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Preface

It is common practice to teach nuclear physics and particle physics together in an

introductory course and it is for such a course that this book has been written. The

material is presented so that different selections can be made for a short course of

about 25–30 lectures depending on the lecturer’s preferences and the students’

backgrounds. On the latter, students should have taken a first course in quantum

physics, covering the traditional topics in non-relativistic quantum mechanics and

atomic physics. A few lectures on relativistic kinematics would also be useful, but

this is not essential as the necessary background is given in appendix B and is only

used in a few places in the book. I have not tried to be rigorous, or present proofs

of all the statements in the text. Rather, I have taken the view that it is more

important that students see an overview of the subject which for many – possibly

the majority – will be the only time they study nuclear and particle physics. For

future specialists, the details will form part of more advanced courses. Never-

theless, space restrictions have still meant that it has been necessary to make a

choice of topics covered and doubtless other, equally valid, choices could have

been made. This is particularly true in Chapter 8, which deals with applications of

nuclear physics, where I have chosen just three major areas to discuss. Nuclear and

particle physics have been, and still are, very important parts of the entire subject

of physics and its practitioners have won an impressive number of Nobel Prizes.

For historical interest, I have noted in the footnotes many of the awards for work

related to the field.

Some parts of the book dealing with particle physics owe much to a previous book,

Particle Physics, written with Graham Shaw of Manchester University, and I am

grateful to him and the publisher, John Wiley and Sons, for permission to adapt some

of that material for use here. I also thank Colin Wilkin for comments on all the chapters

of the book, David Miller and Peter Hobson for comments on Chapter 4 and Bob

Speller for comments on the medical physics section of Chapter 8. If errors or

misunderstandings still remain (and any such are of course due to me alone) I would be

grateful to hear about them. I have set up a website (www.hep.ucl.ac.uk/�brm/

npbook.html) where I will post any corrections and comments.

Brian R. Martin

January 2006



Notes

References

References are referred to in the text in the form Ab95, where Ab is the start of the

first author’s surname and 1995 is the year of publication. A list of references with

full publication details is given at the end of the book.

Data

Data for particle physics may be obtained from the biannual publications of the

Particle Data Group (PDG) and the 2004 edition of the PDG definitive Review

of Particle Properties is given in Ei04. The PDG Review is also available at

http://pdg.lbl.gov and this site contains links to other sites where compilations of

particle data may be found. Nuclear physics data are available from a number of

sources. Examples are: the combined Isotopes Project of the Lawrence Berkeley

Laboratory, USA, and the Lund University Nuclear Data WWW Service, Sweden

(http://ie.lbl.gov/toi.html), the National Nuclear Data Center (NNDC) based

at Brookhaven National Laboratory, USA (http://www.nndc.bnl.gov), and

the Nuclear Data Centre of the Japan Atomic Energy Research Institute

(http://www.nndc.tokai.jaeri.go.jp). All three sites have extensive links to other

data compilations. It is important that students have some familiarity with these

data compilations.

Problems

Problems are provided for all chapters and appendices except Chapter 9 and

Appendices A and D. They are an integral part of the text. The problems are

mainly numerical and require values of physical constants that are given in a table

following these notes. A few also require input data that may be found in the

references given above. Solutions to all the problems are given in Appendix D.



Illustrations

Some illustrations in the text have been adapted from, or are loosely based on,

diagrams that have been published elsewhere. In a few cases they have been

reproduced exactly as previously published. In all cases this is stated in the

captions. I acknowledge, with thanks, permission to use such illustrations from the

relevant copyright holders.
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Physical Constants
and Conversion Factors

Quantity Symbol Value

Speed of light in vacuum c 2:998 � 108 ms�1

Planck’s constant h 4:136 � 10�24 GeV s

�h � h=2� 6:582 � 10�25 GeV s

�hc 1:973 � 10�16 GeV m

ð�hcÞ2
3:894 � 10�31 GeV2m2

electron charge (magnitude) e 1:602 � 10�19 C

Avogadro’s number NA 6:022 � 1026 kg-mole�1

Boltzmann’s constant kB 8:617 � 10�11 MeV K�1

electron mass me 0:511 MeV=c
2

proton mass mp 0:9383 GeV=c
2

neutron mass mn 0:9396 GeV=c
2

W boson mass MW 80:43 GeV=c
2

Z boson mass MZ 91:19 GeV=c
2

atomic mass unit u � ð 1
12

mass12C atomÞ 931:494 MeV=c
2

Bohr magneton �B � e�h=2me 5:788 � 10�11MeV T�1

Nuclear magneton �N � e�h=2mp 3:152 � 10�14MeV T�1

gravitational constant GN 6:709 � 10�39�hcðGeV=c
2Þ�2

fine structure constant � � e2=4�"0�hc 7:297 � 10�3 ¼ 1=137:04

Fermi coupling constant GF=ð�hcÞ3
1:166 � 10�5GeV�2

strong coupling constant �sðMZc2Þ 0.119

1 eV ¼ 1:602 � 10�19J 1 eV=c
2¼ 1:783 � 10�36 kg

1 fermi ¼ 1 fm � 10�15 m 1 barn ¼ 1 b � 10�28 m2

1 Tesla ¼ 1T ¼ 0:561 � 1030 MeV=c2C�1s�1 1 year ¼ 3:1536 � 107s



1
Basic Concepts

1.1 History

Although this book will not follow a strictly historical development, to ‘set the

scene’ this first chapter will start with a brief review of the most important

discoveries that led to the separation of nuclear physics from atomic physics as a

subject in its own right and later work that in its turn led to the emergence of

particle physics from nuclear physics.1

1.1.1 The origins of nuclear physics

Nuclear physics as a subject distinct from atomic physics could be said to date

from 1896, the year that Henri Becquerel observed that photographic plates were

being fogged by an unknown radiation emanating from uranium ores. He had

accidentally discovered radioactivity: the fact that some nuclei are unstable and

spontaneously decay. In the years that followed, the phenomenon was extensively

investigated, notably by the husband and wife team of Pierre and Marie Curie and

by Ernest Rutherford and his collaborators,2 and it was established that there were

three distinct types of radiation involved: these were named (by Rutherford) �-, �-

and �-rays. We know now that �-rays are bound states of two protons and two

neutrons (we will see later that they are the nuclei of helium atoms), �-rays are

electrons and �-rays are photons, the quanta of electromagnetic radiation, but the

historical names are still commonly used.

1An interesting account of the early period, with descriptions of the personalities involved, is given in Se80.
An overview of the later period is given in Chapter 1 of Gr87.
2The 1903 Nobel Prize in Physics was awarded jointly to Becquerel for his discovery and to Pierre and Marie
Curie for their subsequent research into radioactivity. Rutherford had to wait until 1908, when he was
awarded the Nobel Prize in Chemistry for his ‘investigations into the disintegration of the elements and the
chemistry of radioactive substances’.

Nuclear and Particle Physics B. R. Martin
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At about the same time as Becquerel’s discovery, J. J. Thomson was extending

the work of Perrin and others on the radiation that had been observed to occur

when an electric field was established between electrodes in an evacuated glass

tube, and in 1897 he was the first to definitively establish the nature of these

‘cathode rays’. We now know the emanation consists of free electrons, (the name

‘electron’ had been coined in 1894 by Stoney) denoted e� (the superscript denotes

the electric charge) and Thomson measured their mass and charge.3 The view of the

atom at that time was that it consisted of two components, with positive and negative

electric charges, the latter now being the electrons. Thomson suggested a model

where the electrons were embedded and free to move in a region of positive charge

filling the entire volume of the atom – the so-called ‘plum pudding model’.

This model could account for the stability of atoms, but could not account for

the discrete wavelengths observed in the spectra of light emitted from excited

atoms. Neither could it explain the results of a classic series of experiments

performed in 1911 at the suggestion of Rutherford by his collaborators, Geiger and

Marsden. These consisted of scattering �-particles by very thin gold foils. In the

Thomson model, most of the �-particles would pass through the foil, with only a

few suffering deflections through small angles. Rutherford suggested they should

look for large-angle scattering and to their surprise they found that some particles

were indeed scattered through very large angles, even greater than 90�. Rutherford

showed that this behaviour was not due to multiple small-angle deflections, but

could only be the result of the �-particles encountering a very small positively

charged central nucleus. (The reason for these two different behaviours is

discussed in Appendix C.)

To explain the results of these experiments Rutherford formulated a ‘planetary’

model, where the atom was likened to a planetary system, with the electrons (the

‘planets’) occupying discrete orbits about a central positively charged nucleus (the

‘Sun’). Because photons of a definite energy would be emitted when electrons

moved from one orbit to another, this model could explain the discrete nature of

the observed electromagnetic spectra when excited atoms decayed. In the simplest

case of hydrogen, the nucleus is a single proton (p) with electric charge þe, where e

is the magnitude of the charge on the electron4, orbited by a single electron.

Heavier atoms were considered to have nuclei consisting of several protons. This

view persisted for a long time and was supported by the fact that the masses of

many naturally occurring elements are integer multiples of a unit that is about

1 per cent smaller than the mass of the hydrogen atom. Examples are carbon and

nitrogen, with masses of 12.0 and 14.0 in these units. However, it could not explain

why not all atoms obeyed this rule. For example, chlorine has a mass of 35.5 in these

3J. J. Thomson received the 1906 Nobel Prize in Physics for his discovery. A year earlier, Philipp von Lenard
had received the Physics Prize for his work on cathode rays.
4Why the charge on the proton should have exactly the same magnitude as that on the electron is a very long-
standing puzzle, the solution to which is suggested by some as yet unproven, but widely believed, theories of
particle physics that will be discussed briefly in Chapter 9.
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units. At about the same time, the concept of isotopism (a name coined by Soddy)

was conceived. Isotopes are atoms whose nuclei have different masses, but the same

charge. Naturally occurring elements were postulated to consist of a mixture of

different isotopes, giving rise to the observed masses.5

The explanation of isotopes had to wait 20 years until a classic discovery by

Chadwick in 1932. His work followed earlier experiments by Irène Curie (the

daughter of Pierre and Marie Curie) and her husband Frédéric Joliot.6 They had

observed that neutral radiation was emitted when �-particles bombarded beryllium

and later work had studied the energy of protons emitted when paraffin was

exposed to this neutral radiation. Chadwick refined and extended these experi-

ments and demonstrated that they implied the existence of an electrically neutral

particle of approximately the same mass as the proton. He had discovered the

neutron (n) and in so doing had produced almost the final ingredient for under-

standing nuclei.7

There remained the problem of reconciling the planetary model with the

observation of stable atoms. In classical physics, the electrons in the planetary

model would be constantly accelerating and would therefore lose energy by

radiation, leading to the collapse of the atom. This problem was solved by Bohr

in 1913. He applied the newly emerging quantum theory and the result was the

now well-known Bohr model of the atom. Refined modern versions of this model,

including relativistic effects described by the Dirac equation (the relativistic

analogue of the Schrödinger equation that applies to electrons), are capable of

explaining the phenomena of atomic physics. Later workers, including Heisenberg,

another of the founders of quantum theory,8 applied quantum mechanics to the

nucleus, now viewed as a collection of neutrons and protons, collectively called

nucleons. In this case, however, the force binding the nucleus is not the

electromagnetic force that holds electrons in their orbits, but is a short-range9

force whose magnitude is independent of the type of nucleon, proton or neutron

(i.e. charge-independent). This binding interaction is called the strong nuclear

force.

These ideas still form the essential framework of our understanding of the

nucleus today, where nuclei are bound states of nucleons held together by a strong

charge-independent short-range force. Nevertheless, there is still no single theory

that is capable of explaining all the data of nuclear physics and we shall see that

different models are used to interpret different classes of phenomena.

5Frederick Soddy was awarded the 1921 Nobel Prize in Chemistry for his work on isotopes.
6Irène Curie and Frédéric Joliot received the 1935 Nobel Prize in Chemistry for ‘synthesizing new
radioactive elements’.
7James Chadwick received the 1935 Nobel Prize in Physics for his discovery of the neutron.
8Werner Heisenberg received the 1932 Nobel Prize in Physics for his contributions to the creation of
quantum mechanics and the idea of isospin symmetry, which we will discuss in Chapter 3.
9The concept of range will be discussed in more detail in Section 1.5.1, but for the present it may be taken as
the effective distance beyond which the force is insignificant.
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1.1.2 The emergence of particle physics: the standard model
and hadrons

By the early 1930s, the 19th century view of atoms as indivisible elementary

particles had been replaced and a larger group of physically smaller entities now

enjoyed this status: electrons, protons and neutrons. To these we must add two

electrically neutral particles: the photon (�) and the neutrino (�). The photon was

postulated by Planck in 1900 to explain black-body radiation, where the classical

description of electromagnetic radiation led to results incompatible with experi-

ments.10 The neutrino was postulated by Fermi in 1930 to explain the apparent

non-conservation of energy observed in the decay products of some unstable nuclei

where �-rays are emitted, the so-called �-decays. Prior to Fermi’s suggestion,

�-decay had been viewed as a parent nucleus decaying to a daughter nucleus and

an electron. As this would be a two-body decay, it would imply that the electron

would have a unique momentum, whereas experiments showed that the electron

actually had a momentum spectrum. Fermi’s hypothesis of a third particle (the

neutrino) in the final state solved this problem, as well as a problem with angular

momentum conservation, which was apparently also violated if the decay was two-

body. The �-decay data implied that the neutrino mass was very small and was

compatible with the neutrino being massless.11 It took more than 25 years before

Fermi’s hypothesis was confirmed by Reines and Cowan in a classic experiment in

1956 that detected free neutrinos from �-decay.12

The 1950s also saw technological developments that enabled high-energy

beams of particles to be produced in laboratories. As a consequence, a wide

range of controlled scattering experiments could be performed and the greater

use of computers meant that sophisticated analysis techniques could be devel-

oped to handle the huge quantities of data that were being produced. By the

1960s this had resulted in the discovery of a very large number of unstable

particles with very short lifetimes and there was an urgent need for a theory that

could make sense of all these states. This emerged in the mid 1960s in the form

of the so-called quark model, first suggested by Murray Gell-Mann and

independently and simultaneously by George Zweig, who postulated that the

new particles were bound states of three families of more fundamental physical

particles.

10X-rays had already been observed by Röntgen in 1895 (for which he received the first Nobel Prize in
Physics in 1901) and �-rays were seen by Villard in 1900, but it was Planck who first made the startling
suggestion that electromagnetic energy was quantized. For this he was awarded the 1918 Nobel Prize in
Physics. Many years later, he said that his hypothesis was an ‘act of desperation’ as he had exhausted all
other possibilities.
11However, in Section 3.1.4 we will discuss recent evidence that neutrinos have very small, but non-zero,
masses.
12A description of this experiment is given in Chapter 12 of Tr75. Frederick Reines shared the 1995 Nobel
Prize in Physics for his work in neutrino physics and particularly for the detection of the electron neutrino.
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Gell-Mann called these quarks (q).13 Because no free quarks were detected

experimentally, there was initially considerable scepticism for this view. We now

know that there is a fundamental reason why quarks cannot be observed as free

particles (it will be discussed in Chapter 5), but at the time many physicists looked

upon quarks as a convenient mathematical description, rather than physical

particles.14 However, evidence for the existence of quarks as real particles came

in the 1960s from a series of experiments analogous to those of Rutherford and his

co-workers, where high-energy beams of electrons and neutrinos were scattered

from nucleons. (These experiments will also be discussed in Chapter 5.) Analysis

of the angular distributions of the scattered particles showed that the nucleons were

themselves bound states of three point-like charged entities, with properties

consistent with those hypothesized in the quark model. One of these properties

was unexpected and unusual: quarks have fractional electric charges, in practice

� 1
3

e and þ 2
3

e. This is essentially the picture today, where elementary particles

are now considered to be a small number of physical entities, including quarks, the

electron, neutrinos, the photon and a few others we shall meet, but no longer

nucleons.

The best theory of elementary particles we have at present is called, rather

prosaically, the standard model. This aims to explain all the phenomena of particle

physics, except those due to gravity, in terms of the properties and interactions of a

small number of elementary (or fundamental) particles, which are now defined as

being point-like, without internal structure or excited states. Particle physics thus

differs from nuclear physics in having a single theory to interpret its data.

An elementary particle is characterized by, amongst other things, its mass, its

electric charge and its spin. The latter is a permanent angular momentum

possessed by all particles in quantum theory, even when they are at rest. Spin

has no classical analogue and is not to be confused with the use of the same word

in classical physics, where it usually refers to the (orbital) angular momentum of

extended objects. The maximum value of the spin angular momentum about any

axis is s�hð�h � h=2�Þ, where h is Planck’s constant and s is the spin quantum

number, or spin for short. It has a fixed value for particles of any given type (for

example s ¼ 1
2

for electrons) and general quantum mechanical principles restrict

the possible values of s to be 0, 1
2
, 1, 3

2
, . . .. Particles with half-integer spin are

called fermions and those with integer spin are called bosons. There are three

families of elementary particles in the standard model: two spin-1
2

families of

fermions called leptons and quarks; and one family of spin-1 bosons. In addition,

13Gell-Mann received the 1969 Nobel Prize in Physics for ‘contributions and discoveries concerning the
classification of elementary particles and their interactions’. For the origin of the word ‘quark’, he cited the
now famous quotation ‘Three quarks for Muster Mark’ from James Joyce’s book Finnegans Wake. Zweig
had suggested the name ‘aces’, which with hindsight might have been more appropriate, as later experiments
revealed that there were four and not three families of quarks.
14This was history repeating itself. In the early days of the atomic model many very distinguished scientists
were reluctant to accept that atoms existed, because they could not be ‘seen’ in a conventional sense.
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at least one other spin-0 particle, called the Higgs boson, is postulated to explain

the origin of mass within the theory.15

The most familiar elementary particle is the electron, which we know is bound

in atoms by the electromagnetic interaction, one of the four forces of nature.16 One

test of the elementarity of the electron is the size of its magnetic moment. A

charged particle with spin necessarily has an intrinsic magnetic moment l. It can

be shown from the Dirac equation that a point-like spin-1
2

particle of charge q and

mass m has a magnetic moment l¼ ðq=mÞS, where S is its spin vector, and hence l
has magnitude � ¼ q�h=2m. The magnetic moment of the electron very accurately

obeys this relation, confirming that electrons are elementary.

The electron is a member of the family of leptons. Another is the neutrino,

which was mentioned earlier as a decay product in �-decays. Strictly speaking, this

particle should be called the electron neutrino, written �e, because it is always

produced in association with an electron (the reason for this is discussed in

Section 3.1.1). The force responsible for �-decay is an example of a second

fundamental force, the weak interaction. Finally, there is the third force, the

(fundamental) strong interaction, which, for example, binds quarks in nucleons.

The strong nuclear force mentioned in Section 1.1.1 is not the same as this

fundamental strong interaction, but is a consequence of it. The relation between

the two will be discussed in more detail later.

The standard model also specifies the origin of these three forces. In classical

physics the electromagnetic interaction is propagated by electromagnetic waves,

which are continuously emitted and absorbed. While this is an adequate descrip-

tion at long distances, at short distances the quantum nature of the interaction must

be taken into account. In quantum theory, the interaction is transmitted discon-

tinuously by the exchange of photons, which are members of the family of

fundamental spin-1 bosons of the standard model. Photons are referred to as the

gauge bosons, or ‘force carriers’, of the electromagnetic interaction. The use of the

word ‘gauge’ refers to the fact that the electromagnetic interaction possesses a

fundamental symmetry called gauge invariance. For example, Maxwell’s equa-

tions of classical electromagnetism are invariant under a specific phase transfor-

mation of the electromagnetic fields – the gauge transformation.17 This property is

common to all the three interactions of nature we will be discussing and has

profound consequences, but we will not need its details in this book. The weak and

strong interactions are also mediated by the exchange of spin-1 gauge bosons. For

the weak interaction these are the Wþ, W� and Z0 bosons (again the superscripts

denote the electric charges) with masses about 80–90 times the mass of the proton.

15In the theory without the Higgs boson, all elementary particles are predicted to have zero mass, in obvious
contradiction with experiment. A solution to this problem involving the Higgs boson will be discussed briefly
in Chapter 9.
16Gravity is so weak that it can be neglected in nuclear and particle physics at presently accessible energies.
Because of this, we will often refer in practice to the three forces of nature.
17See, for example, Appendix C.2 of Ma97.
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For the strong interaction, the force carriers are called gluons. There are eight

gluons, all of which have zero mass and are electrically neutral.18

In addition to the elementary particles of the standard model, there are other

important particles we will be studying. These are the hadrons, the bound states of

quarks. Nucleons are examples of hadrons,19 but there are several hundred more,

not including nuclei, most of which are unstable and decay by one of the three

interactions. It was the abundance of these states that drove the search for a

simplifying theory that would give an explanation for their existence and led to the

quark model in the 1960s. The most common unstable example of a hadron is the

pion, which exists in three electrical charge states, written ð�þ; �0; ��Þ. Hadrons

are important because free quarks are unobservable in nature and so to deduce

their properties we are forced to study hadrons. An analogy would be if we had to

deduce the properties of nucleons by exclusively studying the properties of nuclei.

Since nucleons are bound states of quarks and nuclei are bound states of

nucleons, the properties of nuclei should, in principle, be deducible from the

properties of quarks and their interactions, i.e. from the standard model. In

practice, however, this is far beyond present calculational techniques and some-

times nuclear and particle physics are treated as two almost separate subjects.

However, there are many connections between them and in introductory treatments

it is still useful to present both subjects together.

The remaining sections of this chapter are devoted to introducing some of the

basic theoretical tools needed to describe the phenomena of both nuclear and

particle physics, starting with a key concept: antiparticles.

1.2 Relativity and Antiparticles

Elementary particle physics is also called high-energy physics. One reason for this

is that if we wish to produce new particles in a collision between two other

particles, then because of the relativistic mass–energy relation E ¼ mc2, energies

are needed at least as great as the rest masses of the particles produced. The second

reason is that to explore the structure of a particle requires a probe whose

wavelength 	 is smaller than the structure to be explored. By the de Broglie

relation 	 ¼ h=p, this implies that the momentum p of the probing particle, and

hence its energy, must be large. For example, to explore the internal structure of

the proton using electrons requires wavelengths that are much smaller than the

18Note that the word ‘electric’ has been used when talking about charge. This is because the weak and strong
interactions also have associated ‘charges’ which determine the strengths of the interactions, just as the
electric charge determines the strength of the electromagnetic interaction. This will be discussed in more
detail in later chapters.
19The magnetic moments of the proton and neutron do not obey the prediction of the Dirac equation and this
is evidence that nucleons have structure and are not elementary. The proton magnetic moment was first
measured by Otto Stern using a molecular beam method that he developed and for this he received the 1943
Nobel Prize in Physics.
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classical radius of the proton, which is roughly 10�15 m. This in turn requires

electron energies that are greater than 103 times the rest energy of the electron,

implying electron velocities very close to the speed of light. Hence any explanation

of the phenomena of elementary particle physics must take account of the

requirements of the theory of special relativity, in addition to those of quantum

theory. There are very few places in particle physics where a non-relativistic

treatment is adequate, whereas the need for a relativistic treatment is far less in

nuclear physics.

Constructing a quantum theory that is consistent with special relativity leads to

the conclusion that for every particle of nature, there must exist an associated

particle, called an antiparticle, with the same mass as the corresponding particle.

This important theoretical prediction was first made by Dirac and follows from the

solutions of the equation he first wrote down to describe relativistic electrons.20

The Dirac equation is of the form

i�h
@Cðx; tÞ

@t
¼ Hðx; p̂pÞCðx; tÞ; ð1:1Þ

where p̂p ¼ �i�hr is the usual quantum mechanical momentum operator and the

Hamiltonian was postulated by Dirac to be

H ¼ ca 	 p̂p þ �mc2: ð1:2Þ

The coefficients a and � are determined by the requirement that the solutions of

Equation (1.1) are also solutions of the Klein–Gordon equation 21

��h2 @
2Cðx; tÞ
@t2

¼ ��h2c2r2Cðx; tÞ þ m2c4Cðx; tÞ: ð1:3Þ

This leads to the conclusion that a and � cannot be simple numbers; their simplest

forms are 4 
 4 matrices. Thus the solutions of the Dirac equation are four-

component wavefunctions (called spinors) with the form22

Cðx; tÞ ¼

C1ðx; tÞ
C2ðx; tÞ
C3ðx; tÞ
C4ðx; tÞ

0
BB@

1
CCA: ð1:4Þ

20Paul Dirac shared the 1933 Nobel Prize in Physics with Erwin Schrödinger. The somewhat cryptic citation
stated ‘for the discovery of new productive forms of atomic theory’.
21This is a relativistic equation, which is ‘derived’ by starting from the relativistic mass–energy relation
E2 ¼ p2c2 þ m2c4 and using the usual quantum mechanical operator substitutions, p̂p ¼ �i�hr and
E ¼ i�h@=@t.
22The details may be found in most quantum mechanics books, for example, pp. 475–477 of Sc68.
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The interpretation of Equation (1.4) is that the four components describe the two

spin states of a negatively charged electron with positive energy and the two spin

states of a corresponding particle having the same mass but with negative energy.

Two spin states arise because in quantum mechanics the projection in any direction

of the spin vector of a spin-1
2

particle can only result in one of the two values �1
2
,

called ‘spin up’ and ‘spin down’, respectively. The two energy solutions arise from

the two solutions of the relativistic mass–energy relation E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þ m2c4

p
.

The latter states can be shown to behave in all respects as positively charged

electrons (called positrons), but with positive energy. The positron is referred to as

the antiparticle of the electron. The discovery of the positron by Anderson in 1933,

with all the predicted properties, was a spectacular verification of the Dirac

prediction.

Although Dirac originally made his prediction for electrons, the result is general

and is true whether the particle is an elementary particle or a hadron. If we denote

a particle by P, then the antiparticle is in general written with a bar over it, i.e. �PP.

For example, the antiparticle of the proton is the antiproton �pp,23 with negative

electric charge; and associated with every quark, q, is an antiquark, �qq. However,

for some very common particles the bar is usually omitted. Thus, for example,

in the case of the positron eþ, the superscript denoting the charge makes

explicit the fact that the antiparticle has the opposite electric charge to that of

its associated particle. Electric charge is just one example of a quantum number

(spin is another) that characterizes a particle, whether it is elementary or composite

(i.e. a hadron).

Many quantum numbers differ in sign for particle and antiparticle, and electric

charge is an example of this. We will meet others later. When brought together,

particle–antiparticle pairs, each of mass m, can annihilate, releasing their com-

bined rest energy 2mc2 as photons or other particles. Finally, we note that there is

symmetry between particles and antiparticles, and it is a convention to call the

electron the particle and the positron its antiparticle. This reflects the fact that the

normal matter contains electrons rather than positrons.

1.3 Symmetries and Conservation Laws

Symmetries and the invariance properties of the underlying interactions play an

important role in physics. Some lead to conservation laws that are universal.

Familiar examples are translational invariance, leading to the conservation of

linear momentum; and rotational invariance, leading to conservation of angular

momentum. The latter plays an important role in nuclear and particle physics as it

leads to a scheme for the classification of states based, among other quantum

23Carl Anderson shared the 1936 Nobel Prize in Physics for the discovery of the positron. The 1958 Prize
was awarded to Emilio Segrè and Owen Chamberlain for their discovery of the antiproton.
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numbers, on their spins.24 Another very important invariance that we have briefly

mentioned is gauge invariance. This fundamental property of all three interactions

restricts the forms of the interactions in a profound way that initially is contra-

dicted by experiment. This is the prediction of zero masses for all elementary

particles, mentioned earlier. There are theoretical solutions to this problem whose

experimental verification (or otherwise) is probably the most eagerly awaited

result in particle physics today.

In nuclear and particle physics we need to consider additional symmetries of the

Hamiltonian and the conservation laws that follow and in the remainder of this

section we discuss two of the most important of these that we will need later –

parity and charge conjugation.

1.3.1 Parity

Parity was first introduced in the context of atomic physics by Eugene Wigner in

1927.25 It refers to the behaviour of a state under a spatial reflection, i.e. x ! �x.

If we consider a single-particle state, represented for simplicity by a non-

relativistic wavefunction  ðx; tÞ, then under the parity operator, P̂P,

P̂P ðx; tÞ � P ð�x; tÞ: ð1:5Þ

Applying the operator again, gives

P̂P
2
 ðx; tÞ ¼ PP̂P ð�x; tÞ ¼ P2 ðx; tÞ; ð1:6Þ

implying P ¼ �1. If the particle is an eigenfunction of linear momentum p, i.e.

 ðx; tÞ �  pðx; tÞ ¼ exp½iðp 	 x � EtÞ�; ð1:7Þ

then

P̂P pðx; tÞ ¼ P pð�x; tÞ ¼ P �pðx; tÞ ð1:8Þ

and so a particle at rest, with p ¼ 0, is an eigenstate of parity. The eigenvalue

P ¼ �1 is called the intrinsic parity, or just the parity, of the state. By considering

a multiparticle state with a wavefunction that is the product of single-particle

wavefunctions, it is clear that parity is a multiplicative quantum number.

The strong and electromagnetic interactions, but not the weak interactions, are

invariant under parity, i.e. the Hamiltonian of the system remains unchanged under

24These points are explored in more detail in, for example, Chapter 4 of Ma97.
25Eugene Wigner shared the 1963 Nobel Prize in Physics, principally for his work on symmetries.
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a parity transformation on the position vectors of all particles in the system. Parity

is therefore conserved, by which we mean that the total parity quantum number

remains unchanged in the interaction. Compelling evidence for parity conservation

in the strong and electromagnetic interactions comes from the absence of

transitions between nuclear states and atomic states, respectively, that would

violate parity conservation. The evidence for non-conservation of parity in the

weak interaction will be discussed in detail in Chapter 6.

There is also a contribution to the total parity if the particle has an orbital

angular momentum l. In this case its wave function is a product of a radial part Rnl

and an angular part Ym
l ð; �Þ:

 lmnðxÞ ¼ RnlY
m
l ð; �Þ; ð1:9Þ

where n and m are the principal and magnetic quantum numbers and Ym
l ð; �Þ is a

spherical harmonic. It is straightforward to show from the relations between

Cartesian ðx; y; zÞ and spherical polar co-ordinates ðr; ; �Þ, i.e.

x ¼ r sin  cos�; y ¼ r sin  sin�; z ¼ r cos ; ð1:10Þ

that the parity transformation x ! �x implies

r ! r; ! �� ; �! �þ �; ð1:11Þ

and from this it can be shown that

Ym
l ð; �Þ ! Ym

l ð�� ; �þ �Þ ¼ ð�Þl
Ym

l ð; �Þ: ð1:12Þ

Equation (1.12) may easily be verified directly for specific cases; for example,

for the first three spherical harmonics,

Y0
0 ¼ 1

4�

	 
1
2

; Y0
1 ¼ 3

4�

	 
1
2

cos ; Y�1
1 ¼ 3

8�

	 
1
2

sin  e�i�: ð1:13Þ

Hence

P̂P lmnðxÞ ¼ P lmnð�xÞ ¼ Pð�Þl lmnðxÞ; ð1:14Þ

i.e.  lmnðxÞ is an eigenstate of parity with eigenvalue Pð�1Þl
.

An analysis of the Dirac Equation (1.1) for relativistic electrons, shows that it is

invariant under a parity transformation only if Pðeþe�Þ ¼ �1. This is a general

result for all fermion–antifermion pairs, so it is a convention to assign P ¼ þ1 to

all leptons and P ¼ �1 to their antiparticles. We will see in Chapter 3 that in

strong interactions quarks can only be created as part of a quark–antiquark pair, so

the intrinsic parity of a single quark cannot be measured. For this reason, it is also
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a convention to assign P ¼ þ1 to quarks. Since quarks are fermions, it follows

from the Dirac result that P ¼ �1 for antiquarks. The intrinsic parities of hadrons

then follow from their structure in terms of quarks and the orbital angular

momentum between the constituent quarks, using Equation (1.14). This will be

explored in Chapter 3 as part of the discussion of the quark model.

1.3.2 Charge conjugation

Charge conjugation is the operation of changing a particle into its antiparticle.

Like parity, it gives rise to a multiplicative quantum number that is conserved in

strong and electromagnetic interactions, but violated in the weak interaction. In

discussing charge conjugation, we will need to distinguish between states such as

the photon � and the neutral pion �0 that do not have distinct antiparticles and

those such as the �þ and the neutron, which do. Particles in the former class we

will collectively denote by a and those of the latter type will be denoted by b. It is

also convenient at this point to extend our notation for states. Thus we will

represent a state of type a having a wavefunction  a by ja;  ai and similarly for a

state of type b. Then under the charge conjugation operator, ĈC,

ĈCja;  ai ¼ Caja;  ai; ð1:15aÞ

and

ĈCjb;  bi ¼ j�bb;  �bbi; ð1:15bÞ

where Ca is a phase factor analogous to the phase factor in Equation (1.5).26

Applying the operator twice, in the same way as for parity, leads to Ca ¼ �1. From

Equation (1.15a), we see that states of type a are eigenstates of ĈC with eigenvalues

�1, called their C-parities. States with distinct antiparticles can only form

eigenstates of ĈC as linear combinations.

As an example of the latter, consider a �þ�� pair with orbital angular

momentum L between them. In this case

ĈCj�þ��; Li ¼ ð�1ÞLj�þ��; Li; ð1:16Þ

because interchanging the pions reverses their relative positions in the spatial

wavefunction. The same factor occurs for spin-1
2

fermion pairs f�ff , but in addition

there are two other factors. The first is ð�1ÞSþ1
, where S is the total spin of the pair.

26A phase factor could have been inserted in Equation (1.15b), but it is straightforward to show that the
relative phase of the two states b and �bb cannot be measured and so a phase introduced in this way would have
no physical consequences.
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This follows directly from the structure of the spin wavefunctions:

"1"2 Sz ¼ 1
1ffiffi
2

p ð"1#2 þ #1"2Þ Sz ¼ 0

#1#2 Sz ¼ �1

9=
;S ¼ 1 ð1:17aÞ

and

1ffiffi
2

p ð"1#2 � #1"2Þ Sz ¼ 0 S ¼ 0; ð1:17bÞ

where "i ð#iÞ represents particle i having spin ‘up’ (‘down’) in the z-direction. A

second factor ð�1Þ arises whenever fermions and antifermions are interchanged.

This has its origins in quantum field theory.27 Combining these factors, finally

we have

ĈCj f�ff ; J;L; Si ¼ ð�1ÞLþSj f�ff ; J; L; Si; ð1:18Þ

for fermion–antifermion pairs having total, orbital and spin angular momentum

quantum numbers J, L and S, respectively.

1.4 Interactions and Feynman Diagrams

We now turn to a discussion of particle interactions and how they can be described

by the very useful pictorial methods of Feynman diagrams.

1.4.1 Interactions

Interactions involving elementary particles and/or hadrons are conveniently

summarized by ‘equations’ by analogy with chemical reactions, in which the

different particles are represented by symbols which usually – but not always –

have a superscript to denote their electric charge. In the interaction

�e þ n ! e� þ p; ð1:19Þ

for example, an electron neutrino �e collides with a neutron n to produce an

electron e� and a proton p, whereas the equation

e� þ p ! e� þ p ð1:20Þ

27See, for example, pp. 249–250 of Go86.
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represents an electron and proton interacting to give the same particles in the final

state, but in general travelling in different directions. In such equations, conserved

quantum numbers must have the same total values in initial and final states.

Particles may be transferred from initial to final states and vice versa, when they

become antiparticles. Thus the process

�� þ p ! �� þ p; ð1:21aÞ

also implies the reaction

p þ �pp ! �þ þ ��; ð1:22Þ

which is obtained by taking the proton from the final state to an antiproton in the

initial state and the negatively charged pion in the initial state to a positively

charged pion in the final state.

The interactions in Equations (1.20) and (1.21a), in which the particles remain

unchanged, are examples of elastic scattering, in contrast to the reactions in

Equations (1.19) and (1.22), where the final-state particles differ from those in the

initial state. Collisions between a given pair of initial particles do not always lead

to the same final state, but can lead to different final states with different

probabilities. For example, the collision of a negatively charged pion and a proton

can give rise to elastic scattering (Equation (1.21a)) and a variety of other

reactions, such as

�� þ p ! n þ �0 and �� þ p ! p þ �� þ �� þ �þ; ð1:21bÞ

depending on the initial energy. In particle physics it is common to refer (rather

imprecisely) to such interactions as ‘inelastic’ scattering.

Similar considerations apply to nuclear physics, but the term inelastic scattering

is reserved for the case where the final state is an excited state of the parent nucleus

A, that subsequently decays, for example via photon emission, i.e.

a þ A ! a þ A�; A� ! A þ �; ð1:23Þ

where a is a projectile and A� is an excited state of A. A useful shorthand notation

used in nuclear physics for the general reaction a þ A ! b þ B is Aða; bÞB. It is

usual in nuclear physics to further subdivide types of interactions according to the

underlying mechanism that produced them. We will return to this in Section 2.9, as

part of a more general discussion of nuclear reactions.

Finally, many particles are unstable and spontaneously decay to other, lighter

(i.e. having less mass) particles. An example of this is the free neutron (i.e. one not

bound in a nucleus), which decays by the �-decay reaction

n ! p þ e� þ ���e; ð1:24Þ
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with a mean lifetime of about 900 s.28 The same notation can also be used in

nuclear physics. For example, many nuclei decay via the �-decay reaction. Thus,

denoting a nucleus with Z protons and N nucleons as (Z, N ), we have

ðZ; NÞ ! ðZ � 1; NÞ þ eþ þ �e: ð1:25Þ

This is also a weak interaction. This reaction is effectively the decay of a proton

bound in a nucleus. Although a free proton cannot decay by the �-decay

p ! n þ eþ þ �e because it violates energy conservation (the final-state particles

have greater total mass than the proton), a proton bound in a nucleus can decay

because of its binding energy. This will be explained in Chapter 2.

