MM PG COLLEGE FATEHABAD

Introduction to Cryptography M.Com. 1st Sem.

Departments of Computer Science MM PG College Fatehabad

What is Cryptography

Cryptography

- In a narrow sense
 - Mangling information into apparent unintelligibility
 - Allowing a secret method of un-mangling
- In a broader sense
 - Mathematical techniques related to information security
 - About secure communication in the presence of adversaries

Cryptanalysis

- The study of methods for obtaining the meaning of encrypted information without accessing the secret information
- Cryptology
 - Cryptography + cryptanalysis

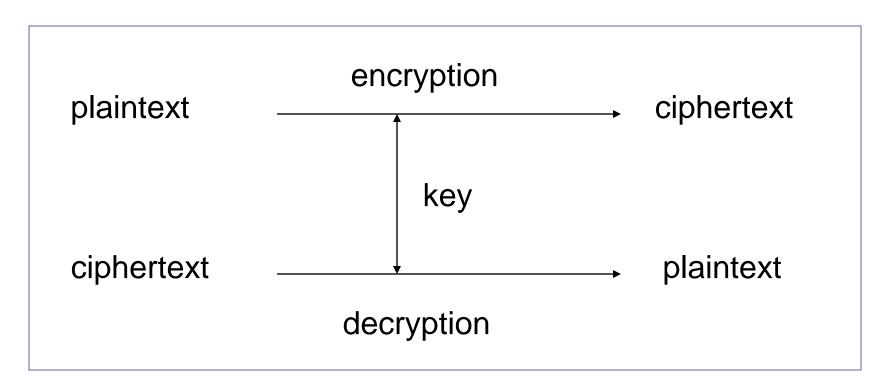
Security Attacks

- Passive attacks
 - Obtain message contents
 - Monitoring traffic flows
- Active attacks
 - Masquerade of one entity as some other
 - Replay previous messages
 - Modify messages in transmit
 - Add, delete messages
 - Denial of service

Objectives of Information Security

- Confidentiality (secrecy)
 - Only the sender and intended receiver should be able to understand the contents of the transmitted message
- Authentication
 - Both the sender and receiver need to confirm the identity of other party involved in the communication
- Data integrity
 - The content of their communication is not altered, either maliciously or by accident, in transmission.
- Availability

 Timely accessibility of data to authorized entities.

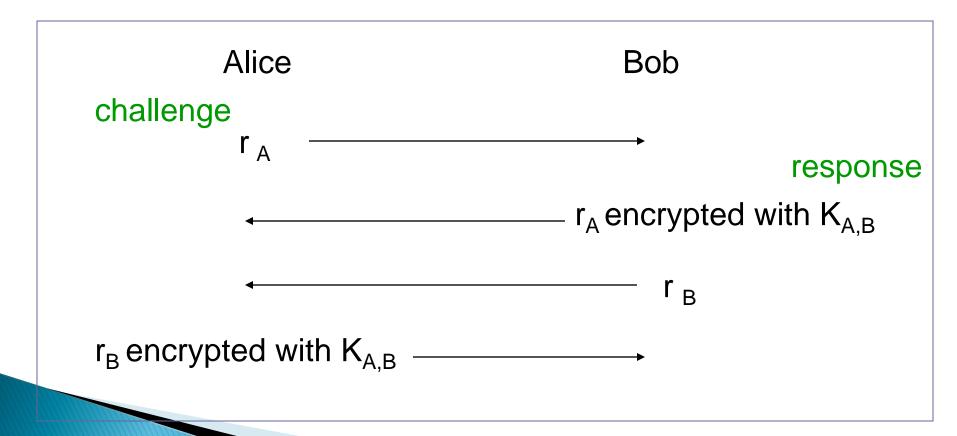

Objectives of Information Security

- Non-repudiation
 - An entity is prevented from denying its previous commitments or actions
- Access control
 - An entity cannot access any entity that it is not authorized to.
- Anonymity
 - The identity of an entity if protected from others.

Types of Cryptographic Functions

- Secret key functions
- Public key functions
- Hash functions

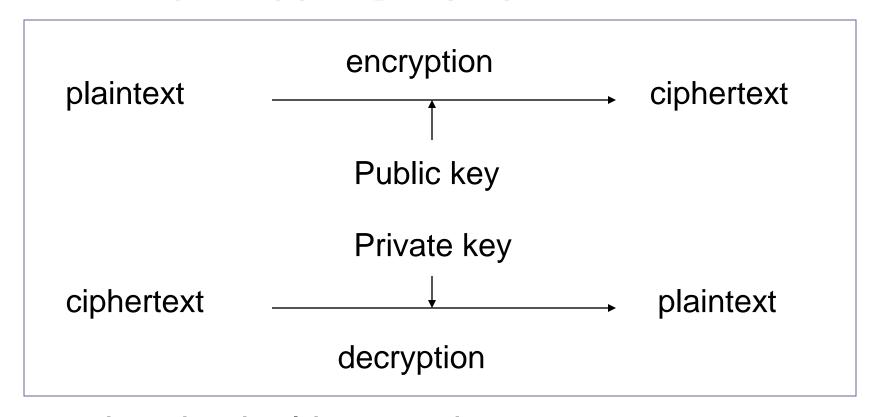
Secret Key Cryptography


- Using a single key for encryption/decryption.
- The plaintext and the ciphertext having the same size.
 - Also called *symmetric* key cryptography

