(05/24)

11671

M.Sc. (2 Year) EXAMINATION

(For Batch 2017 to 2020 Only)

(Fourth Semester)

MATHEMATICS

MTHCC-2401

Functional Analysis

Time: Three Hours Maximum Marks: 70

Note: Attempt Five questions in all, selecting one question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks.

Compulsory Question

1. (a) Show that ||.|| is continuous as a mapping from a normed space X into R.

(8-24/7) B-11671

P.T.O.

- (b) Let X and Y be normed spaces. Define the function A: $X \rightarrow Y$ by $Ax = 0 \ \forall x \in X$, where 0 is the zero vector in Y. Show that A is a linear operator and ||A|| = 0.
- (c) Define adjoint of a bounded linear operator and show that adjoint is also a linear operator.
- (d) Define a reflexive space. Whether R^n is reflexive or not.
- (e) Define weakly convergent sequence in a normed space and show that weak limit is unique.
- (f) Show that in an inner product space, $\langle x, \alpha y + \beta z \rangle = \overline{\alpha} \langle x, y \rangle + \overline{\beta} \langle x, z \rangle$.
- (g) Define orthonormal set and write the orthogonal set of R³.

Unit I

2. (a) Prove that the Euclidean space \mathbb{R}^n is Banach space.

B-11671

- (b) A normed space X is finite dimensional iff the closed unit sphere in X is compact.
- (a) Let X and Y be normed space over the field k and T: X → Y a linear operator.
 Then T is continuous iff T is bounded.
 - (b) Show that dual space of $l^p(n)$, $1 is <math>l^q(n)$, where $1 < q < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$.

Unit II

4. (a) Let X be a normed space over the field k, M a subspace of X and let $x_0 \in X$ be such that $d(x_0, M) = d > 0$. Then $\exists a \ g \in X^*$ s.t.

(i)
$$g(x_0) = 1$$
 (ii) $g(M) = 0$

(b) State and prove Riesz representation theorem for bounded linear functionals on C[a, b].

(8-24/8) B-11671

3

P.T.O.

- 5. (a) State and prove uniform boundedness theorem.
 - (b) Let X and Y be normed spaces once the field k and T: X → Y a bounded linear operator. Then:
 - (i) $||T^*|| = ||T||$
 - (ii) The mapping $T \to T^*$ is an isometric isomorphism of B(X, Y) into $B(Y^*, X^*)$.

Unit III

- 6. (a) Let {x_n} be a sequence in a normal space
 X. Then x_n → x in X ⇒ x_n w in X. Discuss the converse also.
 - (b) State and prove bounded inverse theorem.
- (a) State and prove Schwartz inequality and use it prove triangle inequality in an inner product space.

(b) Let X be an inner product space and M ≠ φ be a complete proper subspace of X. Then M[⊥] ≠ φ.

Unit IV

- 8. (a) State and prove Bessel's inequality in an inner product space.
 - (b) State and prove Parseval's identity.
- 9. (a) State and prove Riesz representation theorem for bounded linear functionals on a Hilbert space.
 - (b) Let N(H) be the set of all normal operators on H. Further let S, $T \in N(H)$ and suppose that $ST^* = T^* S$. Then S + T and ST are in N(H).

B-11671