1.4.2 Feynman diagrams

The forces producing all the above interactions are due to the exchange of particles

and a convenient way of illustrating this is to use Feynman diagrams. There are

mathematical rules and techniques associated with these that enable them to be

used to calculate the quantum mechanical probabilities for given reactions to

occur, but in this book Feynman diagrams will only be used as a convenient very

useful pictorial description of reaction mechanisms.

We first illustrate them at the level of elementary particles for the case of

electromagnetic interactions, which arise from the emission and/or absorption of

photons. For example, the dominant interaction between two electrons is due to the

exchange of a single photon, which is emitted by one electron and absorbed by the

other. This mechanism, which gives rise to the familiar Coulomb interaction at

large distances, is illustrated in the Feynman diagram Figure 1.1(a).

In such diagrams, we will use the convention that particles in the initial state are

shown on the left and particles in the final state are shown on the right. (Some

authors take time to run along the y-axis.) Spin-1
2

fermions (such as the electron)

28The reason that this decay involves an antineutrino rather than a neutrino will become clear in Chapter 3.

Figure 1.1 One-photon exchange in (a) e� þ e� ! e� þ e� and (b) eþ þ eþ ! eþ þ eþ
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are drawn as solid lines and photons are drawn as wiggly lines. Arrowheads

pointing to the right indicate that the solid lines represent electrons. In the case of

photon exchange between two positrons, which is shown in Figure 1.1(b), the

arrowheads on the antiparticle (positron) lines are conventionally shown as

pointing to the left. In interpreting these diagrams, it is important to remember:

(1) that the direction of the arrows on fermion lines does not indicate the particle’s

direction of motion, but merely whether the fermions are particles or antiparticles,

and (2) that particles in the initial state are always to the left and particles in the

final state are always to the right.

A feature of the above diagrams is that they are constructed from combinations

of simple three-line vertices. This is characteristic of electromagnetic processes.

Each vertex has a line corresponding to a single photon being emitted or absorbed,

while one fermion line has the arrow pointing toward the vertex and the other away

from the vertex, guaranteeing charge conservation at the vertex, which is one of

the rules of Feynman diagrams.29 For example, a vertex like Figure 1.2 would

correspond to a process in which an electron emitted a photon and turned into a

positron. This would violate charge conservation and is therefore forbidden.

Feynman diagrams can also be used to describe the fundamental weak and

strong interactions. This is illustrated by Figure 1.3(a), which shows contributions

to the elastic weak scattering reaction e� þ �e ! e� þ �e due to the exchange of a

Z0, and by Figure 1.3(b), which shows the exchange of a gluon g (represented by a

coiled line) between two quarks, which is a strong interaction.

Feynman diagrams can also be drawn at the level of hadrons. As an illustration,

Figure 1.4 shows the exchange of a charged pion (shown as a dashed line) between

a proton and a neutron. We shall see later that this mechanism is a major

contribution to the strong nuclear force between a proton and a neutron.

We turn now to consider in more detail the relation between exchanged particles

and forces.

29Compare Kirchhoff’s laws in electromagnetism.

e–

e+

γ

Figure 1.2 The forbidden vertex e� ! eþ þ �
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1.5 Particle Exchange: Forces and Potentials

This section starts with a discussion of the important relationship between forces

and particle exchanges and then relates this to potentials. Although the idea of a

potential has its greatest use in non-relativistic physics, nevertheless it is useful to

illustrate concepts and is used in later sections as an intermediate step in relating

theoretical Feynman diagrams to measurable quantities. The results can easily be

extended to more general situations.

1.5.1 Range of forces

At each vertex of a Feynman diagram, charge is conserved by construction. We

will see later that, depending on the nature of the interaction (strong, weak or

electromagnetic), other quantum numbers are also conserved. However, it is easy

to show that energy and momentum cannot be conserved simultaneously.

Consider the general case of a reaction A þ B ! A þ B mediated by the

exchange of a particle X, as shown in Figure 1.5. In the rest frame of the incident

Figure 1.3 (a) Contributions of (a) Z0 exchange to the elastic weak scattering reaction
e� þ �e ! e� þ �e, and (b) gluon exchange contribution to the strong interaction q þ q ! q þ q

Figure 1.4 Single-pion exchange in the reaction p þ n ! n þ p
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particle A, the lower vertex represents the virtual process (‘virtual’ because X does

not appear as a real particle in the final state),

AðMAc2; 0Þ ! AðEA; pAcÞ þ XðEX;�pAcÞ; ð1:26Þ

where EA is the total energy of particle A and pA is its three-momentum.30 Thus, if

we denote by PA the four-vector for particle A,

PA ¼ ðEA=c;pAÞ ð1:27Þ

and

P2
A ¼ E2

A=c2 � p2
A ¼ M2

Ac2: ð1:28Þ

Applying this to the diagram and imposing momentum conservation, gives

EA ¼ ðp2c2 þ M2
Ac4Þ1=2; EX ¼ ðp2c2 þ M2

Xc4Þ1=2; ð1:29Þ

where p ¼ jpj. The energy difference between the final and initial states is given by

�E ¼ EX þ EA � MAc2 ! 2pc; p ! 1
! MXc2; p ! 0 ð1:30Þ

and thus �E � MXc2 for all p, i.e. energy is not conserved. However, by the

Heisenberg uncertainty principle, such an energy violation is allowed, but only for

a time � � �h=�E, so we immediately obtain

r � R � �h=MXc ð1:31Þ

30A resumé of relativistic kinematics is given in Appendix B.

Figure 1.5 Exchange of a particle X in the reaction A þ B ! A þ B
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as the maximum distance over which X can propagate before being absorbed by

particle B. This maximum distance is called the range of the interaction and this

was the sense of the word used in Section 1.1.1.

The electromagnetic interaction has an infinite range, because the exchanged

particle is a massless photon. In contrast, the weak interaction is associated with

the exchange of very heavy particles – the W and Z bosons. These lead to ranges

that from Equation (1.31) are of the order of RW;Z � 2 
 10�18 m. The funda-

mental strong interaction has infinite range because, like the photon, gluons have

zero mass. On the other hand, the strong nuclear force, as exemplified by Figure 1.4

for example, has a much shorter range of approximately (1–2) 
 10�15 m. We will

comment briefly on the relation between these two different manifestations of the

strong interaction in Section 7.1.

1.5.2 The Yukawa potential

In the limit that MA becomes large, we can regard B as being scattered by a static

potential of which A is the source. This potential will in general be spin dependent,

but its main features can be obtained by neglecting spin and considering X to be a

spin-0 boson, in which case it will obey the Klein–Gordon equation

��h2 @
2�ðx; tÞ
@t2

¼ ��h2c2r2�ðx; tÞ þ M2
Xc4�ðx; tÞ: ð1:32Þ

The static solution of this equation satisfies

r2�ðxÞ ¼ M2
Xc4

�h2
�ðxÞ; ð1:33Þ

where �ðxÞ is interpreted as a static potential. For MX ¼ 0 this equation is the same

as that obeyed by the electrostatic potential, and for a point charge �e interacting

with a point charge þe at the origin, the appropriate solution is the Coulomb potential

VðrÞ ¼ �e�ðrÞ ¼ � e2

4�"0

1

r
; ð1:34Þ

where r ¼ jxj and "0 is the dielectric constant. The corresponding solution in the

case where M2
X 6¼ 0 is easily verified by substitution to be

VðrÞ ¼ � g2

4�

e�r=R

r
; ð1:35Þ

where R is the range defined earlier and g, the so-called coupling constant, is a

parameter associated with each vertex of a Feynman diagram and represents the
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basic strength of the interaction.31 For simplicity, we have assumed equal strengths

for the couplings of particle X to the particles A and B.

The form of VðrÞ in Equation (1.35) is called a Yukawa potential, after the physicist

who first introduced the idea of forces due to massive particle exchange in 1935.32

As MX ! 0, R ! 1 and the Coulomb potential is recovered from the Yukawa

potential, while for very large masses the interaction is approximately point-like

(zero range). It is conventional to introduce a dimensionless parameter �X by

�X ¼ g2

4��hc
; ð1:36Þ

that characterizes the strength of the interaction at short distances r � R. For the

electromagnetic interaction this is the fine structure constant

� � e2=4�"0�hc � 1=137 ð1:37Þ

that governs the splittings of atom energy levels.33

The forces between hadrons are also generated by the exchange of particles. Thus,

in addition to the electromagnetic interaction between charged hadrons, all hadrons,

whether charged or neutral, experience a strong short-range interaction, which in the

case of two nucleons, for example, has a range of about 10�15 m, corresponding to

the exchange of a particle with an effective mass of about 1
7
th the mass of the proton.

The dominant contribution to this force is the exchange of a single pion, as shown in

Figure 1.4. This nuclear strong interaction is a complicated effect that has its origins

in the fundamental strong interactions between the quark distributions within the two

hadrons. Two neutral atoms also experience an electromagnetic interaction (the van

der Waals force), which has its origins in the fundamental Coulomb forces, but is of

much shorter range. Although an analogous mechanism is not in fact responsible for

the nuclear strong interaction, it is a useful reminder that the force between two

distributions of particles can be much more complicated than the forces between

their components. We will return to this point when we discuss the nature of the

nuclear potential in more detail in Section 7.1.

1.6 Observable Quantities: Cross Sections and Decay Rates

We have mentioned earlier that Feynman diagrams can be turned into probabilities

for a process by a set of mathematical rules (the Feynman Rules) that can be

31Although we call g a (point) coupling constant, in general it will have a dependence on the momentum
carried by the exchanged particle. We ignore this in what follows.
32For this insight, Hideki Yukawa received the 1949 Nobel Prize in Physics.
33Like g, the coupling �X will in general have a dependence on the momentum carried by particle X. In the
case of the electromagnetic interaction, this dependence is relatively weak.
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derived from the quantum theory of the underlying interaction.34 We will not

pursue this in detail in this book, but rather will show in principle their relation to

observables, i.e. things that can be measured, concentrating on the cases of two-

body scattering reactions and decays of unstable states.

1.6.1 Amplitudes

The intermediate step is the amplitude f, the modulus squared of which is directly

related to the probability of the process occurring. It is also called the invariant

amplitude because, as we shall show, it is directly related to observable quantities

and these have to be the same in all inertial frames of reference. To get some

qualitative idea of the structure of f, we will use non-relativistic quantum

mechanics and assume that the coupling constant g2 is small compared with

4��hc, so that the interaction is a small perturbation on the free particle solution,

which will be taken as plane waves.

If we expand the amplitude in a power series in g2 and keep just the first term

(i.e. lowest-order perturbation theory), then the amplitude for a particle in an initial

state with momentum qi to be scattered to a final state with momentum qf by a

potential VðxÞ is proportional to

f ðq2Þ ¼
ð

d3xVðxÞ exp½iq 	 x=�h�; ð1:38Þ

i.e. the Fourier transform of the potential, where q � qi � qf is the momentum

transfer.35

The integration may be done using polar co-ordinates. Taking q in the x-

direction, gives

q 	 x ¼ jqjr cos  ð1:39Þ

and

d3x ¼ r2 sin  d dr d�; ð1:40Þ

where r ¼ jxj. For the Yukawa potential, the integral in Equation (1.38) gives

f ðq2Þ ¼ �g2�h2

q2 þ M2
Xc2

: ð1:41Þ

34In the case of the electromagnetic interaction, the theory is called Quantum Electrodynamics (QED) and is
spectacularly successful in explaining experimental results. Richard Feynman shared the 1965 Nobel Prize in
Physics with Sin-Itiro Tomonoga and Julian Schwinger for their work on formulating quantum electro-
dynamics. The Feynman Rules are discussed in an accessible way in Gr87.
35See, for example, Chapter 11 of Ma92.
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This amplitude corresponds to the exchange of a single particle, as shown for

example in Figures 1.3 and 1.4. The structure of the amplitude, which is quite

general, is a numerator proportional to the product of the couplings at the two

vertices (or equivalently �X in this case), and a denominator that depends on the

mass of the exchanged particle and its momentum transfer squared. The denomi-

nator is called the propagator for particle X. In a relativistic calculation, the term

q2 becomes q2, where q is the four-momentum transfer.

Returning to the zero-range approximation, one area where it is used extensively

is in weak interactions, particularly applied to nuclear decay processes. In these

situations, MX ¼ MW ;Z and f ! �GF, where GF, the so-called Fermi coupling

constant, is given from Equation (1.36) by

GF

ð�hcÞ3
¼ 4��W

ðMWc2Þ2
¼ 1:166 
 10�5GeV�2: ð1:42Þ

The numerical value is obtained from analyses of decay processes, including that

of the neutron and a heavier version of the electron called the muon, whose

properties will be discussed in Chapter 3.

All the above is for the exchange of a single particle. It is also possible to draw

more complicated Feynman diagrams that correspond to the exchange of more

than one particle. An example of such a diagram for elastic e�e� scattering, where

two photons are exchanged, is shown in Figure 1.6.

The number of vertices in any diagram is called the order n, and when the

amplitude associated with any given Feynman diagram is calculated, it always

contains a factor of ð ffiffiffiffi
�

p Þn
. Since the probability is proportional to the square of

the modulus of the amplitude, the former will contain a factor �n. The probability

associated with the single-photon exchange diagrams of Figure 1.1 thus contain a

factor of �2 and the contribution from two-photon exchange is of the order of �4.

Figure 1.6 Two-photon exchange in the reaction e� þ e� ! e� þ e�
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As � � 1=137, the latter is usually very small compared with the contribution

from single-photon exchange.

This is a general feature of electromagnetic interactions: because the fine structure

constant is very small, in most cases only the lowest-order diagrams that contribute to

a given process need be taken into account, and more complicated higher-order

diagrams with more vertices can (to a good approximation) be ignored in many

applications.

1.6.2 Cross-sections

The next step is to relate the amplitude to measurables. For scattering reactions,

the appropriate observable is the cross-section. In a typical scattering experiment, a

beam of particles is allowed to hit a target and the rates of production of various

particles in the final state are counted.36 It is clear that the rates will be

proportional to: (a) the number N of particles in the target illuminated by the

beam, and (b) the rate per unit area at which beam particles cross a small surface

placed in the beam at rest with respect to the target and perpendicular to the beam

direction. The latter is called the flux and is given by

J ¼ nbvi; ð1:43Þ

where nb is the number density of particles in the beam and vi their velocity in the

rest frame of the target. Hence the rate Wr at which a specific reaction r occurs in a

particular experiment can be written in the form

Wr ¼ JN�r; ð1:44aÞ

where �r, the constant of proportionality, is called the cross-section for reaction r.

If the beam has a cross-sectional area S, its intensity is I ¼ JS and so an alternative

expression for the rate is

Wr ¼ N�rI=S ¼ I�rntt; ð1:44bÞ

where nt is the number of target particles per unit volume and t is the thickness of

the target. If the target consists of an isotopic species of atomic mass MA (in atomic

mass units-defined in Section 1.7 below), then nt ¼ �NA=MA, where � is the density

of the target and NA is Avogadro’s constant. Thus, Equation (1.44b) may be written

Wr ¼ I�rð�tÞNA=MA; ð1:44cÞ

36The practical aspects of experiments are discussed in Chapter 4.
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where ð�tÞ is a measure of the amount of material in the target, expressed in units

of mass per unit area. The form of Equation (1.44c) is particularly useful for the

case of thin targets, commonly used in experiments. In the above, the product JN is

called the luminosity L, i.e.

L � JN ð1:45Þ

and contains all the dependencies on the densities and geometries of the beam and

target. The cross-section is independent of these factors.

It can be seen from the above equations that the cross-section has the dimensions

of an area; the rate per target particle J�r at which the reaction occurs is equal to

the rate at which beam particles would hit a surface of area �r, placed in the beam

at rest with respect to the target and perpendicular to the beam direction. Since the

area of such a surface is unchanged by a Lorentz transformation in the beam

direction, the cross-section is the same in all inertial frames of reference, i.e. it is a

Lorentz invariant.

The quantity �r is better named the partial cross-section, because it is the cross-

section for a particular reaction r. The total cross-section � is defined by

� �
X

r

�r: ð1:46Þ

Another useful quantity is the differential cross-section, d�rð; �Þ=d�, which is

defined by

dWr � JN
d�rð; �Þ

d�
d�; ð1:47Þ

where dWr is the measured rate for the particles to be emitted into an element of

solid angle d� ¼ d cos  d� in the direction ð; �Þ, as shown in Figure 1.7.

The total cross-section is obtained by integrating the partial cross-section over

all angles, i.e.

�r ¼
ð2�

0

d�

ð1

�1

d cos 
d�rð; �Þ

d�
: ð1:48Þ

The final step is to write these formulae in terms of the scattering amplitude f ðq2Þ
appropriate for describing the scattering of a non-relativistic spinless particle from

a potential.

To do this it is convenient to consider a single beam particle interacting with a

single target particle and to confine the whole system in an arbitrary volume V

(which cancels in the final result). The incident flux is then given by

J ¼ nbvi ¼ vi=V ð1:49Þ
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and since the number of target particles is N ¼ 1, the differential rate is

dWr ¼
vi

V

d�rð; �Þ
d�

d�: ð1:50Þ

In quantum mechanics, provided the interaction is not too strong, the transition

rate for any process is given in perturbation theory by the Born approximation37

dWr ¼
2�

�h

����
ð

d3x �
f VðxÞ i

����
2

�ðEfÞ: ð1:51Þ

The term �ðEfÞ is the density-of-states factor (see below) and we take the initial

and final state wavefunctions to be plane waves:

 i ¼
1ffiffiffiffi
V

p exp½iqi 	 x=�h�;  f ¼
1ffiffiffiffi
V

p exp½iqf 	 x=�h�; ð1:52Þ

37This equation is a form of the Second Golden Rule. It is discussed in Appendix A.

Figure 1.7 Geometry of the differential cross-section: a beam of particles is incident along the
z-axis and collides with a stationary target at the origin; the differential cross-section is
proportional to the rate for particles to be scattered into a small solid angle d� in the direction
ð; �Þ
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where the final momentum qf lies within a small solid angle d� located in the

direction ð; �Þ (see Figure 1.7.). Then, by direct integration,

dWr ¼
2�

�hV2
j f ðq2Þj2�ðEfÞ; ð1:53Þ

where f ðq2Þ is the scattering amplitude defined in Equation (1.38).

The density of states �ðEfÞ that appears in Equation (1.51) is the number of

possible final states with energy lying between Ef and Ef þ dEf and is given by38

�ðEfÞ ¼
V

ð2��hÞ3

q2
f

vf

d�: ð1:54Þ

If we use this and Equation (1.53) in Equation (1.50), we have

d�

d�
¼ 1

4�2�h4

q2
f

vivf

j f ðq2Þj2: ð1:55Þ

Although this result has been derived in the laboratory system, because we have

taken a massive target it is also valid in the centre-of-mass system. For a finite

mass target it would be necessary to make a Lorentz transformation on Equation

(1.55). The expression is also true for the general two-body relativistic scattering

process a þ b ! c þ d.

All the above is for spinless particles, so finally we have to generalize Equation

(1.55) to include the effects of spin. Suppose the initial-state particles a and b, have

spins sa and sb and the final-state particles c and d have spins sc and sd. The total

numbers of spin substates available to the initial and final states are gi and gf ,

respectively, given by

gi ¼ ð2sa þ 1Þð2sb þ 1Þ and gf ¼ ð2sc þ 1Þ ð2sd þ 1Þ: ð1:56Þ

If the initial particles are unpolarized (which is the most common case in practice),

then we must average over all possible initial spin configurations (because each is

equally likely) and sum over the final configurations. Thus, Equation (1.55) becomes

d�

d�
¼ gf

4�2�h4

q2
f

vivf

jMfij2; ð1:57Þ

where

jMfij2 � j f ðq2Þj2 ð1:58Þ

and the bar over the amplitude denotes a spin-average of the squared matrix

element.

38The derivation is given in detail in Appendix A.
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1.6.3 Unstable states

In the case of an unstable state, the observable of interest is its lifetime at rest � , or

equivalently its natural decay width, given by � ¼ �h=�, which is a measure of the

rate of the decay reaction. In general, an initial unstable state will decay to several

final states and in this case we define �f as the partial width for channel f and

� ¼
X

f

�f ð1:59Þ

as the total decay width, while

Bf � �f =� ð1:60Þ

is defined as the branching ratio for decay to channel f.

The energy distribution of an unstable state to a final state f has the Breit–Wigner

form

Nf ðWÞ / �f

ðW � MÞ2
c4 þ �2=4

; ð1:61Þ

where M is the mass of the decaying state and W is the invariant mass of the decay

products.39 The Breit–Wigner formula is shown in Figure 1.8 and is the same

formula that describes the widths of atomic and nuclear spectral lines. (The overall

factor depends on the spins of the particles involved.) It is a symmetrical bell-

shaped curve with a maximum at W ¼ M and a full width � at half the maximum

height of the curve. It is proportional to the number of events with invariant mass W.

If an unstable state is produced in a scattering reaction, then the cross section for

that reaction will show an enhancement described by the same Breit–Wigner formula.

In this case we say we have produced a resonance state. In the vicinity of a resonance

of mass M, and width �, the cross-section for the reaction i ! f has the form

�fi /
�i�f

ðE � Mc2Þ2 þ �2=4
; ð1:62Þ

where E is the total energy of the system. Again, the form of the overall constant

will depend on the spins of the particles involved. Thus, for example, if the

resonance particle has spin j and the spins of the initial particles are s1 and s2, then

�fi ¼
��h2

q2
i

2j þ 1

ð2s1 þ 1Þð2s2 þ 1Þ
�i�f

ðE � Mc2Þ2 þ �2=4
: ð1:63Þ

39This form arises from a state that decays exponentially with time, although a proper proof of this is quite
lengthy. See, for example, Appendix B of Ma97.
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In practice there will also be kinematical and angular momentum effects that will

distort this formula from its perfectly symmetric shape.

An example of resonance formation in ��p interactions is given in Figure 1.9,

which shows the ��p total cross-section in the centre-of-mass energy range

Figure 1.8 The Breit--Wigner formula (Equation (1.61))

Figure 1.9 Total cross-sections for ��p interactions (data from Ca68)
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1.2–2.4 GeV. (The units used in the plots will become clear after the next section.)

Two enhancements can be seen that are of the approximate Breit–Wigner resonance

form and there are two other maxima at higher energies. In principle, the mass and

width of a resonance may be obtained by using a Breit–Wigner formula and varying

M and � to fit the cross-section in the region of the enhancement. In practice, more

sophisticated methods are used that fit a wide range of data, including differential

cross-sections, simultaneously and also take account of non-resonant contributions

to the scattering. The widths obtained from such analyses are of the order of

100 MeV, with corresponding interaction times of order 10�23 s, which is consistent

with the time taken for a relativistic pion to transit the dimension of a proton.

Resonances are also a feature of interactions in nuclear physics and we will return to

this in Section 2.9 when we discuss nuclear reaction mechanisms.

1.7 Units: Length, Mass and Energy

Most branches of science introduce special units that are convenient for their own

purposes. Nuclear and particle physics are no exceptions. Distances tend to be measured

in femtometres (fm) or, equivalently fermis, with 1 fm � 10�15 m. In these units, the

radius of the proton is about 0.8 fm. The range of the strong nuclear force between

protons and neutrons is of the order of 1–2 fm, while the range of the weak force is of the

order of 10�3 fm. For comparison, the radii of atoms are of the order of 105 fm. A

common unit for area is the barn (b) defined by 1 b ¼ 10�28 m2. For example, the total

cross-section for pp scattering (a strong interaction) is a few tens of millibarns (mb)

(compare also the ��p total cross-section in Figure 1.9), whereas the same quantity for

�p scattering (a weak interaction) is a few tens of femtobarns (fb), depending on the

energies involved. Nuclear cross-sections are very much larger and increase approxi-

mately like A2=3, where A is the total number of nucleons in the nucleus.

Energies are invariably specified in terms of the electron volt (eV) defined as the

energy required to raise the electric potential of an electron or proton by 1 V.

In SI units, 1 eV ¼ 1:6 
 10�19 J. The units 1 keV ¼ 103 eV, 1 MeV ¼ 106 eV,

1 GeV ¼ 109 eV and 1 TeV ¼ 1012 eV are also in general use. In terms of these

units, atomic ionization energies are typically a few eV, the energies needed to

bind nucleons in heavy nuclei are typically 7–8 MeV per particle, and the highest

particle energies produced in the laboratory are of the order of 1 TeV for protons.

Momenta are specified in eV=c, MeV=c, etc..

In order to create a new particle of mass M, an energy at least as great as its rest

energy Mc2 must be supplied. The rest energies of the electron and proton are

0.51 MeV and 0.94 GeV respectively, whereas the W and Z0 bosons have rest

energies of 80 GeV and 91 GeV, respectively. Correspondingly, their masses are

conveniently measured in MeV=c2 or GeV=c2, so that, for example,

Me ¼ 0:51 MeV=c2; Mp ¼ 0:94 GeV=c2;

MW ¼ 80:3 GeV=c2; MZ ¼ 91:2 GeV=c2
ð1:64Þ
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In SI units, 1 MeV=c2 ¼ 1:78 
 10�30 kg. In nuclear physics it is also common to

express masses in atomic mass units (u), where 1 u ¼ 1:661 
 10�27 kg ¼
931:5 MeV=c2.

Although practical calculations are expressed in the above units, it is usual in

particle physics to make theoretical calculations in units chosen such that

�h � h=2� ¼ 1 and c ¼ 1 (called natural units) and many books do this. However,

as this book is about both nuclear and particle physics, only practical units will be

used.

A table giving numerical values of fundamental and derived constants, together

with some useful conversion factors is given on page XV.

Problems

1.1 ‘Derive’ the Klein–Gordon equation using the information in Footnote 21 and verify

that Equation (1.35) is a static solution of the equation.

1.2 Verify that the spherical harmonic Y1
1 ¼

ffiffi
3
8

q
sin ei� is an eigenfunction of parity

with eigenvalue P ¼ �1.

1.3 A proton and antiproton at rest in an S-state annihilate to produce �0�0 pairs. Show

that this reaction cannot be a strong interaction.

1.4 Suppose that an intrinsic C-parity factor is introduced into Equation (1.15b), which

then becomes ĈCjb;  bi ¼ Cbj�bb;  �bbi. Show that the eigenvalue corresponding to any

eigenstate of ĈC is independent of Cb, so that Cb cannot be measured.

1.5 Consider the reaction ��d ! nn, where d is a spin-1 S-wave bound state of a proton

and a neutron called the deuteron and the initial pion is at rest. Deduce the intrinsic

parity of the negative pion.

1.6 Write down equations in symbol form that describe the following interactions:

(a) elastic scattering of an electron antineutrino and a positron;

(b) inelastic production of a pair of neutral pions in proton–proton interactions;

(c) the annihilation of an antiproton with a neutron to produce three pions.

1.7 Draw a lowest-order Feynman diagram for the following processes:

(a) �e�� elastic scattering;

(b) n ! p þ e� þ ���e;
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(c) eþe� ! eþe�;

(d) a fourth-order diagram for the reaction � þ � ! eþ þ e�.

1.8 Calculate the energy–momentum transfer between two particles equivalent to a

distance of approach of (a) 1fm and (b) 10�3 fm. Assuming that the intrinsic

strengths of the fundamental weak and electromagnetic interactions are approxi-

mately equal, compare the relative sizes of the invariant (scattering) amplitudes for

weak and electromagnetic processes at these two energy–momentum transfers.

1.9 Verify by explicit integration that f ðqÞ ¼ �g2�h2½q2 þ m2c2��1
is the amplitude

corresponding to the Yukawa potential

VðrÞ ¼ � g2

4�

e�r=R

r
;

where R ¼ �h=mc is the range and r ¼ jxj.

1.10 Two beams of particles consisting of n bunches with Niði ¼ 1; 2Þ particles in each,

traverse circular paths and collide ‘head-on’. Show that in this case the general

expression Equation (1.45) for the luminosity reduces to L ¼ nN1N2f =A, where A is

the cross-sectional area of the beam and f is the frequency, i.e. f ¼ 1=T , where T is

the time taken for the particles to make one traversal of the ring.

1.11 A thin (density 1 mg cm�2) target of 24Mg (MA ¼ 24:3 atomic mass units) is

bombarded with a 10 nA beam of alpha particles. A detector subtending a solid

angle of 2 
 10�3 sr, records 20 protons/s. If the scattering is isotropic, determine

the cross-section for the 24Mgð�; pÞ reaction.
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2
Nuclear Phenomenology

In this chapter we start to examine some of the things that can be learned from

experiments, beginning with basic facts about nuclei, including what can be deduced

about their shapes and sizes. Then we discuss the important topic of nuclear stability

and the phenomenology of the various ways that unstable nuclei decay to stable

states. Finally, we briefly review the classification of reactions in nuclear physics.

Before that we need to introduce some notation.

2.1 Mass Spectroscopy and Binding Energies

Nuclei are specified by:

Z – atomic number ¼ the number of protons,

N – neutron number ¼ the number of neutrons,

A – mass number ¼ the number of nucleons, so that A ¼ Z þ N.

We will also refer to A as the nucleon number. The charge on the nucleus is

þZe, where e is the absolute value of the electric charge on the electron. Nuclei

with combinations of these three numbers are also called nuclides and are written
AY or A

ZY, where Y is the chemical symbol for the element. Some other common

nomenclature is:

nuclides with the same mass number are called isobars,

nuclides with the same atomic number are called isotopes,

nuclides with the same neutron number are called isotones.

Nuclear and Particle Physics B. R. Martin
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The concept of isotopes was introduced in Chapter 1. For example, stable isotopes

of carbon are 12C and 13C, and the unstable isotope used in dating ancient objects

(see later in this chapter) is 14C; all three have Z ¼ 6.

Just as in the case of electrons in atoms, the forces that bind the nucleons in

nuclei contribute to the total mass of an atom M(Z, A) and in terms of the masses of

the proton Mp and neutron Mn

MðZ;AÞ < Z ðMp þ meÞ þ N Mn: ð2:1Þ

The mass deficit is defined as

�MðZ;AÞ � MðZ;AÞ � Z ðMp þ meÞ � N Mn ð2:2Þ

and ��Mc2 is called the binding energy B. Binding energies may be calculated if

masses are measured accurately. One way of doing this is by using the techniques

of mass spectroscopy. The principle of the method is shown in Figure 2.1.

A source of ions of charge q, containing various isotopes passes through a region

where there are uniform electric (E) and magnetic (B1) fields at right angles. The

electric field will exert a force qE in one direction and the magnetic field will exert

a force qvB1 in the opposite direction, where v is the speed of the ions. By

balancing these forces, ions of a specific speed v ¼ E=B1 can be selected and

allowed to pass through a collimating slit. Ions with other velocities (shown as

dashed lines) are deflected. The beam is then allowed to continue through a second

Figure 2.1 Schematic diagram of a mass spectrometer (adapted from Kr88 Copyright John
Wiley & Sons, Inc.)
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uniform magnetic field B2 where it will be bent into a circular path of radius �,

given by

mv ¼ qB2� ð2:3Þ

and since q, B2 and v are fixed, particles with a fixed ratio q=m will bend in a path

with a unique radius. Hence isotopes may be separated and focused onto a detector

(e.g. a photographic plate). In the common case where B1 ¼ B2 ¼ B,

q

m
¼ E

B2�
: ð2:4Þ

In practice, to achieve high accuracy, the device is used to measure mass

differences rather than absolute values of mass.1

Conventional mass spectroscopy cannot be used to find the masses of very short-

lived nuclei and in these cases the masses are determined from kinematic analysis

of nuclear reactions as follows. Consider the inelastic reaction Aða; aÞA�, where A�

is the short-lived nucleus whose mass is to be determined. The kinematics of this

are:

aðEi; piÞ þ AðmAc2; 0Þ ! aðEf ;pf Þ þ A�ð~EE;p~Þ; ð2:5Þ

where we use tilded quantities to denote the energy, mass, etc. of A�. Equating the

total energy before the collision

EtotðinitialÞ ¼ Ei þ mac2 þ mAc2 ð2:6aÞ

to the total energy after the collision

EtotðfinalÞ ¼ Ef þ ~EE þ mac2 þ ~mm c2 ð2:6bÞ

gives the following expression for the change in energy of the nucleus:

�E � ð~mm � mAÞc2 ¼ Ei � Ef � ~EE ¼ p2
i

2ma

�
p2

f

2ma

� ~pp2

2~mm
; ð2:7Þ

where we have assumed non-relativistic kinematics. If the initial momentum of the

projectile is along the x-direction and the scattering angle is �, then from

momentum conservation,

ð~ppÞx ¼ pi � pf cos � ; ð~ppÞy ¼ pf sin � ð2:8Þ

1Practical details of mass spectroscopy may be found in, for example, Chapter 3 of Kr88.
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and using these in Equation (2.7) gives

�E ¼ Ei 1 � ma

~mm

� �
� Ef 1 þ ma

~mm

� �
þ 2ma

~mm
EiEf

� �1=2
cos �: ð2:9Þ

This formula can be used iteratively to deduce�E and hence the mass of the excited

nucleus A�, from measurements of the initial and final energy of the projectile by

initially setting ~mm ¼ mA on the right-hand side because �E is small in comparison

with mA. One final point is that the energies in Equation (2.9) are measured in the

laboratory system, whereas the final energies (masses) will be needed in the centre-of-

mass system.2 The necessary transformation is easily found to be

ECM ¼ Elab 1 þ ma=mAð Þ�1: ð2:10Þ

A similar formula to Equation (2.9) may be derived for the general reaction

A(a,b)B:

�E ¼ Ei 1 � ma

mB

� �
� Ef 1 þ mb

mB

� �
þ 2

mB

mambEiEf

� �1=2
cos �þ Q; ð2:11Þ

where Q is the kinetic energy released in the reaction.

A commonly used quantity of interest is the binding energy per nucleon B=A.

This is shown schematically in Figure 2.2 for nuclei that are stable or long-lived.

2A discussion of these two systems is given in Appendix C.

Figure 2.2 Binding energy per nucleon as a function of mass number A for stable and long-
lived nuclei
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This shows that B=A peaks at a value of 8.7 MeV for a mass number of about 56

(close to iron) and thereafter falls very slowly. Excluding very light nuclei, the

binding energy per nucleon is between 7 and 9 MeV over a wide range of the

periodic table. In Section 2.5 we will discuss a model that provides an explanation

for the shape of this curve.

2.2 Nuclear Shapes and Sizes

The shape and size of a nucleus may be found from scattering experiments; i.e. a

projectile is scattered from the nucleus and the angular distribution of the scattered

particles examined, as was done by Rutherford and his collaborators when they

deduced the existence of the nucleus. The interpretation is simplest in those cases

where the projectile itself has no internal structure, i.e. it is an elementary particle,

and electrons are often used. In this case the relevant force is electromagnetic and we

learn about the charge distribution in the nucleus. The first experiments of this type

were performed by Hofstader and his collaborators in the late 1950s.3 If instead of an

electron a hadron is used as the projectile, the force is dominantly the nuclear strong

interaction and we find information about the matter density. Neutrons are com-

monly used so that Coulomb effects are absent. We discuss these two cases in turn.

2.2.1 Charge distribution

To find the amplitude for electron–nucleus scattering, we should in principle solve

the Schrödinger (or Dirac) equation using a Hamiltonian that includes the full

electromagnetic interaction and use nuclear wavefunctions. This can only be done

numerically. However, in Appendix C we derive a simple formula that describes the

electromagnetic scattering of a charged particle in the so-called Born approxima-

tion, which assumes Z�	 1 and uses plane waves for the initial and final states.

This leads to the Rutherford cross-section, which in its relativistic form may be

written

d�

dO

� �
Rutherford

¼ Z2�2ð�hcÞ2

4E2 sin4ð�=2Þ
; ð2:12Þ

where E is the total initial energy of the projectile and � is the angle through which

it is scattered. Note that Equation (2.12) is of order �2 because it corresponds to

the exchange of a single photon. Although Equation (2.12) has a limited range of

applicability, it is useful to discuss the general features of electron scattering.

Equation (2.12) actually describes the scattering of a spin-0 point-like projectile of

unit charge from a fixed point-like target with electric charge Ze, i.e. the charge

3Robert Hofstader shared the 1961 Nobel Prize in Physics for his pioneering electron scattering experiments.
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distribution of the target is neglected. It therefore needs to be modified in a number of

ways before it can be used in practice. We will state the modifications without proof.

Firstly, taking account of the electron spin leads to the so-called Mott cross-

section

d�

dO

� �
Mott

¼ d�

dO

� �
Rutherford

1 � 	2 sin2ð�=2Þ
� �

; ð2:13Þ

where 	 ¼ v=c and v is the velocity of the initial electron. At higher energies, the

recoil of the target needs to be taken into account and this introduces a factor E0=E

on the right-hand side of Equation (2.13), where E0 is the final energy of the

electron. At higher energies we also need to take account of the interaction with

the magnetic moment of the target in addition to its charge. The final form for the

differential cross-section is

d�

dO

� �
spin 1

2

¼ d�

dO

� �
Mott

E0

E
1 þ 2
 tan2 �

2

	 

; ð2:14Þ

where


 ¼ �q2

4M2c2
ð2:15Þ

and M is the target mass. Because the energy loss of the electron to the recoiling

nucleus is no longer negligible, q, the previous momentum transfer, has been

replaced by the four-momentum transfer q, whose square is

q2 ¼ ðp � p0Þ2 ¼ 2m2
ec2 � 2ðEE0�c2 � pj j p0j j cos �Þ � � 4EE0

c2
sin2ð�=2Þ; ð2:16Þ

where pð p0Þ is the four-momentum of the initial (final) electron. (Because q2  0, it

is common practice to replace it with Q2 ¼ �q2, so as to work with positive

quantities.4) For the rest of this discussion it will be sufficient to ignore the magnetic

interaction, although we will use a variant of the full form (2.16) in Chapter 6.

