Roll No.

(05/24)

11658

M. Sc. (2 Year) EXAMINATION

(For Batch 2019 to 2020 Only)
(Second Semester)

MATHEMATICS

MTHCC-2201

Advanced Abstract Algebra

Time: Three Hours Maximum Marks: 70

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks. Marks are indicated along with questions.

Compulsory Question

- 1. (a) Define a prime subfield. 2
 - (b) Show that $x^2 + 3$ and $x^2 + x + 1$ have same splitting field.

(2-06/20)B-11658 P.T.O.

- (c) Prove that no irreducible polynomial over a field of characteristic zero has multiple root in any field extension. 2
- (d) Let char. (F) = p. Suppose $f(x) = x^p x$. Show that all the roots of f(x) in its splitting field over F are distinct.
- (e) If [K: F] = 2, prove that K is normal extension of F.
- (f) Prove that any constructible complex number is algebraic over Q of degree a power of 2.
- (g) Under usual notations define the companion matrix of f(x) i.e. c(f(x)), where:

$$f(x) = x^k - \alpha_{k-1}x^{k-1} - \dots - \alpha, x - \alpha_0$$

Unit I

2. (a) Prove that any prime field is either isomorphic to the field of rational numbers or to the field of integers modulo some prime number.

(b) If L is an algebraic extension of K and K is an algebraic extension of F, then L is an algebraic extension of F.

3. (a) If a, b ∈ K are algebraic over F of degrees m and n respectively, where m and n are relatively prime; prove that F(a, b) is of degree mn over F.

(b) Find the splitting field and degree of the splitting of the polynomial: 7

$$x^3 - 3x + 1$$

Unit II

- (a) Prove that any algebraic extension of a finite field F is a separable extension. 7
 - (b) Let D be an integral domain of char.(F) = p, a prime number. Then prove that:
 - (i) The mapping $\sigma : D \to D$ s.t. $\sigma(a)$ a^p for $a \in D$ is a monomorphism.
 - (ii) For any positive integer n, the mapping $\sigma_n : D \to D$ s.t. $\sigma_n(a) = ap^n$ for $a \in D$ is a monomorphism.

7

(2-06/21)B-11658

3

P.T.O.

- 5. (a) Prove that $\phi_n(x)$ is irreducible over Q.7
 - (b) Let K be a finite algebraic extension of a field F. Then K is a normal extension of F iff K is the splitting field over F of some non-zero polynomial over F.

Unit III

- 6. Let G be a finite group of automorphisms of a field K; F₀, the fixed field under G.
 Then the degree of K over F₀ is equal to the order of the group G i.e. [K : F₀] = o(G). 14
- 7. (a) Prove that in general an angle cannot be trisected by ruler and compass. 7
 - (b) Find the Galois group of the splitting field of the polynomial $x^4 2$ over Q.

7

Unit IV

8. Let dim(V) = n and T ∈ A(V) is nilpotent and its index of nilpotency is n₁, then ∃ a basis of V s.t. the matrix of T in this basis is of the form:

$$\begin{bmatrix} M_{n_1} & 0 & \dots & 0 \\ 0 & M_{n_2} & \dots & 0 \\ 0 & 0 & M_{n_2} & 0 \\ 0 & 0 & \dots & M_{n_r} \end{bmatrix}_{n \times n}$$

where $n_1 \ge n_2 \ge ... \ge n_r$ and $n_1 + n_2 + ... + n_r = n$ and

$$\mathbf{M}_{k} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & & & & \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}_{k \times k}$$

9. Suppose T ∈ A(V) be nilpotent then prove that invarients of T are unique.
14
(2-06/22)B-11658
5
160