Roll No.	***************************************
(05/25)	

15237

M. Sc. (2 Year) EXAMINATION

(For Batch 2021 & Onwards)

(Fourth Semester)

MATHEMATICS

MSc/Maths/4/DSC20

Algebraic Number Theory

Time: Three Hours Maximum Marks: 70

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. 1 is compulsory.

- 1. (a) Define norm and traces.
 - (b) State Hurwitz lemma. 2

 P.T.O.

(5-10/17)B-15237

- (c) Compute the class number of $Q(\sqrt{21})$. 2
- (d) Show that the sum and product of two fractional ideals are again fractional ideals.
- (e) State law of quadratic reciprocity. 2

Unit I

- 2. (a) Suppose that the minimal polynomial of α is Eisensteinian with respect to a prime p. Show that the index of α is not divisible by p.
 - (b) Show that $\det(\operatorname{Tr}(w_i w_j))$ is independent of the choice of integral basis. 7
- 3. (a) If $D \equiv 1 \pmod{4}$, show that every integer of $Q(\sqrt{D})$ can be written as $(a+b\sqrt{D})/2$, where $a \equiv b \pmod{2}$.

B-15237

(b) Show that every nonzero prime ideal in O_k contains exactly one integer prime. 7

Unit II

- 4. (a) Let \wp be a prime ideal of O_k . Then, prove that there exists $\in K$, $z \notin O_k$, such that $z_\wp \subseteq O_k$.
 - (b) State and prove Chinese Remainder Theorem. 7
- 5. (a) Let L/K be a finite extension of algebraic number fields. Show that the map $Tr_{L/K}: L \times L \to K$ is non-degenerated. 8
 - (b) Let D be the different of an algebraic number field K. Then, prove that $N(D) = |d_K|$.

Unit III

- 6. (a) Show that the class number of $K = Q(\sqrt{D})$, for D = -1, -2, -3, -7 are 2.
 - (b) Show that the equation $x^2 + 5 = y^3$ has no integral solution.

8

- 7. (a) Show that there exist bounded, symmetric convex domains with volume $< 2^n$ that do not contain a lattice point.
 - (b) State and prove Minkowski Bound. 7

Unit IV

8. (a) For all odd primes p, prove that:

$$\left(\frac{2}{p}\right) = \begin{cases} 1 & \text{if } p \equiv \pm 1 \pmod{8} \\ -1 & \text{if } p \equiv 3, 5 \pmod{8} \end{cases}$$

4

- (b). Show there are an infinite number of primes in the arithmetic progression 15k + 4.
- 9. (a) For and odd prime p, prove that the Gauss sum S satisfies:

$$S^2 = \left(\frac{-1}{p}\right)p.$$

(b) Show that $x^4 \equiv 25 \pmod{1013}$ has no solution.