The final modification is due to the spatial extension of the nucleus. If the spatial

charge distribution within the nucleus is written f (x) then we define the form factor

F(q2) by

Fðq2Þ � 1

Ze

ð
eiq�x=�hf ðxÞ d3x with Ze ¼

ð
f ðxÞ d3x; ð2:17Þ

4To remove any confusion, in the non-relativistic case, which we use in the rest of this chapter, q is
interpreted to be q ¼ jqj � 0 where q � p � p0, as was used in Section 1.6.1. We will need the four-
momentum definition of q in Chapter 6.
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i.e. the Fourier transform of the charge distribution.5 In the case of a spherically

symmetric charge distribution, the angular integrations in Equations (2.17) may be

done using spherical polar coordinates to give

Fðq2Þ ¼ 4��h

Zeq

ð1

0

r�ðrÞsin
qr

�h

� �
dr; ð2:18Þ

where q ¼ jqj and �ðrÞ is the radial charge distribution. The final form of the

experimental cross-section in this approximation is given by6

d�

dO

� �
expt

¼ d�

dO

� �
Mott

Fðq2Þ
 2: ð2:19Þ

Two examples of measured cross-sections are shown in Figure 2.3. Striking

features are the presence of a number of well-defined minima superimposed on a

Figure 2.3 Elastic differential cross-sections as a function of the scattering angle for 450 MeV
electrons from 58Ni and 758 MeV electrons from 48Ca; the solid lines are fits as described in the
text (adapted from Si75 (58Ni data) and Be67 (48Ca data), Copyright American Physical Society)

5Strictly this formula assumes that the recoil of the target nucleus is negligible and the interaction is
relatively weak, so that perturbation theory may be used.
6If the magnetic interaction were included, another form factor would be necessary, as is the case in high-
energy electron scattering discussed in Chapter 6.

NUCLEAR SHAPES AND SIZES 39

Publisher's Note:
Permission to reproduce this image
online was not granted by the
copyright holder. Readers are kindly
requested to refer to the printed v ersion
of this chapter.



rapid decrease in the cross-section with angle. These features are common to all

elastic data, although not all nuclei show so many minima as those shown.

The minima are due to the form factor and we can make this plausible by taking

the simple case where the nuclear charge distribution is represented by a hard

sphere such that

�ðrÞ ¼ constant; r  a

¼ 0 r > a
ð2:20Þ

where a is a constant. In this case, evaluation of Equation (2.18) gives

Fðq2Þ ¼ 3 sinðbÞ � bcosðbÞ½ �b�3; ð2:21Þ

where b � qa=�h. Thus Fðq2Þ will be zero at values of b for which b ¼ tanðbÞ. In

practice, as we will see below, �ðrÞ is not a hard sphere, and although it is

approximately constant for much of the nuclear volume, it falls smoothly to zero at

the surface. Smoothing the edges of the radial charge distribution (2.20) modifies

the positions of the zeros, but does not alter the argument that the minima in the

cross-sections are due to the spatial distribution of the nucleus. Their actual

positions and depths result from a combination of the form factor and the form of

the point-like amplitude. We shall see below that the minima can tell us about the

size of the nucleus.

If one measures the cross-section for a fixed energy at various angles (and hence

various q2), the form factor can in principle be extracted using Equation (2.19) and

one might attempt to find the charge distribution from the inverse Fourier

transform

f ðxÞ ¼ Ze

ð2�Þ3

ð
Fðq2Þ e�iq�x=�h d3q: ð2:22Þ

However, q2 only has a finite range for a fixed initial electron energy and even within

this range the rapid fall in the cross-section means that in practice measurements

cannot be made over a sufficiently wide range of angles for the integral in Equation

(2.22) to be evaluated accurately. Thus, even within the approximations used,

reliable charge distributions cannot be found from Equation (2.22). Therefore

different strategies must be used to deduce the charge distribution. In one approach,

plausible – but very general – parameterized forms (for example a sum of Gaussians)

are chosen for the charge distribution and are used to modify the point-like

electromagnetic interaction. The resulting Schrödinger (or Dirac) equation is solved

numerically to produce an amplitude, and hence a cross-section, for electron–

nucleus scattering. The parameters of the charge distribution are then varied to give

a good fit of the experimental data. The solid curves in Figure 2.3 are obtained in

this way.
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Some radial charge distributions for various nuclei obtained by these methods

are shown in Figure 2.4. They are well represented by the form

�chðrÞ ¼
�0

ch

1 þ eðr�aÞ=b
; ð2:23Þ

where a and b for medium and heavy nuclei are found to be

a � 1:07A1=3 fm and b � 0:54 fm: ð2:24Þ

From this we can deduce that the charge density is approximately constant in the

nuclear interior and falls fairly rapidly to zero at the nuclear surface, as anticipated

above. The value of �0
ch is in the range 0.06–0.08 for medium to heavy nuclei and

decreases slowly with increasing mass number.

Figure 2.4 Radial charge distributions �ch of various nuclei, in units of e fm�3; the thickness
of the curves near r ¼ 0 is a measure of the uncertaintity in �ch (adapted from Fr83)
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A useful quantity is the mean square charge radius,

r2
� �

�
ð1

0

r2�chðrÞ dr: ð2:25Þ

This can be found from the form factor as follows. Expanding Equation (2.17) for

Fðq2Þ gives

Fðq2Þ ¼ 1

Ze

ð
f ðxÞ

X1
n¼0

1

n!

ijqjrcos�

�h

� �n

d3x ð2:26Þ

and after carrying out the angular integrations this becomes

Fðq2Þ ¼ 4�

Ze

ð1

0

f ðrÞ r2dr � 4�q2

6Ze�h2

ð1

0

f ðrÞ r4dr þ � � � : ð2:27Þ

From the normalization of f ðxÞ, we finally have

Fðq2Þ ¼ 1 � q2

6�h2
r2
� �

þ � � � ð2:28Þ

and thus the mean square charge radius can be found from

r2
� �

¼ �6�h2dFðq2Þ
dq2


q2¼0

; ð2:29Þ

provided the form factor can be measured at very small values of q2. For medium

and heavy nuclei r2
� �1=2

is given approximately by7

r2
� �1=2¼ 0:94A1=3 fm: ð2:30Þ

The nucleus is often approximated by a homogeneous charged sphere. The radius

R of this sphere is then quoted as the nuclear radius. The relation of this to the

mean square radius is R2 ¼ 5
3

r2
� �

, so that

Rcharge ¼ 1:21 A1=3 fm: ð2:31Þ

2.2.2 Matter distribution

Electrons cannot be used to obtain the distributions of neutrons in the nucleus. We

could, however, take the presence of neutrons into account by multiplying �chðrÞ

7The constant comes from a fit to a range of data, e.g. the compilation for 55  A  209 given in Ba77.
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by A=Z. Then we find an almost identical nuclear density in the nuclear interior for

all nuclei, i.e. the decrease in �0
ch with increasing A is compensated by the increase

in A=Z with increasing A. The interior nuclear density is given by

�nucl � 0:17 nucleons=fm
3: ð2:32Þ

Likewise, the effective nuclear matter radius for medium and heavy nuclei is

Rnuclear � 1:2 A1=3 fm: ð2:33Þ

These are important results that will be used extensively later in this chapter and

elsewhere in this book.

To probe the nuclear (i.e. matter) density of nuclei experimentally, a strongly

interacting particle, i.e. a hadron, has to be used as the projectile. At high energies,

where elastic scattering is only a small part of the total interaction, the nucleus

behaves more like an absorbing sphere. In this case, the incident particle of

momentum p will have an associated quantum mechanical wave of wavelength

 ¼ h=p and will suffer diffraction-like effects, as in optics. To the extent that we are

dealing at high energies purely with the nuclear strong interaction (i.e. neglecting the

Coulomb interaction), the nucleus can be represented by a black disk of radius R and

the differential cross-section will have a Fraunhofer-like diffraction form, i.e.

d�

dO
/ J1ðqRÞ

qR

	 
2

; ð2:34Þ

where qR � pR� for small � and J1 is a first-order Bessel function. For large qR,

J1ðqRÞ½ �2 � 2

�qR

� �
sin2 qR � �

4

� �
; ð2:35Þ

which has zeros at intervals �� ¼ �=pR. The plausibility of this interpretation is

borne out by experiment, an example of which is shown in Figure 2.5. The data show

a succession of roughly equally spaced minima as suggested by Equation (2.35).

To go further requires solving the equations of motion, but this is far more

problematical than in the electron case because the hadrons are more likely to be

absorbed as they pass through the nucleus and the effective potential is far less

well known. However, the analogy with optics can be pursued further in the so-

called optical model. The essential idea in this model is that a hadron incident on a

nucleus may be elastically scattered, or it may cause a variety of different

reactions. As in the discussion above, if the incident particle is represented by a

wave, then in classical language it may be scattered or it may be absorbed. In

optics this is analogous to the refraction and absorption of a light wave by a

medium of complex refractive index, and just as the imaginary part of the

refractive index takes account of the absorption of the light wave, so in the
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nuclear case the imaginary part of a complex potential describing the interaction

takes account of all the inelastic reactions. It is an essential feature of the model

that the properties of nuclei are mainly determined by their size, as this implies

that the same potential can account for the interaction of particles of different

energies with different nuclei. Apart from the theoretical basis provided by

analogy with classical optics, the model is essentially phenomenological, in that

the values of the parameters of the optical potentials are found by optimizing the fit

to the experimental data. This type of semi-phenomenological approach is

common in both nuclear and particle physics.

In practice, the Schrödinger equation is solved using a parameterized complex

potential where the real part is a sum of the Coulomb potential (for charged

projectiles), an attractive nuclear potential and a spin-orbit potential, and the

imaginary part is assumed to cause the incoming wave of the projectile to be

attenuated within the nucleus, thereby allowing for inelastic effects. Originally,

mathematical forms like Equation (2.23) were used to parameterize the real and

imaginary parts of the potential, but subsequent work indicated substantial differ-

ences between the form factors of the real and imaginary parts of the potential and so

different forms are now used for the imaginary part. The free parameters of the total

potential are adjusted to fit the data.

The optical model has achieved its greatest success in the scattering of nucleons,

but analyses using data obtained from light nuclei targets are also possible. A wide

range of scattering data can be accounted for to a high degree of precision by

Figure 2.5 Elastic differential cross-sections for 52 MeV deuterons on 54Fe (adapted from Hi68,
copyright Elsevier, with permission)
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the model and examples of this are shown in Figure 2.6. The corresponding

wavefunctions are extensively used to extract information on nuclear structure.

The conclusions are in accord with those above deduced indirectly from electron

data.

2.3 Nuclear Instability

Stable nuclei only occur in a very narrow band in the Z�N plane close to the line

Z ¼ N (see Figure 2.7). All other nuclei are unstable and decay spontaneously in

various ways. Isobars with a large surplus of neutrons gain energy by converting a

Figure 2.6 Differential cross-sections (normalized to the Rutherford cross-section) for the
elastic scattering of 30.3 MeV protons, for a range of nuclei compared with optical model
calculations; the solid and dashed lines represent the results using two different potentials
(adapted from Sa67, copyright Elsevier, with permission)
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neutron into a proton; conversely, a nucleus with a large surplus of protons converts

protons to neutrons. These are examples of 	-decays, already mentioned. A related

process is where an atomic electron is captured by the nucleus and a proton is

thereby converted to a neutron within the nucleus. This is electron capture and like

	-decay is a weak interaction. The electron is usually captured from the innermost

shell and the process competes with 	-decay in heavy nuclei because the radius of

this shell (the K-shell) is close to the nuclei radius. The presence of a third particle in

the decay process, the neutrino (as first suggested by Fermi), means that the emitted

electrons (or positrons) have a continuous energy spectrum. The derivation and

analysis of the electron momentum spectrum will be considered in Chapter 7 when

we discuss the theory of 	-decay.

The maximum of the curve of binding energy per nucleon is at approximately

the position of iron (Fe) and nickel (Ni), which are therefore the most stable

nuclides. In heavier nuclei, the binding energy is smaller because of the larger

Coulomb repulsion. For still heavier nuclear masses, nuclei can decay sponta-

neously into two or more lighter nuclei, provided the mass of the parent nucleus is

larger than the sum of the masses of the daughter nuclei.

Figure 2.7 The distribution of stable nuclei: the squares are the stable and long-lived nuclei
occurring in nature; other known nuclei lie within the jagged lines and are unstable. [adapted
from Ch97.)
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Most such nuclei decay via two-body decays and the commonest case is when

one of the daughter nuclei is a 4He nucleus (i.e. an �-particle: 4He � 2p2n, with

A ¼ 4 ; Z ¼ N ¼ 2). The �-particle is favoured in such decays because it is a very

stable, tightly bound structure. Because this is a two-body decay, the �-particle has

a unique energy and the total energy released, the so-called Q-value, is given by:

Q� ¼ MP � MD � M�ð Þc2 ¼ ED þ E�; ð2:36Þ

where the subscripts refer to parent and daughter nuclei and the �-particle, and E is

a kinetic energy.

The term fission is used to describe the rare cases where the two daughters have

similar masses. If the decay occurs without external action, it is called spontaneous

fission to distinguish it from induced fission, where some external stimulus is required

to initiate the decay. Spontaneous fission only occurs with a probability greater than that

for�-emission for nuclei with Z � 110. The reason for this is discussed in Section 2.7.

Finally, nuclei may decay by the emission of photons, with energies in the �-ray

part of the electromagnetic spectrum (gamma emission). This occurs when an

excited nuclear state decays to a lower state and is a common way whereby excited

states lose energy. The lower energy state is often the ground state. A competing

process is internal conversion, where the nucleus de-excites by ejecting an electron

from a low-lying atomic orbit. Both are electromagnetic processes. Electromag-

netic decays will be discussed in more detail in Chapter 7.

2.4 Radioactive Decay

Before looking in more detail at different classes of instability, we will consider

the general formalism describing the rate of radioactive decay. The probability per

unit time that a given nucleus will decay is called its decay constant  and is

related to the activity A by

A ¼ �dN=dt ¼ N; ð2:37Þ

where N(t) is the number of radioactive nuclei in the sample at time t. The activity is

measured in becquerels (Bq), which is one decay per second.8 The probability here

refers to the total probability, because  could be the sum of decay probabilities for a

number of distinct final states in the same way that the total decay width of an

unstable particle is the sum of its partial widths. Integrating Equation (2.37) gives

AðtÞ ¼ N0expð�tÞ; ð2:38Þ

where N0 is the initial number of nuclei, i.e. the number at t ¼ 0.

8An older unit, the curie (1 Ci ¼ 3:7 � 1010 Bq) is also still in common use. A typical laboratory radioactive
source has an activity of a few tens of kBq, i.e. �Ci.
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The mean lifetime 
 of an unstable state, such as a radioactive nucleus or a

hadron, follows from the general definition of a mean �xx of a distribution f(x):

�xx �
ð

xf ðxÞdx

	 
� ð
f ðxÞdx

	 

: ð2:39Þ

Thus


 �
Ð

t dNðtÞÐ
dNðtÞ ¼

Ð1
0

t exp½�t� dt

Ð1
0

exp½�t� dt

¼ 1


: ð2:40Þ

This is the quantity we simply called ‘the lifetime’ in Chapter 1. The mean

lifetime is always used in particle physics, but another measure more commonly

used in nuclear physics is the half-life t1
2
, defined as the time for the number of

nuclei to fall by one half. Thus t1
2
¼ ln2= ¼ 
 ln2. In this book, the term lifetime

will be used for the mean lifetime, both for radioactive nuclei and unstable

hadrons, unless explicitly stated otherwise.

A well-known use of the radioactive decay law is in dating ancient specimens

using the known properties of radioactive nuclei. For organic specimens, carbon is

usually used. Carbon-14 is a radioactive isotope of carbon that is produced by the

action of cosmic rays on nitrogen in the atmosphere.9 If the flux of cosmic rays

remains roughly constant over time, then the ratio of 14C to the stable most abundant

isotope 12C reaches an equilibrium value of about 1 :1012. Both isotopes will be

taken up by living organisms in this ratio, but when the organism dies there is no

further interaction with the environment and the ratio slowly changes with time as

the 14C nuclei decay by 	-decay to 14N with a lifetime of 8:27 � 103 years. Thus, if

the ratio of 14C to 12C is measured, the age of the specimen may be estimated.10 The

actual measurements can be made very accurately because modern mass spectro-

meters can directly measure very small differences in the concentrations of 14C and
12C using only milligrams of material. Nevertheless, in practice, corrections are

made to agree with independent calibrations if possible, using, for example, tree-

ring growth data, because cosmic ray activity is not strictly constant with time.

In many cases the products of radioactive decay are themselves radioactive and so

a decay chain results. Consider a decay chain A ! B ! C ! � � �, with decay

constants A; B; C etc.. The variation of species Awith time is given by Equation

(2.38), i.e.

NAðtÞ ¼ NAð0Þexpð�AtÞ; ð2:41Þ

9Cosmic rays are high-energy particles, mainly protons, that impinge on the Earth’s atmosphere from space.
The products of the secondary reactions they produce may be detected at the Earth’s surface. Victor Hess
shared the 1936 Nobel Prize in Physics for the discovery of cosmic radiation.
10This method of using radioactive carbon to date ancient objects was devised by Willard Libby, for which he
received the 1960 Nobel Prize in Chemistry.
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but the differential equation for NBðtÞ will have an extra term in it to take account

of the production of species B from the decay of species A:

dNBðtÞ=dt ¼ �BNB þ ANA: ð2:42Þ

The solution of this equation may be verified by substitution to be

NBðtÞ ¼
A

B � A

NAð0Þ expð�AtÞ � expð�BtÞ½ �: ð2:43Þ

Similar equations may be found for decay sequences with more than two stages.

Thus, for a three-stage sequence

NCðtÞ ¼ ABNAð0Þ
expð�AtÞ

ðB � AÞðC � AÞ

	

þ expð�BtÞ
ðA � BÞðC � BÞ

þ expð�CtÞ
ðA � CÞðB � CÞ



ð2:44Þ

As an example, the variation of the components as a function of time is shown in

Figure 2.8 for the specific case:

79
38Sr ! 79

37Rb þ eþ þ �e ð2:25 minÞ
j! 79

36Kr þ eþ þ �e ð22:9 minÞ
j! 79

35Br þ eþ þ �e ð35:04 hoursÞ
ð2:45Þ

where the final nucleus is stable.

Figure 2.8 Time variation of the relative numbers of nuclei in the decay chain (2.45)
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This illustrates the general features that whereas NAðtÞ for the initial species falls

monotonically with time and NCðtÞ for the final stable species rises monotonically,

NBðtÞ for an intermediate species rises to a maximum before falling. Note that at

any time the sum of the components is a constant, as expected.

In the following sections we consider the phenomenology of the various types of

radioactivity in more detail and in Chapter 7 we will return to discuss various

models and theories that provide an understanding of these phenomena.

2.5 Semi-Empirical Mass Formula: The Liquid Drop Model

Apart from the lightest elements and a few special isolated very stable nuclei, the

binding energy data of Figure 2.2 can be fitted by a simple formula containing just a

few free parameters. This is the semi-empirical mass formula (SEMF), first written

down in 1935 by Weizsäcker. It is a semi-empirical formula, because although it

contains a number of constants that have to be found by fitting experimental data, the

formula does have a theoretical basis. This arises from the two properties common to

all nuclei (except those with very small A values) that we have seen earlier: (1) the

interior mass densities are approximately equal, and (2) their total binding energies

are approximately proportional to their masses. There is an analogy here with a

classical model of a liquid drop, where for drops of various sizes: (1) interior densities

are the same, and (2) latent heats of vaporization are proportional to their masses.11

However, the analogy of a nucleus as an incompressible liquid droplet, with the

nucleons playing the role of individual molecules within the droplet, cannot be taken

too far because nucleons of course obey the laws of quantum, not classical, physics.

The semi-empirical mass formula will be taken to apply to atomic masses, as

these are the masses actually observed in experiment. The atomic mass M(Z, A)

may then be written as the sum of six terms fiðZ;AÞ:

MðZ; AÞ ¼
X5

i¼0

fiðZ; AÞ: ð2:46Þ

The first of these is the mass of the constituent nucleons and electrons,

f0ðZ; AÞ ¼ Z ðMp þ meÞ þ ðA � ZÞMn: ð2:47Þ

The remaining terms are various corrections, which we will write in the form ai

multiplied by a function of Z and A with ai > 0.

The most important correction is the volume term,

f1ðZ; AÞ ¼ �a1A: ð2:48Þ

11Latent heat is the average energy required to disperse the liquid drop into a gas and so is analogous to the
binding energy per nucleon.
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This arises from the fact that the strong nuclear force is short-range and each

nucleon therefore feels the effect of only the nucleons immediately surrounding it

(the force is said to be saturated), independent of the size of the nucleus. Recalling

the important result deduced in Section 2.2 that the nuclear radius is proportional

to A
1
3, this leads immediately to the binding energy being proportional to the

volume, or nuclear mass. The coefficient is negative, i.e. it increases the binding

energy, as expected.

The volume term overestimates the effect of the nuclear force because nucleons

at the surface are not surrounded by other nucleons. Thus the volume term has to

be corrected. This is done by the surface term

f2ðZ; AÞ ¼ þa2A
2
3; ð2:49Þ

which is proportional to the surface area and decreases the binding energy. In the

classical model of a real liquid drop, this term would correspond to the surface

tension energy.

The Coulomb term accounts for the Coulomb energy of the charged nucleus, i.e.

the fact that the protons repel each other. If we have a uniform charge distribution

of radius proportional to A
1
3, then this term is

f3ðZ; AÞ ¼ þa3

ZðZ � 1Þ
A

1
3

� þa3

Z2

A
1
3

; ð2:50Þ

where the approximation is sufficiently accurate for the large values of Z we will

be considering. A similar effect would be present for a charged drop of a classical

liquid.

The next term is the asymmetry term.

f4ðZ; AÞ ¼ þa4

ðZ � A=2Þ2

A
: ð2:51Þ

This accounts for the observed tendency for nuclei to have Z ¼ N. (There are no

stable nuclei with very large neutron or proton excesses – c.f. Figure 2.7.) This

term is purely quantum mechanical in origin and is due to the Pauli principle.

Part of the reason for the form (2.51) can be seen from the diagram of Figure 2.9,

which shows the energy levels of a nucleus near the highest filled level in the

approximation where all the energy levels are separated by the same energy �.

Keeping A fixed and removing a proton from level 3 and adding a neutron to level

4, gives ðN � ZÞ ¼ 2 and leads to an energy increase of �. Repeating this for more

protons, we find that the transfer of ðN � ZÞ=2 nucleons decreases the binding

energy by an amount ��ðN � ZÞ2=4. Although we have assumed � is a constant,

in practice it decreases like A�1; hence the final form of the asymmetry term.

If we start with an even number of nucleons and progressively fill states, then the

lowest energy will be when both Z and N are even. If, on the other hand, we have a
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system where both Z and N are odd and the highest filled proton state is above the

highest filled neutron state, we can increase the binding energy by removing one

proton from the nucleus and adding one neutron. If the highest filled proton state is

below the highest filled neutron state, then we can produce the same effect by

removing a neutron and adding a proton. These observations are summarized in the

empirical pairing term, which maximizes the binding when both Z and N are even:

f5ðZ; AÞ ¼ �f ðAÞ; if Z even;A � Z ¼ N even

f5ðZ; AÞ ¼ 0; if Z even;A � Z ¼ N odd; or;Z odd;A � Z ¼ N even

f5ðZ; AÞ ¼ þf ðAÞ; if Z odd; A � Z ¼ N odd

ð2:52Þ

The exact form of the function f ðAÞ is found by fitting the data; f ðAÞ ¼ a5A�1
2 is

often used.

To help remember these terms, the notation VSCAP is frequently used, with

a1 ¼ av; a2 ¼ as; a3 ¼ ac; a4 ¼ aa; a5 ¼ ap: ð2:53Þ

Precise values of the coefficients depend on the range of A fitted. One commonly

used set is, in units of MeV
�

c2:12

av ¼ 15:56; as ¼ 17:23; ac ¼ 0:697; aa ¼ 93:14; ap ¼ 12: ð2:54Þ

The fit to the binding energy data for A > 20 using these coefficients in the SEMF

is shown in Figure 2.10. Overall the fit to the data is remarkably good for such a

simple formula, but is not exact of course. For example, there are a small number of

regions where the binding energy curves show enhancements that are not repro-

duced. (These enhancements are due to the existence of a ‘shell structure’ of

nucleons within the nucleus and will be discussed in Chapter 7.) Nevertheless, the

SEMF gives accurate values for the binding energies for some 200 stable and many

Figure 2.9 Schematic diagram of nuclear energy levels near the highest filled levels

12Note that some authors write the asymmetry term proportional to ðZ � NÞ2
, which is equivalent to the form

used here, but their value for the coefficient aa will differ by a factor of four from the one in Equations (2.54).
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Figure 2.10 Fit to binding energy data (shown as solid circles) for odd-A and even-A nuclei
using the SEMF with the coefficients given in the text; the predictions are shown as open circles
and do not lie on smooth curves because A is not a function of Z
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more unstable nuclei. We will use it to analyse the stability of nuclei with respect to

	-decay and fission. The discussion of �-decay is deferred until Chapter 7.

Using the numerical values of Equation (2.54), the relative sizes of each of

the terms in the SEMF may be calculated and for the case of odd-A are shown in

Figure 2.11. In this diagram, the volume term is shown as positive and the other terms

are subtracted from it to give the final SEMF curve.

Finally, from its definition, one might expect the binding energy per nucleon to

be equivalent to the energy needed to remove a nucleon from the nucleus.

However, to remove a neutron from a nucleus corresponds to the process

A
ZY ! A�1

ZY þ n ð2:55aÞ

and requires an energy change

En ¼ MðZ;A � 1Þ þ Mn � MðZ;AÞ½ �c2 ¼ BðZ;AÞ � BðZ;A � 1Þ; ð2:55bÞ

whereas the removal of a proton corresponds to the process

A
ZY ! A�1

Z�1X þ p; ð2:56aÞ

Figure 2.11 Contributions to the binding energy per nucleon as a function of mass number
for odd-A from each term in the SEMF; the surface, asymmetry and Coulomb terms have been
plotted so that they subtract from the volume term to give the total SEMF result in the lowest
curve
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where X is a different chemical species to Y, and requires an energy change

Ep ¼ MðZ �1;A�1ÞþMp þme �MðZ;AÞ
� �

c2 ¼BðZ;AÞ�BðZ �1;A�1Þþmec2:

ð2:56bÞ

Thus, Ep and En are only equal to the binding energy per nucleon in an average

sense. In practice, measurements show that Ep and En can differ substantially from

this average and from each other at certain values of (Z, A). We will see in

Chapter 7 that one reason for this is the existence of a shell structure for nucleons

within nuclei, similar to the shell structure of electrons in atoms, which is ignored

in the liquid drop model.

2.6 b-Decay Phenomenology

By rearranging terms, the SEMF (2.46) may be written

MðZ; AÞ ¼ �A � 	 Z þ � Z2 þ �

A
1
2

; ð2:57Þ

where

� ¼ Mn � av þ
as

A
1
3

þ aa

4

	 ¼ aa þ ðMn � Mp � meÞ

� ¼ aa

A
þ ac

A
1
3

� ¼ ap

ð2:58Þ

MðZ;AÞ is thus a quadratic in Z at fixed A and has a minimum at Z ¼ 	=2�. For a

fixed value of A, a stable nucleus will have an integer value of Z closest to the

solution of this equation. For odd A, the SEMF is a single parabola, but for even A

the even–even and odd–odd nuclei lie on two distinct vertically shifted parabolas,

because of the pairing term. The nucleus with the smallest mass in an isobaric

spectrum is stable with respect to 	-decay. We will consider the two cases of odd

and even A separately, using specific values of A to illustrate the main features.

2.6.1 Odd-mass nuclei

Odd-mass nuclei can arise from even-N, odd-Z, or even-Z, odd-N configurations

and in practice the number of nuclei that are stable against 	-decay are roughly

equally distributed between these two types. The example we take is the case of
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the A ¼ 111 isobars, which are shown in Figure 2.12. The circles show the

experimental data as mass excess values in atomic mass units, where

mass excess � MðZ;AÞ ðin atomic mass unitsÞ � A ð2:59Þ

and the atomic mass unit (u) is defined as one twelfth of the mass of the neutral

atom 12
6C.

The curve is the theoretical prediction from the SEMF using the numerical

values of the coefficients (2.54). The exact form of the curve depends on the

precise values of these coefficients. The minimum of the parabola corresponds to

the isobar 111
48Cd with Z ¼ 48.

Isobars with more neutrons, such as 111
45Rh, 111

46Pd and 111
47Ag, decay by converting

a neutron to a proton, i.e.

n ! p þ e� þ ���e; ð2:60Þ

so that

111
45Rh ! 111

46Pd þ e� þ ���e ð11 sÞ; ð2:61aÞ

111
46Pd ! 111

47Ag þ e� þ ���e ð22:3 minÞ ð2:61bÞ

and

111
47Ag ! 111

48Cd þ e� þ ���e ð7:45 daysÞ ð2:61cÞ

Figure 2.12 Mass parabola of the A ¼ 111 isobars: the circles are experimental data and the
curve is the prediction of the SEMF -- possible 	-decays are indicated by arrows
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This decay sequence is shown in Figure 2.12. Electron emission is energetically

possible whenever the mass of the daughter atom MðZ þ 1;AÞ is smaller than its

isobaric neighbour, i.e.

MðZ;AÞ > MðZ þ 1;AÞ: ð2:62Þ

Recall that we are referring here to atoms, so that the rest mass of the created

electron is automatically taken into account.

Isobars with proton excess decay via

p ! n þ eþ þ �e; ð2:63Þ

i.e. positron emission, which although not possible for a free proton, is possible in a

nucleus because of the binding energy. So for example, the nuclei
111

51Sb; 111
50Sn and 111

49In could, in principle, decay by positron emission, which is

energetically possible if

MðZ;AÞ > MðZ � 1;AÞ þ 2me; ð2:64Þ

this takes account of the creation of a positron and the existence of an excess of

electrons in the parent atom.

It is also theoretically possible for this sequence of transitions to occur by

electron capture. This mainly occurs in heavy nuclei, where the electron orbits are

more compact. It is usually the electron in the innermost shell (i.e. the K-shell) that

is captured. Capture of such an electron gives rise to a ‘hole’ and causes electrons

from higher levels to cascade downwards and in so doing emit characteristic

X-rays. Electron capture is energetically allowed if

MðZ;AÞ > MðZ � 1;AÞ þ "; ð2:65Þ

where " is the excitation energy of the atomic shell of the daughter nucleus. The

process competes with positron emission and in practice for the nuclei above this is

what happens. Thus, we have

e� þ 111
51Sb ! 111

50Sn þ �e ð75 sÞ; ð2:66aÞ

e� þ 111
50Sn ! 111

49In þ �e ð35:3 minÞ ð2:66bÞ

and

e� þ 111
49In ! 111

48Cd þ �e ð2:8 daysÞ; ð2:66cÞ

which are manifestations of the primary reaction

e� þ p ! n þ �e: ð2:67Þ

So once again we arrive at the stable isobar.
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2.6.2 Even-mass nuclei

Even-mass nuclei can arise from even-N, even-Z, or odd-Z, odd-N configurations,

but for reasons that are explained below, nearly all even-mass nuclei that are stable

against 	-decay are of the even–even type, with only a handful of odd–odd types

known. Consider as an example the case of A ¼ 102 shown in Figure 2.13. (Recall

that the plot is of mass excess, which is a very small fraction of the total mass.)

The lowest isobar is 102
44Ru and is 	-stable. The isobar 102

46Pd is also stable since

its two odd–odd neighbours both lie above it. In principle, the two nuclei could be

connected by the reaction

102
46Pd þ 2e� ! 102

44Ru þ 2�e; ð2:68Þ

but this would involve a ‘double electron capture’ and would be heavily suppressed.

The reaction has never been observed. Thus there are two 	-stable isobars. This is a

common situation for A-even, although no two neighbouring isobars are known to be

stable. Odd–odd nuclei always have at least one more strongly bound even–even

neighbour nucleus in the isobaric spectrum. They are therefore unstable. The only

exceptions to this rule are a few very light nuclei.

The lifetime of a free neutron is about 887 s. The free proton is believed to be

stable and can only ‘decay’ within a nucleus by utilizing the binding energy.

Lifetimes of 	 emitters vary enormously from milliseconds to 1016 years. They

Figure 2.13 Mass parabolas of the A ¼ 102 isobars: the circles are experimental data (open
circles are even--even nuclei and closed circles are odd--odd nuclei); the curves are the
prediction of the SEMF (upper curve is for odd--odd nuclei and lower curve for even--even nuclei)
and possible 	-decays are indicated by arrows
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depend very sensitively on the Q-value for the decay and on the properties of the

nuclei involved, e.g. their spins.

2.7 Fission

Spontaneous fission has been defined as the process whereby a parent nucleus breaks

into two daughter nuclei of approximately equal masses without external action.

Precisely equal masses are very unlikely and in the most probable cases the daughter

nuclei have mass numbers that differ by about 45, with peaks around mass numbers

95 and 140. The reason for this is unknown. The binding energy curve shows that

spontaneous fission is energetically possible for nuclei with A > 100.13 An example is

238
92U ! 145

57La þ 90
35Br þ 3n; ð2:69Þ

with a release of about 154 MeVof energy, which is carried off as kinetic energy of

the fission products. Heavy nuclei are neutron-rich and so necessarily produce

neutron-rich decay products, including free neutrons. The fission products are

themselves usually some way from the line of 	-stability and will decay by a series

of steps. For example, 145
57La decays to the 	-stable 145

60Nd by three stages, releasing a

further 8.5 MeV of energy, which in this case is carried off by the electrons and

neutrinos emitted in 	-decay. Although the probability of fission increases with

increasing A, it is still a very rare process. For example, in 238
92U, the transition rate for

spontaneous fission is about 3 � 10�24 s�1 compared with about 5 � 10�18 s�1 for

�-decay, a branching fraction of 6 � 10�7. Spontaneous emission only becomes

dominant in very heavy elements with A � 270, as we shall now show.

To understand spontaneous fission we can again use the liquid drop model. In the

SEMF we have assumed that the drop (i.e. the nucleus) is spherical, because this

minimizes the surface area. However, if the surface is perturbed for some reason from

spherical to prolate, the surface term in the SEMF will increase and the Coulomb term

will decrease (assuming the volume remains the same) and the relative sizes of these

two changes will determine whether the nucleus is stable against spontaneous fission.

For a fixed volume we can parametrize the deformation by the semi-major and

semi-minor axes of the ellipsoid a and b, respectively as shown in Figure 2.14. One

possible parametrization that preserves the volume is

a ¼ R ð1 þ "Þ; b ¼ R=ð1 þ "Þ
1
2; ð2:70Þ

where " is a small parameter, so that

V ¼ 4

3
�R3 ¼ 4

3
� ab2: ð2:71Þ

13Fission in heavy nuclei was discovered by Otto Hahn, for which he received the 1944 Nobel Prize in
Chemistry.
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To find the new surface and Coulomb terms one has to find the expression for the

surface of the ellipsoid in terms of a and b and expand it in a power series in ". The

algebra is unimportant and the results are:

Es ¼ asA
2
3 1 þ 2

5
"2 þ . . .

� �
ð2:72aÞ

and

Ec ¼ acZ2A�1
3 1 � 1

5
"2 þ . . .

� �
: ð2:72bÞ

Hence the change in the total energy is

�E ¼ ðEs þ EcÞ � ðEs þ EcÞSEMF ¼ "2

5
2asA

2
3 � acZ2A�1

3

� �
: ð2:73Þ

If �E < 0, then the deformation is energetically favourable and fission can occur.

From Equation (2.73), this happens if

Z2

A
� 2as

ac

� 49; ð2:74Þ

where we have used experimental values for the coefficients as and ac given in

Equations (2.54). The inequality is satisfied for nuclei with Z > 116 and A � 270.

Spontaneous fission is a potential barrier problem and this is shown in Figure 2.15.

The solid line corresponds to the shape of the potential in the parent nucleus. The

activation energy shown in Figure 2.15 determines the probability of spontaneous

fission. To fission, the nucleus could in principle tunnel through the barrier, but the

fragments are large and the probability for this to happen is extremely small.14 For

heavy nuclei the activation energy is about 6 MeV, but disappears for very heavy

nuclei. For such nuclei, the shape of the potential corresponds closer to the dashed

line and the slightest deformation will induce fission.

R

b

a

Figure 2.14 Deformation of a heavy nucleus

14The special case of �-decay will be discussed in Chapter 7. There we will show that the lifetime for such
decays is expected to have an exponential dependence on the height of the fission barrier and this is observed
qualitatively in fission data.
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Another possibility for fission is to supply the energy needed to overcome the

barrier by a flow of neutrons. Because of the absence of a Coulomb force, a neutron

can get very close to the nucleus and be captured by the strong nuclear attraction.

The parent nucleus may then be excited to a state above the fission barrier and

therefore split up. This process is an example of induced fission. Neutron capture by

a nucleus with an odd neutron number releases not just some binding energy, but also

a pairing energy. This small extra contribution makes a crucial difference to nuclear

fission properties. For example, very low-energy (‘thermal’) neutrons can induce

fission in 235U, whereas only higher energy (‘fast’) neutrons induce fission in 238U.

This is because 235U is an even–odd nucleus and 238U is even–even. Therefore, the

ground state of 235U will lie higher (less tightly bound) in the potential well of its

fragments than that of 238U. Hence to induce fission, a smaller energy will be needed

for 235U than for 238U. In principle, fission may be induced in 235U using even zero-

energy neutrons.15

We consider this quantitatively as follows. The capture of a neutron by 235U

changes an even–odd nucleus to a more tightly bound even–even (compound)

nucleus of 236U and releases the binding energy of the last neutron. In 235U this is

6.5 MeV. As the activation energy (the energy needed to induce fission) is about

5 MeV for 236U, neutron capture releases sufficient energy to fission the nucleus. The

kinetic energy of the incident neutron is irrelevant and even zero-energy neutrons

can induce fission in 235U. In contrast, neutron capture in 238U changes it from an

even–even nucleus to an even–odd nucleus, i.e. changes a tightly bound nucleus to a

less tightly bound one. The energy released (the binding energy of the last neutron) is

about 4.8 MeV in 239U and is less than the 6.5 MeV required for fission. For this

reason, fast neutrons with energy of at least the difference between these two

energies are required to fission 238U.

