15236

M. Sc. (2 Year) EXAMINATION

(For Batch 2021 & Onwards)

(Fourth Semester)

MATHEMATICS

MSc/Maths/4/DSC16

Boundary Value Problems

Time: Three Hours Maximum Marks: 70

Note: Attempt *Five* questions in all, selecting *one* question from each Section. Q. No. 1 is compulsory.

(Compulsory Question)

- 1. (i) The boundary value problem is always converted into......equation. 2
 - (ii) Define three types of boundary conditions.

(1-08/20) B-15236

P.T.O.

(iii) Solve the integral equation:

$$g(s) = f(s) + \int_{0}^{s} (s-t) g(t) dt$$

using Laplace transform.

2

- (iv) Give shifting property of Dirae-Delta functions.
- (v) Explain basic procedure of perturbation methods for the solution of: 2

$$f(P) = \int_{S} K(P, Q) g(Q) ds, P \in S$$

Section I

2. (a) Solve the problem:

8

$$\frac{d}{ds}\left(p(s)\frac{dy}{ds}\right) + q(s)y(s) = F(s)$$

$$y(a) = 0, y'(a) = 0.$$

(b) Convert the problem:

7

$$y'' + y = 0, y(0) = 0, y'(0) = 1$$

into an integral equation.

B-15236

Explain the Modified-Green's function with its 3. properties and use this function to solve the problem: 15

$$-\left(\frac{d^2y}{ds^2} + \lambda y\right) = F(s)$$
$$y'(0) = y'(e) = 0, \ 0 \le s \le l.$$

Section II

- (a) Define Interior Neumann Problem and find at integral representation formula.
 - (b) Solve the boundary value problem: 8 $-\nabla^2 u(x) = 4\pi\delta(x), x \in \mathbb{R}, u/s = f \text{ using}$ $-\nabla^2 G = \delta(x - \xi), G/s = 0$
- Find the electorostatic potential of a conducting 5. disk bounded by two parallel planes, z = b and z = -c, b, c > 0, then boundary value problem is given by: $\nabla^2 \nu \left(\rho, \phi, z \right) = 0$

$$\nabla^2 v (\rho, \phi, z) = 0$$

in D region.

$$v(v(\delta, \phi, 0) = f^{(n)}(\delta) \cos n\phi, 0 \le \delta \le a$$
$$v(\delta, \phi, z) = 0.$$

Section III

6. (a) Using Laplace Transform find the solution of the equation:

$$f(s) = \int_{0}^{S} k(s^{2} - t^{2}) g(t) dt, s > 0$$

- (b) Define the finite Hilbert-transform pair and derive the second form pair of it. 7
- 7. Define Three-part boundary value problem and find the solution.

Section IV

8. (a) Consider the Fredholm integral equation of the first kind:

$$f(\rho) = \int_{S} K(P, Q) g(Q) ds, P \in S$$

4

where $K(P, Q) = \frac{e^{i\epsilon r}}{r}$, ϵ is perturbation parameter. Find the solution.

(b) Solve the boundary value problem: 8

$$\nabla^2 k^2 u_s + k^2 u_s = 0, x \in \mathbb{R}_e$$

$$u_s = -u_i \text{ on } S.$$

Find the torque experienced by a sphere which is rotating uniformly in oseen flow and is bounded by a pair of parallel walls z = ± C. Also evaluate the velocity field.