SKC: Security Uses

- Transmitting over an insecure channel
 - The transmitted message is encrypted by the sender and can be decrypted by the receiver, with the same key
 - Prevent attackers from eavesdropping
- Secure storage on insecure media
 - Data is encrypted before being stored somewhere
 - Only the entities knowing the key can decrypt it

SKC: Security Uses

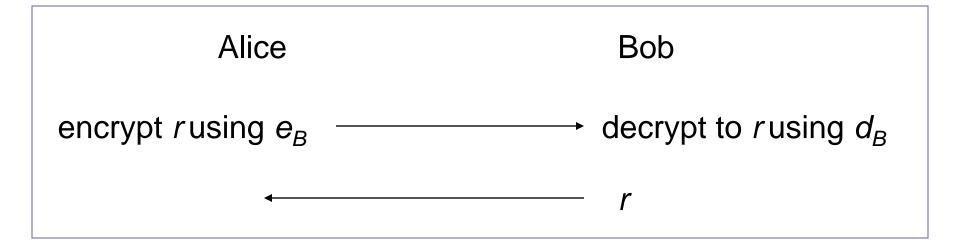

- Authentication
 - Strong authentication: proving knowledge of a secret without revealing it.

SKC: Security Uses

- Integrity Check
 - Noncryptographic checksum
 - Using a well-known algorithm to map a message (of arbitrary length) to a fixed-length checksum
 - · Protecting against accidental corruption of a message
 - Example: CRC
 - Cryptographic checksum
 - A well-know algorithm
 - Given a key and a message
 - The algorithm produces a fixed-length message authentication code (MAC) that is sent with the message

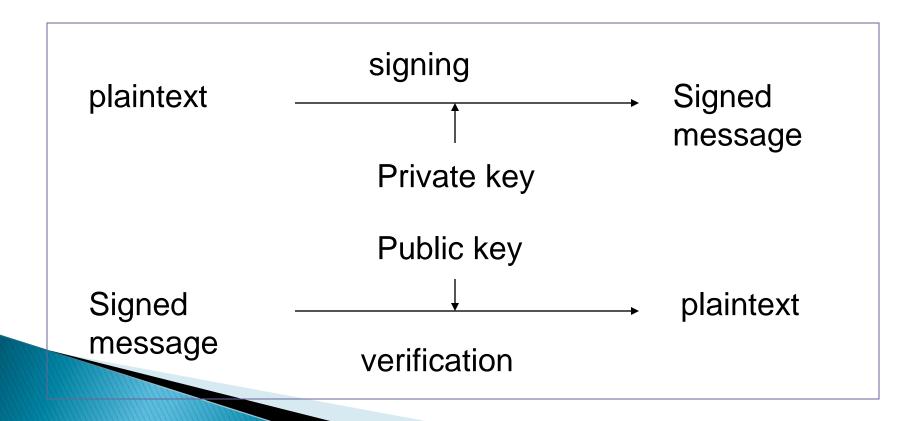
Public Key Cryptography

- Each individual has two keys
 - a private key (d): need not be reveal to anyone
 - a public key (e): preferably known to the entire world Public key crypto is also called asymmetric


PKC: Security Uses

Transmitting over an insecure channel

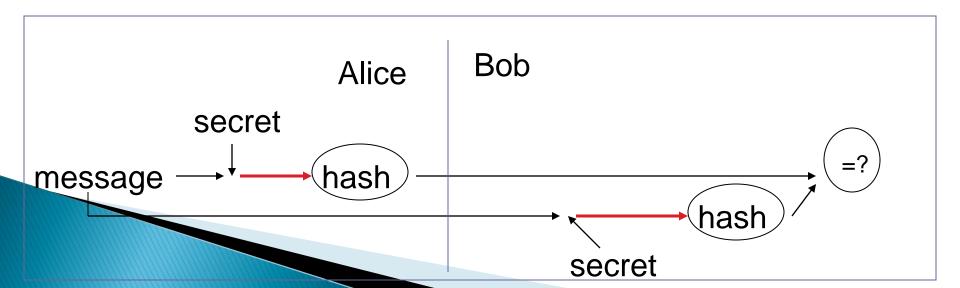
- Secure storage on insecure media
 - Data is encrypted with the public key of the source, before being stored somewhere
 - Nobody else can decrypt it (not knowing the private key of the data source)


PKC: Security Uses

Authentication

PKC: Security Uses

- Digital Signatures
 - Proving that a message is generated by a particular individual
 - Non-repudiation: the signing individual can not be denied, because only him/her knows the private key.