Figure 2.15 Potential energy during different stages of a fission reaction

15Enrico Fermi was a pioneer in the field of induced fission and received the 1938 Nobel Prize in Physics for
‘demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his
related discovery of nuclear reactions brought about by slow neutrons’. Fermi’s citation could equally have
been about his experimental discoveries and theoretical work in a wide range of areas from nuclear and
particle physics to solid-state physics and astrophysics. He was probably the last ‘universal physicist’.
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2.8 c-Decays

When a heavy nucleus disintegrates by either�- or	-decay, or by fission, the daughter

nucleus is often left in an excited state. If this state is below the excitation energy for

fission, it will de-excite, usually by emitting a high-energy photon. The energy of these

photons is determined by the average energy level spacings in nuclei and ranges from a

few to several MeV. They are in the gamma ray (�) part of the electromagnetic

spectrum. Because �-decay is an electromagnetic process, we would expect the

typical lifetime of an excited state to be �10�16 s. In practice, lifetimes are very

sensitive to the amount of energy released in the decay and in the nuclear case other

factors are also very important, particularly the quantity of angular momentum carried

off by the photon. Typical lifetimes of nuclear levels are about �10�12 s.

The role of angular momentum in �-decays is crucial. If the initial (excited)

state has a total spin Si and the final nucleus has a total spin Sf , then the total

angular momentum J of the emitted photon is given by

J ¼ Si � Sf ; ð2:75Þ

with

Si þ Sf � J � jSi � Sf j; ð2:76Þ

where S ¼ jSj; J ¼ jJj. In addition,

mi ¼ M þ mf ; ð2:77Þ

where m are the corresponding magnetic quantum numbers. Both total angular

momentum and its magnetic quantum number are conserved in �-decays.

�-decays are further complicated because parity is conserved in these electro-

magnetic processes. Both the initial and final nuclear level will have an intrinsic

parity, as does the photon, and in addition there is a parity associated with the angular

momentum carried off by the photon, which is of the form ð�1ÞJ
, reflecting the

symmetry of the angular part of the wavefunction (see Equation (1.14)). We will not

pursue this further here, but defer a more detailed discussion until Chapter 7.

2.9 Nuclear Reactions

In Chapter 1 and earlier sections of the present chapter we discussed various aspects

of reactions. In particle physics, because the projectiles and targets have relatively

simple structures, this is all that is required in classifying reactions. In nuclear

physics, however, because the target has a rich structure it is useful to classify

reactions in more detail. In this section we do this, drawing together our previous

work and also anticipating some reactions that will be encountered in later chapters.
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Elastic scattering reactions were defined in Chapter 1 as those interactions where

the initial and final particles are identical, i.e. a þ A ! a þ A. We also defined

inelastic scattering as the situation where the final particles are the same chemical

species, but one or more is in an excited state, e.g. a þ A ! a þ A� and in Section 2.1

we showed how the kinematics of such reactions could be used to determine the mass

of the excited state. Elastic and inelastic scattering are examples of so-called direct

reactions. These are defined as ones where the incident particle interacts in a time

comparable to the time taken to transit the nucleus. They are more likely when the

incident particle has an energy corresponding to a de Broglie wavelength closer to

the size of a nucleon rather than that of the nucleus. The collisions are largely

peripheral, with only a relatively small fraction of the available energy transferred to

the target. Another direct reaction is 16Oðp; dÞ15O, i.e.

p þ 16O ! d þ 15O; ð2:78Þ

where we have used the notation Aða; bÞB for the general nuclear reaction

a þ A ! b þ B. This is an example of a pick-up reaction, because one or more

nucleons (in this case a neutron) is stripped off the target nucleus and carried away

by the projectile. The ‘inverse’ of this reaction is 16Oðd; pÞ17O. This is an example of

a stripping reaction, because one or more nucleons (in this case again a neutron) is

stripped off the projectile and transferred to the target nucleus.

The theoretical interpretation of direct reactions is based on the assumption that

the projectile experiences the average potential of the target nucleus. For example,

we have seen in the optical model of Section 2.2.2 how this approach can be used to

analyse differential cross sections for elastic scattering and be used to extract

information about nuclear shapes and sizes. It also leads to the prediction of

resonances of width typically of order 1 MeV separated by a few MeV, as observed

in cross-section as functions of centre-of-mass energy for nucleon scattering from

light nuclei. One way of viewing this is as a consequence of the reaction time for a

direct reaction, typically 10�22 s , making use of the uncertainty relation between

energy and time, �E�t � �h.

A second important class of interactions is where the projectile becomes loosely

bound in the nucleus and shares its energy with all the nuclear constituents. This is

called a compound nucleus reaction. The time for the system to reach statistical

equilibrium depends on the nuclear species, the type of projectile and its energy, but

will always be much longer than the transit time and is typically several orders of

magnitude longer. An important feature of these reactions is that the properties of the

compound nucleus determine its subsequent behaviour and not the mechanism by

which it was formed. The compound nucleus is in an excited state and is inherently

unstable. Eventually, by a statistical fluctuation, one or more nucleons will acquire

sufficient energy to escape and the nucleus either emits particles or de-excites by

radiating gamma rays.

If the compound nucleus is created in a region of excitation where its energy

levels are well separated, the cross-section will exhibit well-defined resonances
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described by the Breit–Wigner formula of Section 1.6.3. These processes are

depicted schematically in the energy-level diagram of Figure 2.16, which corre-

spond to a þ A ! C� ! b þ B, where C� is the compound nucleus and

a þ A ! C� ! C þ �, where C is the ground state corresponding to the excited

state C�. In practice, there could be many final states to which C� could decay.

Because the time for a compound nucleus to reach statistical equilibrium is much

longer than the transit time for a direct reaction, the cross-sections for a compound

nucleus process can show variations on much smaller energy scales than those for

direct reactions. The density of levels in the compound nucleus is high, and so a very

small change in the incident energy suffices to alter completely the intermediate

states, and hence the cross section. An example is shown in Figure 2.17, which gives

the total cross-section for neutron scattering from 12C at neutron laboratory energies

of a few MeV. Peaks corresponding to resonance formation in 13C are clearly

identified. Their widths vary from a few tens to a few hundreds of keV, consistent

with the characteristic times for compound nucleus formation and decay.

Figure 2.16 Energy-level diagram showing the excitation of a compound nucleus C�and its
subsequent decay

Figure 2.17 Total cross-section for n12C interactions (adapted from Fo61. Copyright American
Physical Society.)
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The mean widths of compound nucleus excitations depend on the incident

energy and the target nucleus, decreasing both with energy and rapidly with

nuclear mass. Neutrons, because they are neutral, have a high probability of being

captured by nuclei and their cross-sections are rich in compound nucleus effects,

particularly at very low energies. This is discussed further below.

The division of reactions into direct and compound nucleus is not exhaustive

and situations can occur where particles are ejected from the nucleus before full

statistical equilibrium has been reached. Also, in the collisions of complex heavy

ions, there is an appreciable probability for an additional reaction mechanism

called deep inelastic scattering that is intermediate between direct and compound

nucleus reactions. In this case, the probability for complete fusion of the colliding

ions is small, but there can be substantial transfer of the incident kinetic energy to

internal excitations of the ions. We will not discuss this or other mechanisms further,

but we will encounter the concept of deep inelastic scattering again in Chapter 5 in

the context of exploring the internal structure of nucleons. In practice, the various

mechanisms feed the same final states as direct reactions. This is illustrated

schematically in Figure 2.18 for reactions initiated using protons as the projectile.

The general form of the yield NðEÞ of secondary particles at a fixed angle as a

function of the outgoing energy E, i.e. the number of particles with energy E

between E and E þ dE, is shown schematically in Figure 2.19 for the case of an

incident nucleon. At the upper end of the plot (which corresponds to low-incident

nucleon energies) there are a number of distinct peaks due to elastic, inelastic and

transfer reactions. Then as the excitation energy is reduced, the more closely-

spaced energy levels in the final nucleus are not fully resolved because of the

spread in energy of the incident beam and the uncertainty in the experimental

measurements of energy. At the lowest energies there is a broad continuum mainly

due to the decays of compound nuclei formed by the absorption of the projectile

nucleon by the target nucleus. The differential cross-sections for the two processes

will be very different. Direct reactions lead to a cross-section peaked in the

forward direction, falling rapidly with angle and with oscillations, as we have seen

Figure 2.18 Direct and compound nucleus reactions in nuclear reactions initiated by protons
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in the case of elastic scattering in Section 2.2 (Figure 2.3). On the other hand, the

contribution from the compound nucleus at low energies where an isolated

compound nucleus is formed is fairly isotropic and symmetric about 90�.

Many medium- and large-A nuclei can capture low-energy (�ð10�100Þ eV)

neutrons very readily. The neutron separation energy for the final nucleus is

� 6 MeV and thus capture leads to a compound nucleus with an excitation energy

above the ground state by this separation energy. Such excitation often occurs in a

region of high density of narrow states that show up as a rich resonance structure in

the corresponding neutron total cross-section. An example is shown in Figure 2.20.

The value of the cross-section at the resonance peaks can be many orders of

Figure 2.19 Typical spectrum of energies of the nucleons emitted at a fixed angle in inelastic
nucleon--nucleus reactions

Figure 2.20 Total cross-section for neutron interactions with 238U, showing many very narrow
resonances (with intrinsic widths of order 10�2 eV) corresponding to excited states of 239U (from
Ga76, courtesy of Brookhaven National Laboratory)
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magnitude greater than the geometrical cross-section based on the size of the

nucleus. This is because the cross-section is determined dominantly by the area

associated with the wavelength  of the projectile, i.e. �2, which is very large

because  is large.

Once formed, the compound nucleus can decay to any final state consistent with

the relevant conservation laws. If this includes neutron emission, it will be the

preferred decay. However, for production by very slow (thermal) neutrons with

energies of the order of 0.02 eV, the available decay kinetic energy will reflect the

initial energy of the projectile, which is very small. Therefore, in these cases,

photon emission is often preferred. We shall see in Chapter 8 that the fact that

radiative decay is the dominant mode of decay of compound nuclei formed by

thermal neutrons is important in the use of nuclear fission to produce power in

nuclear reactors.

Problems

2.1 Electrons with momentum 330 MeV/c are elastically scattered through an angle of

10� by a nucleus of 56Fe. If the charge distribution on the nucleus is assumed to be

that of a uniform hard sphere, and assuming the Born approximation is valid, by

what factor would you expect the Mott cross-section to be reduced?

2.2 Show explicitly that Equation (2.28) follows from Equation (2.26).

2.3 A beam of electrons with energies 250 MeV is scattered through an angle of 10� by a

heavy nucleus. It is found that the differential cross-section is 65 per cent of that

expected from scattering from a point nucleus. Estimate the root mean square radius

of the nucleus.

2.4 Find the form factor for a charge distribution �ðrÞ ¼ �0expð�r=aÞ=r, where �0 and a

are constants.

2.5 A sample of 1 g of a radioactive isotope of atomic weight 208 decays via 	-emission

and 75 counts are recorded in a 24 h period. If the detector efficiency is 10 per cent,

estimate the mean life of the isotope.

2.6 A 1 g sample taken from an organic artefact is found to have a 	 count rate of 2.1

counts per min, which are assumed to originate from the decay of 14C with a mean

lifetime of 8270 years. If the abundance of 14C in living matter is currently

1:2 � 10�12, what can you deduce about the approximate age of the artefact?

2.7 Nuclei of 212
86Rn decay by �-emission to 208

84Po with a mean life of 23.9 min. The
208

84Po nuclei in turn decay, also by �-emission, to the stable isotope 204
82Pb with a

mean life of 2.9 years. If initially the source is pure 212
86Rn, how long will it take for

the rate of �-emission in the final decay to reach a maximum?
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2.8 Natural lanthanum has an atomic weight of 138.91 and contains 0.09 per cent of the

isotope 138
57La. This has two decay modes: 138

57La ! 138
58Ce þ e� þ ���e ð	-decayÞ and

138
57La þ e� ! 138

56Ba� þ �e (electron capture), followed by the electromagnetic

decay of the excited state 138
56Ba� ! 138

56Ba þ � (radiative decay). There are

7:8 � 102 	-particles emitted per s per kg of natural lanthanum and there are

50 photons emitted per 100 	-particles. Estimate the mean lifetime of 138
57La.

2.9 Use the SEMF to estimate the energy released in the spontaneous fission reaction

235
92U ! 87

35Br þ 145
57La þ 3n:

2.10 The most stable nucleus with A ¼ 111 is 111
48Cd (see Figure 2.12). By what

percentage would the fine structure constant � have to change if the most stable

nucleus with A ¼ 111 were to be 111
47Ag? Assume that altering � does not change

particle masses.

2.11 The transuranic isotope 269
108Hs decays 100 per cent via �-emission with a lifetime of

27 s, i.e. 269
108Hs ! 265

106Sg þ �, where the kinetic energy of the �-particle is

E� ¼ 9:23 MeV. Calculate the mass of the 269
108Hs nucleus in atomic mass units.

2.12 The isotope 238
94Pu decays via �-emission to the essentially stable isotope 234

92U with a

lifetime of 126.7 years and a release of 5.49 MeV of kinetic energy. This energy is

converted to electrical power in a space probe designed to reach planet X in a

journey planned to last 4 years. If the efficiency of power conversion is 5 per cent

and on reaching planet X the probe requires at least 200 W of power to perform its

landing tasks, how much 238
94Pu would be needed at launch?

2.13 On planet X it is found that the isotopes 205Pbð
 ¼ 1:53 � 107yÞ and 204Pb (stable)

are present with abundances n205 and n204, with n205=n204 ¼ 2 � 10�7. If at the time

of the formation of planet X both isotopes were present in equal amounts, how old is

the planet?

2.14 The reaction 45
21Scðd; pÞ46

21Sc has a Q-value of 6.54 MeV and a resonance when the

incident deuteron laboratory kinetic energy is 2.76 MeV. Would you expect the same

resonance to be excited in the reaction 43
20Cað�; nÞ46

22Ti and if so at what value of the

laboratory kinetic energy of the alpha particle? You may use the fact that the 	-

decay 46
21Sc ! 46

22Ti þ e� þ ���e has a Q-value of 2.37 MeV and the mass difference

between the neutron and a hydrogen atom is 0.78 MeV=c2.

2.15 A radioisotope with decay constant  is produced at a constant rate P. Show that the

number of atoms at time t is NðtÞ ¼ P½1 � expð�tÞ�=.

2.16 Radioactive 36Cl (half-life 3 � 105 years) is produced by irradiating 1 g of natural

nickel chloride (NiCl2, molecular weight 129.6) in a neutron beam of flux

F ¼ 1014cm�2s�1. If the neutron absorption cross-section 35Clðn; �Þ36Cl is

� ¼ 43:6 b and 75.8 per cent of natural chlorine is 35Cl, use the result of Problem

2.15 to estimate the time it would take to produce a 3 � 105 Bq source of 36Cl.
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2.17 Consider the total cross-section data for the n238U interaction shown in Figure 2.20.

There is a resonance R at the centre-of-mass neutron kinetic energy En ¼ 10 eV with

width � ¼ 10�2 eV and the total cross-section there is �max ¼ 9 � 103 b. Use this

information to find the partial widths �n;� for the decays R ! n þ 238U and

R ! � þ 238U, if these are the only two significant decay modes. The spin of the

ground state of 238U is zero.
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3
Particle Phenomenology

In this chapter we shall look at some of the basic phenomena of particle physics –

the properties of leptons and quarks, and the bound states of the latter, the hadrons.

In later chapters we will discuss theories and models that attempt to explain these

and other particle data.

3.1 Leptons

We have seen that the spin-1
2

leptons are one of the three classes of elementary

particles in the standard model and we shall start with a discussion of their basic

properties. Then we shall look in more detail at the neutral leptons, the neutrinos

and, amongst other things, examine an interesting property they can exhibit, based

on simple quantum mechanics, if they have non-zero masses.

3.1.1 Leptons multiplets and lepton numbers

There are six known leptons and they occur in pairs, called generations, which we

write, for reasons that will become clear presently, as:

�e

e�

� �
;

��
��

� �
;

��
��

� �
: ð3:1Þ

Each generation comprises a charged lepton with electric charge �e, and a

neutral neutrino. The three charged leptons ðe�; ��; ��Þ are the familiar

electron, together with two heavier particles, the mu lepton (usually called the

muon, or just mu) and the tau lepton (usually called the tauon, or just tau). The

associated neutrinos are called the electron neutrino, mu neutrino, and tau
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neutrino, respectively.1 In addition to the leptons, there are six corresponding

antileptons:

eþ

���e

� �
;

�þ

����

� �
;

�þ

����

� �
: ð3:2Þ

Ignoring gravity, the charged leptons interact only via electromagnetic and weak

forces, whereas for the neutrinos, only weak interactions have been observed.2

Because of this, neutrinos, which are all believed to have extremely small masses,

can be detected only with considerable difficulty.

The masses and lifetimes of the leptons are listed in Table 3.1. The electron and

the neutrinos are stable, for reasons that will become clear shortly. The muons

decay by the weak interaction processes

�þ ! eþ þ �e þ ���� and �� ! e� þ ���e þ ��; ð3:3aÞ

with lifetimes ð2:19703 � 0:00004Þ � 10�6 s. The tau also decays by the weak

interaction, but with a much shorter lifetime ð2:906 � 0:011Þ � 10�13 s. (This

illustrates what we have already seen in nuclear physics, that lifetimes depend

sensitively on the energy released in the decay, i.e. the Q-value.) Because it is

heavier than the muon, the tau has sufficient energy to decay to many different

final states, which can include both hadrons and leptons. However, about 35 per cent

1Leon Lederman, Melvin Schwartz and Jack Steinberger shared the 1988 Nobel Prize in Physics for their use
of neutrino beams and the discovery of the muon neutrino. Martin Perl shared the 1995 Nobel Prize in
Physics for his pioneering work in lepton physics and in particular for the discovery of the tau lepton.
2Although neutrinos have zero electric charge they could, in principle, have a charge distribution that would
give rise to a magnetic moment (like neutrons) and hence electromagnetic interactions. This would of course
be forbidden in the standard model because the neutrinos are defined to be point-like.

Table 3.1 Properties of leptons: all have spin 1
2 and masses are given units of MeV/c2; the

antiparticles (not shown) have the same masses as their associated particles, but the electric
charges (Q) and lepton numbers (L‘ ; ‘ ¼ e ; � ; �) are reversed in sign

Name and symbol Mass Q Le Ll Ls Lifetime (s) Major decays

Electron e� 0.511 �1 1 0 0 Stable None

Electron neutrino �e <2.2 eV/c2 0 1 0 0 Stable None

Muon (mu) �� 105.7 �1 0 1 0 2:197 � 10�6 e����e�� (100%)

Muon neutrino �� <0.19 0 0 1 0 Stable None

Tauon (tau) �� 1777.0 �1 0 0 1 2:906 � 10�13 �������� (17.4%)

e����e�� (17.8%)

��+hadrons (	64%)

Tauon neutrino �� <18.2 0 0 0 1 Stable None
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of decays again lead to purely leptonic final states, via reactions which are very

similar to muon decay, for example:

�þ ! �þ þ �� þ ���� and �� ! e� þ ���e þ �� : ð3:3bÞ

Associated with each generation of leptons is a quantum number called a lepton

number. The first of these lepton numbers is the electron number, defined for any

state by

Le 
 Nðe�Þ � NðeþÞ þ Nð�eÞ � Nð���eÞ; ð3:4Þ

where Nðe�Þ is the number of electrons present, NðeþÞ is the number of positrons

present and so on. For single-particle states, Le ¼ 1 for e� and �e, Le ¼ �1 for eþ

and ���e, and Le ¼ 0 for all other particles. The muon and tauon numbers are defined

in a similar way and their values for all single particle states are summarized in

Table 3.1. They are zero for all particles other than leptons. For multiparticle

states, the lepton numbers of the individual particles are simply added. For

example, the final state in neutron �-decay (i.e. n ! p þ e� þ ���e) has

Le ¼ LeðpÞ þ Leðe�Þ þ Leð���eÞ ¼ ð0Þ þ ð1Þ þ ð�1Þ ¼ 0; ð3:5Þ

like the initial state, which has LeðnÞ ¼ 0.

In the standard model, the value of each lepton number is postulated to be

conserved in any reaction. The decays (3.3) illustrate this principle of lepton

number conservation. Until recently this was considered an absolute conservation

law, but in Section 3.1.4 we will discuss growing evidence that neutrinos are not

strictly massless, which would imply that conservation of individual lepton

numbers is not an exact law. However, for the present we will assume lepton

numbers are conserved, as in the standard model. In electromagnetic interactions,

this reduces to the conservation of Nðe�Þ � NðeþÞ, Nð��Þ � Nð�þÞ and

Nð��Þ � Nð�þÞ, since neutrinos are not involved. This implies that the charged

leptons can only be created or annihilated in particle–antiparticle pairs. For

example, in the electromagnetic reaction

eþ þ e� ! �þ þ �� ð3:6Þ

an electron pair is annihilated and a muon pair is created by the mechanism of

Figure 3.1.

Figure 3.1 Single-photon exchange in the reaction eþe� ! �þ��
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In weak interactions more general possibilities are allowed, which still conserve

lepton numbers. For example, in the tau-decay process �� ! e� þ ���e þ �� , a tau

converts to a tau neutrino and an electron is created together with an antineutrino,

rather than a positron. The dominant Feynman graph corresponding to this process

is shown in Figure 3.2.

Lepton number conservation, like electric charge conservation, plays an impor-

tant role in understanding reactions involving leptons. Observed reactions conserve

lepton numbers, while reactions that do not conserve lepton numbers are ‘forbidden’

and are not observed. For example, the neutrino scattering reaction

�� þ n ! �� þ p ð3:7Þ

is observed experimentally, while the apparently similar reaction

�� þ n ! e� þ p; ð3:8Þ

which violates both Le and L� conservation, is not. Another example which violates

both Le and L� conservation is �� ! e� þ 	. If this reaction were allowed, the

dominant decay of the muon would be electromagnetic and the muon lifetime would

be much shorter than its observed value. This is very strong evidence that even if

lepton numbers are not absolutely conserved, they are conserved to a high degree of

accuracy.

Finally, conservation laws explain the stability of the electron and the neutrinos.

The electron is stable because electric charge is conserved in all interactions and

the electron is the lightest charged particle. Hence decays to lighter particles that

satisfy all other conservation laws, like e� ! �e þ 	, are necessarily forbidden by

electric charge conservation. In the same way, lepton number conservation implies

that the lightest particles with non-zero values of the three lepton numbers – the

three neutrinos – are stable, whether they have zero masses or not. Of course, if

lepton numbers are not conserved, then the latter argument is invalid.

3.1.2 Neutrinos

As we mentioned in Chapter 1, the existence of the electron neutrino �e was first

postulated by Pauli in 1930. He did this in order to understand the observed

Figure 3.2 Dominant Feynman diagram for the decay �� ! e����e��
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nuclear �-decays

ðZ ; NÞ ! ðZ þ 1; N � 1Þ þ e� þ ���e ð3:9Þ

and

ðZ; NÞ ! ðZ � 1; N þ 1Þ þ eþ þ �e ð3:10Þ

that were discussed in Chapter 2. The neutrinos and antineutrinos emitted in these

decays are not observed experimentally, but are inferred from energy and angular

momentum conservation. In the case of energy, if the antineutrino were not present

in the first of the reactions, the energy Ee of the emitted electron would be a unique

value equal to the difference in rest energies of the two nuclei, i.e.

Ee ¼ �Mc2 ¼ MðZ; NÞ � MðZ þ 1; N � 1Þ½ �c2; ð3:11Þ

where for simplicity we have neglected the extremely small kinetic energy of the

recoiling nucleus. However, if the antineutrino is present, the electron energy

would not be unique, but would lie in the range

mec2  Ee  ð�M � m���e
Þc2; ð3:12Þ

depending on how much of the kinetic energy released in the decay is carried away

by the neutrino. Experimentally, the observed energies span the whole of the above

range and in principle a measurement of the energy of the electron near its

maximum value of Ee ¼ ð�M � m���e
Þc2 determines the neutrino mass. The most

accurate results come from tritium decay and are compatible with zero mass for

electron antineutrinos. When experimental errors are taken into account, the

experimentally allowed range is

0  m���e
< 2:2 eV=c2 � 4:3 � 10�6me: ð3:13Þ

We will discuss this experiment in more detail in Chapter 7, after we have

considered the theory of �-decay.

The masses of both �� and �� can similarly be directly inferred from the e� and

�� energy spectra in the leptonic decays of muons and tauons, using energy

conservation. The results from these and other decays show that the neutrino

masses are very small compared with the masses of the associated charged leptons.

The present limits are given in Table 3.1.

Small neutrino masses, compatible with the above limits, can be ignored in most

circumstances, and there are theoretical attractions in assuming neutrino masses are

precisely zero, as is done in the standard model. However, we will show in the

following section that there is now strong evidence for physical phenomena that
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could not occur if the neutrinos had exactly zero mass. The consequences of

neutrinos having small masses have therefore to be taken seriously.

Because neutrinos only have weak interactions, they can only be detected with

extreme difficulty. For example, electron neutrinos and antineutrinos of sufficient

energy can in principle be detected by observing the inverse �-decay processes

�e þ n ! e� þ p ð3:14Þ

and

���e þ p ! eþ þ n : ð3:15Þ

However, the probability for these and other processes to occur is extremely small.

In particular, the neutrinos and antineutrinos emitted in �-decays, with energies of

the order of 1 MeV, have mean free paths in matter of the order of 106 km.3

Nevertheless, if the neutrino flux is intense enough and the detector is large

enough, the reactions can be observed. In particular, uranium fission fragments are

neutron rich, and decay by electron emission to give an antineutrino flux that can

be of the order of 1017 m�2 s�1 or more in the vicinity of a nuclear reactor, which

derives its energy from the decay of nuclei. These antineutrinos will occasionally

interact with protons in a large detector, enabling examples of the inverse �-decay

reaction to be observed. As mentioned in Chapter 1 (Footnote 12), electron

neutrinos were first detected in this way by Reines and Cowan in 1956, and

their interactions have been studied in considerable detail since.

The mu neutrino, ��, has been detected using the reaction �� þ n ! �� þ p and

other reactions. In this case, well-defined high-energy �� beams can be created in the

laboratory by exploiting the decay properties of pions, which are particles we have

mentioned briefly in Chapter 1 and which we will meet in more detail presently. The

probability of neutrinos interacting with matter increases rapidly with energy (this

will be demonstrated in Section 6.5.2) and, for large detectors, events initiated by

such beams are so copious that they have become an indispensable tool in studying

both the fundamental properties of weak interactions and the internal structure of the

proton. Finally, in 2000, a few examples of tau neutrinos were reported, so that

almost 70 years after Pauli first suggested the existence of a neutrino, all three types

had been directly detected.

3.1.3 Neutrino mixing and oscillations

Neutrinos are assumed to have zero mass in the standard model. However, as

mentioned above, data from the �-decay of tritium are compatible with a non-zero

3The mean free path is the distance a particle would have to travel in a medium for there to be a significant
probability of an interaction. A formal definition is given in Chapter 4.
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mass. A phenomenon that can occur if neutrinos have non-zero masses is neutrino

mixing. This arises if we assume that the observed neutrino states �e; �� and ��
which take part in weak interactions, i.e. the states that couple to electrons, muons

and tauons, respectively, are not eigenstates of mass, but instead are linear

combinations of three other states �1; �2 and �3 which do have definite masses

m1 ; m2 and m3, i.e. are eigenstates of mass. For algebraic simplicity we will

consider the case of mixing between just two states, one of which we will assume

is �� and the other we will denote by �x. Then, in order to preserve the orthonormality

of the states, we can write

�� ¼ �1 cos�þ �2 sin� ð3:16Þ

and

�x ¼ ��1 sin�þ �2 cos�: ð3:17Þ

Here � is a mixing angle which must be determined from experiment. If � 6¼ 0

then some interesting predictions follow.

Measurement of the mixing angle may be made in principle by studying the

phenomenon of neutrino oscillation. When, for example, a muon neutrino is

produced with momentum p at time t ¼ 0, the �1 and �2 components will have

slightly different energies E1 and E2 due to their slightly different masses. In

quantum mechanics, their associated waves will therefore have slightly different

frequencies, giving rise to a phenomenon somewhat akin to the ‘beats’ heard when

two sound waves of slightly different frequency are superimposed. As a result of

this, one finds that the original beam of muon neutrinos develops a �x component

whose intensity oscillates as it travels through space, while the intensity of the

muon neutrino beam itself is correspondingly reduced, i.e. muon neutrinos will

‘disappear’.

This effect follows from simple quantum mechanics. To illustrate this we will

consider a muon neutrino produced with momentum p at time t ¼ 0. The initial

state is therefore

��; p
�� �

¼ �1; pj i cos�þ �2; pj i sin�; ð3:18Þ

where we use the notation P; pj i to denote a state of a particle P having

momentum p. After time t this will become

a1ðtÞ �1; pj i cos�þ a2ðtÞ �2; pj i sin�; ð3:19Þ

where

aiðtÞ ¼ e�iEit=�h ði ¼ 1; 2Þ ð3:20Þ
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are the usual oscillating energy factors associated with any quantum mechanical

stationary state.4 For t 6¼ 0, the linear combination (3.19) does not correspond to a

pure muon neutrino state, but can be written as a linear combination

AðtÞ ��; p
�� �

þ BðtÞ �x; pj i; ð3:21Þ

of �� and �x states, where the latter is

�x; pj i ¼ � �1; pj i sin�þ �2; pj i cos�: ð3:22Þ

The functions AðtÞ and BðtÞ are found by solving Equations (3.18) and (3.22) for

�1; pj i and �2; pj i, then substituting the results into (3.19) and comparing at with

(3.21). This gives,

AðtÞ ¼ a1ðtÞ cos2 �þ a2ðtÞ sin2 � ð3:23Þ

and

BðtÞ ¼ sin� cos� a2ðtÞ � a1ðtÞ½ �: ð3:24Þ

The probability of finding a �x state is therefore

Pð�� ! �xÞ ¼ BðtÞj j2¼ sin2ð2�Þ sin2 ðE2 � E1Þ t=2�h�½ ð3:25Þ

and thus oscillates with time, while the probability of finding a muon neutrino is

reduced by a corresponding oscillating factor. Similar effects are predicted if

instead we start from electron or tau neutrinos. In each case the oscillations vanish

if the mixing angle is zero, or if the neutrinos have equal masses, and hence equal

energies, as can be seen explicitly from Equation (3.25). In particular, such

oscillations are not possible if the neutrinos both have zero masses.

Returning to Equation (3.25), since neutrino masses are very small,

E1;2 � mic
2 ði ¼ 1; 2Þ and we can write

E2 � E1 ¼ m2
2c4 þ p2c2

� �1=2� m2
1c4 þ p2c2

� �1=2 � m2
2c4 � m2

1c4

2pc
: ð3:26Þ

Also, E � pc and t � xj j=c 
 L=c, where L is the distance from the point of

production. Thus Equation (3.25) may be written

Pð�� ! �xÞ � sin2ð2�Þ sin2 �ðm2c4ÞL
4�hcE

� �
; ð3:27aÞ

4See, for example, Chapter 1 of Ma92.
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with

Pð�� ! ��Þ ¼ 1 � Pð�� ! �xÞ; ð3:27bÞ

where �ðm2c4Þ 
 m2
2c4 � m2

1c4. These formulae assume that the neutrinos are

propagating in a vacuum, whereas in real experiments they will be passing through

matter and the situation is more complicated than these simple results suggest.

This formalism can be extended to the general case of mixing between all three

neutrino species, but at the expense of additional free parameters.5

Attempts to establish neutrino oscillations rest on using the inverse �-decay

reactions (3.14) and (3.15) to produce electrons and the analogous reactions for

muon neutrinos to produce muons, which are then detected. In addition, the time t

is determined by the distance of the neutrino detector from the source of the

neutrinos, since their energies are always much greater than their possible masses,

and they travel at approximately the speed of light. Hence, for example, if we start

with a source of muon neutrinos, the flux of muons observed in a detector should

vary with its distance from the source of the neutrinos, if appreciable oscillations

occur. In practice, oscillations at the few per cent level are very difficult to detect

for experimental reasons that we will not discuss here.

3.1.4 Neutrino masses

There are a number of different types of experiment that can explore neutrino

oscillations and hence neutrino masses. The first of these to produce definitive

evidence for oscillations was that of a Japanese group in 1998 using the giant

Super Kamiokande detector to study atmospheric neutrinos produced by the action

of cosmic rays.6 (Neutrinos of each generation are often referred to as having a

different flavour and so the observations are evidence for flavour oscillation.)

The Super Kamiokande detector is shown in Figure 3.3. (Detectors will be

discussed in detail in Chapter 4, so the description here will be brief.) It consists of

a stainless steel cylindrical tank of roughly 40 m diameter and 40 m height,

containing about 50 000 metric tons of very pure water. The detector is situated

deep underground in a mountain in Japan, at a depth equivalent to 2700 m of water.

This is to use the rocks above to shield the detector from cosmic ray muons. The

volume is separated into a large inner region, the walls of which are lined with

11 200 light-sensitive devices called photomultipliers (the physics of these will be

discussed in Chapter 4). These register the presence of electrons or muons

5See, for example, the Review of Particle Properties published biannually by the Particle Data Group (2004
edition: Ei04). The PDG Review is also available at http://pdg.lbl.gov. This publication contains a wealth of
useful data about elementary particles and their interactions and we will refer to it in future simply as
PDG04.
6Cosmic neutrinos were first detected (independently) by Raymond Davis Jr. and Masatoshi Koshiba, for
which they were jointly awarded the 2002 Nobel Prize in Physics.
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indirectly by detecting the light (the so-called Čerenkov radiation – again, see

Chapter 4) emitted by relativistic charged particles (the electrons or muons) that

are created in, or pass through, the water. The outer region of water acts as a shield

against low-energy particles entering the detector from outside. An additional 1200

photomultipliers are located there to detect muons that enter or exit the detector.

When cosmic ray protons collide with atoms in the upper atmosphere they create

many pions, which in turn create neutrinos mainly by the decay sequences

�� ! �� þ ����; �þ ! �þ þ �� ð3:28Þ

and

�� ! e� þ ���e þ ��; �þ ! eþ þ �e þ ����: ð3:29Þ

From this, one would naively expect to detect two muon neutrinos for every

electron neutrino. However, the ratio was observed to be about 1.3 to 1 on average,

suggesting that the muon neutrinos produced might be oscillating into other species.

Clear confirmation for this was found by exploiting the fact that the detector

could measure the direction of the detected neutrinos to study the azimuthal

dependence of the effect. Since the flux of cosmic rays that lead to neutrinos with

energies above about 1 GeV is isotropic, the production rate for neutrinos should

Figure 3.3 A schematic diagram of the Super Kamiokande detector (adapted from an original
University of Hawaii, Manoa, illustration -- with permission)
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be the same all around the Earth. In particular, one can compare the measured flux

from neutrinos produced in the atmosphere directly above the detector, which have

a short flight path before detection, with those incident from directly below, which

have travelled a long way through the Earth before detection, and so have had

plenty of time to oscillate (perhaps several cycles). Experimentally, it was found

that the yield of electron neutrinos from above and below were the same within

errors and consistent with the expectation for no oscillations. However, while

the yield of muon neutrinos from above accorded with the expectation for no

significant oscillations, the flux of muon neutrinos from below was a factor of

about two lower. This is clear evidence for muon neutrino oscillations.

In a later development of the experiment, the flux of muon neutrinos was

measured as a function of L=E by estimating L from the reconstructed neutrino

direction. Values of L range from 15 km to 13000 km. The results are shown in

Figure 3.4 in the form of the ratio of observed number of events to the theoretical

expectation if there were no oscillations. The data show clear evidence for a

deviation of this ratio from unity, particularly at large values of L=E.

Other experiments also set limits on Pð�� ! �eÞ and taking these into account

the most plausible hypothesis is that muon neutrinos are changing into tau neutrinos,

which for the neutrino energies concerned could not be detected by Super

Kamiokande. The data are consistent with this hypothesis and yield the values

1:9 � 10�3  �ðm2c4Þ  3:0 � 10�3 ðeVÞ2; sin2ð2�Þ > 0:9 ð3:30Þ

Figure 3.4 Data from the Super Kamiokande detector showing evidence for neutrino
oscillations in atmospheric neutrinos (adapted from As04, copyright American Physical Society)
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at 90 per cent confidence level. This conclusion is supported by preliminary results

from laboratory-based experiments that start with a beam of �� and measure the

flux at a large distance (250 km) from the origin. Analysis of the data yields similar

parameters to those above.

A second piece of evidence for neutrino oscillations comes from our knowledge

of the Sun. We shall see in Chapter 8 that the energy of the Sun is due to various

nuclear reactions and these produce a huge flux of electron neutrinos that can be

detected at the surface of the Earth. Since the astrophysics of the Sun and nuclear

production processes are well understood, this flux can be calculated with some

confidence by what is known as the standard solar model.7 However, the measured

count rate is about a factor of two lower than the theoretical expectation. This is

the so-called solar neutrino problem. It was first investigated by Davis and co-

workers in the late 1960s who studied the reaction

�e þ 37Cl ! 37Ar þ e�; ð3:31Þ

to detect the neutrinos. (This required sensitive radiochemical analysis to confirm

the production of 37Ar.) This reaction has a threshold of 0:81 MeV and is therefore

only sensitive to relatively high-energy neutrinos from the Sun. Such neutrinos

come predominantly from the weak interaction decay

8B ! 8Be þ eþ þ �e; ð3:32Þ

where the neutrinos have an average energy 	7 MeV. More recent experiments

have studied the same process using the reactions

ðaÞ �x þ d ! e� þ p þ p; ðbÞ �x þ d ! �x þ p þ n; ðcÞ �x þ e� ! �x þ e�;

ð3:33Þ

to detect the neutrinos, where d is a deuteron. The first of these reactions clearly

can be initiated with electron neutrinos only, whereas the other two can be initiated

with neutrinos of any flavour. The measured flux of �e from reaction (a) agrees

well with the standard solar model, but the ratio of the flux for �e to that for �x,

where x could be a combination of � and � , obtained by using data from all three

reactions, is less than unity. For example, the Sudbury Neutrino Observatory

(SNO) experiment finds a ratio of about 0.3. Thus there is a flux of neutrinos of a

type that did not come from the original decay process. The observations are

further clear evidence for flavour oscillation.

