  E$y = ĵ sin vt

Left-handed circular standing wave.

y

z

x

8.6 E$ℛ = îE0 cos (kz - vt) + ĵE0 sin (kz - vt)

E$ℒ = îE′0 cos (kz - vt) - ĵE′0 sin (kz - vt)

E$ = E$ℛ + E$ℒ = î (E0 + E′0) cos (kz - vt)

+ ĵ(E0 - E′0) sin (kz - vt).

Eo1
Eo1 cosu

Eo1 cosu

Eo1 cosu cos (90 – u)90 – u

u

8.31 No. The crystal performs as if it were two oppositely oriented 
specimens in series. Two similarly oriented crystals in series would 
behave like one thick specimen and thus separate the o- and e-rays 
even more.

8.33 Light scattered from the paper passes through the polaroids and 
becomes linearly polarized. Light from the upper left filter has its E$- 
field parallel to the principal section (which is diagonal across the sec-
ond and fourth quadrants) and is therefore an e-ray. Notice how the 
letters P and T are shifted downward in an extraordinary fashion. The 
lower right filter passes an o-ray so that the C is undeviated. Note that 
the ordinary image is closer to the blunt corner.

8.34 (a) and (c) are two aspects of the previous problem. (b) shows 
double refraction because the polaroid’s axis is at roughly 45° to the 
principal section of the crystal. Thus both an o- and an e-ray will 
exist.
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(c)  Undesired energy in the form of one of the �-states can be dis-
posed of without local heating problems.

(d)  The Rochon transmits an undeviated beam (the o-ray), which is 
therefore achromatic as well.

8.52 no = 1.658 4, ne = 1.486 4. Snell’s Law:

 sin ui = no sin uto = 0.766

 sin ui = ne sin ute = 0.766

 sin uto ≈ 0.463,  uto ≈ 27°35′
 sin ute ≈ 0.516,  ute ≈ 31°4′
 ∆u ≈ 3°29′
8.54 Ex leads Ey by p>2. They were initially in-phase and Ex 7 Ey . 
Therefore the wave is left-handed, elliptical, and horizontal.

8.68 The ℛ-state (looking toward the source) incident on the glass 
screen drives the electrons in circular orbits, and they reradiate reflect-
ed circular light whose E$-field rotates in the same direction as that of 
the incoming beam. But the propagation direction has been reversed 
on reflection, so that although the incident light is in an ℛ-state, the 
reflected light (looking toward the source) is left-handed. It will there-
fore be completely absorbed by the right-circular polarizer. This is il-
lustrated in the figure below.

8.35 When E$  is perpendicular to the CO3 plane, the polarization will 
be less than when it is parallel. In the former case, the field of each po-
larized oxygen atom tends to reduce the polarization of its neighbors. 
In other words, the induced field, as shown in the figure, is down while 
E$  is up. When E$  is in the carbonate plane, two dipoles reinforce the 
third and vice versa. A reduced polarizability leads to a lower dielectric 
constant, a lower refractive index, and a higher speed. Thus v‘ 7 v#.

E

8.36 Calcite no 7 ne . Two spectra will be visible when (b) or (c) is used 
in a spectrometer. The indices are computed in the usual way, using

 n =
sin 12 (a + dm)

sin 12 a

where dm is the angle of minimum deviation of either beam.

8.37 sin uc =
nbalsam

n0
=

1.55
1.658

= 0.935; uc ≈ 69°

8.40
e

o

(a) Calcite

e

o

(b) Quartz

E
+

−

Oxygen

+

−

Oxygen

+

−

Oxygen
Carbon

o, e

(a)

−

−
−

Carbon

a

o
e

(b)

o
e

(c)

�

�
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1
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0
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0

¥

8.89 cte
iw 0

0 teiwd
where a phase increment of w is introduced into both components as a 
result of traversing the plate.

 c1 0
0 1

d   c0 0
0 0

d

8.90  ≥
t2 0 0 0
0 t2 0 0
0 0 t2 0
0 0 0 t2

¥   ≥
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

¥

8.91 V =
Ip

Ip + Iu
=

( 2
1 + 2

2 + 2
3)1/2

0

Ip = ( 2
1 + 2

2 + 2
3)1/2;  I - Ip = Iu

8.69 ∆w =
2p
l0

 d ∆n

but ∆w = (1>4)(2p) because of the fringe shift. Therefore ∆w = p>2 
and

 
p

2
=

2p d (0.005)

589.3 * 10-9

 d =
589.3 * 10-9

2(10-2)
= 2.94 * 10-5 m

8.70 Yes. If the amplitudes of the �-states differ. The transmitted 
beam, in a pile-of-plates polarizer, especially for a small pile.

8.72 Place the photoelastic material between circular polarizers with 
both retarders facing it (as in Fig. 8.59). Under circular illumination 
no orientation of the stress axes is preferred over any other, and they 
will thus all be indistinguishable. Only the birefringence will have an 
effect, and so the isochromatics will be visible. If the two polarizers are 
different, that is, one an ℛ, the other an ℒ, regions where ∆n leads to 
∆w = p will appear bright. If they are the same, such regions appear 
dark.

8.74 Vl>2 = l0>2n3
0 r63 [8.51]

 = 500 * 10-9>2(1.58)3 * 5.5 * 10-12

 = 11.5 kV.

8.76 E$1 · E$*
2 = 0,  E$2 = ce21

e22
d

 E$1 · E$*
2 = (1)(e21)* + (-2i)(e22)* = 0

 E$2 = c2
i
d

            E$1 is           

E$2 is

8.84 
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(c)  Since the fringes vary as cosine-squared and the answer to (a) is 
half a fringe width, the answer to (b) is 10 times larger.

9.21 r2
2 = a2 + r2

1 - 2ar1 cos(90 - u). The contribution to cos d>2 
from the third term in the Maclaurin expansion will be negligible if

k
2

 a a2

2r1
 cos2 ub 6 6  p>2

Therefore r1 7 7  a2>l.

9.22 E = 1
2 mv2;  v = 0.42 * 106 m>s;

l = h>mv = 1.73 * 10-9 m;  ∆y = sl>a =  4.33 mm

9.29 ∆y = sl0>2da(n - n′).
9.31 ∆y = (s>a)l, a = 0.0125 cm, a>2 = 0.00625 cm

9.32 d = k(r1 - r2) + p  (Lloyd’s mirror)

d = k5a>2 sin a - [sin (90 - 2a)]a>2 sin a6 + p

d = ka(1 - cos 2a)>2 sin a + p

maximum occurs for 

d = 2p when sin a(l>a) = (1 - cos 2a) = 2 sin2 a

First maximum a = sin-1 (l>2a).

9.34 Here 1.00 6 1.38 6 2.00, hence, from Eq. (9.36) with m = 0, 
d = 10 + 1

22(633 nm)>2(1.38) = 114.6 nm.

9.38 From Eq. (9.37) m = 2nƒ d>l0 = 12 500. A minimum, therefore 
central dark region.

0 - ( 2
1 + 2

2 + 2
3)1/2 = Iu

≥
4
0
0
0

¥ + ≥
1
0
0
1

¥ = ≥
5
0
0
1

¥

5 - (0 + 0 + 1)1/2 = Iu

8.93

(a) c cos2 a cos a sin a
cos a sin a sin2 a

d  ccos u
sin u

d =

 ccos2 a cos u + cos a sin a sin u
 cos a sin a cos u + sin2 a sin u

d = cos (u - a) ccos a
sin a

d
(b) Emerging beam is polarized at angle a to the horizontal and its 
amplitude is reduced by a factor cos (u - a). This is exactly what an 
ideal linear polarizer would do if its transmission axis were oriented at 
a to the horizontal (recall Malus’s law).

(c) (For example). Construct the Jones matrix for crossed polarizers. 
Let the second polarizer be at angle a - 90° so that cos a is replaced 
by sin a and sin a by -cos a. The Jones matrix for the combination 
is then

c cos2 a cos a sin a
cos a sin a sin2 a

d  c sin2 a sin a cos a
sin a cos a cos2 a

d =

c0 0
0 0

d  (the null matrix!)

Chapter 9

9.1 E$1 ~E$2 = 1
2 (E$1e-ivt + E$*

1eivt) ~ 1
2 (E$2e-ivt + E$*

2eivt),

where Re (z) = 1
2 (z + z*).

E$1 ~E$2 = 1
4[E$1 ~E$2e-2ivt + E$*

1 ~E$*
2e2ivt + E$1 ~E$*

2 + E$1
* ~E$2]

The last two terms are time independent, while 

8E$1 ~E$2e-2ivt9 S 0 and 8E$*
1 ~E$*

2e2ivt9 S 0

because of the 1>Tv coefficient. Thus

I12 = 28E$1 ~E$29 = 1
2 (E$1 ~E$*

2 + E$*
1 ~E$2)

9.2 The largest value of (r1 - r2) is equal to a. Thus if e1 = e2,  
d = k(r1 - r2) varies from 0 to ka. If a 7 7  l, cos d and therefore I12 
will have a great many maxima and minima and therefore average to 
zero over a large region of space. In contrast, if a 6 6  l, d varies only 
slightly from 0 to ka 6 6  2p. Hence I12 does not average to zero, and 
from Eq. (9.17), I deviates little from 4I0. The two sources effectively 
behave as a single source of double the original strength. 

9.4 A bulb at S would produce fringes. We can imagine it as made 
up of a very large number of incoherent point sources. Each of these 
would generate an independent pattern, all of which would then over-
lap. Bulbs at S1 and S2 would be incoherent and could not generate 
detectable fringes.

9.9

(a)  (r1 - r2) = ±1
2l, hence a sin u1 = ±1

2l and u1 ≈ ±l>2a =  
±(1>2) (694.3 * 10-9 m)>(0.200 * 10-3 m) = ±1.73 * 10-3 rad 
or since y1 = su1 = (1.00 m)(±1.73 * 10-3 rad) = ±1.73 mm

R1

d1 xx

R1 − d1

9.39 The fringes are generally a series of fine jagged bands, which are 
fixed with respect to the glass.

9.40 ∆x = lƒ>2a,  a = l0>2nƒ∆x

a = 5.55 * 10-5 rad = 11.3 seconds.

9.43 x2 = d1[(R1 - d1) + R1] = 2R1d1 - d2
1.

Similarly, x2 = 2R2d2 - d2
2

d = d1 - d2 =
x2

2
 c 1

R1
-

1
R2
d ,  d = m 

lƒ

2

As R2 S ∞ , xm approaches Eq. (9.43).