Hash Functions

- Cryptographic hash function
 - A mathematical transformation that takes a message of arbitrary length and computes it a fixed-length (short) number.
- Properties
 (Let the hash of a message m be h(m))
 - For any m, it is relatively easy to compute h(m)
 - Given h(m), there is no way to find an m that hashes to h(m) in a way that is substantially easier than going through all possible values of m and computing h(m) for each one.
 - It is computationally infeasible to find two values that hash to the same thing.

Hash Functions: Security Uses

- Password hashing
 - The system store a hash of the password (not the password itself)
 - When a password is supplied, it computes the password's hash and compares it with the stored value.
- Message integrity
 - Using cryptographic hash functions to generate a MAC

Hash Functions: Security Uses

- Message fingerprint
 - Save the message digest of the data on a tamperproof backing store
 - Periodically re-compute the digest of the data to ensure it is not changed.
- Downline load security
 - Using a hash function to ensure a download program is not modified
- Improving signature efficiency
 - Compute a message digest (using a hash function) and sign that.

Cryptographic Algorithms: Agenda

- Attacks on cryptographic algorithms
- Definition of security
- Some cryptographic algorithms: basic facts

Attacks: Types

- Brute force search
 - Assume either know/recognize plaintext
 - Simply try every key
- Cryptoanalysis
 - Ciphertext only
 - With the ciphertext
 - Plaintext is recognizable
 - Known plaintext
 - <cipher, plaintext> pairs are known
 - Chosen plaintext
 - Select plaintext and obtain ciphertext to attack

Birthday Attacks

- Principle
 - Assume: A function yields any of n different outputs with equal probability, where n is sufficiently large.
 - After evaluating the function for about 1.2*squart(n) arguments, we expect to find a pair of different arguments, x_1 and x_2 , such that $f(x_1)=f(x_2)$.
- Attack: message replay
- Solution: increase the size of the output

Meet-in-the-Middle Attacks

- Principle
 - build a table of keys
 - Compute f(k,m) for every key
 - f is an encryption function, m is a known message
 - Eavesdrop a value f(k',m)
 - If f(k',m)=f(k,m), then there is a good chance k'=k.

Meet-in-the-Middle Attacks

- An attack example
 - Assume:
 - a new encryption function: F(k1,k2,m)=f(k1,f(k2,m))
 - A pair (P,C) is known
 - Attacker:
 - Encrypt P, i.e., computing f(k2,P), for all possible values of k2; store the values in a table
 - Decrypt C, i.e., computing $f^{-1}(k1,C)$, for all possible values of k1, and for each result check the table
 - A match reveals a possible combination of the keys

Security Definition

- Unconditional Security
 - The system cannot be defeated, no matter how much power is available by the adversary.
- Computational security
 - The perceived level of computation required to defeat the system using the best known attack exceeds, by a comfortable margin, the computational resources of the hypothesized adversary.
 - e.g., given limited computing resources, it takes the age of universe to break cipher.

Security Definition

- Provable security
 - The difficulty of defeating the system can be shown to be essentially as difficult as solving a well-known and supposedly difficult problem (e.g., integer factorization)
- Ad hoc security
 - Claims of security generally remain questionable
 - Unforeseen attacks remain a threat

Secret Key Cryptographic Algorithms

- DES (Data Encryption Standard)
- ▶ 3DES (Triple DES)
- IDEA (International Data Encryption Algorithm)
- AES (Advanced Encryption Standard)

DES (Data Encryption Standard)

- Authors: NSA & IBM, 1977
- Data block size: 64-bit (64-bit input, 64-bit output)
- Key size: 56-bit key
- Encryption is fast
 - DES chips
 - DES software: a 500-MIP CPU can encrypt at about 30K octets per second
- Security
 - No longer considered secure: 56 bit keys are vulnerable to exhaustive search

Triple-DES (3DES)

- $ightharpoonup C = DES_{k3}(DES_{k2}(DES_{k1}(P))).$
- Data block size: 64-bit
- Key size: 168-bit key; effective key size: 112 (due to man-in-the-middle attack)
- Encryption is slower than DES
- Securer than DES

IDEA (International Data Encryption Algorithm)

- Authors: Lai & Massey, 1991
- Data block size: 64-bit
- ▶ Key size: 128-bit
- Encryption is slower than DES
- Security
 - Nobody has yet published results on how to break it
- Having patent protection

AES (Advanced Encryption Standard)

- Authors: Daemen & Rijmen
- Block size:128-bit
- ▶ Key size: 128-bit, 192-bit, 256-bit
- Encryption is fast
- Security
 - As of 2005, no successful attacks are recognized.
 - NSA stated it secure enough for non-classified data.