Although the neutrinos from (3.32) have been extensively studied, this decay

contributes only about 10�4 of the total solar neutrino flux. It is therefore important

7See, for example, Chapter 4 of Ph94.
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to detect neutrinos from other reactions and in particular from the reaction

p þ p ! d þ eþ þ �e; ð3:34Þ

which is the primary reaction that produces the energy of the Sun and contributes

approximately 90 per cent of the solar neutrino flux. (It will be discussed in more

detail in Chapter 8.) The neutrinos in this reaction have average energies of

	0:26 MeV and so cannot be detected by reaction (3.31). Instead, the reaction

�e þ 71Ga ! 71Ge þ e� ð3:35Þ

has been used, which has a threshold of 233 keV. (The experiments can also detect

neutrinos from the solar reaction e� þ 7Be ! 7Li þ �e.) Just as for the original

experiments of Davis et al., there are formidable problems in identifying the

radioactive products from this reaction, which produces only about 1 atom of 71Ge

per day in a target of 30 tons of gallium. Nevertheless, results from these

experiments confirm the deficit of electron neutrinos and find between 60 and

70 per cent of the flux expected from the standard solar model without flavour

changing.

These solar neutrino results require that interactions with matter play a

significant role in flavour changing and imply, for example, that a substantial

fraction of a beam of ���e would change to antineutrinos of other flavours after

travelling a distance of the order of 100 km from its source. This prediction has

been tested by the KamLAND group in Japan. They have studied the ���e flux from

more than 60 reactors in Japan and South Korea after the neutrinos have travelled

distances of between 150 and 200 km. They found that the ���e flux was only about

60 per cent of that expected from the known characteristics of the reactors. A

simultaneous analysis of the data from this experiment and the solar neutrino data

yields the result:

7:6 �10�5 �ðm2c4Þ 8:8� 10�5 ðeVÞ2; 0:32 tan2ð�Þ 0:48: ð3:36Þ

The existence of neutrino oscillations (flavour changing), and by implication non-

zero neutrino masses, is now generally accepted on the basis of the above set of

experiments.

What are the consequences of these results for the standard model? The

observation of oscillations does not lead to a measurement of the neutrino masses,

only (squared) mass differences, but combined with the tritium �-decay experiment,

it would be natural to assume that neutrinos all had very small masses, with the mass

differences being of the same order-of-magnitude as the masses themselves. The

standard model can be modified to accommodate small masses, although methods

for doing this are not without their own problems.8 Unfortunately, the various

8One possibility will be mentioned briefly in Chapter 9 as part of a discussion of the general question of how
masses arise in the standard model.
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experiments – although producing compatible values for the mixing angle� � 40� –

yield wildly different values for the mass difference, as can be seen from Equations

(3.30) and (3.36). However, the analyses have been made in the framework of a two-

component mixing model, whereas there are of course three neutrinos. Thus it could

be, for example, that two of the neutrino states are separated by a small mass

difference given by Equation (3.36) and the third is separated from them by a

relatively large mass difference given by Equation (3.30). Progress will have to await

experiments currently being planned to detect oscillations directly using prepared

neutrino beams and which will make measurements at great distances from their

origin. These experiments are expected to produce data in the next few years and

should yield definitive values of the neutrino mass differences and the various

mixing angles involved.9

The consequences for lepton number conservation are unclear. In the simple

mixing model above, the total lepton number could still be conserved, but

individual lepton numbers would not. However, there are other theoretical

descriptions of neutrino oscillations and this is an open question. A definitive

answer would be to detect neutrinoless double �-decay, such as

76Ge ! 76Se þ 2e�; ð3:37Þ

where the final state contains two electrons, but no antineutrinos. This could occur

if the neutrino emitted by the parent nucleus was internally absorbed by the

daughter nucleus (i.e. it never appears as a real particle) which is possible only if

�e � ���e. A very recent experiment claims to have detected this decay, but the result

is not universally accepted and at present ‘the jury is out’. Experiments planned for

the next few years should settle important questions about lepton number

conservation and the nature of neutrinos.

3.1.5 Universal lepton interactions – the number of neutrinos

The three neutrinos have similar properties, but the three charged leptons are

strikingly different. For example: the mass of the muon is roughly 200 times

greater than that of the electron and consequently its magnetic moment is 200

times smaller; high-energy electrons are stopped by modest thicknesses of a

centimetre or so of lead, while muons are the most penetrating form of radiation

known, apart from neutrinos; and the tauon lifetime is many orders of magnitude

smaller than the muon lifetime, while the electron is stable. It is therefore a

remarkable fact that all experimental data are consistent with the assumption that

the interactions of the electron and its associated neutrino are identical to those of

the muon and its associated neutrino and of the tauon and its neutrino, provided the

9For a review of these experiments see, for example, http://www.hep.anl.gov/ndk/hypertext/nuindustry.html.
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mass differences are taken into account. This property, called lepton universality,

can be verified with great precision, because we have a precise theory of

electromagnetic and weak interactions (to be discussed in Chapter 6), which

enables predictions to be made of the mass dependence of all observables.

For example, when we discuss experimental methods in Chapter 4, we will show

that the radiation length, which is a measure of how far a charged particle travels

through matter before losing a certain fraction of its energy by radiation, is

proportional to the squared mass of the radiating particle. Hence it is about 4 � 104

times greater for muons than for electrons, explaining their much greater

penetrating power in matter. As another example, we have seen that the rates

for weak �-decays are extremely sensitive to the kinetic energy released in the

decay (recall the enormous variation in the lifetimes of nuclei decaying via �-

decay). From dimensional arguments and the fact that they are weak interactions,

the rates for muon and tau leptonic decays are predicted to be proportional to the

fifth power of the relevant Q-values multiplied by G2
F, the square of the Fermi

coupling.10 Thus, from universality, the ratio of the decay rates � is given

approximately by

�ð�� ! e� þ ���e þ ��Þ
�ð�� ! e� þ ���e þ ��Þ

� Q�

Q�

� �5

¼ 1:37 � 106: ð3:38Þ

This is in excellent agreement with the experimental value of 1:35 � 106 (and is

even closer in a full calculation) and accounts very well for the huge difference

between the tau and muon lifetimes. The above are just some of the most striking

manifestations of the universality of lepton interactions.

A question that arises naturally is whether there are more generations of leptons,

with identical interactions, waiting to be discovered. This question has been

answered, under reasonable assumptions, by an experimental study of the decays

of the Z0 boson. This particle, one of the two gauge bosons associated with the

weak interaction, has a mass of 91 GeV/c2. It decays, among other final states, to

neutrino pairs

Z0 ! �‘ þ ���‘ ð‘ ¼ e; �; �Þ: ð3:39Þ

If we assume universal lepton interactions and neutrino masses which are small

compared with the mass of the Z0,11 the decay rates to a given neutrino pair will all

be equal and thus

�neutrinos 
 ��e
þ ��� þ ��� þ � � � ¼ N� ��; ð3:40Þ

10The increase of the decay rate as the fifth power of Q is known as Sargent’s Rule.
11More precisely, we assume m�  MZ=2, so that the decays Z ! ���� are not forbidden by energy
conservation.
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where N� is the number of neutrino species and �� is the decay rate to any given

pair of neutrinos. The measured total decay rate may then be written

�total ¼ �hadrons þ �leptons þ �neutrinos; ð3:41Þ

where the first two terms on the right are the measured decay rates to hadrons and

charged leptons, respectively. Although the rate to neutrinos �� is not directly

measured, it can be calculated in the standard model and combining this with

experimental data for the other decay modes, a value of N� may be found. The best

value using all available data is N� ¼ 3:00 � 0:08, which is consistent with the

expectation for three neutrino species, but not four. The conclusion is that only

three generations (flavours) of leptons can exist, if we assume universal lepton

interactions and exclude very large neutrino masses.

Why there are just three generations of leptons remains a mystery, particularly

as the extra two generations seem to tell us nothing fundamental that cannot be

deduced from the interaction of the first generation.

3.2 Quarks

We turn now to the strongly interacting particles – the quarks and their bound states,

the hadrons. These also interact by the weak and electromagnetic interactions,

although such effects can often be neglected compared with the strong interactions.

To this extent we are entering the realm of ‘strong interaction physics’.

3.2.1 Evidence for quarks

Several hundred hadrons (not including nuclei) have been observed since pions

were first produced in the laboratory in the early 1950s and all have zero or integer

electric charges: 0;�1; or � 2 in units of e. They are all bound states of the

fundamental spin-1
2

quarks, whose electric charges are either þ 2
3

or � 1
3
, and/or

antiquarks, with charges � 2
3

or þ 1
3
. The quarks themselves have never been

directly observed as single, free particles and, as remarked earlier, this fact initially

made it difficult for quarks to be accepted as anything other than convenient

mathematical quantities for performing calculations. Only later, when the funda-

mental reason for this was realized (it will be discussed in Chapter 6), were quarks

universally accepted as physical entities. Nevertheless, there is compelling

experimental evidence for their existence. The evidence comes from three main

areas: hadron spectroscopy, lepton scattering and jet production.

Hadron spectroscopy

This is the study of the static properties of hadrons: their masses, lifetimes and

decay modes, and especially the values of their quantum numbers, including spin,
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electric charge and several more that we define in Section 3.2.2. As mentioned in

Chapter 1, the existence and properties of quarks were first inferred from hadron

spectroscopy by Gell-Mann and independently by Zweig in 1964 and the close

correspondence between the experimentally observed hadrons and those predicted

by the quark model, which we will examine in more detail later, remains one of the

strongest reasons for our belief in the existence of quarks.

Lepton scattering

It was mentioned in earlier chapters that in the early 1960s experiments were first

performed where electrons were scattered from protons and neutrons. These

strongly suggested that nucleons were not elementary. By the late 1960s this work

had been extended to higher energies and with projectiles that included muons and

neutrinos. In much the same way as Rutherford deduced the existence of the nucleus

in atoms, high-energy lepton scattering, particularly at large momentum transfers,

revealed the existence of point-like entities within the nucleons, which we now

identify as quarks.

Jet production

High-energy collisions can cause the quarks within hadrons, or newly created

quark–antiquark pairs, to fly apart from each other with very high energies. Before

they can be observed, these quarks are converted into ‘jets’ of hadrons (a process

referred to as fragmentation) whose production rates and angular distributions

reflect those of the quarks from which they originated. They were first clearly

identified in experiments at the DESY laboratory in Hamburg in 1979, where

electrons and positrons were arranged to collide ‘head-on’ in a magnetic field. An

example of a ‘two-jet’ event is shown in Figure 3.5. The picture is a computer

reconstruction of an end view along the beam direction; the solid lines indicate the

reconstructed charged particle trajectories taking into account the known magnetic

field, which is also parallel to the beam direction; the dotted lines indicate the

reconstructed trajectories of neutral particles, which were detected outside this

device by other means.

The production rate and angular distribution of the observed jets closely matches

that of quarks produced in the reaction

eþ þ e� ! q þ �qq; ð3:42Þ

by the mechanism of Figure 3.6. Such jets have now been observed in many

reactions, and are strong evidence for the existence of quarks within hadrons.
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The failure to detect free quarks is not an experimental problem. Firstly, free

quarks would be easily distinguished from other particles by their fractional

charges and their resulting ionization properties.12 Secondly, electric charge

conservation implies that a fractionally charged particle cannot decay to a final

state composed entirely of particles with integer electric charges. Hence the

lightest fractionally charged particle, i.e. the lightest free quark, would be stable

and so presumably easy to observe. Finally, some of the quarks are not very

massive (see below) and because they interact by the strong interaction, one would

expect free quarks to be copiously produced in, for example, high-energy proton–

proton collisions. However, despite careful and exhaustive searches in ordinary

matter, in cosmic rays and in high-energy collision products, free quarks have

Figure 3.5 Two-jet event in eþe� collisions

Figure 3.6 Mechanism for two-jet production in eþe� annihilation reaction

12We will see in Chapter 4 that energy losses in matter due to ionization are proportional to the square of the
charge and thus would be ‘anomalously’ small for quarks.
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never been observed. The conclusion – that quarks exist solely within hadrons and

not as isolated free particles – is called confinement. It is for this reason that we are

forced to study the properties of hadrons, the bound states of quarks.

The modern theory of strong interactions, called quantum chromodynamics

(QCD), which is discussed in Chapter 5, offers at least a qualitative account of

confinement, although much of the detail eludes us due to the difficulty of

performing accurate calculations. In what follows, we shall assume confinement

and use the properties of quarks to interpret the properties of hadrons.

3.2.2 Quark generations and quark numbers

Six distinct types, or flavours, of spin-1
2

quarks are now known to exist. Like the

leptons, they occur in pairs, or generations, denoted

u

d

� �
;

c

s

� �
;

t

b

� �
: ð3:43Þ

Each generation consists of a quark with charge þ 2
3

(u, c, or t) together with a quark

of charge � 1
3

(d, s, or b), in units of e. They are called the down (d), up (u), strange

(s), charmed (c), bottom (b) and top (t) quarks. The quantum numbers associated

with the s, c, b and t quarks are called strangeness, charm, beauty and truth,

respectively. The antiquarks are denoted

�dd
�uu

� �
;

�ss
�cc

� �
;

�bb
�tt

� �
ð3:44Þ

with charges þ 1
3

(�dd, �ss, or �bb) and � 2
3

(�uu, �cc, �tt).
Approximate quark masses are given in Table 3.2. Except for the top quark,

these masses are inferred indirectly from the observed masses of their hadron

Table 3.2 Properties of quarks: all have spin 1
2 and masses are given units of GeV/c2; the

antiparticles (not shown) have the same masses as their associated particles, but the electric
charges (Q) are reversed in sign (in the major decay modes, X denotes other particles)

Name Symbol Mass Q Lifetime (s) Major decays

Down d md � 0:3 �1=3

Up u mu � md 2=3

Strange s ms � 0:5 �1=3 10�8–10�10 s ! u þ X

Charmed c mc � 1:5 2=3 10�12–10�13 c ! s þ X

c ! d þ X

Bottom b mb � 4:5 �1=3 10�12–10�13 b ! c þ X

Top t mt ¼ 180 � 12 2=3 	10�25 t ! b þ X

QUARKS 89



bound states, together with models of quark binding.13 In this context they are also

referred to as constituent quark masses.

The stability of quarks in hadrons – like the stability of protons and neutrons in

atomic nuclei – is influenced by their interaction energies. However, for the s; c
and b quarks these effects are small enough for them to be assigned approximate

lifetimes of 10�8–10�10 s for the s quark and 10�12–10�13 s for both the c and b

quarks. The top quark is much heavier than the other quarks and its lifetime is of

the order of 10�25 s. This lifetime is so short that when top quarks are created they

decay too quickly to form observable hadrons. In contrast to the other quarks, our

knowledge of the top quark is based entirely on observations of its decay products.

When we talk about ‘the decay of quarks’ we always mean that the decay takes

place within a hadron, with the other bound quarks acting as ‘spectators’, i.e. not

taking part in the interaction. Thus, for example, in this picture neutron decay at

the quark level is given by the Feynman diagram of Figure 3.7 and no free quarks

are observed. Note that it is assumed that the exchanged particle interacts with

only one constituent quark in the nucleons. This is the essence of the spectator

model. (This is not dissimilar to the idea of a single nucleon decaying within a

radioactive nucleus.)

In strong and electromagnetic interactions, quarks can only be created or destroyed

as particle–antiparticle pairs, just like electrons as we discussed in Section 3.1.1. This

implies, for example, that in electromagnetic processes corresponding to the Feyn-

man diagram of Figure 3.8, the reaction eþ þ e� ! c þ �cc, which creates a c�cc pair, is

allowed, but the reaction eþ þ e� ! c þ �uu producing a c�uu pair, is forbidden.14

More generally, it implies conservation of each of the six quark numbers

Nf 
 Nð f Þ � Nð�ff Þ ð f ¼ u; d; s; c; b; tÞ ð3:45Þ

where Nðf Þ is the number of quarks of flavour f present and Nð�ff Þ is the number of

antiquarks of flavour�ff present. For example, for single-particle states; Nc ¼ 1 for the

13An analogy would be to deduce the mass of nucleons from the masses of nuclei via a model of the nucleus.
14Again, these reactions and associated Feynman diagrams do not imply that free quarks are created.
Spectator quarks are implicitly present to form hadrons in the final state.

Figure 3.7 Spectator model quark Feynman diagram for the decay n ! pe����e
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c quark; Nc ¼ �1 for the �cc antiquark; and Nc ¼ 0 for all other particles. Similar

results apply for the other quark numbers Nf , and for multi-particle states the quark

numbers of the individual particles are simply added. Thus a state containing the

particles u, u, d, has Nu ¼ 2, Nd ¼ 1 and Nf ¼ 0 for the other quark numbers with

f ¼ s, c, b, t.

In weak interactions, more general possibilities are allowed, and only the total

quark number

Nq 
 NðqÞ � Nð�qqÞ ð3:46Þ

is conserved, where NðqÞ and Nð�qqÞ are the total number of quarks and antiquarks

present, irrespective of their flavour. This is illustrated by the decay modes of the

quarks themselves, some of which are listed in Table 3.2, which are all weak inter-

action processes, and we have seen it also in the decay of the neutron in Figure 3.7.

Another example is the main decay mode of the charmed quark, which is

c ! s þ u þ �dd; ð3:47Þ

in which a c quark is replaced by an s quark and a u quark is created together with

a �d antiquark. This clearly violates conservation of the individual quark numbers

Nc, Ns, Nu and Nd, but the total quark number Nq is conserved.

In practice, it is convenient to replace the total quark number Nq in analyses by

the baryon number, defined by

B 
 Nq=3 ¼ NðqÞ � Nð�qqÞ½ �=3: ð3:48Þ

Like the electric charge and the lepton numbers introduced in the last section, the

baryon number is conserved in all known interactions, and unlike the lepton

number, there are no experiments that suggest otherwise.15

Figure 3.8 Production mechanism for the reaction eþe� ! q�qq

15However, there are theories beyond the standard model that predict baryon number non-conservation,
although there is no experimental evidence to support this prediction. These will be discussed briefly in
Chapter 9.
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3.3 Hadrons

In principle, the properties of atoms and nuclei can be explained in terms of their

proton, neutron and electron constituents, although in practice many details are too

complicated to be accurately calculated. However, the properties of these con-

stituents can be determined without reference to atoms and nuclei by studying

them directly as free particles in the laboratory. In this sense atomic and nuclear

physics are no longer fundamental, although they are still very interesting and

important if we want to understand the world we live in.

In the case of hadrons, the situation is more complicated. Their properties are

explained in terms of a few fundamental quark constituents; but the properties of

the quarks themselves can only be studied experimentally by appropriate measure-

ments on hadrons. Whether we like it or not, studying quarks without hadrons is

not an option.

3.3.1 Flavour independence and charge multiplets

One of the most fundamental properties of the strong interaction is flavour

independence. This is the statement that the strong force between two quarks at

a fixed distance apart is independent of which quark flavours u; d; s; c; b; t are

involved. Thus, for example, the strong forces between us and ds pairs are

identical. The same principle applies to quark–antiquark forces which are,

however, not identical to quark–quark forces, because in the former case

annihilations can occur. Flavour independence does not apply to the electromag-

netic interaction, since the quarks have different electric charges, but compared

with the strong force between quarks, the electromagnetic force is a small

correction. In addition, in applying flavour independence one must take proper

account of the quark mass differences, which can be non-trivial. However, there

are cases where these corrections are small or easily estimated, and the phenom-

enon of flavour independence is plain to see.

One consequence of flavour independence is the striking observation that

hadrons occur in families of particles with approximately the same masses, called

charge multiplets. Within a given family, all particles have the same spin-parity

and the same baryon number, strangeness, charm and beauty, but differ in their

electric charges. Examples are the triplet of pions, (�þ; �0; ��) and the nucleon

doublet ðp; nÞ. The latter behaviour reflects an approximate symmetry between u

and d quarks. This arises because, as we shall see in Section 3.3.2, these two

quarks have only a very small mass difference

md � mu ¼ ð3 � 1ÞMeV=c2; ð3:49Þ

so that in this case mass corrections can to a good approximation be neglected. For

example, consider the proton and neutron. We shall see in the next section that their

quark content is pð938Þ ¼ uud and nð940Þ ¼ udd. If we neglect the small mass
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difference between the u and d quarks and also the electromagnetic interactions,

which is equivalent to setting all electric charges to zero, so that the forces acting on

the u and d quarks are exactly equal, then replacing the u quark by a d quark in the

proton would produce a ‘neutron’ which would be essentially identical to the proton.

Of course the symmetry is not exact because of the small mass difference between

the u and d quarks and because of the electromagnetic forces, and it is these that give

rise to the small differences in mass within multiplets.

Flavour independence of the strong forces between u and d quarks also leads

directly to the charge independence of nuclear forces, e.g. the equality of the force

between any pair of nucleons, provided the two particles are in the same spin state.

Subsumed in the idea of charge independence is the idea of charge symmetry, i.e.

the equality of the proton–proton and neutron–neutron forces, again provided the

two particles are in the same spin state. Evidence for the latter is found in studies

of nuclei with the same value of A, but the values of N and Z interchanged (mirror

nuclei). An example is shown in Figure 3.9. The two nuclei 11
5B and 11

6C have the

same number of np pairs, but 11
5B has 10 pp pairs and 15 nn pairs, whereas 11

6C has

15 pp pairs and 10 nn pairs. Thus, allowing for the Coulomb interaction, the

approximate equality of the level structures of these two nuclei, as seen in

Figure 3.9, means charge symmetry is approximately verified. To test charge

independence in a nuclear context we would have to look at the level structure in

three related nuclei such as 11
4Be, 11

5B and 11
6C.

Here the test is not so clear-cut because an np pair is not subject to the

restrictions of the Pauli principle like pp and nn pairs and there is evidence (to be

discussed briefly in Chapter 7) that the np force is stronger in the S ¼ 1 state than

in the S ¼ 0 state. Nevertheless, the measured energy levels in such triplets of

nuclei support the idea of approximate charge independence of nuclear forces.

The symmetry between u and d quarks is called isospin symmetry and greatly

simplifies the interpretation of hadron physics. It is described by the same mathe-

matics as ordinary spin, hence the name. For example, the proton and neutron are

viewed as the ‘up’ and ‘down’ components of a single particle, the nucleon N, that

has an isospin quantum number I ¼ 1
2
, with I3 values 1

2
and �1

2
, assigned to the proton

and neutron, where I3 is analogous to the magnetic quantum number in the case of

ordinary spin. Likewise, the three pions �þ; �� and�0 are part of a triplet � with

I ¼ 1 corresponding to I3 values 1, 0 and �1, respectively. In discussing the strong

interactions between pions and nucleons, it is then only necessary to consider the �N

interaction with total isospin either 1
2

or 3
2
.

As an example, we will consider some predictions for the hadronic resonance

�ð1232Þ. The �ð1232Þ has I ¼ 3
2

and four charge states �þþ; �þ; �0 and �� (see

Table 3.3) corresponding to I3 ¼ 3
2
; 1

2
; �1

2
; �3

2
, respectively. If we use the notation

�N; I; I3j i for a �N state, then �N; 3
2
; 3

2

�� �
is the unique state �þp and may be written

�N;
3

2
;
3

2

����
	

¼
�����; 1; 1

	
N;

1

2
;
1

2

����
	
: ð3:50Þ
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The other �N states may then be obtained by applying quantum mechanical shift

(ladder) operators to Equation (3.50), as is done when constructing ordinary spin

states. This gives16

�N;
3

2
;
1

2

����
	

¼ �
ffiffiffi
1

3

r �����þn

	
þ

ffiffiffi
2

3

r �����0p

	
ð3:51Þ

and hence isospin invariance predicts

�ð�þ ! �þnÞ
�ð�þ ! �0pÞ ¼ 1

2
; ð3:52Þ

which is in good agreement with experiment.

16The reason for the minus sign and other details are given in, for example, Appendix D of Ma97.

Figure 3.9 Low-lying energy levels with spin-parity JP of the mirror nuclei 11
5B and 11

6C. (data
from Aj90)
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Secondly, by constructing all the �N isospin states by analogy with Equations

(3.50) and (3.51) we can show that

������p

	
¼ 1ffiffiffi

3
p �N;

3

2
;�1

2

����
	
�

ffiffiffi
2

3

r
�N;

1

2
;�1

2

����
	

ð3:53aÞ

and

�����0n

	
¼

ffiffiffi
2

3

r
�N;

3

2
;�1

2

����
	
þ 1ffiffiffi

3
p �N;

1

2
;�1

2

����
	
: ð3:53bÞ

Then, if MI is the amplitude for scattering in a pure isospin state I,

Mð��p ! ��pÞ ¼ 1

3
M3 þ

2

3
M1 ð3:54aÞ

and

Mð��p ! �0nÞ ¼
ffiffiffi
2

p

3
M3 �

ffiffiffi
2

p

3
M1: ð3:54bÞ

At the �ð1232Þ, the available energy is such that the total cross-section is

dominated by the elastic (��p ! ��p) and charge-exchange (��p ! �0n) reac-

tions. In addition, because the �ð1232Þ has I ¼ 3
2
, M3 � M1, so

�totalð��pÞ ¼ �ð��p ! ��pÞ þ �ð��p ! �0nÞ / 1

3
M3j j2 ð3:55aÞ

and

�totalð�þpÞ / M3j j2: ð3:55bÞ

Thus, neglecting small kinematic corrections due to mass differences (phase space

corrections), isospin symmetry predicts

�totalð�þpÞ
�totalð��pÞ ¼ 3: ð3:56Þ

Figure 3.10 shows the two total cross-sections at low energies. There are clear

peaks with Breit–Wigner forms at a mass of 1232 MeV corresponding to

the production of the �ð1232Þ and the ratio of the peaks is in good agreement

with the prediction of Equation (3.56).
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3.3.2 Quark model spectroscopy

The observed hadrons are of three types. There are baryons and their antiparticles

antibaryons, which have half-integral spin, and mesons, which have integral spin. In

the quark model of hadrons the baryons are assumed to be bound states of three

quarks (3q), antibaryons are assumed to be bound states of three antiquarks (3�qq) and

mesons are assumed to be bound states of a quark and an antiquark (q�qq).17 The

Figure 3.10 Total cross-sections for ��p and �þp scattering

17In addition to these so-called ‘valence’ quarks there could also, in principle, be other constituent quarks present
in the form of a cloud of virtual quarks and antiquarks – the so-called ‘sea’ quarks – the origin of which we will
discuss in Chapter 5. In this chapter we consider only the valence quarks which determine the static properties of
hadrons. The masses of the constituent quarks could be quite different from those that appear in the fundamental
strong interaction Hamiltonian for quark–quark interactions via gluon exchange (i.e. QCD), because those
quarks are free of the dynamical effects experienced in hadrons. The latter are referred to as ‘current’ quarks.
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baryons and antibaryons have baryon numbers 1 and �1 respectively, while the

mesons have baryon number 0. Hence the baryons and antibaryons can annihilate

each other in reactions which conserve baryon number to give mesons or, more

rarely, photons or lepton–antilepton pairs, in the final state.

The lightest known baryons are the proton and neutron, with the quark

compositions given in Section 3.3.1:

p ¼ uud and n ¼ udd: ð3:57Þ

These particles have been familiar as constituents of atomic nuclei since the

1930s. The birth of particle physics as a new subject, distinct from atomic and

nuclear physics, dates from 1947, when hadrons other than the neutron and proton

were first detected. These were the pions, already mentioned, and the kaons,

discovered in cosmic rays by groups in Bristol and Manchester Universities, UK,

respectively.

The discovery of the pions was not totally unexpected, since Yukawa had

famously predicted their existence and their approximate masses in 1935, in order

to explain the observed range of nuclear forces (recall the discussion in Section

1.5.2). This consisted of finding what mass was needed in the Yukawa potential to

give the observed range of the strong nuclear force (which was poorly known at the

time). After some false signals, a particle with the right mass and suitable properties

was discovered – this was the pion. Here and in what follows we will give the hadron

masses in brackets in units of MeV/c2 and use a superscript to indicate the electric

charge in units of e. Thus the pions are ��ð140Þ; �0ð135Þ. Pions are the lightest

known mesons and have the quark compositions

�þ ¼ u�dd; �0 ¼ u�uu; d�dd; �� ¼ d�uu: ð3:58Þ

While the charged pions have a unique composition, the neutral pion is composed of

both u�uu and d�dd pairs in equal amounts. Pions are copiously produced in high-energy

collisions by strong interaction processes such as p þ p ! pþ n þ �þ.

In contrast to the discovery of the pions, the discovery of the kaons was totally

unexpected, and they were almost immediately recognized as a completely new

form of matter, because they had supposedly ‘strange’ properties. Eventually, after

several years, it was realized that these properties were precisely what would be

expected if kaons had non-zero values of a hitherto unknown quantum number,

given the name strangeness, which was conserved in strong and electromagnetic

interactions, but not necessarily conserved in weak interaction. Particles with non-

zero strangeness were named strange particles, and with the advent of the quark

model in 1964, it was realized that strangeness S was, apart from a sign, the

strangeness quark number introduced earlier, i.e.

S ¼ �Ns: ð3:59Þ
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Kaons are the lightest strange mesons, with the quark compositions:

Kþð494Þ ¼ u�ss and K0ð498Þ ¼ d�ss; ð3:60Þ

where Kþ and K0 have S ¼ þ1 and their antiparticles K� and �KK0 have S ¼ �1,

while the lightest strange baryon is the lambda, with the quark composition

� ¼ uds. Subsequently, hadrons containing c and b quarks have also been dis-

covered, with non-zero values of the charm and beauty quantum numbers defined by

C 
 Nc 
 NðcÞ � Nð�ccÞ and ~BB 
 �Nb 
 �NðbÞ � Nð�bbÞ: ð3:61Þ

The above examples illustrate just some of the many different combinations of

quarks that form baryons or mesons. These and some further examples are shown

in Table 3.3 and a complete listing is given in the PDG Tables.

To proceed more systematically one could, for example, construct all the mesons

states of the form q�qq, where q can be any of the six quark flavours. Each of these is

labelled by its spin and its intrinsic parity P. The simplest such states would have

the spins of the two quarks antiparallel with no orbital angular momentum between

them and so have spin-parity JP ¼ 0�. (Recall from Chapter 1 that quarks and

antiquarks have opposite parities.) If, for simplicity, we consider those states

composed of just u, d and s quarks, there will be nine such mesons and they have

quantum numbers which may be identified with the observed mesons ðK0;KþÞ,
ð�KK0;K�Þ, ð��; �0Þ and two neutral particles, which are called � and �0. This

supermultiplet is shown Figure 3.11(a) as a plot of Y, the hypercharge, defined as

Table 3.3 Some examples of baryons and mesons, with their major decay
modes; masses are in MeV/c2

Particle Mass Lifetime (s) Major decays

�þðu�ddÞ 140 2:6 � 10�8 �þ�� (	100%)

�0ðu�uu; d�ddÞ 135 8:4 � 10�17 		 (	100%)

Kþðu�ssÞ 494 1:2 � 10�8 �þ�� (64%)

�þ�0 (21%)

K�þðu�ssÞ 892 	1:3 � 10�23 Kþ�0; K0�þ (	100%)

D�ðd�ccÞ 1869 1:1 � 10�12 Several seen

B�ðb�uuÞ 5278 1:6 � 10�12 Several seen

pðuudÞ 938 Stable None

nðuddÞ 940 887 pe����e (100%)

�ðudsÞ 1116 2:6 � 10�10 p�� (64%)

n�0 (36%)

�þþðuuuÞ 1232 	0:6 � 10�23 p�þ (100%)

��ðsssÞ 1672 0:8 � 10�10 �K� (68%)

�0�� (24%)

�þ
c ðudcÞ 2285 2:1 � 10�13 Several seen
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Y 
 B þ S þ C þ ~BB þ T , against I3, the third component of isospin. This can be

extended to the lowest-lying qqq states and the lowest-lying supermultiplet

consists of the eight JP ¼ 1
2

þ
baryons shown in Figure 3.11(b).18

It is a remarkable fact that the states observed experimentally agree with those

predicted by the simple combinations qqq; �qq�qq�qq and q�qq and until very recently there

was no evidence for states corresponding to any other combinations. However, some

recent experiments have claimed evidence for the existence of a few states outside this

scheme, possibly ones involving five quarks, although other experiments have failed to

confirm this. Nevertheless, it is still a fact that hadron states are overwhelmingly

composed of the simplest quark combinations of the basic quark model. This was one

of the original pieces of evidence for the existence of quarks and remains one of the

strongest today.

The scheme may also be extended to more quark flavours, although the diagrams

become increasingly complex. For example, Figure 3.12 shows the predicted

JP ¼ 3
2

þ
baryon states formed from u, d, s and c quarks when all three quarks

have their spins aligned, but still with zero orbital angular momentum between them.

All the states in the bottom plane have been detected as well as many in the higher

planes and with the possible exception of the five-quark states mentioned previously,

no states have been found that are outside this scheme. The latest situation may be

found in the PDG Tables.

For many quark combinations there exist not one, but several states. For example,

the lowest-lying state of the u�dd system has spin-parity 0� and is the �þ meson. It can

be regarded as the ‘ground state’ of the u�dd system. Here the spins of the quark

Figure 3.11 The lowest-lying states with (a) JP ¼ 0� and (b) J ¼ 1
2

þ
that are composed of u, d

and s quarks

18If you try to try to verify Figure 3.11, you will find that it is necessary to assume that the overall hadronic
wavefunctions 	 ¼  space spin are symmetric under the exchange of identical quarks, i.e. opposite to the
symmetry required by the Pauli principle. This apparent contradiction will be resolved in Chapter 5.
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constituents are anti-aligned to give a total spin S ¼ 0 and there is no orbital angular

momentum L between the two quarks, so that the total angular momentum, which

we identify as the spin of the hadron, is J ¼ L þ S ¼ 0. Other ‘excited’ states can

have different spin-parities depending on the different states of motion of the quarks

within the hadron.

An example is the K�þð890Þ meson shown in Table 3.3 with JP ¼ 1�. In this state

the u and �ss quarks have their spins aligned so that S ¼ 1 and there is no orbital

angular momentum between them, i.e. L ¼ 0, so that the spin of the K�þ is

J ¼ L þ S ¼ 1. This is a resonance and such states usually decay by the strong

interaction, with very short lifetimes, of order 10�23 s. The mass distribution of their

decay products is described by the Breit–Wigner formula we met in Section 1.6.3.

The spin of a resonance may be found from an analysis of the angular distributions of

its decay products. This is because the distribution will be determined by the

wavefunction of the decaying particle and this will contain an angular part

proportional to a spherical harmonic labelled by the orbital angular momentum

between the decay products. Thus from a measurement of the angular distribution of

the decay products, the angular momentum may be found, and hence the spin of the

resonance. It is part of the triumph of the quark model that it successfully accounts

for the excited states of the various quark systems, as well as their ground states,

when the internal motion of the quarks is properly taken into account.

From experiments such as electron scattering we know that hadrons have typical

radii r of the order of 1 fm and hence associated time scales r/c of the order of

10�23 s. The vast majority are highly unstable resonances, corresponding to excited

Figure 3.12 The J ¼ 3
2

þ
baryon states composed of u, d, s and c quarks
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states of the various quark systems, and decay to lighter hadrons by the strong

interaction, with lifetimes of this order. The K�þð890Þ ¼ u�ss resonance, mentioned

above, is an example. It decays to Kþ�0 and K0�þ final states with a lifetime of

1:3 � 10�23 s. The quark description of the process K�þ ! K0 þ �þ, for example, is

u�ss ! d�ss þ u�dd: ð3:62Þ

From this we see that the final state contains the same quarks as the initial state,

plus an additional d�dd pair, so that the quark numbers Nu and Nd are separately

conserved. This is characteristic of strong and electromagnetic processes, which

are only allowed if each of the quark numbers Nu; Nd; Ns; Nc and Nb is separately

conserved.

Since leptons and photons do not have strong interactions, hadrons can only decay

by the strong interaction if lighter states composed solely of other hadrons exist with

the same quantum numbers. While this is possible for the majority of hadrons, it is

not in general possible for the lightest state corresponding to any given quark

combination. These hadrons, which cannot decay by strong interactions, are long-

lived on a timescale of the order of 10�23 s and are often called stable particles. It

is more accurate to call them long-lived particles, because except for the proton

they are not absolutely stable, but decay by either the electromagnetic or weak

interaction.

The proton is stable because it is the lightest particle with non-zero baryon

number and baryon number is conserved in all known interactions. A few of the

other long-lived hadrons decay by electromagnetic interactions to final states that

include photons. These decays, like the strong interaction, conserve all the

individual quark numbers. An example of this is the neutral pion, which has

Nu ¼ Nd ¼ Ns ¼ Nc ¼ Nb ¼ 0 and decays by the reaction

�0ðu�uu; d�ddÞ ! 	 þ 	; ð3:63Þ

with a lifetime of 0:8 � 10�16 s. However, most of the long-lived hadrons have non-

zero values for at least one of the quark numbers, and can only decay by the weak

interaction, in which quark numbers do not have to be conserved. For example, the

positive pion decays with a lifetime of 2:6 � 10�8 s by the reaction

�þ ! �þ þ ��; ð3:64Þ

while the �ð1116Þ ¼ uds baryon decays mainly by the reactions

� ! p þ �� and n þ �0; ð3:65Þ

with a lifetime of 2:6 � 10�10 s. The quark interpretations of these reactions are

ðu�ddÞ ! �þ þ ��; ð3:66Þ
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in which a u quark annihilates with a �dd antiquark, violating both Nu and Nd

conservation; and for lambda decay to charged pions,

sud ! uud þ d�uu; ð3:67Þ

in which an s quark turns into a u quark and a u�dd pair is created, violating Nd and

Ns conservation.

