Roll No.

(12/24)

15204

M. Sc. (2 Year) EXAMINATION

(For Batch 2021 & Onwards)

(First Semester)

MATHEMATICS

MSc/Maths/1/CC3

Mechanics

Time: Three Hours Maximum Marks: 70

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. 1 is compulsory.

1. (a) Find moment of inertia of a rod of length
'2a' and of mass 'm' about an axis passing
through one its end and normal
(perpendicular) to its length.

- (b) What do you mean by holonomic and non-holonomic systems?
- (c) What do you mean by generalized forces? Explain.
- (d) Explain the concept of Poisson's Bracket.
- (e) Describe in detail the concept of canonical transformation. $2\times5=10$

Unit I

- 2. (a) State and prove parallel axes theorem. 7
 - (b) A uniform rectangular lamina PQRS is such that PQ = 2a, QR = 2b. Find the directions of principal axes at P. 8
- 3. (a) Show that the sufficient conditions for the two systems to be equimomental are:
 - (i) They have the same total mass

- (ii) They have the same centroid
- (iii) They have the same principal axes and the same principal moment of inertia at the centroid.
- (b) Find the equimomental system for a uniform triangular lamina. 10

Unit II

- 4. (a) Derive the Lagrange's equation of first kind.
 - (b) Write a note on the Possible and Virtual displacements.
- 5. (a) Find the Lagrange's equation of motion of a simple pendulum in motion in a vertical plane.
 - (b) Describe Lagrange's equation for potential forces.

Unit III

- 6. (a) Derive the Hamilton canonical equations.
 - (b) Find the Poisson Jacobi identity
 [x, [y, z]] + [y, [z, x]] + [z, [x, y]]
 = 0,
 Where x, y, z are functions of q and p only.
- 7. (a) State and prove Donkin's Theorem. 10
 - (b) State and prove principle of least action. 5

Unit IV

8. (a) For what values of α and β the transformation, $Q = q^{\alpha} \cos \beta p$, $P = q^{\alpha} \sin \beta p$ represent a canonical transformation.

- (b) Describe the method of separation of variable to solve Hamilton-Jacobi equation.
- 9. (a) Find the Hamilton-Jacobi equation in planetary motion.
 - (b) Prove that Lagrange's bracket is invariant under a free univalent canonical transformation.