9.47 A motion of l>2 causes a single fringe-pair to shift past, hence 
94(l>2) = 2.25 * 10-5 m and l = 479 nm.

9.53 Et
2 = EtEt

* = E2
0(tt′)2>(1 - r2e-id)(1 - r2e+id)

It = Ii(tt′)2>(1 - r2e-id - r2eid + r4)

9.54 (a) R = 0.80 6 F = 4R>(1 - R)2 = 80

(b) g = 4 sin-1 1>2F = 0.448

(c) ℱ = 2p>0.448 

(d) C = 1 + F
(b)  y5 = s5l>a = (1.00 m)5(694.3 * 10-9)>(0.2 * 10-3) =  

1.73 * 10-2 m
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10.6  b = ±p

sin u = ±l>b
u ≈ ±l>b

Lu ≈ ±Ll>b
Lu ≈ ±ƒ2l>b

9.55 
2

1 + F(∆d>4)2 = 0.81 c1 +
1

1 + F(∆d>2)2d

F2(∆d)4 - 15.5F(∆d)2 - 30 = 0

9.56 I = Imax cos2 d>2
I = Imax>2 when d = p>2 6g = p

Separation between maxima is 2p

ℱ = 2p>g = 2

9.58 At near-normal incidence (ui ≈ 0) Fig. 4.52 indicates that the 
relative phase shift between an internally and externally reflected 
beam is p rad. That means a total relative phase difference of 

n0 < n1

2p
lf

n1 > ns

ns

[2(lf�4)] + p

or 2p. The waves are in-phase and interfere constructively.

9.59 n0 = 1, ns = ng, n1 = 2ng21.54 = 1.24,

d =
1
4

 lƒ =
1
4

 
lf

n1
=

500
4(1.24)

 nm = 101 nm

No relative phase shift between two waves.

9.60 The refracted wave will traverse the film twice and there will be 
no relative phase shift on reflection. Hence 

d = l0>4nƒ = (500 nm)>4(1.58) = 79 nm.

Chapter 10

10.1 (R + /)2 = R2 + a2; therefore R = (a2 - /2)>2/ ≈ a2>2/, 
/R = a2>2, so for l 7 7  /, lR 7 7  a2>2 6 R = (1 * 10-3)210>2l =  
10 m.

S

aR + �

R

10.3 d sin um = ml,   u = Nd>2 = p

 7 sin u = (1)(0.21)  d = 2p>N = kd sin u

 sin u = 0.03   sin u = 0.000 9

 u = 1.7°   u = 3 min

10.4 Converging spherical wave in image space is diffracted by the 
exit pupil.

P

PS

Exit
pupil

≈ Ll�b
b

L

10.9 l = (25 cm) sin 36.87 = 15 cm.

10.14 a =
ka
2

 sin u,  b =
kb
2

 sin u

a = mb, a = mb, a = m2p

N = number of fringes = a>p = m2p>p = 2m

10.17 a = 3p>2N = p>2 [10.34]

I(u) =
I(0)

N2  asin b

b
b

2

    from Eq. (10.35)

and I>I(0) ≈ 1
9 .

sin u
l

a
l

b

sin u
l

a
l

b

10.26 If the aperture is symmetrical about a line, the pattern will 
be symmetrical about a line parallel to it. Moreover, the pattern 
will be symmetrical about yet another line perpendicular to the ap-
erture’s symmetry axis. This follows from the fact that Fraunhofer 
patterns have a center of symmetry.
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10.27

10.28 Three parallel short slits.

10.29 Two parallel short slits.

10.30 An equilateral triangular hole.

10.31 A cross-shaped hole.

10.32 The E-field of a rectangular hole.

10.38 From Eq. (10.58), q1 ≈ 1.22(ƒ>D)l ≈ l.

10.39
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10.65 ℛ = mN = 106, N = 78 * 103,

6 m = 106>78 * 103

∆lfsr = l>m = 550 nm>(106>78 * 103) = 43 nm

 ℛ = ℱm = ℱ 
2nƒ d

l
= 106

 ∆lfsr = l2>wnƒd = 0.01512  nm

10.66  ℛ = l>∆l = 5893>6 = 982

 N = ℛ>m = 982>3 = 327.

10.68 y = Ll>d
d = (20 m) * (5.5 * 10-7 m)>(12 * 10-2 m) = 9.16 * 10-5 m

10.70 A = 2pr23w
0

sin w dw = 2pr2(1 - cos w)

 cos w = [r2 + (r + r0)2 - r2
l ]>2r(r + r0)

 rl = r0 + ll>2
Area of first l zones

 A = 2pr2 - pr(2r2 + 2rr0 - llr0 - l2l2>4)>(r + r0)

 Al = A - Al - 1 =
lpr

r + r0
 cr0 +

(2l - 1)l

4
d

10.84

a

n

ui

um

unun

∆w = 5.5
1

1

3

0 2 3

10.45 1 part in 1000. 3 yd ≈ 100 inches. (See figure below.)

inch
1
10

inch
1
10

inch
1
10

10.55 From Eq. (10.32), where a = (1>1000 lines per cm) = 0.001 cm  
per line (center-to-center), sin um = 1(620 * 10-9 m)>(0.01 *
10-2 m) = 6.2 * 10-2 m and u1 = 3.56°.
10.61 The largest value of m in Eq. (10.32) occurs when the sine 
function is equal to 1, making the left side of the equation as large 
as possible; then m = a>l = (1>9 * 105)>(3.0 * 108 m>s , 4.0 *  
1014 Hz) = 1.4, and only the first-order spectrum is visible.

10.63 sin ui = n sin un

Optical path length difference = ml

a sin um - na sin un = ml

a(sin um - sin ui) = ml

10.85 I =
I0

2
5 [1

2 - �(v1)]2 + [1
2 - �(v1)]26

 I =
I0

2
 a 1
pv1

b
2

csin2 apv2
1

2
b + cos2 apv2

1

2
bd

 I =
I0

2
 a 1
pv1

b
2
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11.9 ℱ[pf (y) + qh(y)] = pF(k) + qH(k).

11.11 F(k) = L sinc2 kL>2 at k = 0, F(0) = L, and F(±2p>L) = 0.

11.18 3∞

-∞
a(x)b(X - x)dx

= -3∞

-∞
a(X - x′)b(x′)dx′ = 3∞

-∞
b(x′)a(X - x′)dx′

where x′ = X - x, dx = dx′.
aàb = bàa

or
ℱ{aàb} = ℱ{a} · ℱ{b} = ℱ{b} · ℱ{a} = ℱ{bàa}.

11.22 A point on the edge of ƒ(x, y), for example, at (x = d, y = 0), 
is spread out into a square 2/ on a side centered on X = d. Thus it ex-
tends no farther than X = d + /, and so the convolution must be zero 
at X = d + / and beyond.

11.24 a(x - x0)àb(x) = 3 + ∞

-∞
a(x - x0)b(X - x) · dx,

and setting x - x0 = a, this becomes

3∞

-∞
a(a) · b(X - a - x0) · da = g(X - x0)

11.28

10.86 Fringes in both the clear and shadow region [(see M. P. Givens 
and W. L. Goffe, Am. J. Phys. 34, 248 (1966)].

10.87 u = y[2>lr0]1>2;  ∆u = ∆y * 103 = 2.5.

+kp

−kp

F(k)

0
k

Chapter 11

11.1 E0 sin kpx = E0(eikpx - e-ikpx)>2i

F(k) =
E0

2i
c3+L

-L
ei(k + kp)x dx - 3+L

-L
ei(k - kp)x dxd

F(k) = -  
iE0 sin (k + kp)L

(k + kp)
+

iE0 sin (k + kp)L

(k - kp)

F(k) = iE0L[sinc (k - kp)L - sinc (k + kp)L]

v
2vp 2vp−2vp −2vp

v
0 0

T ∞

f(x)

0
x

d(x − x0)

0
x

f(x − x0)

0
x

f(x) d(x − x0)

x0

x0

11.3 cos2 vpt = 1
2 + 1

2 cos 2vpt = 1
2 +

e2ivpt + e-2ivpt

4

F(v) = 1
23+T

-T
eivt dt + 1

43ei(v+ 2vp)t dt + 1
43ei(v- 2vp)t dt

F(v) =
1
v

 sin vT +
1

2(v + 2vp)
 sin (v + 2vp)T

+
1

2(v - 2vp)
 sin(v - 2vp)T

F(v) = T sinc vT +
T
2

 sinc(v + 2vp)T

+
T
2

 sinc(v - 2vp)T

1.250 5

10.88
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11.33 ƒ(x)àh(x)

= [d(x + 4) + d(x - 3) + d(x - 6)]àh(x)

= h(x + 4) + h(x - 3) + h(x - 6).

11.36

11.37 �(y, z) = �(-y, -z)

E(Y, Z, t) ∝6�(y, z)ei(kYy + kZz) dy dz

Change Y to -Y, Z to -Z, y to -y, z to -z; then kY goes to -kY and 
kZ to -kZ.

E(-Y, -Z) ∝6�(-y, -z)ei(kYy + kZz)dy dz

6E(-Y, -Z) = E(Y, Z)

11.38 As given

E(X, Y) = 6�(x, y)eik(Xx + Yy)>R dx dy

E′(X, Y) = 6�(ax, by)eik(Xx + Yy)>R dx dy

Now, let x′ = xa, y′ = by

E′(X, Y) =
1
ab6�(x′, y′)eik[(X>a)x′ + (Y>b)y′]>R dx′dy′

or  E′(X, Y) = (1>ab) E (X>a, Y>b). 

11.39

CBB = lim
T S ∞

 
1

2T3
T

-T
A sin (vt + e) A sin (vt - vt + e) dt

= lim
T S ∞

 
A2

2T3
T

-T
c1
2

 cos (vt) -
1
2

 cos (2vt - vt + 2e)d dt

Since cos a - cos b = -2 sin (1/2) (a + b) sin (1>2) (a - b). 

Thus,  CBB = (A2>2)  cos  (vt).

�{h(x)} �{ f(x)}

0

=

=

1
2

�{E(x)}

11.40 E(kZ) = 3t>2

-t>2
�0 cos (pz>t)eikZz dz

= �0 3cos (pz/t) cos (kZz) dz + i�03cos (pz/t) sin (kZz) dz

E(kZ) = � cos atkZ

2
b c 1

p/t - kZ
+

1
p/t + kZ

d ·

Chapter 12

12.8 At low pressures, the intensity emitted from the lamp is low, the 
bandwidth is narrow, and the coherence length is large. The fringes 
will initially display a high contrast, although they’ll be fairly faint. 
As the pressure builds, the coherence length will decrease, the contrast 
will drop off, and the fringes might even vanish entirely.

12.11 Each sine function in the signal produces a cosinusoidal au-
tocorrelation function with its own wavelength and amplitude. All 
of these are in phase at the zero delay point corresponding to t = 0.  
Beyond that origin, the cosines soon fall out of phase, producing a 
jumble where destructive interference is more likely. (The same sort 
of thing happens when, say, a square pulse is synthesized out of  
sinusoids—everywhere beyond the pulse all the contributions cancel.) 
As the number of components increases and the signal becomes more 
complex—resembling random noise—the autocorrelation narrows,  
ultimately becoming a d-spike at t = 0.

12.13 The irradiance at g0 arising from a point source is

4I0 cos2 (d>2) = 2I0(1 + cos d)

For a differential source element of width dy at point S′, y from axis, 
the OPD to P at Y via the two slits is 

Λ = (S′S1 + S1P) - (S′S2 + S2P)

= (S′S1 - S′S2) + (S1P + S2P)

 = ay>l + aY>s from Section 9.3.