We see from the above that the strong, electromagnetic or weak nature of a given

hadron decay can be determined by inspecting quark numbers. The resulting

lifetimes can then be summarized as follows. Strong decays lead to lifetimes that

are typically of the order of 10�23 s. Electromagnetic decay rates are suppressed by

powers of the fine structure constant � relative to strong decays, leading to observed

lifetimes in the range 10�16�10�21 s. Finally, weak decays give longer lifetimes,

which depend sensitively on the characteristic energy of the decay.

A useful measure of the decay energy is the Q-value, the kinetic energy released in

the decay of the particle at rest, which we metioned before in Section 2.3. In the weak

interactions of hadrons, Q-values of the order of 102�103 MeV are typical, leading

to lifetimes in the range 10�7–10�13 s, but there are some exceptions, notably

neutron decay, n ! p þ e� þ ���e, for which

Q ¼ mn � mp � me � m���e
¼ 0:79 MeV ð3:68Þ

is unusually small, leading to a lifetime of about 103 s. Thus hadron decay lifetimes

are reasonably well understood and span some 27 orders of magnitude, from about

10�24 s to about 103 s. The typical ranges corresponding to each interaction are

summarized in Table 3.4.

3.3.3 Hadron masses and magnetic moments

The quark model can make predictions for hadronic magnetic moments and masses

in a way that is analogous to the semi-empirical mass formula for nuclear masses, i.e.

the formulae have a theoretical basis, but contain parameters that have to be

determined from experiment. We start by examining the case of baryon magnetic

moments.

Table 3.4 Typical lifetimes of hadrons decaying by
the three interactions

Interaction Lifetimes (s)

Strong 10�22–10�24

Electromagnetic 10�16–10�21

Weak 10�7–10�13
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These have been measured only for the 1
2

þ
octet of states composed of u, d and s

quarks and so we will consider only these. In this supermultiplet, the quarks have

zero orbital angular momentum and so the hadron magnetic moments are just the

sums of contributions from the constituent quark magnetic moments, which we will

assume are of the Dirac form, i.e.

�q 
 q; Sz ¼
1

2

� �����̂�z q; Sz ¼
1

2

����
	

¼ eqe�h=2mq ¼ eqMp=mq

� �
�N; ð3:69Þ

where eq is the quark charge in units of e and �N 
 e�h=2Mp is the nuclear

magneton. Thus

�u ¼ 2Mp

3mu

�N; �d ¼ � Mp

3md

�N and �s ¼ � Mp

3ms

�N: ð3:70Þ

Consider, for example, the case of the �ð1116Þ ¼ uds. It is straightforward to

show that the configuration that ensures that the predicted quantum numbers of the

supermultiplet agree with experiment is to have the ud pair in a spin-0 state. Hence

it makes no contribution to the � spin or magnetic moment. Thus we have the

immediate prediction

�� ¼ �s ¼ � Mp

3ms

�N: ð3:71Þ

For 1
2

þ
baryons B with quark configuration aab, the aa pair is in the symmetric

spin-1 state with parallel spins (again this is to ensure that the predicted quantum

numbers of the supermultiplet agree with experiment) and magnetic moment 2�a.

The ‘spin-up’ baryon state is given by

B; S ¼ 1

2
; Sz ¼

1

2

����
	

¼
ffiffiffi
2

3

r
b; S ¼ 1

2
; Sz ¼ �1

2

����
	����aa; S ¼ 1; Sz ¼ 1

	

�
ffiffiffi
1

3

r
b; S ¼ 1

2
; Sz ¼

1

2

����
	����aa; S ¼ 1; Sz ¼ 0

	
ð3:72Þ

The first term corresponds to a state with magnetic moment 2�a � �b, since the b

quark has Sz ¼ �1
2
; the second term corresponds to a state with magnetic moment

�b, since the aa pair has Sz ¼ 0 and does not contribute. Hence the magnetic

moment of B is given by

�B ¼ 2

3
ð2�a � �bÞ þ

1

3
�b ¼ 4

3
�a �

1

3
�b: ð3:73Þ
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For example, the magnetic moment of the proton is

�p ¼ 4

3
�u �

1

3
�d ¼ Mp

m
�N; ð3:74Þ

where we have neglected the mass difference between the u and d quarks, as

suggested by isospin symmetry, and set mu � md 
 m. The predictions for the

magnetic moments of all the other members of the 1
2

þ
octet may be found in a

similar way in terms of just two parameters, the masses m and ms. A best fit to the

measured magnetic moments (but not taking account of the errors on the data19)

yields the values m ¼ 0:344 GeV=c2 and ms ¼ 0:539 GeV=c2. The predicted

moments are shown in Table 3.5. The agreement is good, but by no means perfect

and suggests that the assumption that baryons are pure three-quark states with zero

orbital angular momentum between them is not exact. For example, there could be

small admixtures of states with non-zero orbital angular momentum.

We now turn to the prediction of hadron masses. The mass differences between

members of a given supermulitplet are conveniently separated into the small mass

differences between members of the same isospin multiplet and the much larger

mass differences between members of different isospin multiplets. The size of the

former suggests that they have their origin in electromagnetic effects, and if we

neglect them then a first approximation would be to assume that the mass

differences are due solely to differences in the constituent quark masses. If we

concentrate on hadrons with quark structures composed of u, d and s quarks, since

19If we had fitted taking account of the errors, the fit would be dominated by the proton and neutron moments
because they have very small errors.

Table 3.5 Magnetic moments of the 1
2

þ
baryon octet as predicted by the

constituent quark model, compared with experiment in units of �N, the
nuclear magneton; these have been obtained using m ¼ 0:344 GeV/c2 and
ms ¼ 0:539 GeV/c2 -- errors on the nucleon moments are of the order of 10�7

Particle Moment Prediction Experiment

p(938) 4
3
�u � 1

3
�d 2.73 2.793

n(940) 4
3
�d � 1

3
�u �1.82 �1.913

�(1116) �s �0.58 �0:613 � 0:004

�þ(1189) 4
3
�u � 1

3
�s 2.62 2:458 � 0:010

��(1197) 4
3
�d � 1

3
�s �1.02 �1:160 � 0:025

�0ð1315Þ 4
3
�s � 1

3
�u �1.38 �1:250 � 0:014

��ð1321Þ 4
3
�s � 1

3
�d �0.47 �0:651 � 0:003
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their masses are the best known from experiment, this assumption leads directly to

the relations

M� � M� ¼ M� � M� ¼ M� � MN ¼ ms � mu;d ð3:75Þ

for the 1
2

þ
baryon octet and

M� � M�� ¼ M�� � M�� ¼ M�� � M� ¼ ms � mu;d ð3:76Þ

for the 3
2

þ
decuplet. These give numerical estimates for ms � mu;d in the range 120

to 200 MeV=c2, which are consistent with the estimate from magnetic moments

above.

These results support the suggestion that baryon mass differences (and by analogy

meson mass differences) are dominantly due to the mass differences of their

constituent quarks. However, this cannot be the complete explanation, because if

it were then the 1
2

þ
nucleon would have the same mass as the 3

2

þ
�ð1232Þ, as they

have the same quark constituents, and similarly for other related particles in the 1
2

þ

octet and 3
2

þ
decuplet. The absence of orbital angular momentum in these states

means that there is nothing equivalent to the ‘fine structure’ of atomic physics. The

difference lies in the spin structures of these states.

If we take the case of two spin-1
2

particles with magnetic moments mi and mj

separated by a distance rij then the interaction energy is proportional to

mi � mj=rij
3
. If, in addition, the particles are point-like and have charges

ei and ej, the moments will be of the Dirac form mi ¼ ei=mið ÞSi. Then for two

particles in a relative S-state it can be shown that the interaction energy is given by

�E ¼ 8�

3

eiej

mimj

 ð0Þj j2Si � Sj; ð3:77Þ

where  ð0Þ is the wavefunction at the origin, rij ¼ 0. (When averaged over all

space, the interaction is zero except at the origin.) In atomic physics this is known

as the hyperfine interaction and causes very small splittings in atomic energy

levels. In the hadron case, the electric charges must be replaced by their strong

interaction equivalents with appropriate changes to the overall numerical factor.

The resulting interaction is called (for reasons that will be clear in Chapter 5) the

chromomagnetic interaction. As we cannot calculate the equivalent quark–quark

wavefunction, for the purposes of a phenomenological analysis we will write the

contribution to the hadron mass as

�M / S1 � S2

m1m2

: ð3:78Þ

This of course assumes that  ð0Þj j2 is the same for all states, which will not be

exactly true.
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Consider first the case of mesons. By writing the total spin squared as

S2 
 ðS1 þ S2Þ2 ¼ S2
1 þ S2

2 þ 2S1 � S2; ð3:79Þ

we easily find the expect values of S1 � S2 are �3
4
�h2 for the S ¼ 0 (pseudoscalar)

mesons and 1
4
�h2 for the S ¼ 1 (vector) mesons. Then the masses may be written

MðmesonÞ ¼ m1 þ m2 þ�M; ð3:80Þ

where m1;2 are the masses of the constituent quarks and

�MðJP ¼ 0� mesonÞ ¼ � 3a

4

1

m1m2

; �MðJP ¼ 1� mesonÞ ¼ a

4

1

m1m2

ð3:81Þ

and a is a constant to be found from experiment. The masses of the members of the

0� and 1� meson supermultiplets then follow from a knowledge of their quark

compositions. For example, the K-mesons have one u or d quark and one s quark and so

MK ¼ m þ ms �
3a

8

1

m2
þ 1

m2
s

� �
: ð3:82Þ

Predictions for the masses of all the mesons are shown in Table 3.6, which also

gives the best fit to the measured masses (again ignoring the relative errors on the

latter) using these formulae. The predictions correspond to the values

m ¼ 0:308 GeV=c2; ms ¼ 0:482GeV=c2; a ¼ 0:0588 ðGeV=c2Þ3: ð3:83Þ

Note that the quark mass values are smaller than those obtained from fitting the

baryon magnetic moments. There is no contradiction in this, because there is no

reason that quarks should have the same effective masses in mesons as in baryons.

Table 3.6 Meson masses (in Gev/c2) in the constituent quark model compared
with experimental values

Particle Mass Prediction Experiment

� 2m � 3a

4m2
0.15 0.137

K m þ ms �
3a

8

1

m2
þ 1

m2
s

� �
0.46 0.496

�
2

3
m þ 4

3
ms �

a

4

1

m2
þ 2

m2
s

� �
0.57 0.549

� 2m þ a

4m2
0.77 0.770

! 2m þ a

4m2
0.77 0.782

K� m þ ms þ
a

8

1

m2
þ 1

m2
s

� �
0.87 0.892

� 2ms þ
a

4m2
s

1.03 1.020
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The comparison with the measured values is very reasonable, but omitted from the fit

is the �0 state where the fit is very poor indeed. Unlike the atomic case, the spin–spin

interaction in the strong interaction case leads to substantial corrections to the meson

masses.

The baryons are somewhat more complicated, because in this case we have three

pairs of spin–spin couplings to consider. In general the spin–spin contribution to

the mass is

�M /
X
i<j

Si � Sj

mimj

; i; j ¼ 1; 3: ð3:84Þ

In the case of the 3
2

þ
decuplet, all three quarks have their spins aligned and every

pair therefore combines to make spin-1. Thus for example,

ðS1 þ S2Þ2 ¼ S2
1 þ S2

2 þ 2S1 � S2 ¼ 2�h2; ð3:85Þ

giving S1 � S2 ¼ �h2=4 and in general

S1 � S2 ¼ S1 � S3 ¼ S2 � S3 ¼ �h2=4: ð3:86Þ

Using this result, the mass of the ��ð1385Þ, for example, may be written

M�� ¼ 2m þ ms þ
b

4

1

m2
þ 2

mms

� �
; ð3:87Þ

where b is a constant to be determined from experiment. (There is no reason for b

to be equal to the constant a used in the meson case because the quark

wavefunctions and numerical factors in the baryonic equivalent of Equation

(3.77) will be different in the two cases.)

In the case of the 1
2

þ
octet, we have

ðS2
1 þ S2

2 þ S2
3Þ ¼ S2

1 þ S2
2 þ S2

3 þ 2ðS1 � S2 þ S1 � S3 þ S2 � S3Þ ¼ 3�h2=4 ð3:88Þ

and hence

S1 � S2 þ S1 � S3 þ S2 � S3 ¼ �3�h2=4: ð3:89Þ

In addition, we have to consider the symmetry of the spin wavefunctions of

individual hadrons. For example, without proof (this will be given in Chapter 5),

the spins of the u and d pair in the � must combine to give S ¼ 0. Thus,

ðSu þ SdÞ2 ¼ 0, so that Su � Sd ¼ �3�h2=4. Then,

M� ¼ mu þ md þ ms þ b
Su � Sd

mumd

þ Su � Ss

mums

þ Sd � Ss

mdms

� �
: ð3:90Þ
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Finally, setting mu ¼ md ¼ m and absorbing factors of �h2 into the constant b, gives

M� ¼ 2mþms þb
Su �Sd

m2
þðS1 �S2 þS1 �S3 þS2 �S3 �Su �SdÞ

mms

� �
¼ 2mþms �

3b

4m2
;

ð3:91Þ

where we have used Equation (3.89). The resulting formulae for all the 1
2

þ
octet and

3
2

þ
decuplet masses are shown in Table 3.7. Also shown are the predicted masses,

where for consistency we have used the same quark mass values obtained earlier in

fitting baryon magnetic moments, i.e. m ¼ 0:308 GeV=c2 and ms ¼ 0:482 GeV=c2,

and varied only the parameter b, giving a value 0.0225 ðGeV=c
2Þ3

. The fit is quite

reasonable and although better fits can be obtained by allowing the masses to vary

there is little justification for this, given the approximations of the analysis.

Overall, what we learn from the above is that the constituent quark model is

capable of giving a reasonably consistent account of hadron masses and magnetic

moments, at least for the low-lying states (the �0 is an exception), provided a few

parameters are allowed to be found from experiment.

Problems

3.1 Which of the following reactions are allowed and which are forbidden by the

conservation laws appropriate to weak interactions?

(a) �� þ p ! �þ þ n;

(b) �e þ p ! n þ e� þ �þ;

(c) � ! �þ þ e� þ ���e;

(d) Kþ ! �0 þ �þ þ ��.

Table 3.7 Baryon masses (in Gev/c2) in the constituent quark model compared
with experimental values

Particle Mass Prediction Experiment

N 3m � 3b

4m2
0.89 0.939

� 2m þ ms �
3b

4

1

m2

� �
1.08 1.116

� 2m þ ms þ
b

4

1

m2
� 4

mms

� �
1.15 1.193

� m þ 2ms þ
b

4

1

m2
s

� 4

mms

� �
1.32 1.318

� 3m þ 3b

4m2
1.07 1.232

�� 2m þ ms þ
b

4

1

m
þ 2

mms

� �
1.34 1.385

�� m þ 2ms þ
b

4

2

mms

þ 1

m2
s

� �
1.50 1.533

� 3ms þ
3b

m2
s

1.68 1.673
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3.2 Draw the lowest-order Feynman diagram at the quark level for the following

decays:

(a) D� ! K0 þ ��;

(b) � ! p þ e� þ ���e.

3.3 Consider the following combinations of quantum numbers (Q; B; S; C; ~BB) where

Q ¼ electric charge, B ¼ baryon number, S ¼ strangeness, C ¼ charm and ~BB ¼
beauty:

(a) ð�1; 1;�2; 0;�1Þ;

(b) (0, 0, 1, 0, 1).

Which of these possible states are compatible with the postulates of the quark

model?

3.4 Consider a scenario where overall hadronic wavefunctions 	 consist of just spin and

space parts, i.e. 	 ¼  space  spin. What would be the resulting multiplet structure of

the lowest-lying baryon states composed of u; d and s quarks?

3.5 Draw Feynman diagrams at the quark level for the reactions:

(a) eþ þ e� ! �BB0 þ B0, where B is a meson containing a b-quark;

(b) �� þ p ! K0 þ �0.

3.6 Find the parity P and charge conjugation C values for the ground-state ðJ ¼ 0Þ
meson � and its first excited ðJ ¼ 1Þ state �. Why does the charged pion have a

longer lifetime than the �? Explain also why the decay �0 ! �þ�� has been

observed, but not the decay �0 ! �0�0.

3.7 The particle Y� can be produced in the strong interaction process

K� þ p ! Kþ þ Y�. Deduce its baryon number, strangeness, charm and beauty,

and using these, its quark content. The Y�ð1311Þ decays by the reaction

Y� ! �þ ��. Give a rough estimate of its lifetime.

3.8 Verify the expression in Table 3.7 for the mass of the 1
2

þ
� baryon, given that the

spins of the two non-strange quarks combine to give S ¼ 1.

3.9 Consider the reaction K� þ p ! �� þ Kþ þ K0 followed by the sequence of decays

�� ! �0 þ ��
j! �0 þ �;

j! 	 þ 	

Kþ ! �þ þ �0

j! �þ þ ��
and K0 ! �þ þ �� þ �0

Classify each process as strong, weak or electromagnetic and give your reasons.
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3.10 Draw the lowest-order Feynman diagram for the decay Kþ ! �þ þ �� þ 	 and

hence deduce the form of the overall effective coupling.

3.11 A KamLAND-type experiment detects ���e neutrinos at a distance of 200 m from a

nuclear reactor and finds that the flux is ð90 � 10Þ per cent of that expected if there

were no oscillations. Assuming maximal mixing and a mean neutrino energy of

3 MeV, use this result to estimate upper and lower bounds on the squared mass of

the ���e.

3.12 Comment on the feasibility of the following reactions:

(a) p þ �pp ! �þ þ ��;

(b) p ! eþ þ 	;

(c) �0 ! �þ 	;

(d) p þ p ! �þ þ n þ K0 þ �þ;

(e) �� ! �þ ��;

(f) �þ ! p þ �0.

3.13 Use the results of Section 3.3.1 to deduce a relation between the total cross-sections

for the reactions ��p ! K0�0; ��p ! Kþ��and �þp ! Kþ�þ at a fixed energy.

3.14 At a certain energy �ð�þnÞ � �ð��pÞ, whereas �ðKþnÞ 6¼ �ðK�pÞ. Explain this.
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4
Experimental Methods

In earlier chapters we have discussed the results of a number of experiments, but

said almost nothing about how such experiments are done. In this chapter we will

take a brief look at experimental methods. This is a very extensive subject and the

aim will not be to give a comprehensive review, but rather to emphasize the

physical principles behind the methods. More details may be found in specialized

texts.1

4.1 Overview

To explore the structure of nuclei (nuclear physics) or hadrons (particle physics)

requires projectiles whose wavelengths are at least as small as the effective radii of

the nuclei or hadrons. This determines the minimum value of the momentum

p ¼ h=� and hence the energy required. The majority of experiments are

conducted using beams of particles produced by machines called accelerators.

This has the great advantage that the projectiles are of a single type, and have

energies that may be controlled by the experimenter.2 For example, beams that are

essentially mono-energetic may be prepared, and can be used to study the energy

dependence of interactions. The beam, once established, is directed onto a target so

that interactions may be produced. In a fixed-target experiment the target is

stationary in the laboratory. Nuclear physics experiments are almost invariably of

this type, as are many experiments in particle physics.

In particle physics, high energies are also required to produce new and unstable

particles and this reveals a disadvantage of fixed-target experiments when large

1See, for example, Fe86 and Kl86.
2Nevertheless, important experiments are still performed without using accelerators, for example some of
those described in Chapter 3 on neutrino oscillations used cosmic rays and nuclear reactors. In fact cosmic
rays are still the source of the very highest-energy particles.

Nuclear and Particle Physics B. R. Martin
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centre-of-mass energies are required. The centre-of-mass energy is important

because it is a measure of the energy available to create new particles. In the

laboratory frame at least some of the final-state particles must be in motion to

conserve momentum. Consequently, at least some of the initial beam energy must

reappear as kinetic energy of the final-state particles, and is therefore unavailable

for particle production. In contrast, in the centre-of-mass frame the total momen-

tum is zero and, in principle, all the energy is available for particle production.

To find the centre-of-mass energy we use the expression

E2
CM ¼ Pt þ Pbð Þ2

c2; ð4:1Þ

where P is the particle’s four-momentum and the subscripts t and b refer to target

and beam, respectively.3 For a fixed-target experiment in the laboratory we have

Pt ¼ mtc ; 0ð Þ; Pb ¼ EL=c; pbð Þ: ð4:2Þ

Expanding Equation (4.1) gives

E2
CM ¼ P2

t þ P2
b þ 2PtPb

� �
c2 ð4:3Þ

and using P2
t ¼ m2

t c2 etc., together with the general result

PiPj ¼ EiEj=c2 � pi � pj ; ð4:4Þ

we have

ECM ¼ m2
bc4 þ m2

t c4 þ 2mtc
2EL

� �1=2
: ð4:5Þ

At high energies this increases only as ðELÞ
1
2 and so an increasingly smaller

fraction of the beam energy is available for particle production, most going to

impart kinetic energy to the target.

In a colliding-beam accelerator, two beams of particles travelling in almost

opposite directions are made to collide at a small or zero crossing angle. If for

simplicity we assume the particles in the two beams have the same mass and

laboratory energy EL and collide at zero crossing angle, then the total centre-

of-mass energy is

ECM ¼ 2EL: ð4:6Þ

This increases linearly with the energy of the accelerated particles, and hence is a

significant improvement on the fixed-target result. Colliding-beam experiments are

not, however, without their own disadvantages. The colliding particles have to be

stable, which limits the interactions that can be studied, and the collision rate in the

intersection region is smaller than that achieved in fixed-target experiments,

because the particle densities in the beams are low compared with a solid or

liquid target.

3A brief summary of relativistic kinematics is given in Appendix B.
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Finally, details of the particles produced in the collision (e.g. their momenta) are

deduced by observing their interactions with the material of detectors, which are

placed in the vicinity of the interaction region. A wide range of detectors is

available. Some have a very specific characteristic, others serve more than one

purpose. Modern experiments, particularly in particle physics, typically use several

types in a single experiment.

In this chapter we start by describing some of the different types of accelerator

that have been built, the beams that they can produce and also how beams of

neutral and unstable particles can be prepared. Then we discuss the ways in which

particles interact with matter, and finally review how these mechanisms are

exploited in the construction of a range of particle detectors.

4.2 Accelerators and Beams

All accelerators use electromagnetic forces to boost the energy of stable charged

particles. These are injected into the machine from a device that provides a high-

intensity source of low-energy particles, for example an electron gun (a hot

filament), or a proton ion source. The accelerators used for nuclear structure

studies may be classified into those that develop a steady accelerating field

(DC machines) and those in which radio frequency electric fields are used

(AC machines). All accelerators for particle physics are of the latter type. We

start with a brief description of DC machines.

4.2.1 DC accelerators

The earliest type of DC accelerator was the Cockcroft–Walton machine, in which

ions pass through sets of aligned electrodes that are operated at successively higher

potentials. These machines are limited to energies of about 1 MeV, but are still

sometimes used as injectors as part of the multistage process of accelerating

particles to higher energies.4

The most important DC machine in current use is the van de Graaff accelerator

and an ingenious version of this, known as the tandem van de Graaff, that doubles

the energy of the simple machine, is shown schematically in Figure 4.1. The key

to this type of device is to establish a very high voltage. The van de Graaff

accelerator achieves this by using the fact that the charge on a conductor resides

on its outermost surface and hence if a conductor carrying charge touches another

conductor it will transfer its charge to the outer surface of the second conductor.

4Sir John Cockcroft and Ernest Walton received the 1951 Nobel Prize in Physics for the development of their
accelerator and the subsequent nuclear physics experiments they did using it.
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In Figure 4.1, a high voltage source at I passes positive ions to a belt via a comb

arrangement at C. The belt is motor driven via the pulleys at P and the ions are

carried on the belt to a second pulley where they are collected by another comb

located within a metal vessel T. The charges are then transferred to the outer

surface of the vessel, which acts as an extended terminal. In this way a high

voltage is established on T. Singly-charged negative ions are injected from a

source and accelerated along a vacuum tube towards T. Within T there is a stripper

S (for example a thin carbon foil) that removes two or more electrons from the

projectiles to produce positive ions. The latter then continue to accelerate through

the second half of the accelerator increasing their energy still further and finally

may be bent and collimated to produce a beam of positive ions. This brief account

ignores many technical details. For example, an inert gas at high pressure is used to

minimize electrical breakdown by the high voltage. The highest energy van de

Graaff accelerator can achieve a potential of about 30–40 MeV for singly-charged

ions and greater if more than one electron is removed by the stripper. It has been a

mainstay of nuclear research.

4.2.2 AC accelerators

Accelerators using radio frequency (r.f.) electric fields may conveniently be

divided into linear and cyclic varieties.

Linear accelerators

In a linear accelerator (or linac) for acclerating ions, particles pass through a series

of metal pipes called drift tubes, that are located in a vacuum vessel and connected

successively to alternate terminals of an r.f. oscillator, as shown in Figure 4.2.

Positive ions accelerated by the field move towards the first drift tube. If the

Figure 4.2 Acceleration in a linear ion accelerator
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alternator can change its direction before the ions passes through that tube, then

they will be accelerated again on their way between the exit of the first and entry

to the second tube, and so on. Thus the particles will form bunches. Because

the particles are accelerating, their speed is increasing and hence the lengths

of the drift tubes have to increase to ensure continuous acceleration. To produce

a useful beam the particles must keep in phase with the r.f. field and remain

focused.

In the case of electrons, their velocity very rapidly approaches the speed of light.

In this case a variation of the linac method that is more efficient is used to

accelerate them. Bunches of particles pass through a straight evacuated waveguide

with a periodic array of gaps, similar to the ion accelerator. Radio frequency

oscillations in the gaps are used to establish a moving electromagnetic wave in the

structure, with a longitudinal component of the electric field moving in phase with

the particles. As long as this phase relationship can be maintained, the particles

will be continuously accelerated. Radio frequency power is pumped into the

waveguide at intervals to compensate for resistive losses and gives energy to the

electrons. The largest electron linac is at the SLAC laboratory in Stanford, USA,

and has a maximum energy of 50 GeV. It is over 3 km long.

An ingenious way of reducing the enormous lengths of high-energy linacs has

been developed at the Continuous Electron Beam Accelerator Facility (CEBAF) at

the Jefferson Laboratory in the USA. This utilizes the fact that above about

50 MeV, electron velocities are very close to the speed of light and thus electrons

of very different energies can be accelerated in the same drift tube. Instead of a

single long linac, the CEBAF machine consists of two much shorter linacs and the

beam from one is bent and passed through the other. This can be repeated for up to

four cycles. Even with the radiation losses inherent in bending the beams, very

intense beams can be produced with energies between 0.5 and 6.0 GeV. CEBAF is

proving to be an important machine in the energy region where nuclear physics

and particle physics descriptions overlap.

Cyclic accelerators

Cyclic accelerators used for low-energy nuclear physics experiments are of a type

called cyclotrons. They are also used to produce beams of particles for medical

applications, including proton beams for radiation therapy. Cyclotrons operate in a

somewhat different way to cyclic accelerators used in particle physics, which are

called synchrotrons. In a cyclotron,5 charged particles are constrained to move

in near-circular orbits by a magnetic field during the acceleration process. There

are several types of cyclotron; we will describe just one. This is illustrated

5The cyclotron was invented by Ernest Lawrence, who received the 1939 Nobel Prize in Physics for this and
the experimental work he did using it.
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schematically in Figure 4.3. The accelerator consists of two ‘dee’-shaped sections

across which an r.f. electric field is established. Charged ions are injected into the

machine near its centre and are constrained to traverse outward in spiral

trajectories by a magnetic field. The ions are accelerated each time they pass

across the gap between the dees. At the maximum radius, which corresponds to the

maximum energy, the beam is extracted. The shape of the magnetic field, which is

also shown in Figure 4.3, ensures that forces act on particles not orbiting in the

medium plane to move them closer to this plane. This brief description ignores the

considerable problems that have to be overcome to ensure that the beam remains

focused during the acceleration.

The principle of a synchrotron is analogous to that of a linear accelerator, but

where the acceleration takes place in a near circular orbit rather than in a straight

line. The beam of particles travels in an evacuated tube called the beam pipe and is

constrained in a circular or near circular path by an array of dipole magnets called

bending magnets (Figure 4.4). Acceleration is achieved as the beam repeatedly

traverses one or more cavities placed in the ring where energy is given to the

particles. Since the particles travel in a circular orbit they continuously emit

radiation, called in this context synchrotron radiation. The amount of energy

radiated per turn by a relativistic particle of mass m is proportional to 1=m4.

For electrons the losses are thus very severe, and the need to compensate for these

by the input of large amounts of r.f. power limits the energies of electron

synchrotrons.

The momentum in GeV/c of an orbiting particle assumed to have unit charge is

given by p ¼ 0:3B�, where B is the magnetic field in Tesla and �, the radius of

curvature, is measured in metres. Because p is increased during acceleration, B

must also be steadily increased if � is to remain constant, and the final momentum

is limited both by the maximum field available and by the size of the ring. With

Figure 4.3 Schematic diagram of a cyclotron (adapted from Kr88, copyright John Wiley &
Sons)
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conventional electromagnets, the largest field attainable over an adequate region is

about 1.5 T, and even with superconducting coils it is only of the order of 10 T.

Hence the radius of the ring must be very large to achieve very high energies.

For example, the Tevatron accelerator, located at the Fermi National Laboratory,

Chicago, USA, which accelerates protons to an energy of 1 TeV, has a radius of

l km. A large radius is also important to limit synchrotron radiation losses in

electron machines.

In the course of its acceleration, a beam may make typically 105 traversals of its

orbit before reaching its maximum energy. Consequently stability of the orbit is

vital, both to ensure that the particles continue to be accelerated, and that they do

not strike the sides of the vacuum tube. In practice, the particles are accelerated in

bunches each being synchronized with the r.f. field. In equilibrium, a particle

increases its momentum just enough to keep the radius of curvature constant as

the field B is increased during one rotation, and the circulation frequency of the

particle is in step with the r.f. of the field. This is illustrated in Figure 4.5. With

obvious changes, a similar principle is used in linear accelerators.

In practice, the particles remain in the bunch, but their trajectories oscillate

about the stable orbits. These oscillations are controlled by a series of focusing

magnets, usually of the quadrupole type, which are placed at intervals around the

beam and act like optical lenses. A schematic diagram of one of these is shown in

Figure 4.4. Each focuses the beam in one direction and so alternate magnets have

their field directions reversed.

In addition to the energy of the beam, one is also concerned to produce a beam

of high intensity, so that interactions will be plentiful. The intensity is ultimately

limited by defocussing effects, e.g. the mutual repulsion of the particles in the

Figure 4.4 Cross-section of (a) a typical bending (dipole) magnet, and (b) a focusing
(quadrupole) magnet; the thin arrows indicate field directions; the thick arrows indicate the
force on a negative particle travelling into the paper
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beam, and a number of technical problems have to be overcome which are outside

the scope of this brief account.6

Fixed-target machines and colliders

Both linear and cyclic accelerators can be divided into fixed-target and colliding-

beam machines. The latter are also known as colliders, or sometimes in the case of

cyclic machines, storage rings.7 In fixed-target machines, particles are accelerated

to the highest operating energy and then the beam is extracted from the machine

and directed onto a stationary target, which is usually a solid or liquid. Much

higher energies have been achieved for protons than electrons, because of the large

radiation losses inherent in electron machines mentioned earlier. The intensity of

the beam is such that large numbers of interactions can be produced, which can

either be studied in their own right or used to produce secondary beams.

The main disadvantage of fixed-target machines for particle physics has been

mentioned earlier: the need to achieve large centre-of-mass energies to produce

6Very recently (2005) significant progress has been made on an ‘induction synchrotron’ in which a changing
magnetic field produces the electric field that accelerates the particles. This device has the potential to
overcome certain effects that limit the intensity achievable in conventional synchrotrons.
7The use of the terms storage rings and colliders as synonymous is not strictly correct, because we will see
that the former can also describe a machine that stores a single beam for use on both internal and external
fixed targets.

Figure 4.5 Magnitude of the electric field as a function of time at a fixed point in the rf cavity:
particle B is synchronous with the field and arrives at time tB; particle A (C) is behind (ahead of)
B and receives an increase (decrease) in its rotational frequency -- thus particles oscillate about
the equilibrium orbit
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new particles. Almost all new machines for particle physics are therefore colliders,

although some fixed-target machines for specialized purposes are still constructed.

The largest collider currently under construction is the Large Hadron Collider

(LHC), which is being built at CERN, Geneva, Switzerland. This is a massive pp

accelerator of circumference 27 km, with each beam having an energy of 7 TeV.

A schematic diagram of the CERN site showing the LHC and some of its other

accelerators is shown in Figure 4.6. The acceleration process starts with a linac

Figure 4.6 A schematic diagram of the CERN site showing the LHC and some of its other
accelerators (CERN photo, reproduced with permission)
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whose beam is boosted in energy in the Proton Synchrotron Booster (PSB) and

passed to the Proton Synchrotron (PS), a machine that is still the source of beams

for lower-energy experiments. The beam energy is increased still further in the

Super Proton Synchrotron (SPS) that also provides beams for a range of experi-

ments as well as the injection beams for the LHC itself. Four beam intersection

points are shown in the LHC and experiments (ALICE, CMS, LHC-b and ATLAS)

will be located at each of these. The extracted neutrino beam shown at the bottom

of the diagram is sent to the Gran Sasso laboratory 730 km away and is used,

amongst other things, for experiments on neutrino oscillations of the type

discussed in Chapter 3.

Another very large collider we should mention is the Relativistic Heavy Ion

Collider (RHIC), located at Brookhaven National Laboratory, USA. This unique

machine, which began operation in 2000 following 10 years of development and

construction, is the first collider in the world capable of accelerating heavy ions.

Like the LHC above, there are several stages, involving a linac, a tandem van de

Graaff and a synchrotron, before the ions are injected into the main machine.

There they form two counter-circulating beams controlled by two 4-km rings of

superconducting magnets and are accelerated to an energy of 100 GeV/nucleon.

Thus the total centre-of-mass energy is 200 GeV/nucleon. Collisions occur at six

intersection points, where major experiments can be sited. RHIC primarily

accelerates ions of gold and is used to study matter at extreme energy-densities,

where a new state of matter called a ‘quark–gluon plasma’ is predicted to occur.

We will return to this briefly in Chapter 9.

The performance of a collider is characterized by its luminosity, which was

defined in Chapter 1. The general formula for luminosity given there is shown in

Problem 1.10 to reduce in the case of a collider to the useful form

L ¼ n
N1N2

A
f ; ð4:7Þ

where Niði ¼ 1,2) are the numbers of particles in the n colliding bunches, A is the

cross-sectional area of the beam and f is the frequency, i.e. f ¼ 1=T , where T is the

time taken for the particles to make one traversal of the ring.

An interesting proton synchrotron for nuclear physics studies is the COSY

facility located at the Research Centre Jülich, Germany. Low-energy protons are

pre-accelerated in a cyclotron, then cooled to reduce their transverse momentum

and injected into a synchrotron, where they are further accelerated to momenta in

the range 600–3700 MeV/c (corresponding to energies of 175–2880 MeV). The

protons can be stored in the ring for appreciable times and are available for

experiments not only in the usual way by extracting the beam, but also by using the

circulating beam to interact with a very thin internal target. Thus we have a

mixture of storage rings and fixed targets. The fact that the circulating beam may

make as many as 1010 traversals through the target compensates to some extent for

its low particle density.
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4.2.3 Neutral and unstable particle beams

The particles used in accelerators must be stable and charged, but one is also

interested in the interaction of neutral particles, e.g. photons and neutrons, as well

as those of unstable particles, such as charged pions. Beams appropriate for

performing such experiments are produced in a number of ways.

We have seen that neutrons are the natural product of radioactive decays and we

will see in Chapter 8 that a large flux of neutrons is present in a nuclear reactor.

Typically these will have a spectrum concentrated at low energies of 1–2 MeV, but

extending as high as 5–6 MeV. Purpose-built reactors exist for research purposes,

such as the ILL reactor at the Institut Laue-Langevin, France. Another source of

neutrons is via the spallation process. The most important neutron spallation

source at present is ISIS located at the Rutherford Appleton Laboratory, UK.

Protons which have been accelerated in a linac to 70 MeV are injected into a

synchrotron that further accelerates them to 800 MeV, where they collide with a

heavy metal target of tantalum. The interaction drives out neutrons from the target

and provides an intense pulsed source. In each case, if beams of lower-energy

neutrons are required these are produced by slowing down faster neutrons in

moderators, which are materials with a large cross-section for elastic scattering,

but a small cross-section for absorption. In Chapter 8 we will see that moderators

are vital for the successful extraction of power from fission nuclear reactors.

Beams of unstable particles can be formed provided their constituents live long

enough to travel appreciable distances in the laboratory. One way of doing this is to

direct an extracted primary beam onto a heavy target. In the resulting interactions

with the target nuclei, many new particles are produced which may then be

analysed into secondary beams of well-defined momentum. Such beams will

ideally consist predominantly of particles of one type, but if this cannot

be achieved, then the wanted species may have to be identified by other means.

In addition, if these secondary beams are composed of unstable particles, they can

themselves be used to produce further beams formed from their decay products.

Two examples will illustrate how, in principle, such secondary particle beams can

be formed.

Consider firstly the construction of a K� beam from a primary beam of protons.

