Roll No.

(12/24)

15231

M.Sc. (2 Year) EXAMINATION

(For Batch 2021 & Onwards)

(Fourth Semester)

MATHEMATICS

MSc/Maths/4/CC12

Functional Analysis

Time: Three Hours Maximum Marks: 70

Note: Attempt Five questions in all, selecting one question from each Unit. Q. No. 1 is compulsory.

- 1. (a) What do you mean by B(N, N')? Also explain B(N, C).
 - (b) Prove that every infinite dimensional subspace need not be closed.

- (c) Give an example of a space which is not reflexive.
- (d) If H is Hilbert space then prove that : $||x+y||^2 + ||x-y||^2 = 2||x||^2 + ||y||^2$ $\forall x, y \in H.$
- (e) If A_1 and A_2 are self adjoint operators on H, then prove that $A_1 A_2$ is self adjoint if and only if $A_1 A_2 = A_2 A_1$. 10

Unit I

- 2. (a) Let X be a linear space over a field F and d be the metric on X such that d(x, y) = d(x y, 0) and $d(\alpha x, 0) = |\alpha|$ $d(x, 0) \forall x, y \in X$ and $\alpha \in F$. Define $||x|| = d(x, 0) \forall x \in X$. Prove that $||\cdot||$ is a norm of X and d is the metric induced by $||\cdot||$ on X.
 - (b) Let M be a closed linear subspace of a normed linear space N. If the norm of a coset x + M in the quotient space N/M is defined by ||x + M|| = inf{||x + m||; m ∈ M}. Then show that N/M is a Banach space if N is a Banach space.

2

- 3. (a) Let C(X) denote the linear space of all bounded continuous scalar valued functions defined on a topological space X. Show that C(X) is Banach space under the norm $||f|| = \sup\{|f(x)|, x \in X\}; f(x) \in C(X) \text{ is complete.} 7.5$
 - (b) Let N and N' be normed linear spaces and let T be a linear transformation of N into N'. Then the inverse T^{-1} exists and is continuous on its domain of definition if and only iff there exists a constant m > 0 such that $m ||x|| \le ||T(x)||$; $\forall x \in N$.

7.5

Unit II

4. (a) If N is a normed linear space and x_0 is a non-zero vector in N, then prove that there exists a functional f_0 in N* such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$. In particular, if $x \neq y(x, y \in N)$, there exists a vector $f \in N$ * such that $f(x) \neq f(y)$.

7.5

- (b) Let M be a closed linear subspace of a normed linear space N and let x₀ be a vector not in M, then prove that there exists a functional F in N* such that F(M) = {x₀} and F(x₀) ≠ 0.
- 5. (a) State and prove Uniform boundedness theorem. 7.5
 - (b) Prove that a non-empty subset X of a normed linear space N is bounded iff f(X) is a bounded set of numbers for f in N*.
 7.5

Unit III

- 6. (a) Prove that in a finite dimensional space, the notion of weak and strong convergence are equivalent. 7.5
 - (b) Let B and B' are Banach spaces and let
 T: B→B' be a linear transformation
 then prove that graph of T is closed iff
 T is continuous.

- 7. (a) If M is a proper closed linear subspace of a Hilbert space H, then prove that there exists a non-zero vector z_0 in H such that $z_0 \perp M$.
 - (b) Give an example of a Banach space which is not Hilbert space. 7.5

Unit IV

- 8. (a) If $\langle e_i \rangle$ is an orthonormal set in Hilbert space H, then prove that $\sum |(x,e_i)|^2 \le ||x||^2 \quad \text{for every vector}$ $x \in H. \qquad 7.5$
 - (b) Prove that every non-zero Hilbert space contains a complete orthonormal set. 7.5
- 9. (a) If N_1 and N_2 are normal operators on a Hilbert space H with property that either commutes with the adjoint of the other, then prove that $N_1 + N_2$ and N_1N_2 are normal.

(b) Prove that an operator T on H is unitary if and only if it is an isometric isomorphism of H into itself. 7.5