11.32 We see that ƒ(x) is the convolution of a rect function with two  
d-functions, and from the convolution theorem:

F(k) = ℱ5 (rect (x)à[d(x - b) + d(x + b)]6
= ℱ[rect (x)] · ℱ{[d(x - b) + d(x + b)]}

= b sinc (kb>2) · (ejkb + e-jkb)

= b sinc(kb>2) · 2 cos kb.
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 diffraction fringe of the source if � is to be maximum. au1 ≈ l, and so 
d ≈ lu1 ≈ ll>a = (500 * 10-9 m)(5.0 m)>(500 * 10-6 m) = 5.0 mm.

Chapter 13

13.2 P>A = Ps(T4 - T4
e) = (0.97)(5.670 3 * 10-8 W>m2 · K4) *

(3064 - 2934) = I = 76.9 W>m2. P = 108 W.

13.3 Ie = sT4

(22.8 W cm2)(104 cm2>m2) = (5.7 * 10-8 W m-2 K-4)T4

T = c22.8 * 104

5.7 * 10-8d
1>4

= 1.414 * 103 = 1414 K

13.4 T4
2>T4

1 = P2>P1 = 16 * 1012>16 * 108 = 1.0 * 104.

13.13 l(min) = 300 nm

hn = hc>l

=
(6.63 * 10-34 J · s)(3 * 108 m>s)

300 * 10-9 m

ℰ = 6.63 * 10-19 J = 4.14 eV

13.15 Nhn = (1.4 * 103 W>m2)(1 m2)(1 s)

N =
1.4 * 103(700 * 10-9)

(6.63 * 10-34)(3 * 108)
=

980 * 1020

19.89

N = 49.4 * 1020

13.16 Find the number of atoms present. pV = nRT; n = 4.47 * 10-7 
mol; so there are 2.69 * 1017 atoms and 2.67 * 1015 get excited; the 
emission rate is 2.67 * 1015>t = 1.92 * 1023 photons per second.

13.19 hn>kBT = 0.774 and 
1

e0.774 - 1
= 0.86; at the elevated 

temperature the ratio is substantial, and the two modalities are  
comparable.

13.29 The transition rate must equal P>hn = 3 * 1015 s-1.

13.37 I = 1
2 vPE2

0 =
n
2

 aP0

m0
b

1>2
E2

0, where m ≈ m0

E2
0 = 2(m0>P0)1>2 I>n  (m0>P0)1>2 = 376.730 Ω
E0 = 27.4 (I>n)1>2

13.39

The contribution to the irradiance from dy is then 

dI ∝ (1 + cos kΛ) dy

I ∝ 3+b>2

-b>2
(1 + cos kΛ) dy

I ∝ b +
d
ka

 csin aaY
s

+
ab
2l
b - sin aaY

s
-

ab
2l
bd

I ∝ b +
d
ka

 [sin (kaY>s) cos (kab>2l)

+ cos (kaY>s) sin (kab>2l)

- sin (kaY>s) cos (kab>2l)

+ cos (kaY>s) sin (kab>2l)]

I ∝ b +
l2
ka

 sin (kab>2l) cos (kaY>s)

12.14 � =
Imax - Imin

Imax + Imin

Imax = I1 + I2 + 22I1I2�g∼12�

Imin = I1 + I2 - 22I1I2�g∼12�

 � =
42I1I2�g∼12�

2(I1 + I2)

12.15 When 

S″S1O′ - S′S1O′ - l>2, 3l>2, 5l>2, c

the irradiance due to S′ is given by 

I′ = 4I0 cos2 (d′>2) = 2I0(1 + cos d′)

while the irradiance due to S″ is 

I″ = 4I0 cos2 (d″>2) = 4I0 cos2 (d′ + p)>2 

= 2I0(1 - cos d′)
Hence I′ + I″ = 4I0.

12.18 I1(t) = ∆I1(t) + 8I19
hence

8I1(t + t)I2(t)9 = 8[8I19 + ∆I1(t + t)][8I29 + ∆I2(t)]9
since 8I19 is independent of time.

8I1(t + t)I2(t)9 = 8I198I29 + 8∆I1(t + t) ∆I2(t)9
if we recall that8∆I1(t)9 = 0. Eq. (12.34) follows by comparison with 
Eq. (12.32).

12.20 From Eq. (12.22), � = 22(12I)I>(12I + I) = 2212>13 =  
0.5329.

12.24 From Table 1, sin u>u = 0.85 when u = 0.97.

Hence b = 0.97(ll/py) =
0.97 (2 m) (510 * 10-9 m)

p * (0.60 * 10-3 m)
= 5.2468 mm.

12.27 From the Van Cittert-Zernike theorem, the degree of coherence 
can be obtained from the Fourier transform of the source function, 
which is itself a series of d-functions corresponding to a diffraction 
grating with a spacing a, where a sin um = ml. The coherent func-
tion is therefore also a series of d-functions. Hence, the P1P2, the 
slit separation d, must correspond to the location of the first-order 

13.40
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13.43

13.41 13.44 From the geometry, ƒtu = ƒi Φ: kO = k sin u and kI = k sin Φ, 
hence sin u ≈ u ≈ kOl>2p and sin Φ ≈ Φ ≈ kIl>2p; therefore 
u>Φ = kO>kI and kI = kO(Φ>u) = kO(ƒt>ƒi). When ƒi 7 ƒt the image 
will be larger than the object, the spatial periods in the image will also 
be larger, and the spatial frequencies in the image will be smaller than 
in the object.

13.45 a = (1>50) cm: a sin u = ml, sin u ≈ u, hence u = (5000 m)l, 
and the distance between orders on the transform plane is 
ƒu = 5000 lƒ = 2.7 mm.

13.47 Each point on the diffraction pattern corresponds to a single spa-
tial frequency, and if we consider the diffracted wave to be made up of 
plane waves, it also corresponds to a single-plane wave direction. Such 
waves, by themselves, carry no information about the periodicity of the 
object and produce a more or less uniform image. The periodicity of the 
source arises in the image when the component plane waves interfere.

13.49 The relative field amplitudes are 1.00, 0.60, and 0.60; hence 
E ∝ 1 + 0.60 cos (+ky′) + 0.60 cos (-ky′) = 1 + 1.2 cos ky′. This is 
a cosine oscillating about a line equal to 1.0. It varies from +2.2 to 
-0.2. The square of this will correspond to the irradiance, and it will 
be a series of tall peaks with a relative height of (2.2)2, between each 
pair of which there will be a short peak proportional to (0.2)2; notice 
the similarity with Fig. 11.46.

13.50 a sin u = l, here ƒu = 50lƒ = 0.20 cm; hence l =  
0.20>50(100) = 400 nm. The magnification is 1.0 when the focal 
lengths are equal; hence the spacing is again 50 wires>cm.

13.54 The inherent motion of the medium would cause the speckle 
pattern to vanish.
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Index
A
Abbe, Ernst (1840–1905), 228, 273, 642
Abbe numbers, 280
Abbe prism, 201
Abbe’s image theory, 641–642
Aberration(s), 163, 266

chromatic, 225, 266, 279–284
axial, 279
lateral, 279

monochromatic, 266, 267
astigmatism, 266
coma, 266, 271–274
distortion, 266
field curvature, 266
spherical, 238, 267–271

stellar, 14
wave, 268

Absolute index of refraction (n) 76, 81
Absorptance, 438
Absorption, 77, 81, 431, 617

bands, 82, 352
coefficient, Einstein (Bij), 139, 617
dissipative, 77
selective (preferential), 142, 144
stimulated, 617–618

Absorptivity (a), 614
Abu Ali al-Hasan ibn al-Haytham [Alhazen] 

(965–1039), 9 
Abu Sa`d al-`Ala’ Ibn Sahl (940–1000), 9
Accommodation, 218–219, 220
Achromates, 12, 225, 280, 283
Acoustical holography, 666
Adaptive optics, 240–242
Additive coloration, 142–144
ADP (see Ammonium dihydrogen phosphate)
Aether, 11, 13–15
Afocal, 231
Airy, Sir George Biddell (1801–1891), 15, 

222, 490
Airy disk, 183, 241, 237, 238, 241, 268, 

490–492, 556
Airy function, 436
Alhazen, 9, 216, 228
Alkali metals, 140
Aluminum, 142, 188
AM radiowaves, 74
Ametropic, 220
Amici objective, 228
Ammonium dihydrogen phosphate (ADP), 

669
Ampère, André Marie (1775–1836), 50
Ampère’s Circuital Law, 50–51, 53
Amplification, of light, 612, 638
Amplitude, 22
Amplitude, squeezed light, 67
Amplitude coefficients, 124, 365

reflection (r), 124–133, 365
transmission (t), 124–133

Amplitude modulation, 303, 648
Amplitude splitting, 398, 416–432
Analytical ray tracing, 259
Analyzer, 346
Anamorphic lenses, 223
Anastigmats, 277

Angle-of-incidence (ui), 106
Angle-of-reflection (ur), 106
Angle-of-transmission (ut), 108
Angstrom (1 Å = 10-10 m), 23
Angular deviation, 199
Angular dispersion, 501
Angular field of view, 227
Angular frequency, 23 

spatial, 316
Angular magnification (MP or MA) 224–225, 

227–228, 232–233
Angular momentum, 344–345
Anharmonic waves, 308–318
Anomalous dispersion, 82
Anti-bunching, 67
Anti-Stokes transition, 636
Antinodes, 297
Antireflection coatings, 443–444
Aperture; see also Diffraction

clear, 186
numerical (NA), 206, 211, 228
relative, 186
stop, 183

Aperture function, 546, 567
Apex angle (a), 199
Aplanatic reflectors, 236
Apochromatic objective, 228
Apodization, 569–570
Apollo, 97, 141, 204
Arago, Dominique François Jean (1786–1853), 

13, 363, 375, 516
Area of coherence, 605
Arecibo Observatory, 270
Argand diagram, 30, 
Argon laser, 629, 631
Aristophanes, 9, 170
Aristotle, 9, 12, 228
Armstrong, E. H., 648
Array theorem, 570–571
Aspherical surfaces, 160–162, 192–193
Aspherics, 160–162
Astigmatic difference, 274
Astigmatism, 222–223, 236, 274–276
Astronomical telescope, 230
Atomic interferometers, 428
Atoms, 74–75
Attenuation coefficient (a), 139
Autocollimation, 501
Autocorrelation, 573–575
Automatic lens design, 267
Averaging harmonic functions, 58
Aviogon lens, 230
Axial chromatic aberration, 279
Azimuthal angle (g), 156

