Roll No.

(05/25)

15235

M.Sc. Mathematics (2Year) **EXAMINATION**

(For Batch 2021 & Onwards)
(Fourth Semester)

OPERATION RESEARCH

MSC/MATHS/4/DSC14

Time: Three Hours Maximum Marks: 70

Note: It is compulsory to answer all the questions

(2 marks each) of Part A in short. Answer

any four questions from Part B in detail

selecting one question from each Unit.

Different sub-parts of a question are to be

attempted adjacent to each other.

Part A

1.	(a)	What do you mean by an LPP?	What
		are its limitations?	2

- (b) How do you identify the presence of alternative optima in Simplex Method.
- (c) Define duality with suitable example. 2
- (d) Define the mathematical formulation of an assignment problem.
- (e) What is a zero-sum two-person game?

Part B

Unit I

2. (a) Solve the following LPP using Graphical 8
Method:

Max.
$$z = 120x + 100y$$

$$10x + 5y \le 80$$

$$6x + 6y \le 66$$

$$4x + 8y \ge 24$$

$$5x + 6y \le 90$$

$$x, y \ge 0$$

(b) Solve the following LPP by Simplex method:

Max.
$$z = 2x_1 + 5x_2$$

Subject to the constrains:

$$x_1 + 3x_2 \le 3$$
,
 $3x_1 + 2x_2 \le 6$
 $x_1, x_2 \ge 0$

3. (a) Solve the following LPP by Big-M method:

Min.
$$z = 4x_1 + 8x_2 + 3x_3$$

Subject to the constrains:

$$x_1 + x_2 \ge 2$$

$$2x_1 + x_3 \ge 5$$

$$x_1, x_2, x_3, \ge 0$$

and

(b) Solve the following LPP by Two-Phase method:

Min.
$$z = x_1 + x_2$$

Subject to the constrains:

$$2x_1 + x_2 \ge 4$$
$$x_1 + 7x_2 \ge 7$$
$$x_1, x_2 \ge 0$$

Unit II

4. Using the Dual Simplex method solve the following LPP:

Min.
$$z = x_1 + 2x_2 + 3x_3$$

Subject to the constraints:

$$2x_{1} - x_{2} + x_{3} \ge 4$$

$$x_{1} + x_{2} + 2x_{3} \ge 8$$

$$x_{2} - x_{3} \ge 2$$

$$x_{1}, x_{2}, x_{3} \ge 0$$

Unit III

6. Find the optimal solution of the following transportation problem and initial basic feasible solution by Vogel's approximation method:

To Do Do Do

From	$\mathbf{D_1}$	D ₂	D_3	D_4	Available	
I	23	27	16	18	30	
II	12	17	20	51	40	
III	22	28	12	32	53	
Demand	22	35	25	41	123	
2\ D 15225	* - ma	•	_		PTO	

(7-27/3) B-15235

5

P.T.O.

7. (a) Solve the following cost minimizing assignment problem:

Job→ Operator	A	В	C	D
I	10	12	0	
п	5	10	7	11
Ш	12	14	13	8
IV	8	15	11	0

(b) Explain the principle of dominance in game theory and solve the following game:

Player	B_1	B_2	B ₃	B ₄	B ₅
Player A/Player					
$B \rightarrow$					
1					
\mathbf{A}_1	10	4	2	9	1
A ₂	7	6	5	7 -	8
A ₃	3	5	4	4	9
A ₄	6	7	3	3	2

Unit IV

8. (a) There are 5 jobs each of which must go through the 2 machines A and B in the order AB. Processing times are given in table below:

Processing Time (hours)

Job	1	2	3	4	5
Time for A	5	1	9	3	10
Time for B	2	6	7	8	4

Determine a sequence for 5 jobs that will minimize the elapsed time.

(b) Solve the following non-linear programming problem graphically: 7

Min. $z = x_1^2 + x_2^2$ subject to the constraints:

$$x_1 + x_2 \ge 4,$$

 $2x_1 + x_2 \ge 5$
 $x_1, x_2 \ge 0.$

9. Determine x_1 , x_2 , x_3 so as to maximize 15

$$z = -x_1^2 - x_2^2 - x_3^2 + 4x_1 + 6x_2$$

Subject to the constraints:

$$x_1 + x_2 \le 2$$
$$2x_1 + 3x_2 \le 12$$
$$x_1, x_2 \ge 0.$$

and

