Roll No.

(05/24)

15237

M. Sc. (2 Year) EXAMINATION

(For Batch 2021 & Onwards)

(Fourth Semester)

MATHEMATICS

MSc/Maths/4/DSC20

Algebraic Number Theory

Time: Three Hours Maximum Marks: 70

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. 1 is compulsory.

- 1. (a) Define integral basis.
 - (b) Define Dedekind domains.
 - (c) Define L.C.M. of ideals in O_K .
 - (d) Define Hurwitz constant.
 - (e) Define Legendre symbol. 10

(5-28/3) B-15237

P.T.O.

Unit I

- (a) If K is an algebraic number field of degree n over Q and α ∈ O_K its ring of integers, then prove that Tn_K(α) and N_K(α) are in Z.
 - (b) Show that O_K has an integral basis. 7
- 3. (a) Suppose K is a number field with r_1 real embeddings and $2r_2$ complex embeddings so that $r_1 + 2r_2 = [K:Q] = n$. Show that d_K has sign $(-1)^{r_2}$.
 - (b) Let $K = Q(\alpha)$, where $\alpha = r^{1/3}$, $r = ab^2 \in \mathbb{Z}$, ab is squarefree. If 3/r, assume that 3/a, 3/b, find an integral basis for K.

Unit II

4. (a) Show that every non-zero prime ideal P of O_K is maximal.

B-15237

(b) Show that any principal ideal domain is a Dedekind domain.

- 5. (a) Let P be a prime ideal of O_K , D the different of K. If $P^e \mid \langle p \rangle$, where $p \in Z$ is a prime. Then, prove that $P^{e-1} \mid D$.
 - (b) State and prove Dedekind theorem. 7

Unit III

6. (a) Show that given $\alpha, \beta \in O_K$, there exists $t \in \mathbb{Z}, |t| \leq H_K$ and $w \in O_K$ so that :

$$|N(\alpha t - \beta w)| < |N(\beta)|$$
. 8

- (b) Prove that the number of equivalence classes of ideals is finite. 7
- 7. (a) Compute the class number of $Q(\sqrt{-7})$.

8

(b) Let K be an algebraic number field of degree n over Q. Show that each ideal class contain an ideal A satisfying:

$$N_A \le \frac{n!}{n''} \left(\frac{4}{\pi}\right)^{r_2} |d_K|^{1/2},$$

where r_2 is the number of pairs of complex embeddings of K and d_K is the descriminant.

Unit IV

8. (a) For all odd primes p, show that:

$$\left(\frac{2}{p}\right) = \begin{cases} 1 & \text{if } p \equiv \pm 1 \pmod{8} \\ -1 & \text{if } p \equiv 3, 5 \pmod{8} \end{cases}$$

(b) Show that $S^q \equiv \left(\frac{q}{p}\right) S(\text{mod } q)$, where q and p are odd primes, S is Gauss sum for prime p.

B-15237

- 9. (a) State and prove quadratic law of reciprocity for Legendre symbols. 8
 - (b) Show that there are infinite many primes of the type 4k+1.

B-15237

5