B
Babinet compensator, 372–373
Babinet’s Principle, 531
Baboon’s blue buttocks, 97
Back focal length, 170, 181, 221, 258, 264
Bacon, Roger (1215–1294), 9, 219
Bandwidth, 323–324, 374–375, 588

minimum resolvable, 440
Barkla, Charles Glover (1877–1944), 362

Barrel distortion, 277–279
Barrier penetration, 137–138
Bartholinus, Erasmus (1625–1692), 352
Basov, Nikolai Gennadievich (1922–2001), 612
Beam expander, 234–235
Beamsplitter cube, 138
Beamsplitters, 138, 424–426
Beats, 302–304

amplitude, 302
beat frequency, 302
carrier frequency, 302
relative phase, 302

Bending of lenses, 256
Bennett, William Ralph, Jr., 627
Bessel beam, 494–496
Bessel functions, 489, 495, 597
Beth, Richard A., 345
Biaxial crystals, 349, 357
Binocular night glasses, 185
Binoculars, 229–230, 234
Biot, Jean Baptiste (1774–1862), 375, 516
Biotar lens, 230, 277
Biprism (Fresnel’s double prism), 415
Bird, George R., 348
Birefringence, 351–360

circular, 376
stress, 380–381

Birefringent crystals, 352–359
Blackbody radiation, 61, 88, 612, 614
Blazed gratings, 499–500
Blind spot, 217–218
Bluejay’s feathers, 97
Blur spot, 159
Bohr, Niels Henrik David (1885–1962), 16
Boltzmann, Ludwig (1844–1906), 613
Boltzmann’s Constant (kB), 615
Boltzmann’s distribution, 612
Born, Max (1882–1970), 149
Bose-Einstein:

condensate, 331
distribution, 66
statistics, 63, 66

Bosons, 63
Boundary conditions, 122, 296
Boundary diffraction wave, 535–536
Boundary wave, 134–138
Bradley, James (1693–1762), 15
Bragg’s Law, 505, 664
Bremsstrahlung, 89
Brewster, David (1781–1868), 349, 363, 380
Brewster windows, 627, 628
Brewster’s angle, 363, 628
Brewster’s Law, 363, 365
Brillouin scattering, 304, 638, 668
Broglie, Louis Victor, Prince de (1892–1987), 16
Brumberg, Evgenii M., 62
Bunsen, Robert Wilhelm (1811–1899), 16
Burning glass, 9, 161, 170

C
C-W laser, 627
Cadmium red line, 324
Calcite, 12, 352–357
Calcium fluoride lenses, 228

Z05_HECH6933_05_GE_IDX.indd   712 02/09/16   2:44 PM



 Index 713

Dark-ground method, 650–651
De Broglie wavelength, 44
Degree of coherence, 325, 601 
Degree of polarization (V), 366, 388
Delta function, 547–552, 557
Denisyuk, Yuri Nikolayevitch (1927–2006), 663
Dense wavelength division multiplexing 

(DWDM), 209
Descartes, René (1596-1650), 10, 11, 151, 

161, 215, 246
Destructive interference, 292, 400
Deviation, angular, 199
Dextrorotatory, 376
Dichroic crystals, 348–349
Dichroism, 347
Dichromophore, 349
Dielectric constant (KE), 49
Dielectric films, 17, 416–424, 441–446

double-beam interference, 416–424
multilayer systems, 441–446

Differential wave equation:
one-dimensional, 20
three-dimensional, 36–39, 54–57

Diffraction, 11, 159, 457–536, 567–571
array theorem, 570–571
Babinet’s Principle, 531–532
boundary waves, 535–536
cancer cells, 492
circular apertures, 509–518
circular obstacles, 516
coherent oscillators, 462–465
comparison of Fraunhofer and Fresnel, 

460–462
Fourier methods, 567–571
Fraunhofer, 460–462, 465–494, 567–571

condition, 465
double slit, 473–476, 568
many slits, 476–483, 569

Fresnel, 460–462, 505–536
circular apertures, 509–518
circular obstacles, 516
rectangular aperture, 520
single slit, 525–528

gratings, 496–505, 639, 640
line gratings, 502
two- and three-dimensional, 502–505

Kirchhoff’s theory, 532–535
limited, 159, 237
of microwaves, 459
narrow obstacle, 529–531
nondiffracting beams, 496
opaque obstructions, 459–460
rectangular aperture, 483–488, 520–522
semi-infinite screen, 528–529
single slit, 465–473, 525–528
zones, 505–509

Diode laser, 632
Dioptric power (𝒟), 219–220
Dioptrics, 192
Dipole moment ( p ), 72–74, 78–80
Dipole radiation, 72–74
Dirac, Paul Adrien Maurice (1902–1984), 

16, 548
Dirac delta function, 547–552
Director (liquid crystals), 385
Discrete Fourier transform, 326

Color(s), 113, 142–146
additive, 142, 145
primary, 143
subtractive, 144, 145

Coma, 236, 271–274
negative, 272
positive, 272
sagittal, 272
tangential, 272

Comatic circle, 271
Comb function, 318, 550
Compensator plate, 424–426
Compensators, 372–373

Babinet, 372–373
Soleil, 373

Complementary colors, 144, 375
Complex amplitude, 294
Complex degree of coherence, 601
Complex index of refraction (ñ), 139
Complex numbers, 30
Complex representation, 30–31, 139, 294
Compound lens, 165, 258
Compound microscope, 226–228
Compound zero-order wave plate, 367
Compton, A. H., 135
Compton Effect, 68, 
Concave lens, 161, 166
Conductivity (s), 135–136
Confocal resonator, 624–625
Conjugate foci, 160
Conjugate points, 159
Connes, Pierre, 441
Constructive interference, 292, 400
Continuously variable retarder, 385
Contrast (𝒱), 579, 658
Contrast factor (C), 456
Converging lens, 161, 165
Convex lens, 165
Convolution:

integral, 557–564
theorem, 564–569

Cooke (or Taylor) triplet, 230, 277, 284
Copper, 140, 142
Corner cube, 204
Cornu, Marie Alfred (1841–1902), 522
Cornu spiral, 295, 522–531
Corpuscular theory, 11–17
Correlation interferometry, 605–609
Correlogram, 576
COSTAR, 270
Cotton-Mouton Effect, 382–383
Cover glass slides, 207
Crab Nebula, 72, 90
Critical angle, 127, 134, 201, 205
Cross-correlation, 452, 572, 573
Cross-talk, 205
Cryolite, 443
Cube corner reflector, 204
Cusa, Nicholas (1401–1464), 219
Cylinder lens, 222–223
Cylindrical waves, 39, 525

D
D’Alembert, Jean Le Rond (1717–1783), 20
D lines of sodium, 77, 144, 330
Da Vinci, Leonardo (1452–1519), 9, 18, 228

Camera, 187, 228–230
lenses, 229–231
pinhole, 228–229, 279
single lens reflex, 229

Camera obscura, 9, 228
Canada balsam, 359
Capillary optics, 214–215
Carbon dioxide laser, 326, 629, 631
Carbon disulfide, 383
Cardinal points, 255
Carotene, 145
Carrier wave, 304
Cartesian oval, 246
Cassegrain telescope, 235
Cataract, 220
Catoptrics, 9, 192
Cauchy, Augustin Louis (1789–1857), 95
Cauchy’s equation, 95
Caustic, 112–113
Cavities, optical, 266
Cavity modes, 622

transverse, 623
Centered optical system, 165
Central-spot scanning, 441
Cesium clock, 85
Cesium gas, 330
Chandra X-Ray Observatory, 90
CHARA Array, 605
Characteristic radiation, 90
Chelate lasers, 633
Chief ray, 184
Chlorophyll, 145
Cholesteric crystals, 378
Christiansen, C., 95
Christiansen, W. N., 464
Chromatic aberration(s), 225, 266, 279–284

axial, 279–280
lateral, 279–280

Chromatic resolving power (R), 440
Cinnabar, 377
Circle of least confusion, 268, 274
Circular birefringence, 376
Circular light, 341–342, 343, 373
Circular polarizers, 373–374
Cittert, Pieter Hendrik van, 588
Cladding, 205
Clausius, Rudolf Julius Emanuel (1822–1888), 273
Clear aperture, 186
Cleavage form, 352, 353
Coddington magnifier, 225
Coefficient of finesse (F), 436
Coherence, 588–611

area of, 590
complex degree of (g∙18), 602
functions, 597–602
length (∆lc), 324–326, 374, 411, 588
longitudinal, 569, 588
partial, 588
spatial, 403, 588, 602–603
temporal, 403, 588–589, 602–603
theory, 588–609
time (∆tc), 324, 374, 403, 588

Coherent fiber bundle, 206
Coherent waves, 292, 403–405
Cold mirror, 441
Collimated light, 170
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F
f-number (ƒ/#), 186–188, 194, 206, 228–230 

236, 490
Fabry, Charles (1867–1945), 437
Fabry-Perot cavity, 621,
Fabry-Perot etalon, 437, 621, 622, 671
Fabry-Perot filter, 438
Fabry-Perot Interferometer, 437–441, 502
Fabry-Perot spectroscopy, 439–441
Far field, 402
Far-field diffractions; see Fraunhofer  

diffraction
Far point, 220
Faraday, Michael (1791–1867), 13, 46, 381
Faraday Effect, 381–383
Faraday’s Induction Law, 46, 53
Farsightedness, 221–222
Fast axis, 368
“Faster than light” light; see Superluminal light
Fermat, Pierre de (1601–1665), 11, 117
Fermat’s Principle, 117–121, 147, 150,  

163, 192
Fermions, 63
Feynman, Richard Phillips (1918–1988), 121, 

149–150
Fiberoptic(s), 17, 204–214

acceptance angle, 206
amplifiers, 208
bandgap, 212
cladding, 205
coherent bundle, 206
communications technology, 208–214
cross-talk, 205
fractional refractive index difference, 209
graded-index, 211
holey, 212
incoherent bundle, 206
intermodal dispersion, 210
microstructured, 212
mode field, 211
mosaics, 207
multimode, 209
number of modes (Nm), 209
numerical aperture (NA), 206, 228
photonic crystal, 212
single-mode fibers, 211
spectral dispersion, 211
stepped-index, 209
V-number, 209
weakly guiding approximation, 209

Field curvature, 276–277
Field flattener, 207, 277
Field-lens, 226
Field stop, 183
Films; see Dielectric films
Filters, 441
Finesse (ℱ), 436, 439, 456, 502
Finite conjugates, 228
Finite imagery, 170–176
First-order theory, 164
Fizeau, Armand Hippolyte Louis (1819–1896), 

13, 15, 55, 603
Fizeau fringes, 421, 427
Floaters, 216–217
Fluorescence, 635
Flux density, 60, 294

Electronic polarization, 78
Elliptical light, 342–344
Emission coefficient (el), 612
Emission from an atom, 16, 74–75
Emission theory, 16
Emissivity (e), 614
Emmetropic eye, 220
Enantiomorphs, 376
Endoscope, 207
Energy, 57
Energy density (u), 57–58
Energy level, 74–75, 617, 618, 621, 628, 636, 