By allowing the protons to interact with a heavy target, secondary particles will be

produced. Most of these will be pions, but a few will be kaons (that have to be

produced with a hyperon to conserve strangeness – this an example of so-called

associated production). A collimator can be used to select particles in a particular

direction, and the K� component can subsequently be removed and focused into a

mono-energetic beam by selective use of electrostatic fields and bending and

focusing magnets.

The pion beam may also be used to produce a beam of neutrinos. For example,

the �� is unstable and as we have seen, one of its weak interaction decays modes is

�� ! �� þ ����. So if the pions are passed down a long vacuum pipe, many will
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decay in flight to give muons and anti-neutrinos, which will mostly travel in

essentially the same direction as the initial beam. The muons and any remaining

pions can then be removed by passing the beam through a very long absorber,

leaving the neutrinos. In this case the final neutrino beam will have a momentum

spectrum reflecting the initial momentum spectrum of the pions and, since

neutrinos are neutral, no further momentum selection using magnets is possible.

4.3 Particle Interactions with Matter

In order to be detected, a particle must undergo an interaction with the material of

a detector. In this section we discuss these interactions, but only in sufficient detail

to be able to understand the detectors themselves.

The first possibility is that the particle interacts with an atomic nucleus. For

example, this could be via the strong nuclear interaction if it is a hadron, or by the

weak interaction if it is a neutrino. We know from the work of Chapter 1 that both

are short-range interactions. If the energy is sufficiently high, new particles may

be produced, and such reactions are often the first step in the detection process. In

addition to these short-range interactions, a charged particle will also excite and

ionize atoms along its path, giving rise to ionization energy losses, and emit

radiation, leading to radiation energy losses. Both of these processes are due to the

long-range electromagnetic interaction. They are important because they form the

basis of most detectors for charged particles. Photons are also directly detected by

electromagnetic interactions, and at high energies their interactions with matter

lead predominantly to the production of eþe� pairs via the pair production process

	 ! eþ þ e�, which has to occur in the vicinity of a nucleus to conserve energy

and momentum. (Recall the discussion in Chapter 1 on the range of forces.) All

these types of interactions are described in the following sections.

4.3.1 Short-range interactions with nuclei

For hadrons, the most important short-range interactions with nuclei are due to the

strong nuclear force which, unlike the electromagnetic interaction, is as important

for neutral particles as for charged ones, because of the charge-independence of the

strong interaction. Both elastic scattering and inelastic reactions may result. At

high energies, many inelastic reactions are possible, most of them involving the

production of several particles in the final state.

Many hadronic cross-sections show considerable structure at low energies due to

the production of hadronic resonances, but at energies above about 3 GeV, total

cross-sections are usually slowly varying in the range 10–50 mb and are much

larger than the elastic cross-section. (The example of ��p scattering is shown

in Figure 4.7.) This is of the same order-of-magnitude as the ‘geometrical’
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cross-section �r2 � 30 mb, where r � 1 fm is the approximate range of the strong

interaction between hadrons. Total cross-sections on nuclei are much larger see

for example Figure (2.17), increasing roughly as the square of the nuclear radius,

i.e. as A2=3.

A special case is the detection of thermal neutrons (defined as those with kinetic

energies energies below about 0.02 eV). We have seen in Chapter 2 that neutrons in

this region have very large cross-sections for being absorbed, leading to the

production of a compound nucleus which decays by delayed emission of a 	-ray.

Examples of these so-called neutron activation reactions are 63Cuðn; 	Þ64
Cu and

55Mnðn; 	Þ56
Mn.

The probability of a hadron-nucleus interaction occurring as the hadron

traverses a small thickness dx of material is given by n
totdx, where n is the

number of nuclei per unit volume in the material. Consequently, the mean distance

travelled before an interaction occurs is given by

‘c ¼ 1=n
tot: ð4:8Þ

This is called the collision length. An analogous quantity is the absorption length,

defined by

‘a ¼ 1=n
inel; ð4:9Þ

that governs the probability of an inelastic collision. In practice, ‘c � ‘a at high

energies. As examples, the interaction lengths are between 10 and 40 cm

for nucleons of energy in the range 100–300 GeV interacting with metals such

as iron.

Figure 4.7 Total and elastic cross-sections for ��p scattering as functions of the pion
laboratory momentum
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Neutrinos and antineutrinos can also be absorbed by nuclei, leading to reactions

of the type

���‘ þ p ! ‘þ þ X; ð4:10Þ

where ‘ is a lepton and X denotes any hadron or set of hadrons allowed by the

conservation laws. Such processes are weak interactions (because they involve

neutrinos) and the associated cross-sections are extremely small compared with the

cross-sections for strong interaction processes. The corresponding interaction

lengths are therefore enormous. Nonetheless, in the absence of other possibilities

such reactions are the basis for detecting neutrinos. Finally, photons can be

absorbed by nuclei, giving photoproduction reactions such as 	 þ p ! X. How-

ever, these electromagnetic interactions are only used to detect photons at low

energies, because at higher energies there is a far larger probability for eþe� pair

production in the Coulomb field of the nucleus. We will return to this in

Section 4.3.4.

4.3.2 Ionization energy losses

Ionization energy losses are important for all charged particles, and for particles

other than electrons and positrons they dominate over radiation energy losses at all

but the highest attainable energies. The theory of such losses, which are due

dominantly to Coulomb scattering from the atomic electrons, was worked out by

Bethe, Bloch and others in the 1930s. The result is called the Bethe–Bloch

formula, and for spin-0 bosons with charge 	q (in units of e), mass M and velocity

v, it takes the approximate form (neglecting small corrections for highly relativistic

particles)

� dE

dx
¼ D q2ne

�2
ln

2mec2�2	2

I

� �
� �2

� �
; ð4:11Þ

where x is the distance travelled through the medium;

D ¼ 4�2 �h2

me

¼ 5:1 
 10�25MeV cm2 ; ð4:12Þ

me is the electron mass, � ¼ v=c and 	 ¼ ð1 � �2Þ�1=2
. The other constants refer

to the properties of the medium: ne is the electron density; I is the mean ionization

potential of the atoms averaged over all electrons, which is given approximately by

I ¼ 10 Z eV for Z greater than 20. The corresponding formula for spin-1
2

particles

differs from this, but in practice the differences are small and may be neglected in

discussing the main features of ionization energy loses.

Examples of the behaviour of �dE=dx for muons, pions and protons traversing a

range of materials is shown in Figure 4.8. It is common practice to absorb the

density � of the medium by dividing by � and expressing dE=dx in terms of an
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equivalent thickness of gm cm�2 – hence the units in Figure 4.8. As can be seen,

�dE=dx falls rapidly as the velocity increases from zero because of the 1=�2 factor

in the Bethe–Bloch equation. All particles have a region of ‘minimum ionization’

for �	 in the range 3–4. Beyond this, � tends to unity, and the logarithmic factor in

the Bethe–Bloch formula gives a ‘relativistic rise’ in �dE=dx.

The magnitude of the energy loss depends on the medium. The electron density

is given by ne ¼ �NAZ=A, where NA is Avogadro’s number, and � and A are the

mass density and atomic weight of the medium, so the mean energy loss is

proportional to the density of the medium. The remaining dependence on the

medium is relatively weak because Z=A � 0:5 for all atoms except the very light

Figure 4.8 Ionization energy loss for muons, pions and protons on a variety of mate-
rials (reprinted from Ei04, copyright Elsevier, with permission)
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and the very heavy elements, and because the ionization energy I only enters the

Bethe–Bloch formula logarithmically. In the ‘minimum ionization’ region where

�	 � 3–4, the minimum value of �dE=dx can be calculated from Equation (4.11)

and for a particle with unit charge is given approximately by

� dE

dx

� �
min

� 3:5
Z

A
MeVg�1cm2: ð4:13Þ

Ionization losses are proportional to the squared charge of the particle, so that a

fractionally charged particle with �	 � 3 would have a much lower rate of energy

loss than the minimum energy loss of any integrally charged particle. This has

been used as a means of identifying possible free quarks, but without success.

From the knowledge of the rate of energy loss, we can calculate the attenuation

as a function of distance travelled in the medium. This is called the Bragg curve.

Most of the ionization loss occurs near the end of the path where the speed is

smallest and the curve has a pronounced peak (the Bragg peak) close to the end

point before falling rapidly to zero at the end of the particle’s path length.

The range R, i.e. the mean distance a particle travels before it comes to rest is

defined as

R �
ðxmax

0

dxð�Þ; ð4:14Þ

which, using Equation (4.11), may be written

R ¼
ð�initial

0

� dE

dx

� ��1
dE

d�
d� ¼ M

q2ne

Fð�initialÞ; ð4:15Þ

where F is a function of the initial velocity and we have used the relation

E ¼ 	Mc2 to show the dependence on the projectile mass M.

The range as given by Equation (4.15) is actually an average value because

scattering is a statistical process and there will therefore be a spread of values for

individual particles. The spread will be greater for light particles and smaller for

heavier particles such as -particles. These properties have implications for the use

of radiation in therapeutic situations, where it may be necessary to deposit energy

within a small region at a specific depth of tissue, for example to precisely target a

cancer. The biological effects of radiation will be discussed in Chapter 8.

Because neutrons are uncharged, direct detection is not possible by ionization

methods. However, they can be detected via the action of the charged products of

induced direct nuclear reactions. Commonly used reactions are 6Liðn; Þ3
H,

10Bðn; Þ7
Li and 3Heðn; pÞ3

H. All these reactions are exothermic and so are

very suitable for detecting neutrons with energies below about 20 MeV. Moreover,

as nuclear cross-sections tend to increase as v�1 at low energies, detection

becomes more efficient the slower the neutron.
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4.3.3 Radiation energy losses

When a charged particle traverses matter it can also lose energy by radiative

collisions, especially with nuclei. The electric field of a nucleus will accelerate and

decelerate the particles as they pass, causing them to radiate photons, and hence

lose energy. This process is called bremsstrahlung (literally ‘braking radiation’ in

German) and is a particularly important contribution to the energy loss for

electrons and positrons.

The dominant Feynman diagrams for electron bremsstrahlung in the field of a

nucleus, i.e.
e� þ ðZ;AÞ ! e� þ 	 þ ðZ;AÞ; ð4:16Þ

are shown in Figure 4.9 and are of the order of Z23. The function of the nucleus

is to absorb the recoil energy and so ensure that energy and momentum are

simultaneously conserved (recall the discussion of Feynman diagrams in Chapter 1).

There are also contributions from bremsstrahlung in the fields of the atomic

electrons, each of the order of 3. Since there are Z atomic electrons for each

nucleus, these give a total contribution of the order of Z3, which is small

compared with the contribution from the nucleus for all but the lightest elements.

A detailed calculation shows that for relativistic electrons with E  mc2=Z1=3,

the average rate of energy loss is given by

�dE=dx ¼ E=LR: ð4:17Þ

The constant LR is called the radiation length and is a function of Z and na, the

number density of atoms/cm3 in the medium. Integrating Equation (4.17) gives

E ¼ �E0 exp �x=LRð Þ; ð4:18Þ

where E0 is the initial energy. It follows that the radiation length is the average

thickness of material that reduces the mean energy of an electron or positron by a

factor e. For example, the radiation length in lead is 0.566 cm.

From these results, we see that at high energies the radiation losses are

proportional to E=m2
p for an arbitrary charged particle of mass mp. On the other

Figure 4.9 Dominant Feynmandiagrams for thebremsstrahlungprocess e� þ ðZ; AÞ ! e�þ 	 þ ðZ; AÞ
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hand, the ionization energy losses are only weakly dependent on the projectile

mass and energy at very high energies. Consequently, radiation losses completely

dominate the energy losses for electrons and positrons at high enough energies, but

are much smaller than ionization losses for all particles other than electrons and

positrons at all but the highest energies.

Taking into account the above and the results of Section 4.3.2, we see that at low

energies, particles with the same kinetic energy but different masses can have

substantially different ranges. Thus, for example, an electron of 5 MeV has a range

that is several hundred times that of an -particle of the same kinetic energy.

4.3.4 Interactions of photons in matter

In contrast to heavy charged particles, photons have a high probability of being

absorbed or scattered through large angles by the atoms in matter. Consequently, a

collimated monoenergetic beam of I photons per second traversing a thickness dx

of matter will lose

dI ¼ �I
dx

�
ð4:19Þ

photons per second, where

� ¼ ðna
	Þ�1 ð4:20Þ

is the mean free path before absorption or scattering out of the beam, and 
	 is

the total photon interaction cross-section with an atom. The mean free path � is

analogous to the collision length for hadronic reactions. Integrating Equation (4.19)

gives

IðxÞ ¼ I0e�x=� ð4:21Þ

for the intensity of the beam as a function of distance, where I0 is the initial

intensity.

The main processes contributing to 
	 are: Rayleigh scattering, in which the

photon scatters coherently from the atom, the photoelectric effect, in which the

photon is absorbed by the atom as a whole with the emission of an electron;

Compton scattering,8 where the photon scatters from an atomic electron; and

electron–positron pair production in the field of a nucleus or of an atomic electron.

The corresponding cross-sections on carbon and lead are shown in Figure 4.10,

where it can be seen that above a few MeV the cross-section is dominated by pair

production from the nucleus. The pair production process is closely related to

8Arthur Compton shared the 1927 Nobel Prize in Physics for the discovery of the increase in wavelength that
occurs when photons with energies of around 0.5–3.5 MeV interact with electrons in a material – the original
Compton effect.

PARTICLE INTERACTIONS WITH MATTER 129



electron bremsstrahlung, as can be seen by comparing the Feynman diagrams

shown in Figures 4.9 and 4.11.

The cross-section for pair production rises rapidly from threshold, and is given

to a good approximation by


pair ¼
7

9

1

naLR

; ð4:22Þ

for E	  mc2=Z1=3, where LR is the radiation length. Substituting these results

into Equation (4.21), gives

IðxÞ ¼ I0 expð�7x=9LRÞ; ð4:23Þ

so that at high energies, photon absorption, like electron radiation loss, is

characterized by the radiation length LR.

Figure 4.10 Total experimental photon cross-section 
	 on (a) a carbon atom, and (b) a lead
atom, together with the contributions from (a) the photoelectric effect, (b) Rayleigh (coherent
atomic) scattering, (c) Compton scattering, (d) pair production in the field of the nucleus, and
(e) pair production in the field of the atomic electrons (adapted from Ei04, copyright Elsevier,
with permission)

Figure 4.11 The pair production process 	 þ ðZ; AÞ ! e� þ eþ þ ðZ; AÞ
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4.4 Particle Detectors

The detection of a particle means more than simply its localization. To be useful

this must be done with a resolution sufficient to enable particles to be separated

in both space and time in order to determine which are associated with a parti-

cular event. We also need to be able to identify each particle and measure its

energy and momentum. No single detector is optimal with respect to all these

requirements, although some are multifunctional. For example, calorimeters,

primarily used for making energy measurements, can also have very good space

and time resolution. Many of the devices discussed below are commonly used both

in nuclear and particle physics, but in the former a small number of types of

detector is often sufficient, whereas in particle physics, both at fixed-target

machines and colliders, modern experiments commonly use very large multi-

component detectors which integrate many different sub-detectors in a single

device. Such systems rely heavily on fast electronics and computers to monitor

and control the sub-detectors, and to coordinate, classify and record the vast

amount of information flowing in from different parts of the apparatus. In this

section we will briefly introduce some of the most important detectors currently

available, but detector development is a rapidly-moving major area of research

and new devices are frequently developed, so the list below is by no means

exhaustive.9

4.4.1 Gas detectors

Most gas detectors detect the ionization produced by the passage of a charged

particle through a gas, typically an inert one such as argon, either by collecting the

ionization products or induced charges onto electrodes, or (historically) by making

the ionization track visible in some form. The average energy needed to produce

an electron–ion pair is 30 	 10 eV, with a weak dependence on the gas used and

the energy of the incident particle. In practice, the output is a pulse at the anode

(which is amplified by electronic means), with the bulk of the signal being due to

the positive ions because of their longer drift distance. For a certain range of

applied voltages – the so-called ‘proportional region’ (see below) – these devices

are primarily used to provide accurate measurements of a particle’s position. As

position detectors, gas detectors largely replaced earlier detectors which used

visual techniques, such as cloud chambers, bubble chambers and stacks of

photographic emulsions, although the latter are still an ingredient in some neutrino

experiments. Although historically important, none of these visual devices are now

9For more detailed discussions of particle detectors see, for example, Gr96 and the references in Footnote 1.
There are also useful reviews in Chapter 5 of Ho97 and Ei04.
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in general use and they have been superceded by electronic detectors.10 In particle

physics experiments being planned at the new accelerators currently being built,

gas detectors themselves are being replaced by a new generation of solid-state

detectors based on silicon.

To understand the principles of gas detectors we refer to Figure 4.12, which

shows the number of ion pairs produced per incident charged particle (the gas

10These early detector techniques produced many notable discoveries and their importance has been
recognized by the award of no less than five Nobel Prizes in Physics: a share of the 1927 Prize to Charles
Wilson for the invention and use of the cloud chamber; the 1948 Prize to Patrick Blackett for further
developments of the cloud chamber and discoveries made with it; the 1950 Prize to Cecil Powell for
development of the photographic emulsion technique and its use to discover pions; the 1960 Prize to Donald
Glaser for the invention of the bubble chamber; and the 1968 Prize to Luis Alvarez for developing the bubble
chamber and associated data analysis techniques resulting in the discovery of a large number of hadronic
resonances.

Figure 4.12 Gas amplification factor as a function of voltage V applied in a single-wire gas
detector, with a wire radius typically 20mm, for a strongly ionizing particle () and a weakly
ionizing particle (electron)
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amplification factor) as a function of the applied voltage V for two cases: a heavily

ionizing particle (e.g. an alpha particle – upper curve) and a lightly ionizing

particle (e.g. an electron – lower curve).

Ionization chamber

At low applied voltages, the output signal is very small because electron–ion pairs

recombine before reaching the electrodes, but as the voltage increases the number

of pairs increases to a saturation level representing complete collection. This is the

region of the ionization chamber. The simplest type of chamber is a parallel plate

condenser filled with an inert gas and having an electric field E ¼ V=d, where d is

the distance between the plates. In practice the gas mixture must contain at lease

one ‘quenching’ component that absorbs ultraviolet light and stops a plasma

forming and spreading throughout the gas.

Another arrangement is cylindrical with an inner anode of radius ra and an outer

cathode of radius rc, giving an electric field

EðrÞ ¼ V

rlnðrc=raÞ
ð4:24Þ

at a radial distance r from the centre of the anode wire. The output signal is

proportional to the number of ions formed and hence the energy deposited by the

radiation, but is independent of the applied voltage. However, the signal is very

small compared with the noise of all but the slowest electronic circuits and

requires considerable amplification to be useful. Overall, the energy resolution and

the time resolution of the chamber are relatively poor and ionization chambers are

of very limited use in recording individual pulses. They are used, for example, as

beam monitors, where the particle flux is very large, and in medical environments

to calibrate radioactive sources.

As mentioned previously, neutrons cannot be directly detected by ionization

methods, but neutron flux measurements can be made with ionization chambers

(or proportional chambers – see below) filled with BF3 by utilizing the neutron

activation reactions of Section 4.3.1.

Proportional counters

If the voltage is increase beyond the region of operation of the ionization chamber,

we move into the proportional region. In this region, a cylindrical arrangement

as used in the ionization chamber will produce electric field strengths of the order

of 104–105 V/cm near the wire and this is strong enough for electron–ion pairs

released in the primary ionization to gain sufficient energy to cause secondary

ionization. The rapid increase in amplification due to secondary ionization is called

a Townsend avalanche. The output signal at the anode is still proportional to the
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energy lost by the original particle. There are a number of different types of device

working in the proportional region and they are sometimes generically referred to

as track chambers or wire chambers.

The earliest detector using this idea was the proportional counter, which

consists of a cylindrical tube filled with gas (again a quenching component in

the gas is required) and maintained at a negative potential, and a fine central anode

wire at a positive potential. Again, neutrons can be detected indirectly by using the

direct nuclear reaction 3Heðn; pÞ3
H mentioned in Section 4.3.2 in a proportional

chamber filled with a mixture of 3He and krypton. Subsequently, the resolution of

proportional counters was greatly improved as a result of the discovery that if

many anode wires were arranged in a plane between a common pair of cathode

plates, each wire acts as an independent detector. This device is called a multiwire

proportional chamber (MWPC), and was introduced in 1968.11 An MWPC can

achieve spatial resolutions of 200mm or less, and has a typical time resolution of

about 3 ns.

A schematic diagram of an MWPC is shown in Figure 4.13. The planes (a) have

anode wires into the page and those in plane (b) are at right angles. The wire

spacings are typically 2 mm. The cathodes are the faces of the chambers. A

positive voltage applied to the anode wires generates a field as shown in the upper

corner. A particle crossing the chamber ionizes the gas and the electrons drift along

the field lines to the anode wires. In this particular example, there would be signals

from one wire in the upper (a) chamber and two in the lower (a) chamber.

Figure 4.13 A group of three planes of an MWPC (from Po00 with kind permission of Springer
Science and Business Media)

11The MWPC was invented by Georges Charpak and for this and other developments in particle detectors he
was awarded the 1992 Nobel Prize in Physics.
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Even better spatial resolutions are obtained in a related device called a drift

chamber, which has now largely replaced the MWPC as a general detector.12 This

uses the fact that the liberated electrons take time to drift from their point of

production to the anode. Thus the time delay between the passage of a charged

particle through the chamber and the creation of a pulse at the anode is related to

the distance between the particle trajectory and the anode wire. In practice,

additional wires are incorporated to provide a relatively constant electric field in

each cell in a direction transverse to normal incidence. A reference time has to be

defined, which, for example, could be done by allowing the particle to pass through

a scintillator positioned elsewhere in the experiment (scintillation counters are

discussed in Section 4.4.2). The electrons drift for a time and are then collected at

the anode, thus providing a signal that the particle has passed. If the drift time

can be measured accurately (to within a few ns) and if the drift velocity is known,

then spatial resolutions of 100–200mm can easily be achieved, and specialized

detectors can reduce this still further.

Drift chambers are constructed in a variety of geometries to suit the nature of the

experiment, and arrangements where the wires are in planar, radial or cylindrical

configurations have all been used. The latter type is also called a ‘jet chamber’ and

a two-jet event in a jet chamber was shown in Figure 3.5 as evidence for the

existence of quarks.

One of the most advanced applications of proportional and drift chamber

principles is embodied in the time projection chamber (TPC) illustrated sche-

matically in Figure 4.14. This device consists of a cylindrical barrel, typically

12In the new generation of colliders, drift chambers are largely being replaced by detectors based on silicon.

Figure 4.14 Schematic diagram of a time projection chamber (TPC) (adapted from Kl86,
copyright Cambridge University Press)
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2 m long and 1 m in diameter, surrounding the beam pipe of a collider. At each

end of the chamber is a segmented layer of proportional counters. The electric

drift field E, due to a negative high-voltage electrode plane at the centre of

the chamber, and a strong magnetic field B are aligned parallel and anti-parallel

to the axis of the cylinder. Because of this, the Lorentz forces on the drifting

electrons vanish and electrons formed along the track of an ionizing particle

emerging from the interaction point at the centre of the barrel, drift towards

one of the endcaps along helical trajectories whose direction is parallel to

the axis of the barrel. Their locations are measured by a set of anode wires

located between rectangular cathodes in the endcaps. The remaining third

coordinate necessary to reconstruct the position of a point on the track

is found from the time it takes for the electrons to drift from the point of

production to the endcaps where they are detected. The TPC has excellent spatial

resolution.

Recently a more robust form of chamber has evolved, in which the wires are

replaced by conductive metal strips on a printed circuit board. This is called a

microstrip gas chamber (MSGC) and is being incorporated in experiments being

designed for the new generation of accelerators currently planned or under

construction.

Beyond the region of proportionality

Referring again to Figure 4.12, by increasing the external voltage still further one

moves into a region where the output signal ceases to be proportional to the

number of ion pairs produced and hence the incident energy. This is the region of

limited proportionality. In this region a type of gas detector called a streamer tube

operates, but this will not be discussed here. Eventually the process runs out of

control and we enter the Geiger–Müller region where the output signal is

independent of the energy lost by the incident particle. In this region a quenching

agent is not used. Detectors working in this region are called Geiger–Müller

counters. Physically they are similar to the simple cylindrical proportional counter

and are widely used as portable radiation monitors in the context of safety

regulations.

For completeness, we can mention that if the gas amplification factor is taken

beyond the Geiger–Müller region, the avalanche develops moving plasmas or

streamers. Recombination of ions then leads to visible light which can be made to

generate an electrical output. Eventually complete breakdown occurs and a spark

is emitted as the incident particle traverses the gas. Detectors in this region, called

streamer and spark chambers (these were of parallel plate construction, rather than

cylindrical), were widely used in the 1970s and 1980s and played an important role

in hadron physics, but are no longer in general use.
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4.4.2 Scintillation counters

For charged particles we have seen that energy losses occur due to excitation and

ionization of atomic electrons in the medium of the detector. In suitable materials,

called scintillators, a small fraction of the excitation energy re-emerges as visible

light (or sometimes in the UV region) during de-excitation. In a scintillation

counter this light passes down the scintillator and onto the face of a photodetector –

a device that converts a weak photon signal to a detectable electric impulse. An

important example of a photodetector is the photomultiplier tube, a schematic

diagram of which is shown in Figure 4.15.

Electrons are emitted from the cathode of the photomultiplier by the photo-

electric effect and strike a series of focusing dynodes. These amplify the electrons

by secondary emission at each dynode and accelerate the particles to the next

stage. The final signal is extracted from the anode at the end of the tube. The

electronic pulse can be shorter than 10 ns if the scintillator has a short decay time.

The scintillation counter is thus an ideal timing device and it is widely used for

‘triggering’ other detectors, i.e. its signal is used to decide whether or not to

activate other parts of the detector, and whether to record information from the

event. Commonly used scintillators are inorganic single crystals (e.g. caesium

iodide) or organic liquids and plastics, and a modern complex detector in particle

physics may use several tons of detector in combination with thousands of

photomultiplier tubes.13 The robust and simple nature of the scintillation counter

Figure 4.15 Schematic diagram of the main elements of a photomultiplier tube (adapted from
Kr88, copyright John Wiley & Sons)

13For example, the Super Kamiokande experiment mentioned in Chapter 3, which detected neutrino
oscillations, although not using scintillation counters, has 13 000 photomultiplier tubes.
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has made it a mainstay of experimental nuclear and particle physics since the

earliest days of the subject.

Just as direct detection of neutrons is not possible by ionization methods, so the

same is true using scintillators. However, the -particle and the 3H nucleus from

the direct nuclear reaction 6Liðn; Þ3
H mentioned in Section 4.3.2 can produce

light in a LiI crystal scintillator and forms the basis for detecting neutrons with

energies up to about 20 MeV.

4.4.3 Semiconductor detectors

Solid-state detectors operate through the promotion of electrons from the valence

band of a solid to the conduction band as a result of the entry of the incident

particle into the solid. The resulting absence of an electron in the valence band

(a ‘hole’) behaves like a positron. Semiconductor detectors are essentially solid-

state ionization chambers with the electron–hole pairs playing the role of electron–

ion pairs in gas detectors. In the presence of an electric field, the electrons and

holes separate and collect at the electrodes, giving a signal proportional to the

energy loss of the incident charged particle. Most semiconductor detectors use

the principle of the junction diode. Since the band gap in some solids is as small as

1 eV and the energy loss required to produce a pair is only 3–4 eV on average

(cf. the 30 eV required in a gas detector), a very large number of electron–hole

pairs with only a small statistical fluctuation will be produced by a low-energy

particle. Solid-state detectors are therefore very useful in detecting low-energy

particles. Semiconductors (principally silicon or germanium) are used as a

compromise between materials that have residual conductivity sufficient to enable

conduction pulses due to single particles to be distinguished above background and

those in which the charges carriers are not rapidly trapped in impurities in the

material.

Such detectors have long been used in nuclear physics, where, for example, their

excellent energy resolution and linearity, plus their small size and consequent fast

response time, make them ideal detectors for 	-ray spectroscopy. Only recently

have thin planar detectors become important in particle physics, because of the

expense of covering large areas. Nevertheless, several square metres of semicon-

ductor detector are being planned for experiments at the LHC.

One example of a solid-state detector is a silicon microstrip detector, where

narrow strips of active detector are etched onto a thin slice of silicon, with gaps of

the order of l0 mm, to give a tiny analogue of an MWPC. Arrays of such strips

can then be used to form detectors with resolutions of the order of 5 mm. These

are often placed close to the interaction vertex in a colliding beam experiment,

with a view to studying events involving the decay of very short-lived particles.

Another example is the pixel detector. A single-plane strip detector only gives

position information in one dimension (orthogonal to the strip). A pixel detector

improves on this by giving information in two dimensions from a single plane.

138 CH4 EXPERIMENTAL METHODS



Solid-state ‘vertex detectors’ are becoming increasingly important in particle

physics and have been incorporated in several of the multi-component detectors

designed for use in the new generation of colliders. Their main advantage is their

superb spatial resolution; a disadvantage is their limited ability to withstand

radiation damage.

4.4.4 Particle identification

Methods of identifying particles are usually based on determining the mass of the

particle by a simultaneous measurement of its momentum together with some

other quantity. At low values of 	 ¼ E=mc2, measurements of the rate of energy

loss dE=dx can be used, while muons may be characterized by their unique

penetrating power in matter, as we have already seen. Here we concentrate on

methods based on measuring the velocity or energy, assuming always that the

momentum is known. We thus need to start with explaining how momenta are

measured.

Measurement of momentum

The momentum of a charged particle is usually determined from the curvature of

its track in an applied magnetic field. It is common practice to enclose track

chambers in a magnetic field to perform momentum analysis. An apparatus that is

dedicated to measuring momentum is called a spectrometer. It consists of a magnet

and a series of detectors to track the passage of the particles. The precise design

depends on the nature of the experiment being undertaken. For example, in a

fixed-target experiment at high energies, the reaction products are usually

concentrated in a narrow cone around the initial beam direction, whereas in

colliding-beam experiments spectrometers must completely surround the interac-

tion region to obtain full angular coverage.

Magnet designs vary. Dipole magnets typically have their field perpendicular to

the beam direction. They have their best momentum resolution for particles

emitted forward and backward with respect to the beam direction, and are often

used in fixed-target experiments at high energies. However, the beam will be

deflected, and so at colliders this must be compensated for elsewhere to keep the

particles in orbit. Compensating magnets are present in the ‘layered detectors’

shown in Section 4.6 below. At colliders, the most usual magnet shape is the

solenoid, where the field lines are essentially parallel to the beam direction. This

device is used in conjunction with cylindrical tracking detectors, like jet chambers,

and has its best momentum resolution for particles perpendicular to the beam

direction.

We now turn to methods of measuring velocity.
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Time-of-flight

The simplest method, in principle, is to measure the time of flight between, for

example, two scintillation counters. If the distance between them is L, the time

difference for two particles of masses m1 and m2 travelling with velocities v1 and

v2, is

�t ¼ t2 � t1 ¼ L

c

1

�1

� 1

�2

� �
; ð4:25Þ

where � � v=c. For a common momentum p, Equation (4.25) may be written,

using14 E ¼ pc=�,

�t ¼ L

pc2
m2

2c4 þ p2c2
� �1=2� m2

1c4 þ p2c2
� �1=2

h i
: ð4:26Þ

We are interested in the situation where m2 � m1 � m and v2 � v1 � v. In this

case, setting �m � m2 � m1, the non-relativistic limit of Equation (4.26) is

�t ¼ t�m=m and using v ¼ L=t, we have

�m

m
¼ �t

�c

L
: ð4:27Þ

Thus, for example, taking typical values of � ¼ 0:2, L ¼ 100 cm and �t ¼
2 
 10�10 s (assuming the timing is done using a scintillation counter), �m=m

can be determined to about 1 per cent for low-energy particles. This method is

used, for example, in nuclear physics experiments using very low-energy neutron

beams.

However, since all high-energy particles have velocities close to the speed of

light, the method ceases to be useful for even quite moderate momenta. This can

been seen by taking the relativistic limit of Equation (4.26), when we have

�t � Lc

2p2
m2

2 � m2
1

� �
; ð4:28Þ

which for m2 � m1 � m, v2 � v1 � c, and using p ¼ 	mc becomes

�m

m
¼ 	2c�t

L
: ð4:29Þ

For example, using our previous values for L and �t, Equation (4.29) shows that

the method is not useful for values of 	 above about three, which corresponds to a

momentum of only about 3 GeV/c for nucleons. Of course this could be extended

by taking longer flight paths, but only at greater expense in instrumentation.

14See Appendix B.
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C̆erenkov counters

The most important identification method for high-energy particles is based on the
�CCerenkov effect. When a charged particle with velocity v traverses a dispersive

medium of refractive index n, excited atoms in the vicinity of the particle become

polarized, and if v is greater than the speed of light in the medium c=n, a part of the

excitation energy reappears as coherent radiation emitted at a characteristic angle �
to the direction of motion. The necessary condition v > c=n implies �n > 1 and by

considering how the waveform is produced15 it can be shown that cos � ¼ 1=�n for

the angle �, where � ¼ v=c as usual. A determination of � is thus a direct

measurement of the velocity.16

�CCerenkov radiation appears as a continuous spectrum and may be collected onto

a photosensitive detector. Its main limitation from the point of view of particle

detection is that very few photons are produced. The number of photons Nð�Þd�
radiated per unit path length in a wavelength interval d� can be shown to be

Nð�Þd� ¼ 2� 1 � 1

�2n2

� �
d�

�2
< 2� 1 � 1

n2

� �
d�

�2
ð4:30Þ

and so vanishes rapidly as the refractive index approaches unity. The maximum

value occurs for � ¼ 1, which for a particle with unit charge, corresponds to about

200 photons/cm in the visible region in water and glass. These numbers should be

compared with the 104 photons/cm emitted by a typical scintillator. Because the

yield is so small, appreciable lengths are needed to give enough photons, and gas
�CCerenkov counters in particular can be several metres long.
�CCerenkov counters are used in two different modes. The first is as a threshold

counter to detect the presence of particles whose velocities exceed some minimum

value. Suppose that two particles with � values �1 and �2 at some given

momentum p are to be distinguished. If a medium can be found such that

�1n > 1 � �2n, then particle 1 will produce �CCerenkov radiation but particle 2

will not. Clearly, to distinguish between highly relativistic particles with 	  1

also requires n � 1, so that from Equation (4.30) very few photons are produced.

Nevertheless, common charged particles can be distinguished in this way up to at

least 30 GeV/c.

Another device is the so-called ring-image �CCerenkov detector which is a very

important device in both fixed-target machines and colliders. If we assume that the

particles are not all travelling parallel to a fixed axis, then the radiating medium

can be contained within two concentric spherical surfaces of radii R and 2R

centred on the target or interaction region where the particles are produced, as

illustrated in Figure 4.16. The outer surface is lined with a mirror, which focuses

15This is Huygens’ construction in optics.
16For the discovery and interpretation of this effect, Pavel �CCerenkov, Ilya Frank and Igor Tamm were
awarded the 1958 Nobel Prize in Physics.
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the �CCerenkov radiation into a ring at the inner detector surface. The radius of this

ring depends on the angle � at which the �CCerenkov radiation is emitted, and hence

on the particle velocity v. It is determined by constructing an image of the ring

electronically. This was the technique used in the Super Kamiokande detector

discussed in Chapter 3 to detect relativistic electrons and muons produced by

neutrino interactions. In that experiment the radiating medium was pure water.

4.4.5 Calorimeters

Calorimeters are an important class of detector used for measuring the energy and

position of a particle by its total absorption and are widely used. They differ from

most other detectors in that (1) the nature of the particle is changed by the detector,

and (2) they can detect neutral as well as charged particles. A calorimeter may be a

homogeneous absorber/detector to detect photons and electrons. In early devices this

was often a block of lead glass, but is now more likely to be scintillator such as CsI.

Alternatively, it can be a sandwich construction with separate layers of absorber (e.g.

a metal such as lead) and detector (scintillator, MWPC etc.). The latter are also

Figure 4.16 Two particles P1 and P2, produced from the target T, emit �CCerenkov radiation on
traversing a medium contained between two spheres of radius R and 2R. The mirror M on the
outer sphere focuses the radiation into ring images at aa0 and bb0 on the inner detector sphere D.
The radii of the ring images depend on the angle of emission of the �CCerenkov radiation and hence
on the velocities of the particles
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known as ‘sampling calorimeters’. During the absorption process, the particle will

interact with the material of the absorber, generating secondary particles which will

themselves generate further particles and so on, so that a cascade or shower,

develops. For this reason calorimeters are also called ‘shower counters’.

The shower is predominantly in the longitudinal direction due to momentum

conservation, but will be subject to some transverse spreading due both to multiple

Coulomb scattering and the transverse momentum of the produced particles.

Eventually all, or almost all, of the primary energy is deposited in the calorimeter,

and gives a signal in the detector part of the device.

There are several reasons why calorimeters are important, especially at high

energies:

� they can detect neutral particles, by detecting the charged secondaries;

� the absorption process is statistical (and governed by the Poisson distribution),

so that the relative precision of energy measurements �E=E varies as E�1
2 for

large E, which is a great improvement on high-energy spectrometers where

�E=E varies as E2;

� the signal produced can be very fast, of the order of (10–100) ns, and is ideal for

making triggering decisions.

Although it is possible to build calorimeters that preferentially detect just one class

of particle (electrons and photons, or hadrons) it is also possible to design detectors

that serve both purposes. Since the characteristics of electromagnetic and hadronic

showers are somewhat different it is convenient to describe each separately. In

practice, it is common to have both types in one experiment with the hadron

calorimeter stacked behind the electromagnetic one.

Electromagnetic showers

When a high-energy electron or positron interacts with matter we have seen that

the dominant energy loss is due to bremsstrahlung, and for the photons produced

the dominant absorption process is pair production. Thus the initial electron will,

via these two processes, lead to a cascade of e	 pairs and photons, and this will

continue until the energies of the secondary electrons fall below the critical energy

EC where ionization losses equal those from bremsstrahlung. This energy is

roughly given by EC � 600 MeV=Z.

