Roll No.

(05/24)

15412

M.Sc. EXAMINATION

(For Batch 2021 & Onwards)

(Second Semester)

PHYSICS

MSc/Phy/2/CC7

Classical Electrodynamics

Time: Three Hours Maximum Marks: 70

Note: Attempt Five questions in all, selecting one question from each Unit. Q. No. 1 is compulsory.

1. Discuss in brief:

5×2=10

- (i) Dipole moment
- (ii) Atomic polarizability
- (iii) Ampere's law

(8-29/8) B-15412

P.T.O.

- (iv) Plane e.m. waves in free space
- (v) TE and TM waves.

Unit I

- 2. (a) State and prove Gauss's law.
 - (b) What are Dielectrics? Derive Clausius-Mossoti equation. 7
- 3. (a) What is an electret? Express Poisson's and Laplace equations in Cartesian, spherical and cylindrical co-ordinates. 8
 - (b) What is method of images? Apply it to find the potential due to a point charge above a grounded conducting plane. 7

Unit II

- 4. (a) State and prove Biot-Savart law. 7
 - (b) Two wires carrying current in same direction 5000 Amp and 10000 Amp which are placed with their axis 5 cm. apart. Calculate force between then in Newton per meter.

5. (a) What is Faraday Law of induction ?

Derive Maxwell's equation from Faraday
law.

8

(b) Discuss physical significance of the Maxwell's equations:

$$\nabla . E = \frac{e}{\epsilon_0}$$
 and $\nabla . B = 0$.

Unit III

- (a) State and prove Poynting theorem.
 Discuss physical significance and units of Poynting vector.
 - (b) What is Coloumb gauge condition?

 Discuss vector magnetic potential. 5
- 7. (a) Derive the equations for the propagation of e.m. fields in a conducting medium.

10

(b) What is skin depth? Discuss skin depths for different materials.

(8-29/9) B-15412

3

P.T.O.

Unit IV

8. (a) State and prove laws of reflection and refraction of light at plane dielectrics interface using classical e.m. field theory.

8

(b) State and prove total internal reflection of light using classical e.m. field theory.

7

- 9. (a) What is a wave guide? Obtain the propagation parameters of a wave guide for two parallel conducting plates. 8
 - (b) Obtain Fresnel amplitude relations for the electric field (E) polarized perpendicular to the plane of incidence using interface of two dielectric media.

B-15412 4 320