638
Entoptic perception, 217
Entrance pupil, 183, 186
Entrance window, 227
Erbium-doped fiber amplifiers (EDFAs), 208
Erecting system, 233
Etalon, Fabry-Perot, 437–441
Euclid, 9, 106, 192
Euler, Leonhard (1707–1783), 12, 121
Euler formula, 30
Evanescent wave, 135–136
Ewald-Oseen Extinction Theorem, 104
Excited state, 74
Exit pupil, 183–184, 224
Exitance, spectral, 612
Extended objects, images of, 170–175, 

188–190
External reflection, 104, 127
Extinction color, 349
Extraordinary rays, 353
Eye, 215–219

accommodation, 218–219
ciliary muscles, 218–219

aqueous humor, 216
choroid, 217
compound, 216
cornea, 216–217 
crystalline lens, 216–218
far point, 220–221
human, 215
iris, 144, 217
near point, 218
powers, 219
pupil, 216
resolution, 494–495
retina, 217

blind spot, 217–218
cones, 217
fovea centralis, 218
macula, 217–218
rods, 217

sclera, 216
vitreous humor, 216

Eye-lens, 226
Eye point, 225
Eye relief, 226
Eyeglasses, 9–10, 219–218
Eyepiece(s), 225–226

Erfle, 226, 234
Huygens, 225–226
Kellner, 226, 234
orthoscopic, 226
Ramsden, 226, 286
symmetric (Plössl), 226

Dispersion, 76, 78–83, 139, 199–201
angular (𝒟), 501
anomalous, 82, 305–306
equation, 80–82, 139–141
of glass, 80–82
intermodal, 210
normal, 82, 305
relation, 306
rotatory, 378

Dispersive:
indices, 280
power, 280

Displacement current density (J$D), 51
Dissipative absorption, 77
Distortion, 277
Divergence, 52
Diverging lens, 161
Dollond, John (1706–1761), 12, 282
Donders, Franciscus Cornelius (1818–1889), 

222
Doppler broadening, 572, 621
Doppler Effect, 304, 572
Doppler shift, 76
Double refraction, 353
Drude, Paul Karl Ludwig (1863–1906), 139, 

301
Dupin, C., 116
DWDM; see Dense wavelength division 

multiplexing

E
EDFAs; see Erbium-doped fiber amplifiers
Effective focal length, 182, 257
Einstein, Albert (1879–1955), 15, 78, 91, 148, 

244, 616, 618
Einstein coefficients, 612, 616–619
Einstein Ring, 245
Electric dipole, 72–74
Electric field (E$), 46, 121–130, 147, 291
Electric permittivity (P), 49
Electro-optic constant, 384
Electro-optics, 17
Electromagnetic-photon spectrum, 83–90

gamma rays, 90
infrared, 85–87, 90
light, 87–89, 90
microwaves, 85
radiofrequency, 84–85, 90
ultraviolet, 89
X-rays, 89–90

Electromagnetic theory, 14, 45, 46, 54, 
121–132

electric polarization (P$), 78
Maxwell’s Equation, 51–52
momentum (p), 67–69
nonconducting media, 76
radiation, 69–75

pressure, 67
Electromagnetic waves, 54–57, 121–136, 

139–142
Electromagnetically induced transparency 

(EIT), 331
Electromotive force, 46–48
Electron, 16

diffraction, 457, 530
probe, 59
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Glan-Foucault polarizer, 360
Glan-Thompson polarizer, 360
Glass, 80, 81, 202, 281–282
Golay cell, 84
Gold:

bound electrons, 144
color, 140
reflectance, 142

Goos-Hänchen shift, 137
Graded-index fibers, 209, 211
Gradient index (GRIN) lens, 216,  

284–286
axial-GRIN lens, 285–286
gradient constant, 285
radial-GRIN rod, 284

Gran Telescopio Canarias (GTC), 238
Grating equations, 498
Gravitational lensing, 244–245
Gregory, James (1638–1675), 235, 502
Grimaldi, Francesco Maria (1618–1663), 11, 

200, 405, 457
GRIN lens; see Gradient index lens
Grosseteste, Robert, 9
Ground state, 74, 89
Group index of refraction, 306
Group velocity (vg), 304–310
Gyroscope, 304

H
Haidinger, Wilhelm Karl (1795–1871), 419
Haidinger fringes, 419–421, 423, 427
Hale telescope, 235
Half-angular breadth, 536
Half-linear width, 536
Half-wave plate, 368–369
Half-wave voltage, (Vl>2), 383
Hall, Chester Moor (1703–1771), 12, 282
Hall, John, 318
Hamilton, William Rowan (1805–1865), 121
Hanbury-Brown, R., 607, 609
Hanbury-Brown and Twiss experiment, 607
Hänsch, Theodor, 318
Harmonic functions, 22–25

averaging of, 58–59
superposition of, 28–29

Harmonic generation, 17, 668–670
Harmonic waves, 22–25
Harmonics, 316
Harrison, George R., 500
Hartmann sensor, 241
Heisenberg uncertainty principle, 324
Helium-neon (He-Ne) laser, 275, 326, 462, 

487, 516, 589, 623, 627–628
Helmholtz, Hermann Ludwig Ferdinand von 

(1821–1894), 273
Helmholtz equation, 533
Hemispherical resonator, 624
Herapath, William Bird, 349
Herapathite, 349
Hero of Alexandria, 9, 117
Herriott, Donald Richard, 627
Herschel, Sir John Frederick William  

(1738–1822), 376
Herschel, Sir William (1738–1822), 85, 235,
Hertz, Heinrich Rudolf (1857–1894), 14,  

84, 300
Holey fibers, 212

Frequency stability, 325
CO2 laser, 326
He-Ne laser, 326

Fresnel, Augustin Jean (1788–1827), 13, 363, 
376, 458, 516, 535

Fresnel-Arago Laws, 404–405, 428
Fresnel-Kirchhoff diffraction, 534
Fresnel composite prism, 378
Fresnel diffraction, 460, 505–532
Fresnel double mirror, 413–414
Fresnel double prism, 414–415
Fresnel Equations, 13, 123–133, 365

derivation, 123–125
interpretation, 126

amplitude coefficients (r, t), 126
phase shifts, 128
reflectance (R), 129–133, 365
transmittance (T), 129–133

Fresnel integrals, 520–522
Fresnel multiple prism, 378
Fresnel number, 512
Fresnel rhomb, 372
Fresnel zone plate, 518–520, 654
Fresnel zones, 506
Fresnel’s double mirror, 413–414
Fresnel’s double prism, 414–415
Fried parameter, 241
Fringe(s), 401–403

equal inclination, 416–420, 427
equal thickness, 420–424
Fizeau, 421, 427
Haidinger, 419–420, 423, 427
localization, 427, 432–433
order, 401, 427
resolvable, just, 439

Front focal length (f.f.l.), 170, 181, 255, 264
Front stop, 183
Frustrated total internal reflection (FTIR), 

137–138, 205
Fuchsin, 95
Fundamental frequency component, 316

G
Gabor, Dennis (1900-1979), 653
Gain coefficient (g), 621

threshold, 621
Galileo Galilei (1564–1642), 10, 11, 227, 230, 234
Galileo’s telescope, 10, 230, 234–235
Gallium, 141
Gallium arsenide laser, 632
Gamma rays, 90
Garbage bags, 101
Gauge forces, 92
Gauss, Karl Friedrich (1777–1855), 48, 164
Gauss’s Law:

electric, 48–49, 53, 70
magnetic, 49

Gaussian function, 19, 319, 320, 324, 544, 
549, 556

Gaussian laserbeams, 625–627
Gaussian Lens Formula, 167
Gaussian Optics, 164
Gaussian wave group, 330, 566
Gay-Lussac, Joseph Louis (1778–1850), 516
Geometrical Optics, 45, 159–254, 255–289
Geometrical wave, 535
Giant Magellan Telescope (GMT), 238

Focal length (ƒ):
back (b.f.l.), 181–182, 221, 255
effective, 182, 257
first, 164
front (f.f.l.), 181, 255
image, 164
object, 164
of a lens, 168, 255
of a mirror, 194–195
of two lenses in contact, 182
of a zone plate, 518–520
second, 164

Focal plane, 168–170, 195
back, 170
front, 170
of a lens, 168

Focal-plane ray tracing, 177–178, 181
Focal point, 161, 168–170
Focal ratio, 186–188, 194, 228, 229
Fontana, Francisco (1580–1656), 10
Foucault, Jean Bernard Léon (1819–1868), 

13, 151
Fourier:

analysis, 17, 308, 329
discrete, 312

diffraction theory, 567
integral(s), 318, 318–323
optics, 542–587
series, 309–318

Fourier, Jean Baptiste Joseph, Baron de  
(1768-1830), 17, 310

Fourier series, 309
Fourier transform hologram, 662, 663
Fourier transforms, 318–322, 542–552

of cylinder function, 545–546
discrete analysis, 312, 326–328
of Gaussian, 544
of Gaussian wave packet, 319, 566
irradiance spectrum, 327
power spectrum, 327
two-dimensional, 544–547
via a lens, 546–547

Fourier’s Theorem, 310
Fox, Talbot (1800–1877), 95
Franken, Peter A. (1928–1999), 668
Fraunhofer, Joseph von (1787–1826),  

16, 496
Fraunhofer diffraction, 329, 460–462, 

465–494, 567–568
coherent oscillators, 462
condition, 460–462
double slit, 473–476, 568
many slits, 476–483, 569
rectangular aperture, 483–488
single slit, 465–468, 471–473, 568

Fraunhofer lines, 281
Free spectral range, 440, 502
Frequency (n), 23

angular (v), 23, 316
bandwidth, 323–324
beat, 302–304
mixing, 17, 651
natural (v0), 77–79
plasma (vp), 140
resonance (v0), 77–79
spectrum, 310, 320
stability, 325
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L
Labeyrie, A. E., 664
Lagrange, Joseph Louis (1736–1813), 121
Land, Edwin Herbert (1909–1991), 349
Laplace, Pierre Simon, Marquis de  

(1749–1827), 516
Laplacian operator, 36–38, 54
Laserbeam, profile, 624
Laserlight, 612
Laser(s), 17, 612, 616–633

cavities, 621–625
chemical, 629
cooling, 75–76
coupled-cavity, 633
developments, 628–633
diode, 330
first (pulsed ruby), 620–621
fusion, 630–631
gas, 631–632
giant pulse, 625
helium-neon, 275, 326, 487, 516, 590, 

627–628
liquid, 629
metastable states, 620
modes, 622–624
optical pumping, 620
population inversion, 620
Q-spoiling, 625
Q-switching, 625
Rayleigh range, 626
resonant cavity, 620
ruby, 620
semiconductor, 629, 632–633
solid state, 628
tunable, 633

Lateral chromatic aberration, 279
Lateral color, 279
Laue, Max von (1879–1960), 505
Law of Reflection, 9, 10, 105–108, 151
Law of Refraction, 10, 108–111, 151
Le Craw, R. C., 382
Le Roux, 95
Lebedev, Pyotr Nikolaievich (1866–1912), 66
Left-circular light, 342
Leith, Emmett N. (1927–2005), 655
Lens(es), 9, 10, 159–188

bending, 256
compound, 178
cylindrical, 222–223
equation, 172
field flattener, 207, 277
finite imagery, 170–174
first-order theory, 164
fluorite, 283
focal points and planes, 168–170
magnification, 172
meniscus, 219
optical center, 169
simple, 165
telephoto, 230, 279
Tessar, 230, 231, 277
thick, 255–258
thin, 165–183
thin-lens combinations, 178–183
Thin-Lens Equation, 166–168
toric, 223

