Roll No.

(12/24)

15221

M. Sc. (2 Year) EXAMINATION

(For Batch 2021 & Onwards)

(Third Semester)

MATHEMATICS

MSc/Maths/3/CC10

Topology

Time: Three Hours

Maximum Marks: 70

Note: Attempt *Five* questions in all, selecting *one* question from each Section. Q. No. 1 is compulsory.

- 1. (a) Show that closed subspace of a compact space is compact.
 - (b) If $x \notin F$, where F is a closed subset of a topological space (X, T), then show that there exists an open set G such that $x \in G \subseteq F^{C}$.

(5-46/14)B-15221

P.T.O.

- (c) If E is a subset of a subspace (X^*, T^*) of a topological space (X, T), then show that $C^*(E) = X^* \cap C(E)$.
- (d) Let: $X = \{1, 2, 3\}$ and $\beta = \{(1, 2), (2, 3), X\}.$ Show that β is not a base for topology on X.
- (e) Define Projection Mapping with example. $5\times2=10$

Section I

2. (a) Define a topology T on a non-empty set X. If X is an uncountable set and T be the family of all complements of countable sets together with Ø, then show that T is a topology on X. What would happen to T if X is a countable set? 7.5

- (b) Let $X = \{a, b, c\}$ and $T = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then find $d(\{a\})$ and $d(\{a, b\})$.
- 3. (a) Let C* be a closure operator defined on a set X. Let F be the family of all subsets F of X for which C*(F) = F and let T be a family of all complements of membes of F. Show that T is a topology for X and if C is the closure operator defined by the topology T, then C*(E) = C(E) for all subsets E ⊆ X. 7.5
 - (b) State and prove Lindelof's theorem. 7.5

Section II

4. (a) Let β and β' be bases for the topologies
 T and T' respectively on X. Show that
 the following are equivalent:

3

(i) T' is finer that T;

- (ii) For each $x \in X$ and each basis element $B \in \beta$ such that $x \in B$ there is a member $B' \in \beta'$ such that $x \in B' \subset B$.
- (b) State and prove the pasting lemma about continuous functions. 7.5
- (a) Let (X, T) be a discrete topological space.
 (Y, U) be any topological space. Is every function f: X → Y necessarily continuous? Prove or disapprove. 7.5
 - (b) Show that $\prod_{\lambda} X_{\lambda}$ is T_2 iff each space X_{λ} is T_2 , where $\{X_{\lambda}\}_{{\lambda} \in \Lambda}$ is any family of topological spaces. 7.5

Section III

6. (a) Prove that a convergent sequence has a unique limit in a Hausdorff space. Is the converse true? Justify. 7.5

(b) Let S be a subbase for a topological space X. Then, prove that X is completely regular iff for each $V \subseteq S$ for each $x \in V$, there exists a continuous function $f: X \to [0, 1]$ such that :

$$f(x) = 0, f(y) = 1$$
 for all $y \notin V$. 7.5

- 7. (a) Define Normal space. Is hereditary property holds in Normal space? 5
 - (b) Show that a topological space (X, T) is normal if and only if for each two disjoint closed subsets F₁ and F₂ in X and closed interval [a, b] of reals, there exists a continuous mapping f: X → [a, b] such that f(F₁) = {a} and f(F₂) = {b}.

Section IV

8. (a) Prove that union of a collection of connected sets having a point in common is connected.

7.5

5

- (b) Show that a topological space X is connected iff there exists no non-empty proper subset which is both open and closed.

 7.5
- 9. (a) Prove that every closed subset of a compact space is compact. Is every compact subset closed? Justify. 7.5
 - (b) Let (X, T) be a topological space such that every countable open covering of X is reducible to a finite subcover then prove that X is countably compact. 7.5