Roll No.

(12/24)

15222

M. Sc. (2 Year) EXAMINATION

(For Batch 2021 & Onwards)

(Third Semester)

MATHEMATICS

MSc/Maths/3/CC11

Fluid Mechanics

Time: Three Hours

Maximum Marks: 70

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. 1 is compulsory.

- 1. (i) Describe the Eulerian method to describe fluid motion.
 - (ii) Determine the acceleration when the velocity distribution is given by $\vec{q} = \hat{i} Axy^2t + \hat{j} Bx^2yt + \hat{k} Cxyz$, where A, B and C are constants.
 - (iii) From the vector form of Euler's equation of motion, derive the equation in spherical coordinates.
 - (iv) Find the image of a three dimensional source with regard to a plane.
 - (v) Describe two-dimensional motion of a fluid.

 $5 \times 2 = 10$

Unit I

- 2. (i) Derive the equation of continuity for fluid motion in Cartesian coordinates. 8
 - (ii) If $\sigma(s)$ is the cross-sectional area of a stream filament, prove that the equation of continuity is $\frac{\partial}{\partial t}(\rho\sigma) + \frac{\partial}{\partial s}(\rho\sigma q) = 0$, where δs is an element of arc of the filament and q is the fluid speed.
- 3. (i) Describe stream line, path line and streak line. Hence find the path lines and the streak lines, when the velocity field at a point is $\vec{q} = \left(\frac{x}{t}, y, 0\right)$.

(5)B-15222 1 P.T.O.

	(ii)	Show that $\left(\frac{x^2}{a^2}\right) \tan^2 t + \left(\frac{y^2}{b^2}\right) \cot^2 t = 1$ is a possible form for the bounding
		surface of a liquid.
Unit II		
4.	(i)	A homogeneous liquid is in motion in a vertical plane within a curved tube
		of uniform small bore under the action of gravity. Describe the motion of the
		fluid.
	(ii)	Derive equations of motion under impulsive forces in Cartesian form. 8
5.	(i)	A quantity of liquid occupies a length 21 of a straight tube of uniform small
		bore under the action of a force to a point in the tube varying as a distance
		from that point. Determine the pressure at any point.
	(ii)	State and prove Kelvin's circulation theorem. 8
Unit III		
6.	(i)	Describe the motion for liquid streaming past a fixed sphere in an infinite
		mass of liquid. Also derive the equation of the lines of flow relative to the
		sphere.
	(ii)	A sphere of radius 'a' is surrounded by a concentric sphere of radius 'b', the
		space between the spheres is being filled with liquid at rest. The inner sphere
		is given a velocity U and the outer sphere a velocity V in the same direction.
_	(1)	Find the initial motion of the liquid.
7.	(i)	Describe three dimensional doublets and hence find the velocity potential due
	(**)	to a three dimensional doublet.
	(11)	Find the image of a three dimensional source with regard to a sphere. 9
Unit IV		
8.	(i)	Describe stream function in two dimensional motion, and give its physical
	· · · · ·	significance.
	(ii)	Define complex potential and show that the curves of constant velocity
		potential and constant stream functions cut orthogonally at their points of
0	(1)	intersection. 7
9.	(i)	Find the image of a source with regard to a circle.
	(ii)	State and prove Blasius theorem.
(5)B-15222 2		2 2 310