Lensing, gravitational, 244–245

scattered light, 446
term, 291, 400
thin films, 11, 441–446

Interferogram, 430, 665, 666
Interferometers, 405–431

amplitude-splitting, 416–431
Mach-Zehnder, 429–430, 433
Michelson, 424–428, 433
Pohl, 430–432
Sagnac, 430, 433, 449–450
Twyman-Green, 448–449

Fabry-Perot, 437–441, 502
Jamin, 455
microwave, 412, 450–452
radar, 450–452
radio, 464
Twyman-Green, 448–449
wavefront-splitting, 405–416

Fresnel’s double mirror, 413–414
Fresnel’s double prism, 414
Lloyd’s mirror, 414–415
Young’s Experiment, 405–412

Intermodal dispersion, 210
Internal reflection, 104–105, 133–137
Inverse Square Law, 61, 150
Inversion, 189
Ion bombardment polishing, 17
Ionic polarization, 78
Irradiance (I), 59

dipole radiation, 72–74
Irradiance modulator, 385
Isoplanatic region, 241

J
Jamin Interferometer, 455
Janssen, Zacharias (1588–1632), 10, 227, 230
Javan, Ali, 627
Jeans, James (1877–1946), 615
Jodrell Bank, 494
Jones, Robert Clark (1916–2004), 389
Jones matrices, 389–391
Jones vectors, 389–390

K
KDP, 384, 669, 670
KD*P, 384
Keller, Joseph Bishop, 536
Kepler, Johannes (1571–1630), 10, 67, 161, 

215, 228
Dioptrice, 10

Keplerian astronomical telescope, 232–233
Kerr, John (1824–1907), 383
Kerr cell, 383–384, 396
Kerr constants, 383
Kerr Effect, 383–384, 667
Kirchhoff, Gustav Robert (1824–1887), 16, 

115–116, 459, 612
Kirchhoff’s diffraction theory, 459,  

532–535
Kirchhoff’s distribution function, 612
Kirchhoff’s integral theorem, 533
Kirchhoff’s Radiation Law, 613
Klingenstjerna, Samuel (1698–1765), 12
Kodak disk camera, 162
Kohlrausch, Rudolph (1809–1858), 55
Kottler, Friedrich (1886–1965), 535
Krypton, 87, 326

Holographic interferometry, 665–666
Holography, 17, 652–667

acoustical, 666
computer-generated, 667
Fourier transform, 662, 663
in-line, 654
reflection, 661
side-band Fresnel, 655
transmission, 660
volume holograms, 663–664
white light reflection, 664
zone-plate interpretation, 653, 661

Hooke, Robert (1635–1703), 11, 422
Hubble Space Telescope (HST), 193, 236, 

245, 254, 270
COSTAR, 270

Hughes, David, 84
Hull, Gordon Ferrie (1870–1957), 69
Huygens, Christian (1629–1695), 11–12, 115, 

268, 354
Huygens’s Principle, 108, 115–116, 354, 457
Huygens’s ray construction, 116
Huygens-Fresnel Principle, 115, 457–459, 

471, 505, 535
Hyperbolic interface, 160
Hyperopia, 220, 221–222

I
Iceland spar (calcite), 12, 352, 353
Image:

distance (si), 163
erect, 171
focal length (ƒi), 164
inverted, 171
perfect, 159
real, 162, 172
space, 159
virtual, 162, 177

Imagery, 170–177, 195–198
Impulse response, 555
Index matching, 669
Index of refraction (n):

absolute, 76
complex, 139
glass, 281–283
group (ng), 306
relative, 111
and specific gravity, 111
table, 103, 104
and transmission, 101–104

Indium oxide, 384
Induction law, 46–48
Infinite conjugates, 231
Infrared, 17, 85, 441

mirrors, 188
Inhomogeneous waves, 136
Intensity, 58
Interference, 12, 29, 292, 398–456

colors, 367–375
conditions for, 402–405
constructive, 98, 99, 292, 400
destructive, 98, 99, 292, 400
double beam, 398–402, 405, 411–416
filter, 443–446
fringes, 401, 405–432
law for partial coherence, 601
multiple-beam, 433–441
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matrix analysis of, 265–266
micromirrors, 191
mirror formula, 194–195
moving, 190
off-axis, 193
parabolic, 192–193, 254
planar, 188–191
sign convention, 197
spherical, 193–199

Missing order, 474
Miyamoto, Kenro, 535
Modes, waveguide, 205
Modulation, 579
Modulation frequency, 302
Modulation transfer function (MTF), 579
Modulators, optical, 380
MOEMS; see Micro-OptoElectroMechanical 

Systems, 191
Momentum (p), 57, 67–69
Monochromatic, 25
Monochromatic aberration, 266

astigmatism, 274
coma, 271–274
distortion, 266, 277
field (Petzval) curvature, 266, 276
spherical, 266–267

Mooney rhomb, 372
Morley, Edward Williams (1838–1923), 15
Mount Palomar, 187, 235, 494
Mount Wilson Observatory, 605
Mueller, Hans (1900–1965), 391
Mueller matrices, 390–391
Multilayer films, 17, 441–446

antireflection, 443–446
periodic systems, 444–446

Multiple-beam interference, 433–437
Multiple-order retarder, 371
Mutual coherence function, 597–602
Myopia, 220–221

N
Nanometer (1 nm = 10–9 m), 23, 87
Natural frequency, 79
Natural light, 344, 370
Natural linewidth, 324
Near field, 402
Near-field diffraction; see Fresnel diffraction
Near point, 224
Nearsightedness, 220–221
Negative lens, 166, 220–221
Negative phase velocity, 332
Negative uniaxial crystal, 357
Nematic liquid crystals, 384–387
Neodymium (Nd), 628–630
Nernst, Walther (1864–1941), 301
Neutron diffraction, 600
Newton, Sir Isaac (1642–1727), 11–13, 76, 

172, 200, 235, 282, 422, 446, 502
Newtonian form of lens equation, 172, 257
Newton’s Opticks, 172
Newton’s rings, 422–423, 433, 519
Ng, Won K., 631
Nichols, Ernest Fox (1869–1924), 69
Nicol, William (1768–1851), 359
Nicol prism, 359
Niépce, Joseph Nicéphore (1765–1833), 228
Night glasses, 185

Mariner IV, 141
Maser, 612
Matrix methods:

lens design, 260
mirrors, 265

flat, 266
planar optical cavity, 266
polarization, 380–381
thin films, 442–445
thin lenses, 265

Matter waves, 16, 45
Maupertuis, Pierre de (1698–1759), 121
Maxwell, James Clerk (1831–1879), 14–15, 

45, 51, 55, 67, 84
Maxwell-Boltzmann statistics, 63, 616
Maxwell’s Equations, 13–14, 45, 51–53, 56, 139
Maxwell’s Relation, 76–77
Meniscus lens, 166
Mercury, 326
Meridional focus, 274
Meridional plane, 274
Meridional ray, 205, 259
Metal(s), 139–142

dispersion equation, 139
optical properties, 139–142
plasma frequency, 140
reflection from, 141–142
wave in, 139

Metamaterials, 83
left-handed materials, 83

Metastable states, 620
Mica, 370
Michelson, Albert Abraham (1852–1931), 15, 

306, 594, 603
Michelson interferometer, 424–428
Michelson-Morley Experiment, 15
Michelson stellar interferometer, 603–606
Micro-OptoElectroMechanical Systems  

(MOEMS), 191, 214
Micromirrors, 191
Micron (1 mm = 10-6), 23
Microscope, compound, 10, 226–228

angular field, 227
magnifying power, 227
numerical aperture (NA), 228
objective, 227
resolving power, 228
tube length, 227

Microwaves, 85, 138, 304, 345
Mie, Gustav (1869–1957), 101
Mie Scattering, 101
Mirage, 118–119
Mirror formula, 194–195
Mirror(s), 188–199

aberrations, 266, 269, 271
aspherical, 192–193
coatings, 188
cold, 441
dichroic, 441
elliptical, 193
finite imagery, 195–199
formula, 194
half silvered, 425
history, 9
hyperbolic, 193
liquid, 236
magnification, 196–198

Lensmaker’s Formula, 167
Lenz’s law, 48
Levorotatory, 376
Lewis, G. N. (1875–1946), 16
L’Hospital’s Rule, 463, 490
Lifetime, of excited state, 618
Light, 87

colors, 87
speed of

measured by Jupiter’s moon, 12
measured by rotating mirrors, 13
measured by rotating toothed wheel, 

13, 55
in vacuum (c), 55

subluminal, 331, 332
superluminal, 329–331
white, 87–89

Light-emitting diodes, 211
Light field, 301
Light pipe, 204
Light propagation, 96
Light rays, 107–113

beam, 116
pencil, 116

Limit of resolution, 501
Line-spread function, 558, 578
Linear systems, 555–557
Linewidth, natural, 324, 572
Lippershey, Hans (1587–1619), 10, 230
Lippmann, Gabriel (1845–1921), 663
Liquid crystal display, 385
Liquid crystal variable retarder, 385
Liquid crystals, 384–387
Lister objective, 228
Lithium niobate, 664, 671
Littrow mount, 501
Lloyd’s mirror, 415
Lorentz, Hendrik Antoon (1853–1928), 15, 

78, 139
Lorentz broadening, 572
Lorentzian profile, 571–572
Loss coefficient, 621
Lunar Orbiter, 645

M
Mach-Zehnder, 429
Mach-Zehnder interferometer, 429–430
Maey, Eugen, 535
Maggi, Gian Antonio (1856–1937), 535
Magnesium fluoride, 188, 443–444
Magnetic induction (B$), 46–57
Magneto-optic effect, 382
Magnification:

angular (MA), 224
lateral or transverse (MT), 172–176, 196, 

233, 258
longitudinal (ML), 176

Magnifying glass, 9, 223–225
Magnifying power (MP), 224, 227, 232–233
Maiman, Theodore Harold (1927–2007), 612, 620
Malus, Étienne Louis (1775–1812), 13, 116, 

