Roll No.

(05/25)

15432

M. Sc. EXAMINATION

(For Batch 2021 & Onwards)

(Fourth Semester)

PHYSICS

MSc/Phy/4/CC16(A)

Radiation Physics

Time: Three Hours

Maximum Marks: 70

Note: Attempt *Five* questions in all. Q. No. 1 (Section A) is compulsory. Attempt *four* more questions, selecting *one* question from each Section B, C, D, E.

Section A

1. Attempt the following:

 $5 \times 2 = 10$

(a) Differentiate between thermal and fast neutrons.

- (b) What is meant by the radiation dose and mention its units?
- (c) How gamma camera can be used in medical diagnosis and treatment?
- (d) Explain steps to be taken for radiation protection.
- (e) Discuss the biological effects of ionizing radiation on humans.

Section B

- 2. (a) Explain the principle and working of boron detector for slow neutrons. 5
 - (b) Explain the different types of neutron interactions with matter. 5
 - (c) Discuss the various types of neutron sources.
- 3. (a) Explain the origin of energy spectra and discuss, how can it be used to analyse different types of radiations.

(b) Discuss the phenomenon of Compton scattering and write its advantages. 8

Section C

4. (a) Discuss the basis of classification of nuclear radiation detectors with examples.

5

- (b) Explain the various multiplicative regions of gas filled detectors by showing the variation of pulse size with applied voltage.
- (c) Describe the working principle of semiconductor detectors and mention one advantage of these over gas detectors. 5
- 5. (a) Describe various sources of radiation exposure and discuss the importance of radiation monitoring for occupational and environmental safety.
 - (b) Discuss the phenomenon of pulse formation in GM Counter. 5

Section D

- 6. (a) What is nuclear spectrometric data? Explain, how is it used to study the effects of radiations on the environment and human health.
 - (b) Define the concept of spin and parity for nuclear states. How these can be measured using magnetic dipole moments, electric quadrupole moments and reaction cross-sections?
- 7. (a) What is the g-factor ? Explain its significance in understanding magnetic properties of particles.
 - (b) Discuss the safety limits for radiation exposure for occupational workers and the general public. Why are different limits being set for these groups?
 - (c) Define the Internal Conversion Coefficient (ICC). How is it calculated and what is its role in nuclear spectroscopy?

Section E

- 8. (a) What is Positron Emission Tomography?

 Explain its principle, working and applications to diagnose the human body.
 - (b) Explain the principle of ion beam therapy in cancer treatment and discuss its advantages over conventional radiation therapies.
- 9. (a) Explain the principles of diagnostic and therapeutic nuclear medicines. How do these differ in their applications? 5
 - (b) Describe the underlying principles and working of MRI and explain, how is it used in diagnosing conditions in different body organs.

5

290