346, 363
Malus and Dupin, Theorem of, 116
Malus’s Law, 346–347
Maraldi, 516
Maréchal, A., 646
Marginal ray, 184, 228
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Plane-of-vibration, 338
Plane waves, 32–36, 56–57

propagation vector (k$), 33–37 
Plasma frequency (vp), 140
Plato, 9
Pockels, Friedrich Carl Alwin (1865–1913), 383
Pockels cell, 384
Pockels effect, 383–384
Pohl, Robert Wichard (1884–1976), 517
Pohl interferometer, 430–431
Poincaré, Jules Henri (1854–1912), 15
Point-spread function ( ), 556
Poisson, Siméon Denis (1781–1840), 516
Poisson distribution, 65
Poisson’s spot, 516
Polar molecules, 78–79
Polarization, 338–397

angle (up), 126–127, 363
atomic, 78
circular, 341–342
compensators, 372–373
cosmic, 339
degree of (V ), 366
electric, 78
electrical (P$), 78, 668
electronic, 78
elliptical, 342–344
full-wave plate, 368
half-wave plate, 368–369
historical notes, 13
ionic, 78
linear (plane), 55, 338–340
orientational, 78
photons, 45, 344–345
plane (linear), 338–340
quarter-wave plates, 370
by reflection, 363–366
retarders, 366–372
rhombs, 372
by scattering, 361–362
unpolarized (natural) light, 344, 388
wave plates, 367–372

Polarized sky light, 361–362
Polarizers, 346–351

birefringent, 359–360
circular, 373–374
Glan-Air, 360
Glan-Foucault, 360
Glan-Thompson, 360
linear, 346

extinction axis, 347
transmission axis, 346

pile-of-plates, 363–365
Rochon, 394
wire-grid, 347–348
Wollaston, 360, 394

Polarizing cube, 365
Polaroid, 349–351
Polychromatic light, 374–375
Polyvinyl alcohol, 349, 369, 373
Population inversion, 620
Porta, Giovanni Battista Della (1535–1615), 

10, 228
Porter, A. B., 644
Portrait lens, Petzval’s, 230–231
Positive lens, 166–172
Positive uniaxial crystal, 357

Pellicles, 416
Penetration depth in metals, 139
Perfect image, 159
Period:

spatial (l), 23, 316
temporal (t), 23

Permeability (m), 51
relative (KM), 51, 76

Permittivity (P), 49
relative (KE), 49, 76

Perot, Alfred (1863–1925), 437
Petzval, Josef Max (1807–1891), 230, 276
Petzval condition, 276
Petzval field curvature, 273, 276
Petzval lens, 231
Petzval surface, 276
Phase, 26

addition, 294–296
conjugation, 243–244
difference (d), 102, 105, 127–128, 147, 

291, 400
initial (e), 26
lags and leads, 101–104, 343, 366
modulation, 648
rate of change with distance, 27
rate of change with time, 27

Phase contrast, 646–650
Phase grating, 504
Phase modulator (liquid crystals), 385
Phase plate, 650
Phase shifts, 128–129
Phase singularity, 41
Phase spectrum, 543
Phase transfer function (PTF), 580
Phase velocity (v), 26–28, 304–306, 332

negative, 332
Phased array radar, 106
Phasors, 31–32, 294–296, 409, 435, 468, 477, 

479–480, 523–532
Phosphorescence, 636
Photochromic glass, 664
Photoelasticity, 380–381
Photoelectric Effect, 62
Photon, 16, 45, 61–67, 96, 148, 636–638

angular momentum (L), 345
bunching, 66
counting, 64–67
flux, 64
flux density, 64, 88
harmonic generation, 668–670
and law of reflection/refraction, 151
mass, 45
probability, 148–149
spectrum, 83–90
speed (c), 101
spin, 344–345
virtual, 46, 91

Physical optics, 45
Pi electrons, 145
Pile-of-plates polarizer, 363–365
Pin-cushion distortion, 278
Pinhole camera, 229
Planck, Max Karl Ernst Ludwig (1858–1947), 

15, 61, 615
Planck’s Constant (h), 16, 62, 66, 615
Planck’s Radiation Law, 615–616
Plane-of-incidence, 107, 122–125

Nitrobenzene, 376, 377
Nodal points, 255
Nodes, 297
Nonlinear optics, 667
Nonperiodic wave, 318
Nonresonant scattering, 77
Normal congruence, 116
Numerical aperture (NA), 206, 228

O
Object:

distance (so), 163–177 
compound lens, 165

focal length (ƒo), 164
space, 159

Objective, 227, 232
Obliquity factor, 471, 506
Ocular; see Eyepiece(s)
Oil immersion objective, 228, 269
Omega laser, 630
Optic axis, 348, 351–360
Optical activity, 375
Optical axis, 163
Optical center, 169
Optical computer, coherent, 639, 644
Optical cooling, 75–76
Optical field, 60
Optical flat, 420
Optical frequency comb, 318
Optical glass, 82, 280–282
Optical-parametric oscillator, 671
Optical path difference (OPD, Λ), 292, 416, 

417, 425
Optical path length (OPL), 118–120, 163 
Optical pattern recognition, 577
Optical power (P), 60
Optical pulses, 634
Optical pumping, 620
Optical rectification, 668
Optical sine theorem, 273
Optical stereoisomers, 378
Optical transfer function (OTF), 578–583
Optical vortex, 41
Optoelectronic image reconstruction, 664
Ordinary rays, 348–360
Orientational polarization, 78
Orthometer, 277
Orthoscopic system, 279
Oscillating dipole radiation, 72–74
Oscillator, 462–465
Oscillator strengths, 81
OTF; see Optical transfer function
Ozone and UV, 79

P
Palomar Observatory, 72, 187, 235, 239, 494
Pap tests, 492
Parabolic mirror, 192–195, 235–239, 464
Parallel nematic cell, 385
Parametric amplification, 671
Paraxial ray, 164, 193
Parrish, Maxfield, Jr., 348
Parseval’s formula, 571
Partially polarized light, 344
Pasteur, Louis (1822–1895), 378
Pauli, Wolfgang (1900–1958), 16
Peak transmission, 439
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Reflection, 104–108
diffuse, 108
external, 105, 120, 123–133
internal, 105, 133–138
law of, 105
specular, 107–108, 499–500

Reflection hologram, 661
Refraction, 82, 108–120

at aspherical surfaces, 160, 192–193, 223, 
235

Cartesian oval, 246
Law of, 108–109
matrix (ℛ ℛ), 260
negative, 82, 114–115
from a point source, 112–113
at spherical surfaces, 162–165

Refractive index (n), 76, 78–83
absolute, 76
of air, 14
of birefringent crystals, table, 357
negative, 83
relative, 111

Relative aperture, 186
Relative index of refraction (nti), 111
Resolution, 235, 440, 492–495, 605
Resolving power, 228, 493

chromatic (ℛ), 440
Resonance frequency, 75, 77–78
Resonance (Lorentz) profile, 572
Resonant cavity, 266, 620, 621–625
Resonant frequency, 75–79
Resonant scattering, 77–78

Retarders, 366, 370–373
Retarders, variable; see Compensators
Reticle (or reticule), 226
Retina, 217
Reversion, 189
Rhomb, Fresnel, 372
Right-circular light, 341
Ring laser, 304, 449
Ritchey-Chrétien telescope, 236
Rittenhouse, David, 496, 504
Ritter, Johann Wilhelm (1776–1810), 89
Rods, 217–218
Römer, Ole Christensen (1644–1710), 12, 352
Ronchi ruling, 578
Röntgen, Wilhelm Conrad (1845–1923), 89
Rotating Sagnac Interferometer, 449–450
Rotatory dispersion, 378
Rotatory power, 376
Rubinowicz, Adalbert, 535

S
Sagittal coma, 272
Sagittal focus, 275
Sagittal plane, 274, 275
Sagittal rays, 274
Sagnac interferometer, 430, 433, 449–450
Salt, 78, 356
SAR; see Synthetic aperture radar
Saturated color, 144
Scatter plate, 447
Scattered-light interference, 446–448
Scattering, 77, 96–99, 361–362

coherent, 637
elastic, 96

Quantum Field Theory, 90–92
Quantum fields, 90
Quantum jump, 75
Quantum mechanics, 16, 121
Quantum nature of light, 16, 45
Quantum noise, 66
Quarter-wave plate, 370
Quarter-wave stack, 444–446
Quartz, 82, 357, 376, 382, 505

optical activity, 375–380
Quasimonochromatic, 25, 325

R
Radar interference, 293
Radar interferometry, 450–452
Radiant flux, 60
Radiant flux density, 60
Radiation, 69–75

atomic, 74–75
characteristic, 90
electric-dipole, 72–74
field, 70
linearly accelerating charge, 69–71
pressure (𝒫), 67
synchrotron, 71–72, 87
zone, 73

Radio interferometer, 464
Radio waves, 74, 84–85
Raman, Sir Chandrasekhara Vankata  

(1888–1970), 636
Raman Scattering, 636, 668
Raman spectroscopy, 636
Ray tracing, 177, 259–260

focal-plane, 177
matrix methods, 260–266

Rayleigh-Jeans formula, 615
Rayleigh [John William Strutt] (1842–1919), 

493, 499, 518, 615
Rayleigh range, 626
Rayleigh Scattering, 96–98, 362, 636, 638, 668
Rayleigh’s criterion, 439, 492–494, 496, 501
Ray(s), 107–112, 116

chief, 184
collimated, 170
converging, 161
direction in crystals, 355
diverging, 161
extraordinary, 354–360
marginal, 184
meridional, 205, 259
ordinary, 354–360
principal, 271
skew, 259
tracing, focal plane, 177

Rectification, optical, 668
Reflectance (R), 129, 365, 438

of metals, 141
Reflecting prisms, 201–204

achromatic, 202
Amici, 202
corner-cube, 204
Dove, 202
Leman-Springer, 203
Penta, 203, 229
Porro, 202, 204
rhomboid, 203
right-angle, 202

Potassium dideuterium phosphate (KD*P), 
384

Potassium dihydrogen phosphate (KDP), 384, 
669

Power spectrum, 327, 602
Poynting, John Henry (1852–1914), 57, 58
Poynting vector, 57–58, 73, 83, 129, 159
Pressure, radiation (𝒫), 67
Primary aberrations, 267
Primary colors, 143
Principal angle of incidence, 141
Principal maxima, 471–482
Principal planes, 255, 354
Principal points, 255
Principal ray, 271
Principal section, 354
Principle of Interference, 12
Principle of Least Action, 121
Principle of Least Time (1657), 11, 117–119
Principle of Reversibility, 121, 464
Principle of Superposition, 290, 398
Prism(s), 199–204

Abbe prism, 201
achromatic, 202
Amici, 202
angular deviation, 201
constant deviation, 201
corner-cube, 204
dispersing, 199–201 

apex angle, 199
minimum deviation, 200

Dove, 202
Fresnel composite, 378
Leman-Springer, 203
minimum deviation, 200
Nicol, 359
Pellin-Broca, 201
Porro, 202
reflecting prisms, 201–204
rhomboid, 203
right-angle, 202
Rochon, 394
Wollaston, 360, 394

Probability amplitude (℘), 148–150
Probability density, 148
Profile, 19–22
Progressive wave, 22
Prokhorov, Alexander Mikhailovich  

(1916–2002), 612
Propagation number, 22, 302
Propagation vector, 33
Propagators, 597
Pseudothermal light, 609
Ptolemy, Claudius, 9
Pulses, 19–22, 35, 75, 322–324, 634

femtosecond, 634
Pumping, 620
Pupil(s), 183–186, 217
Purkinje figures, 218

Q
Q (quality factor), 625
Q-switch, 383–384
QED (Quantum Electrodynamics), 45, 90–92, 

147–149, 182–183
diffraction, 457
thin lens, 182–183

Z05_HECH6933_05_GE_IDX.indd   719 02/09/16   2:44 PM



720 Index

Subtractive coloration, 145
Superluminal light, 329–331
Superposition, 28–29, 290, 293, 398

algebraic method, 291
complex method, 294
interference term, 291
of many waves, 293
phasor addition, 294

Superposition Principle, 28–29, 290
Surface waves, 135–137
Synchrotron radiation, 71–72
Synthetic aperture radar (SAR), 450
System matrix (𝒜), 261

T
T-rays, 85
Tangential coma, 272
Tangential focus, 274
Tangential plane, 274, 275
Taylor, H. Dennis, 230, 271
Taylor (or Cooke) triplet, 230, 277, 284
Telephoto lens, 230
Telescope, 10, 11, 230–239

astronomical, 230
catadioptric systems, 238, 238

Baker, 239
Bouwers–Maksutov, 239
Schmidt, 239

reflecting systems, 11, 235
Cassegrainian, 193, 235, 236, 238
Giant Magellan Telescope (GMT), 238
Gran Telescopio Canarias (GTC), 238
Gregorian, 193, 235, 236
Hubble Space, 193, 236, 237
Keck, 238
light-gathering power, 235
Newtonian, 11, 194, 236
prime focus, 236

refracting systems, 10, 230–235
angular magnification, 232
astronomical, 230
erecting system, 233–
Keplerian, 232–233
magnifying power, 232–233
terrestrial, 233

TEM mode, 623–625
Temporal coherence, 403–404, 588, 602–603, 

634
complex degree of, 602

Terahertz waves, 85
Tessar lens, 230, 263, 277
Thermal light, 66, 605
Thermal radiation, 87, 612
Thermograph, 86–87
Thick lens, 255–259

cardinal points, 255
combinations, 258
nodal points, 255
principal planes, 255
principal points, 255
unit planes, 257

Thin films; see Dielectric films
Thin lens(es), 164–179

combinations, 178–182
equations, 166–168

Third–order theory, 164, 267
Time average, 58, 93, 400

Spatial frequency, 25, 316, 543, 567, 639
angular, 543
spectrum, 320, 567

Spatial light modulator (SLM), 665
Spatial period (l), 23, 316
Special Relativity, 15, 68, 82, 244, 330
Speckle effect, 634–635
Spectacle lenses, 219
Spectral exitance, 612
Spectral flux density, 612
Spectral irradiance, 672
Spectral lines, 16, 324
Spectrum

amplitude, 543
phase, 543

Speed:
lens, 186–187 
of light

measured by Jupiter’s moon, 12
measured by rotating mirrors, 13
measured by rotating toothed wheel, 

13, 55
in vacuum, 55

of profile, 19–25
Spherical monochromatic aberration, 238, 

267–271
lateral or transverse, 268

Spherical waves, 37–39, 56, 505–509
Spin, 92
Spontaneous emission, 617
Spontaneous Raman effect, 635–636
Square wave, 315
Squeezed light, 66
SRTM (Shuttle Radar Topography Mission), 

451
Stained glass, 82, 145
Standard length, 87
Standard lens, 230
Standing waves, 296–301

antinodes, 297
boundary conditions, 296
in a microwave oven, 301
nodes, 297
partial, 298–299

Stationarity, 555
Stationary paths, 120
Stationary wave, 297
Stealth fighter (F-117A), 107
Stefan, Josef, 613
Stefan–Boltzmann Law, 613
Stellar aberration, 14
Stellar interferometry, 603–605
Stepped-index fiber, 209
Stigmatic system, 159
Stimulated absorption, 617–619
Stimulated emission, 616–619
Stokes, Sir George Gabriel (1819–1903), 146, 

387, 635
Stokes parameters, 387–388
Stokes transition, 635
Stokes treatment of reflection and refraction, 

147
Stops, aperture and field, 183
Stroke, George W., 500
Subluminal light, 331–332
Sub-Poissonian distribution, 67
Subsidiary maximum, 477–483

interference and, 98–101
Mie, 101
nonresonant, 77
and polarization, 361–362
Rayleigh, 96–99, 362, 636, 668
spontaneous Raman, 636
stimulated Raman, 636, 668

Schawlow, Arthur Leonard (1921–1999), 612
Scheiner, Christopher (1573–1650), 215
Schlieren method, 650–652
Schmidt, Bernhard Voldemar (1879–1935), 

238
Schmidt telescope (camera), 239, 277
Schrödinger, Erwin C. (1887–1961), 16, 45, 

91, 121
Schrödinger’s Equation, 45
Schwartz, Laurent, 548
Scylla IV, 429
Secondary spectrum, 283
Seidel, Ludwig van (1821–1896), 267
Seidel aberrations, 267–279
Self-coherence function, 599
Self-focusing, 671
Sellmeier, 95
Seneca (3 b.c.e.–65 c.e.), 9
Shot-noise, 66
Shuttle Radar Topography Mission (SRTM), 

451
Side-band waves, 638
Sidebands, 334
Sifting property, 548
Sign convention, 163, 173, 197
Signal velocity (vs), 330
Silicon monoxide, 188
Sinc function, 59, 316, 465–466, 470, 

472–475, 480, 596, Table 3  
(appendix) 681

Sine Condition, 274
Sine theorem, optical, 273
Sine waves, 22–26
Skew rays, 259
Skin depth, 139
Sky, blue color of, 144, 361
Slow axis, 368
Smekal, Adolf, 636
Smith, Robert, 171
Smith, T., 260
Smoluchowski, M., 97
Snell (Snel), Willebrord (1591–1626), 10, 109
Snell’s Law, 10, 109, 123, 200, 358, 417
Sodium light, 77

doublet, 144, 330
Solar constant, 673
Soleil compensator, 373
Solitons, 208
Sommerfeld, Arnold Johannes Wilhelm 

(1868–1951), 114, 459, 535
Sonnar lens, 277
Source strength (𝒜, e0), 38, 464
Space invariance, 555
Sparrow, C., 494
Sparrow’s criterion, 494
Spatial coherence, 403–405, 588, 602–603

complex degree of, 602
Spatial filter, 328, 642

matched, 667
Spatial filtering, 328, 570, 642–644
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Wave packets, 322
Wavetrain, 75, 322–323
Wavicles, 16
Weber, Wilhelm (1804–1891), 55
Wedgwood, Thomas (1771–1805), 613
Wheatstone, Charles (1802–1875), 13
White light, 87–88, 402
White substances, 142–144
Wide-angle lens, 230
Wien, Wilhelm Carl Werner Otto Fritz Franz 

(1864–1928), 614
Wiener, Otto (1862–1927), 300
Wiener-Khintchine Theorem, 573
Wiener’s experiment, 300
Wien’s Displacement Law, 614
Window:

entrance, 227
exit, 227

Wire-grid polarizer, 347–348
Wolf, Emil, 535
Wollaston, William Hyde (1766–1828), 16, 273
Wollaston prism, 360
Wood, Robert Williams (1889–1979), 330, 

499, 519
Woodbury, Eric J., 636

X
X-rays, 89–90, 135, 218, 505

Bragg’s Law, 505
collimation of, 214
frequency range, 89
glancing incidence of, 127
grazing incidence of, 214–215

Y
YAG (yttrium aluminum garnet),  

629–630
Yerkes Observatory, 187, 235
YIG (yttrium iron garnet), 382
Young, Thomas (1773–1829), 12, 143, 151, 

363, 405, 535
Young’s diffraction theory, 535
Young’s Experiment, 405–410, 550, 568, 589, 

597, 602

Z
Zeeman Effect, 303
Zeiss, Carl (1816–1888), 228, 642
Zeiss Orthometer lens, 230, 277
Zeiss Sonnar lens, 277
Zernike, Frits (1888–1966), 588, 646, 648
Zeroth-order Bessel beam, 494–496
Zinc sulfide, 444
Zirconium dioxide, 444
Zone construction, 506
Zone plate, Fresnel, 518–520, 653, 661

eyeglasses, 219–223
far point, 220–221
farsightedness, 221
near point, 218, 222
nearsightedness, 220–221
wavelength range of, 218

Vitello, 9
Vitreous humour, 216–217
Voigt effect, 382
Voltage-controlled switch (liquid crystals), 386
Von Laue, Max (1879–1960), 505

W
Waist diameter (Bessel beam), 494
Water, 78–79, 142, 382, 383
Wavefront aberrations, 268
Wavefront continuity, 153
Wavefront sensor, 241
Wavefront shaping, 239
Wavefront splitting, 398, 405–416
Wavefronts, 32
Waveguide, 158, 204
Wavelength (l), 23
Wave(s):

amplitude, 22
at an interface, 121–123
circular, 28
cylindrical, 39
electromagnetic, 44, 45, 54–61
equation, 21–22, 32–41, 54
evanescent (surface or boundary), 

135–138
function, 18–24
group, 323
harmonic, 22–25
homogeneous, 34
inhomogeneous, 34, 136
linearly polarized, 338–340
longitudinal, 13, 18, 19
in a metal, 139–142
number (k), 24
one-dimensional, 18–22
packet, 322–325
plane polarized, 55, 338–340
plates, 367–372
profile, 19
propagation number, 22, 34
propagation vector, 34
spatial frequency, 24
spherical, 37–39
surfaces, 34
temporal period, 23
theory, 14
transverse, 13, 18, 19, 55
velocity, 18–25, 26, 55

Toepler, August (Töpler), 651
Toric lens, 223
Total internal reflection, 133–138, 204–214
Tourmaline, 348, 357
Townes, Charles Hard (1915–2015), 612
Transfer:

equation, 259
functions, 578–583
matrix (𝒯 𝒯), 260

Transition probability, 81
Transitions, atomic,

allowed, 618
forbidden, 618

Transmission axis, 342, 349
Transmittance (T), 129, 350, 438

minor, 350
principal, 350
ratio, 350
unit (T1), 156

Transverse waves, 18–20, 
electromagnetic, 54–57
historical note, 13

Tungsten lamp, 88
Twiss, R. Q., 607
Twisted light, 39–41
Twisted nematic cell, 386
Twyman-Green Interferometer, 448–449
Tyndall, John (1820–1893), 101, 204, 613

U
Ulexite, 207
Ultraviolet, 89, 140

mirrors, 188
Uniaxial crystal, 356–358
Unit planes, 257
Upatnieks, Juris, 655

V
V-numbers, 280
Van Cittert-Zernike Theorem, 473, 588, 592, 

593, 597, 602, 603
Vavilov, Sergei I., 62
Vectograph, polaroid, 351
Verdet, Emile, 588
Verdet constant, 381
Vertex (V), 161
Vibration curve, 295, 509
Vignetting, 185
Virtual:

images, 162, 177
objects, 176–177
photons, 45–46, 91

Visibility (𝒱), 594, 658
Vision:

astigmatism, 222–223
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