Most of the correct qualitative features of shower development may be obtained

from the following very simple model. We assume:

� each electron with E > EC travels one radiation length and then gives up half of

its energy to a bremsstrahlung photon;
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� each photon with E > EC travels one radiation length and then creates an

electron–positron pair with each particle having half the energy of the photon;

� electrons with E < EC cease to radiate and lose the rest of their energy by

collisions;

� ionization losses are negligible for E > EC.

A schematic diagram of the approximate development of a shower in an

electromagnetic calorimeter assuming this simple model is shown in Figure 4.17.

If the initial electron has energy E0  EC, then after t radiation lengths the

shower will contain 2t particles, which consist of approximately equal numbers of

electrons, positrons and photons each with an average energy

EðtÞ ¼ E0=2t: ð4:31Þ
The multiplication process will cease abruptly when EðtÞ ¼ EC, i.e. at t ¼ tmax where

tmax ¼ t ECð Þ � ln E0=ECð Þ
ln2

ð4:32Þ

Figure 4.17 Approximate development of an electromagnetic shower in a sampling calorimeter
assuming the simple model described in the text; the calorimeter consists of alternate layers of lead
(Pb) and a scintillator (Sc), the latter attached to photomultipliers (one only shown)
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and the number of particles at this point will be

Nmax ¼ exp tmaxln2½ � ¼ E0=EC: ð4:33Þ

The main features of this simple model are observed experimentally, and in

particular the maximum shower depth increases only logarithmically with primary

energy. Because of this, the physical sizes of calorimeters need increase only

slowly with the maximum energies of the particles to be detected. The energy

resolution of a calorimeter, however, depends on statistical fluctuations, which are

neglected in this simple model, but for an electromagnetic calorimeter it is

typically �E=E � 0:05=E
1
2, where E is measured in GeV.

Hadronic showers

Although hadronic showers are qualitatively similar to electromagnetic ones,

shower development is far more complex because many different processes

contribute to the inelastic production of secondary hadrons. The scale of the

shower is determined by the nuclear absorption length defined earlier. Since this

absorption length is larger than the radiation length, which controls the scale of

electromagnetic showers, hadron calorimeters are thicker devices than electro-

magnetic ones. Another difference is that some of the contributions to the total

absorption may not give rise to an observable signal in the detector. Examples are

nuclear excitation and leakage of secondary muons and neutrinos from the

calorimeter. The loss of ‘visible’ or measured energy for hadrons is typically

20–30 per cent greater than for electrons.

The energy resolution of calorimeters is in general much worse for hadrons

than for electrons and photons because of the greater fluctuations in the develop-

ment of the hadron shower. Depending on the proportion of �0s produced in the

early stages of the cascade, the shower may develop predominantly as an

electromagnetic one because of the decay �0 ! 		. These various features lead

to an energy resolution typically a factor of 5–10 poorer than in electromagnetic

calorimeters.

4.5 Layered Detectors

As stated earlier, in particle physics it is necessary to combine several detectors in

a single experiment to extract the maximum amount of information from it.

Typically, working out from the interaction region, there will be a series of wire

chambers, followed further out by calorimeters and at the outermost limits,

detectors for muons, the most penetrating particles to be detected. The whole

device is usually in a strong magnetic field so that momentum measurements may

be made. We will illustrate the general features by three examples.
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The first is the p�pp Collider Detector at Fermilab (CDF), which is shown

schematically in Figure 4.18. The detection of the top quark and the measurement

of its mass were first made using this device. The dashed lines indicate some

particles produced in the collision. CDF is a large device, being approximately 8 m

wide and 26 m in overall length. The beams of protons and antiprotons enter from

each end through focusing quadrupole magnets and interact in the central

intersection region where there is a silicon vertex detector (1) to detect very

short-lived particles. The intersection point is surrounded by a 2000 tonne detector

system which, in addition to the vertex detector, consists of inner drift chambers

(2), electromagnetic calorimeters (4), hadron calorimeters (5) time-of-flight

detectors (not indicated) and further drift chambers (2) on the outside to detect

muons. The whole system is in a magnetic field with the solenoid coil shown at

(7) and steel shielding at (6). The rest of the detector consists of two symmetrical

sets of drift chambers (2) sandwiched between scintillation counters (3) and

magnetic toroids (8) to provide momentum measurements, primarily for muons.

The second example, shown schematically in Figure 4.19, is the ATLAS

detector currently under construction for use at the Large Hadron Collider

(LHC). It is hoped that this and other detectors at the LHC will be able to detect

the important Higgs boson, if it exists, and so help solve one the outstanding

current problems in particle physics – the origin of mass. The ATLAS detector is

even larger than the CDF detector and measures about 22 m high and 44 m long,

with an overall weight of approximately 7000 tonnes.

Figure 4.18 The CDF detector at the p�pp collider at Fermilab, USA (Fermilab Graphic, reproduced
with permission)
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Finally, Figure 4.20 shows the STAR detector at the RHIC accelerator at

Brookhaven National Laboratory. This detects events resulting from the collisions

of heavy ions, typically those of fully-stripped gold nuclei, where the final state

may contain many thousands of particles. An example of an event is shown in

Figure 9.12.

Problems

4.1 At a collider, a 20 GeV electron beam collides with a 300 GeV proton beam at a

crossing angle of 10�. Evaluate the total centre-of-mass energy and calculate what

beam energy would be required in a fixed-target electron machine to achieve the

same total centre-of-mass energy.

4.2 What is the length L of the longest drift tube in a linac which operating at a

frequency of f ¼ 20 MHz is capable of accelerating 12C ions to a maximum energy

of E ¼ 100 MeV?

4.3 Alpha particles are accelerated in a cyclotron operating with a magnetic field of

magnitude B ¼ 0:8 T. If the extracted beam has an energy of 12 MeV, calculate the

extraction radius and the orbital frequency of the beam (the so-called cyclotron

frequency).

Figure 4.20 The STAR detector at the RHIC accelerator at Brookhaven National Laboratory,
USA. (Courtesy of Brookhaven National Laboratory)
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4.4 Protons with momentum 50 GeV/c are deflected through a collimator slit 2 mm wide

by a bending magnet 1.5 m long which produces a field of 1.2 T. How far from the

magnet should the slit be placed so that it accepts particles with momenta in the

range 49–51 GeV/c?

4.5 Estimate the minimum length of a gas �CCerenkov counter that could be used in

threshold mode to distinguish between charged pions and charged kaons with

momentum 20 GeV/c. Assume that a minimum of 200 photons need to be radiated

to ensure a high probability of detection. Assume also that the radiation covers the

whole visible spectrum between 400 nm and 700 nm and neglect the variation with

wavelength of the refractive index of the gas.

4.6 An eþe� collider has a diameter of 8 km and produces beams of energy 45 GeV.

Each beam consists of 12 bunches each containing 3 
 1011 particles. The bunches

have a cross-sectional area of 0:02 mm2. What is the luminosity of the machine in

units of cm�2s�1?

4.7 What are the experimental signatures and with what detectors would one measure:

(a) the decay Z ! b�bb, and (b) W ! e� and W ! ��.

4.8 The reaction eþe� ! �þ�� is studied using a collider with equal beam energies of

5 Gev. The differential cross-section is given by

d


d�
¼ 2�h2c2

4E2
cm

1 þ cos2 �
� �

where Ecm is the total centre-of-mass energy and � is the angle between the incoming

e� and the outgoing ��. If the detector can only record an event if the �þ�� pair

makes an angle of at least 30� relative to the beam line, what fraction of events will

be recorded? What is the total cross-section for this reaction in nanobarns? If the

reaction is recorded for 107s at a luminosity of L ¼ 1031 cm�2s�1, how many events

are expected?

Suppose the detector is of cylindrical construction and at increasing radii from the

beam line there is a drift chamber, an electromagnetic calorimeter, a hadronic

calorimeter and finally muon chambers. If in a particular event the �� decays via

�� ! �� þ ���� þ �� and the �þ decays to �þ ! eþ þ ���� þ �e, what signals would

be observed in the various parts of the detector?

4.9 A charged particlewith speed v moves in a medium of refractive index n. By considering

the wavefronts emitted at two different times, derive a relation for the angle � of the

emitted �CCerenkov radiation relative to the particle’s direction in terms of� ¼ v=c and n.

What is the maximum angle of emission and to what limit does it correspond?

If the momentum p of the particle is known from other detectors, show that the

mass squared x of the particle is given by x ¼ ðmc2Þ2 ¼ p2c2ðn2 cos2 �� 1Þ. If the

error on the momentum is negligible, show, by taking derivatives of this expression,

that for very relativistic particles, the standard error 
x on x is approximately


x � 2p2c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 � 1Þ

p

�;

where 
� is the standard error on �.
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4.10 Estimate the thickness of iron through which a beam of neutrinos with energy

300 GeV must travel if 1 in 109 of them is to interact. Assume that at high energies

the neutrino-nucleon total cross-section is given approximately by 
� �10�38E� cm2

where E� is given in GeV. The density of iron is � ¼ 7:9 g cm�3.

4.11 An electron with an initial energy of 2 GeV traverses 10 cm of water with a radiation

length of 36.1 cm. Calculate its final energy. How would the energy loss change if

the particle were a muon rather than an electron?

4.12 A beam of neutrons with kinetic energy 0.1 eV and intensity 106 s�1 is incident

normally on a thin foil of 235
92U of effective thickness 10�1 kg m�2. The beam can

undergo (1) isotropic elastic scattering, with a cross section 
el ¼ 3 
 10�2 b, (2)

radiative capture, with a cross-section 
cap ¼ 102 b, or (3) it can fission a 235
92U

nucleus, with a cross-section 
f ¼ 3 
 102 b. Calculate the attenuation of the beam

and the flux of elastically-scattered particles 5 m from the foil.

4.13 A positron with laboratory energy 50 GeV interacts with the atomic electrons in a

lead target to produce �þ�� pairs. If the cross-section for this process is given by


 ¼ 4�2�h2c2=3ðECMÞ2
, calculate the positron’s interaction length. The density of

lead is � ¼ 1:14 
 107 kg m�3.

4.14 A liquid hydrogen target of volume 125 cm3 and density 0:071 g cm�3 is bombarded

with a mono-energetic beam of negative pions with a flux 2 
 107 m�2 s�1 and the

reaction �� þ p ! �0 þ n observed by detecting the photons from the decay of the

�0. Calculate the number of photons emitted from the target per second if the cross-

section is 40 mb.

4.15 Assuming the Bethe–Bloch formula is valid for low energies, show that the rate of

ionization has a maximum (the Bragg peak) and find the kinetic energy of protons in

iron for which this maximum would occur.

4.16 A cylindrical proportional chamber has a central anode wire of radius 0.02 mm and

an outer cathode of radius 10 mm with a voltage of 500 V applied between them.

What is the electric field at the surface of the anode? If the threshold for ionization

by collision is 750 kV m�1 and the mean free path of the particles being detected is

4 
 10�6 m, estimate the number of ion pairs produced per primary particle.
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5
Quark Dynamics:
the Strong Interaction

In Chapter 3 we described the basic properties of quarks and in particular their

static properties and how these are used to construct the quark model of hadrons.

We now look in more detail at how quarks interact and the role of gluons in the

strong interactions. Thus we will be considering dynamical properties and the

theoretical framework that describes these interactions.

5.1 Colour

We saw in Chapter 3 that the quark model account of the hadron spectrum is very

successful. However, it begs several questions. One is: why are the observed states

overwhelmingly of the form 3q, 3�qq and q�qq? Another arises from a particular

assumption that was implicitly made in Chapter 3. This is: if two quarks of the

same flavour uu, dd, ss . . . are in the same spatial state, they must also be in the

same spin state, with their spins parallel. This can be seen very easily by

considering the baryon state omega-minus �� that is shown in Table 3.3 and

Figure 3.12.1 From its decay products, it may be deduced that this state has

strangeness S ¼ �3 and spin J ¼ 3
2

and thus in the quark model it has the

composition �� ¼ sss, where all three quarks have their spins parallel and there

is no orbital angular momentum between them. This means that all three like-

quarks have the same space and spin states, i.e. the overall wavefunction must be

symmetric, which violates the fundamental requirement of the Pauli principle. The

latter states that a system of identical fermions has a wavefunction that is overall

antisymmetric under the interchange of any two particles, because identical

1The discovery of the �� was a crucial step in gaining acceptance of the quark model of hadron
spectroscopy. The experiment is described in Chapter 15 of Tr75.

Nuclear and Particle Physics B. R. Martin
# 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01999-9



fermions cannot simultaneously be in the same quantum state. The three s quarks

in the �� therefore cannot be in the same state. So how do they differ?

The �� is an obvious example of the contradiction, but it turns out that in order

for the predictions of the quark model to agree with the observed spectrum of

hadron multiplets, it is necessary to assume that overall baryon wavefunctions are

symmetric under the interchange of like quarks.2 In order to resolve this contra-

diction, it is necessary to assume that a new degree of freedom exists for quarks,

but not leptons, which is somewhat whimsically called colour. The basic properties

of colour are as follows.

1. Any quark u, d, s, . . . can exist in three different colour states.3 We shall see

later that there is direct experimental evidence that just three such states exist,

which we denote r, g, b for ‘red’, ‘green’ and ‘blue’ respectively.

2. Each of these states is characterized by the values of two conserved colour

charges, denoted IC
3 and YC, which are strong interaction analogues of the

electric charge in electromagnetic interactions.4 These charges depend only on

the colour states r, g, b and not on the flavours u, d, s, . . . The particular values

for quarks and antiquarks are given in Table 5.1, and are a consequence of a

fundamental symmetry of the strong interaction (called SU(3) colour symme-

try), which we will not pursue here. For multiparticle states, the colour charges

of the individual states are simply added.

3. Only states with zero values for the colour charges are observable as free

particles; these are called colour singlets. This is the hypothesis of colour

confinement. It can be derived, at least approximately, from the theory of strong

interactions we shall describe.

2In Problem 3.4 it was shown explicitly that otherwise the wrong hadron spectrum is predicted.
3Needless to say, nothing to do with ‘real’ colour!
4This is one reason we were careful to use the qualifier ‘electric’ when talking about charge in the context of
electromagnetic interactions in earlier chapters.

Table 5.1 Values of the colour charges IC
3 and YC for the

colour states of quarks and antiquarks

(a) Quarks (b) Antiquarks

IC
3 YC IC

3 YC

r 1
2

1
3

�rr � 1
2

� 1
3

g � 1
2

1
3

�gg 1
2

� 1
3

b 0 � 2
3

�bb 0 2
3
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Returning to the quark model, it can be seen from Table 5.1 that a 3q state

can only have both IC
3 ¼ 0 and YC ¼ 0 if we have one quark in an r state, one in a

g state and one in a b state. Hence in the ��, for example, all three s quarks

are necessarily in different colour states, and thus the Pauli principle can be

satisfied. Formally, we are assuming that the total wavefunction is the product of a

spatial part  spatialðxÞ and a spin part  spin, as usual, but also a colour wavefunction

 colour, i.e.

� ¼  spatialðxÞ spin  colour� ð5:1Þ

The Pauli principle is now interpreted as applying to the total wavefunction

including the colour part  colour. The combined space and spin wavefunctions can

then be symmetric under the interchange of quarks of the same flavour (to agree

with experiment) provided the colour wavefunction is antisymmetric. The struc-

ture of  colour is

 colour ¼
1ffiffiffi
6

p R1G2B3 þ G1B2R3 þ B1R2G3 � R1B2G3 � B1G2R3 � G1R2B3½ 	;

ð5:2Þ

where R, G and B represent quarks with colour red, green and blue, respectively.

One can also see from Table 5.1 part of the answer to the first question of this

section. Free quarks and fractionally charged combinations like qq and qq�qq are

forbidden by colour confinement, in accordance with experimental observation. On

the other hand, the combinations q�qq and 3q used in the simple quark model are

allowed. More unusual combinations like qq�qq�qq and qqqq�qq, which could give rise to

so-called ‘exotic’ mesons and baryons, respectively, are not in principle forbidden

by colour confinement and, as mentioned in Chapter 3, recent experiments may

possibly have provided some evidence for a small number of these, but this has yet

to be confirmed.

5.2 Quantum Chromodynamics (QCD)

The theory that describes strong interactions in the standard model is called

quantum chromodynamics, or QCD for short (chromos means colour in Greek).

Although QCD is not tested to the same extent or precision as quantum

electrodynamics (QED), the quantum theory of electromagnetic interactions, it

is nevertheless in impressive agreement with a large body of experimental data.

QCD is similar to QED in that both describe interactions that are mediated by

massless spin-1 bosons; gluons in the former case and photons in the latter. Both

theories are of the type called gauge theories which, as mentioned in Chapter 1,

refer to a particular symmetry of the theory. However, there is a very important

difference in the two interactions that we now discuss.
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Gluons, the force carriers of the strong interaction, have zero electric charge,

like photons, but unlike photons, which couple to electric charge, gluons couple to

colour charges. This leads immediately to the flavour independence of strong

interactions discussed in Chapter 3; that is, the different quark flavours a ¼ u,

d, s, c, b and t have identical strong interactions. We now see that this is because

they are postulated to exist in the same three colour states r, g, b, with the

same possible values of the colour charges. Flavour independence has its most

striking consequences for u and d quarks, which have almost equal masses, where

it leads to the phenomenon of isospin symmetry. This results, among other

things, in the near equality of the masses of the proton and neutron, and charge

states within other multiplets such as pions and kaons, all of which we have

seen in Chapter 3 are confirmed by experiment. We will examine the con-

sequence of flavour independence for the bound states of the heavy quarks c

and b in Section 5.3.

Although QED and QCD both describe interactions, albeit of very different

strengths, that are mediated by massless spin-1 bosons which couple to conserved

charges, there is a crucial difference between them that profoundly effects

the characters of the resulting forces. While the photons which couple to the

electric charge are themselves electrically neutral, gluons have non-zero values of

the colour charges to which they couple. This is illustrated in Figure 5.1, which

shows a particular example of a quark–quark interaction by gluon exchange.

In this diagram, the colour states of the two quarks are interchanged, and the

gluon has non-zero values of the colour quantum numbers, whose values follow

from colour charge conservation at the vertices, i.e.

IC
3 ðgÞ ¼ IC

3 ðrÞ � IC
3 ðbÞ ¼

1

2
ð5:3Þ

and

YCðgÞ ¼ YCðrÞ � YCðbÞ ¼ 1: ð5:4Þ

Figure 5.1 Example of quark--quark scattering by gluon exchange; in this diagram, the quark
flavours u and s are unchanged, but their colour states can change, as shown
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Just as quarks can exist in three colour states, gluons can exist in eight colour

states, although we will not need the details of these. The first thing implied by the

non-zero values of the colour charges is that gluons, like quarks, are confined and

cannot be observed as free particles. The second is that since gluons couple to

particles with non-zero colour charges, and since gluons themselves have non-zero

colour charges, it follows that gluons couple to other gluons. The two types of

gluon self-coupling that occur in QCD are given in Figure 5.2, which shows the

two lowest-order contributions to gluon–gluon scattering.

The first is a gluon exchange process in analogy to gluon exchange in quark–

quark scattering, which we have encountered previously (see Figure 1.3), while the

second involves a so-called ‘zero range’ or ‘contact’ interaction. If the forces

resulting from these interactions were attractive and sufficiently strong, they could

in principle lead to bound states of two or more gluons. These would be a new type

of exotic state called glueballs. Although some experiments claimed to have

detected these, at present there is little compelling evidence that they exist.5

The gluon–gluon interactions have no analogue in QED (photons couple to

electrically charged particles and hence do not couple directly to other photons)

and it can be shown that they lead to properties of the strong interaction that differ

markedly from those of the electromagnetic interaction. These properties are

colour confinement, which we have discussed above, and a new property called

asymptotic freedom. The latter is the statement that the strong interaction gets

weaker at short distances; conversely, as the distance between the quarks increases,

the interaction gets stronger.6 In this strong interaction regime the situation is very

complicated, and it has not yet been possible to evaluate the theory precisely. We

therefore have to rely on results obtained by numerical simulations of the theory;

the approach is called lattice gauge theory. In these simulations, the theory is

5A critical review is given in Ei04.
6Asymptotic freedom was postulated in 1973 by David Gross, David Politzer and Frank Wilczek, who were
subsequently awarded the 2004 Nobel Prize in Physics.

Figure 5.2 The two lowest-order contributions to gluon--gluon scattering in QCD: (a) one-
gluon exchange, (b) contact interaction
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evaluated at a grid of discrete points on a three-dimensional lattice and by making

the lattice spacing small enough it is hoped that the results of the true continuum

theory will be approximated. The calculations require very large ultra-fast

computers and precise results are difficult to obtain because of the approximations

that have to be made. Nevertheless, at present, the demonstration of confinement in

QCD rests largely on such simulations.7

5.3 Heavy Quark Bound States

Some of the features of QCD discussed above are illustrated by considering the

static potential between a heavy quark and an antiquark. Such systems give rise

to bound states and because the quarks are so heavy they move slowly enough

within the resulting hadrons to be treated non-relativistically to a first approxima-

tion. (This is one of the few places in particle physics where a non-relativistic

calculation is adequate.) This means that the rest energies of the bound states, and

hence their masses, can be calculated from the static potential between the quarks

in exactly the same way that the energy levels in the hydrogen atom are calculated,

although of course the potential is not Coulombic. In the present case, however, the

procedure is reversed, with the aim of determining the form of the static potential

from the rather precisely measured energies of the bound states.

The first such state to be discovered, the J= ð3097Þ8, is a bound state of the c�cc
system and is part of a family of such states given the name charmonium, by

analogy with positronium, the bound state of an electron and a positron. It is

identified with the n ¼ 1, 3S1 state of the c�cc system, where n is the principal

quantum number and we use the notation 2Sþ1LJ , with ðL, SÞ the angular

momentum between the quarks and their total spin, respectively. The discovery

of the J= ð3097Þ caused considerable excitement because it confirmed the

existence of the charm quantum number that had been predicted many years

earlier, even though the J= ð3097Þ itself has zero overall charm. It was hence a

very important piece of evidence in favour of the standard model.

The interpretation of the J= ð3097Þ as a c�cc bound state follows from its

unusually narrow width. For a state decaying predominantly (86 per cent) to

hadrons (mostly pions) by the strong interaction one would expect a width

measured in MeV, whereas the width of the J= ð3097Þ was only about 90 keV.

This meant that there was no possibility of an explanation in terms of just u, d and

s quarks. The preferred decay of the J= ð3097Þ would be via the mechanism

shown in Figure 5.3(a). However, this is forbidden by energy conservation because

7Lattice calculations also support the view that gluon–gluon forces are strong enough to give rise to
glueballs.
8The rather clumsy notation is because it was discovered independently by two groups, led by Burton Richer
and Samuel Ting. Richer’s group was studying the reactions eþe� ! hadrons and named it the  particle.
Ting’s group discovered it in pBe reactions and called it the J. It is now known as the J= . Richer and Ting
shared the 1976 Nobel Prize in Physics for the discovery.
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MJ= < 2MD, where MD is the mass of the lightest meson having non-zero charm,

the Dð1870Þ. (These latter states had already been seen in neutrino experiments,

but not clearly identified.) The mass 2MD is referred to as the charm threshold.

Since the direct decay to charmed mesons is forbidden, the only hadronic decays

allowed must proceed via mechanisms such as that of Figure 5.3(b) and diagrams

like this where initial and final quark lines are disconnected are known to be

heavily suppressed.9

The explanation for this in QCD is that since both the decaying particle and

the three pions in the final state are colour singlets, they can only be connected by

the exchange of a combination of gluons that is also a colour singlet, i.e. not the

exchange of a single gluon. Moreover, the J= ð3097Þ is known to be produced in

eþe� annihilations via photon exchange, so it must have a charge conjugation

C ¼ �1. Thus the minimum number of gluons exchanged is three. This is

illustrated in Figure 5.4. In contrast, if M > 2MD then the decay may proceed

via the exchange of low-momentum gluons as usual.

Subsequently, higher-mass charmonium states also with JPC ¼ 1��, where

P ¼ ð�1ÞLþ1
and C ¼ ð�1ÞLþS

, were discovered in eþe� reactions and states

with other JPC values were identified in their radiative decays. Thus the n ¼ 1; 1S0

9This is known as the OZI Rule after Okubo, Zweig and Iizuka who first formulated it. Another example
where it acts is the suppression of the decay �! �þ���0 compared with �! K �KK.

Figure 5.3 Quark diagrams for (a) the decay of a charmonium state to a pair of charmed
mesons, and (b) an example of a decay to non-charmed mesons

Figure 5.4 OZI-suppressed decay of a charmonium state below the D�DD threshold
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ground state 	cð2980Þ has been found from the decays

 ð3686Þ ! 	cð2980Þ þ 
 and J= ð3097Þ ! 	cð2980Þ þ 
 ð5:5Þ

and a series of states �ciði ¼ 1; 3Þ have been found in the decays

 ð3686Þ ! �ci þ 
� ð5:6Þ

The latter themselves decay and from an analysis of their decay products they are

identified with the n ¼ 1 states 3P0, 3P1 and 3P2. Some of these states lie below the

charm threshold and like the J= ð3097Þ are forbidden by energy conservation to

decay to final states with ‘open’ charm and thus have widths measured in keV.

Others lie above the charm threshold and therefore have ‘normal’ widths measure

in MeV. The present experimental situation for charmonium states with L � 2 is

shown in Table 5.2.

Later experiments established a spectrum of bottomium states, i.e. bound states

of the b�bb system. These are also shown in Table 5.2. By analogy with charmonium,

those bottomium states below the bottom threshold 2MB ¼ 10:56 GeV=c2, where

MB is the mass of the lightest meson with non-zero beauty quantum number, have

widths measured in keV, whereas those above this threshold have ‘normal’ widths

expected of resonances decaying via the strong interaction

The charmonium and bottomium states with L � 2 are shown in Figure 5.5 as

conventional energy level diagrams, where the energies are plotted relative to those

Table 5.2 Predicted c�cc and b�bb states with L � 2 and masses
up to and just above the charm and bottom thresholds
(3.74 GeV/c2 and 10.56 GeV/c2, respectively), compared with
experimentally observed states (masses are given in MeV/c2)

n2Sþ1LJ JPC c�cc state b�bb state

11S0 0�þ 	cð2980Þ 	bð9300Þ?
13S1 1�� J= ð3097Þ �ð9460Þ
11P1 1þ� hcð3526Þ?
13P0 0þþ �c0ð3415Þ �b0ð9860Þ
13P1 1þþ �c1ð3511Þ �b1ð9893Þ
13P2 2þþ �c2ð3556Þ �b2ð9913Þ
21S0 0�þ 	cð3654Þ?
23S1 1��  ð3686Þ �ð10 023Þ
23P0 0þþ �b0ð10 232Þ
23P1 1þþ �b1ð10 255Þ
23P2 2þþ �b3ð10 269Þ
33S1 1��  ð4040Þ �ð10 355Þ
43S1 1��  ð4160Þ �ð10 580Þ
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of the 3S1 ground states. There is a striking similarity in the levels of the two

systems, which suggests that the forces in the c�cc and b�bb are flavour independent, as

discussed in Chapter 3 and now seen to follow from the postulates of QCD. The

level structure is also very similar to that seen in positronium which suggests that,

as in positronium, there is a major contribution from a single-particle exchange

with the Coulomb-like form. In fact at short interquark distances r <� 0:1 fm, the

interaction is dominated by one-gluon exchange that we can write as

VðrÞ ¼ � a

r
; ð5:7Þ

where a is proportional to the strong interaction analogue of the fine structure

constant � in QED. Because of asymptotic freedom, the strength of the interaction

decreases with decreasing r, but for r < 0:1 fm this variation is slight and can in

many applications be neglected.10

In strong interactions we also have to take account of the fact that the quarks are

confined. The latter part of the potential cannot at present be calculated from QCD

and several forms are used in phenomenological applications. All reasonable forms

are found to give very similar results for the region of interest. If we choose a

linear form, then

VðrÞ  b r: ð5:8Þ

This is an example of a confining potential, in that it does not die away with

increasing separation and the force between the quark and antiquark cannot be

neglected, even when they are very far apart. The full potential is thus

VðrÞ ¼ � a

r
þ br: ð5:9Þ

If the form (5.9) is used in the Schrödinger equation for the c�cc and b�bb systems,

taking account of their different masses, it is found that a good fit to both sets of

energy levels can be obtained for the same values a  0:48 and b  0:18 GeV2,

which confirms the flavour independence of the strong interaction and is evidence

for QCD and the standard model.

5.4 The Strong Coupling Constant and Asymptotic Freedom

The strong interaction derives its name from the force that, among other things,

binds quarks into hadrons. However, some remarkable phenomena depend on the

fact that the interaction gets weaker at short distances; that is, on asymptotic

10The equivalent coupling in QED also varies with distance, but the variation is very small and can usually be
neglected.
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freedom. Such short-distance interactions are associated with large momentum

transfers qj j between the particles, with jqj ¼ Oð�h=rÞ, where r is the distance at

which the interaction occurs. Hence in discussing scattering from a static potential,

like the one above, we can regard the strong coupling �s as decreasing with

increasing momentum transfer, rather than with decreasing r.

In general, the strength of the interaction can be shown to depend on the squared

four-momentum transfer

Q2 � E2
q=c2 � q2; ð5:10Þ

which was introduced in Chapter 2. Specifically, it can be shown that the QCD

coupling constant �s is given to a good approximation by

�s ¼
12�

ð33 � 2NfÞ ln Q2=�2ð Þ ; ð5:11Þ

where Nf is the number of quark flavours u, d, s, . . . . , with 4m2
qc4 < Q2, and

Q2 � �2. The constant � is a scale parameter that must be determined from

experiment. Thus QCD does not predict the absolute value of �s, but rather its

dependence on Q2. The value of � may be found by measuring the coupling

constant in a variety of processes (two of which will be discussed later in this

chapter) giving values consistent with

� ¼ 0:2 � 0:1 GeV=c: ð5:12Þ

Because �s varies with Q2, it is often referred to as the running coupling constant.

The values of �sðQ2Þ corresponding to Equation (5.12) are plotted in Figure 5.6. The

Figure 5.6 The running coupling constant �s corresponding to four flavours and a scale
parameter � ¼ 0:2 � 0:1 GeV/c; the dashed, solid and dot-dashed curves correspond to
� ¼ 0:1 ; 0:2 and 0:3, respectively
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variation with Q2 is small at large Q2 and over limited Q2 regions it can often be

neglected. In this large Q2 region, the coupling is sufficiently weak that calcula-

tions can be performed with reasonable accuracy by retaining only diagrams of

lowest and next-to-lowest order; and sometimes the short-range strong interaction

can be neglected to a first approximation, as we shall see.

Although there are other forces that increase with increasing separation (for

example, the force between two particles connected by a spring or elastic string),

the difference between those and the present case is that in the former cases

eventually something happens (for example, the string breaks) so that the particles

(or the ends of the string) become free. This does not happen with the strong force.

Instead, the energy stored in the colour field increases until it becomes sufficiently

large to create q�qq pairs and eventually combinations of these will appear as physical

hadrons. This latter process is called fragmentation and is rather poorly understood.

The behaviour of the strong interaction as a function of distance (or equivalently

momentum transfer) is so unlike the behaviour of other forces we are familiar with

(e.g. gravity and electromagnetism) that it is worth looking at why this is.

In QED, single electrons are considered to emit and reabsorb photons con-

tinually, as shown in Figure 5.7(a). Such a process is an example of a so-called

quantum fluctuation, i.e. one particle converting to two or more particles for a

finite time. This is allowed provided the time and the implied violation of energy

conservation are compatible with the uncertainty principle. Of course if another

electron is nearby, then it may absorb the photon and we have the usual one-photon

exchange scattering process of Figure 5.7(b).

The emitted photon may itself be subject to quantum fluctuations, leading to more

complicated diagrams like those shown in Figure 5.8(a). Thus the initial electron

emits not only photons, but also indirectly electron–positron pairs. These are

referred to as a ‘sea’ of virtual electrons (cf. comments in Chapter 3 in the context

of the quark model). The equivalent contribution to elastic electron–electron

scattering is shown in Figure 5.8(b).

Figure 5.7 (a) The simplest quantum fluctuation of an electron, and (b) the associated
exchange process
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These virtual processes are collectively referred to as vacuum polarization

effects.11 The production of virtual eþe� pairs produces a shielding effect, so that

the charge and the strength of the interaction �, as seen from a distance, will appear

altered. Detailed calculations show that if we write the Coulomb potential as

�effðrÞ ¼
�effðrÞ�hc

r
; ð5:13Þ

then

�eff ¼ �  1=137 ð5:14Þ

for

r � rC � �h=mc ¼ 3:9 � 10�13 m; ð5:15Þ

but for r � rC, the value of � is somewhat larger and increases as r becomes

smaller. In other words, the strength of the interaction increases at very short

distances. Formally, without proof, the QED coupling �emðQ2Þ is given by

�emðQ2Þ ¼ �ð2Þ 1 � 1

3�
�ð2Þln Q2

2

� �� ��1

; ð5:16Þ

where 2 is a low-energy value of Q2 at which the value of � is known. If, for

example, we take  ¼ 1 MeV=c and � ¼ 1=137, i.e. the value of the fine structure

constant as found from low-energy interactions, then at the mass of the Z0 boson,

�  1=135. Thus the electromagnetic coupling increases with energy-transfer, but

only very slowly.

11The name arises from the analogy of placing a charge in a dielectric medium. This aligns the particles of
the medium and produces a net polarization.

Figure 5.8 (a) A more complicated quantum fluctuation of the electron, and (b) the
associated exchange process
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Vacuum polarization effects have measurable consequences. For example, the

2S state in hydrogen is predicted to be more tightly bound than it would be in a

pure Coulomb potential. The increased binding is only 2:2 � 10�7 eV, but never-

theless it is confirmed by extremely accurate measurements on the hydrogen

spectrum. There are also very small corrections to the magnetic moment of the

electron that have been verified experimentally to extraordinary precision.

Quantum fluctuations also exist in QCD and also give rise to a variation of the

interaction strength with distance. If, by analogy with QED, we consider quark–

quark scattering, then the two lowest-order vacuum polarization corrections are

shown in Figure 5.9. The first of these (Figure 5.9(a)) is analogous to virtual eþe�

production in QED and also leads to a screening effect. However, the second

diagram (Figure 5.9(b)) has no counterpart in QED, because there are no direct

photon self-couplings. Calculations show that this diagram leads to an antiscreen-

ing effect that is larger than the screening effect from Figure 5.9(a) and so the net

effect is that the interaction grows weaker at short distances, i.e. asymptotic

freedom. Formally, the strong interaction coupling �s is given by a formula

analogous to that for �em above, except the coefficient of the logarithmic term is

different and, crucially, its sign is positive:

�sðQ2Þ ¼ �sð2Þ 1 þ �sð2Þ
12�

ð33 � 2NfÞlnðQ2=2Þ
� ��1

; ð5:17Þ

where again 2 is a low-energy value of Q2 at which the value of �s is known and

Nf is the number of quark flavours that take part in the interaction.

5.5 Jets and Gluons

A striking feature of many high-energy particle collisions is the occurrence of jets

of hadrons in the final state. We have already mentioned these in Section 3.2.1

when we discussed the experimental evidence for quarks and again when we

Figure 5.9 The two lowest-order vacuum polarization corrections to one-gluon exchange in
quark--quark scattering
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discussed basic properties of quarks and gluons interactions earlier in this chapter.

They have been extensively studied in the reaction

eþ þ e� ! hadrons ð5:18Þ

at high energies using colliding beam experiments, which were discussed in

Chapter 4. High-energy electrons and positrons collide head-on, with equal and

opposite momenta, so that the total momentum of the hadrons produced cancels

out to zero in order to conserve momentum. This is a particularly ‘clean’ reaction,

because the initial particles are elementary, without internal structure.

In the centre-of-mass energy range 15–40 GeV, electron–positron annihilation

into hadrons is dominated by the production of jets. These can be regarded as

occurring in two stages: (1) a primary electromagnetic process eþ þ e� ! q þ �qq
(due to photon exchange) leading to the production of a quark–antiquark pair,

followed by (2) fragmentation (the concept we met in discussing asymptotic

freedom) which converts the high-energy q�qq pair into two jets of hadrons. This is

illustrated in Figure 5.10.

The fragmentation process that converts the quarks into hadrons is very

complicated, and the composition of the jets – i.e. the numbers and types of

particles in the jet and their momenta – varies from event to event. However, the

direction of a jet, defined by the total momentum vector

P ¼
X

i

pi; ð5:19Þ

where the sum extends over all the particles within the jet, closely reflects the

parent quark or antiquark direction. This is because the QCD interaction is

relatively weak at very short distances (asymptotic freedom), and the quark and

antiquark do not interact strongly until they are separated by a distance r of order

1 fm. At these relatively large distances, only comparatively small momenta can be

transferred, and hence the jets that subsequently develop point almost exactly in

the initial quark and antiquark directions. That is, the jet angular distribution

relative to the electron beam direction reflects the angular distributions of the

quark and antiquark in the basic reaction eþ þ e� ! q þ �qq. The latter can easily

Figure 5.10 Basic mechanism of two-jet production in electron--positron annihilation
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be calculated in QED as it is a purely electromagnetic process, and is in excellent

agreement with the observed angular distribution of the jets. This is one of the

pieces of evidence for the existence of quarks that was cited in Chapter 3 and again

at the start of the present chapter.

Although the dominant process in electron–positron annihilation into hadrons is

the formation of two ‘back-to-back’ jets, occasionally we would expect a high-

momentum gluon to be emitted by the quark or anti-quark before fragmentation

occurs, in much the same way as a high-energy electron sometimes emits a photon

(i.e. bremssrahlung). The quark, antiquark and gluon then all fragment into

hadrons, leading to a three-jet event. A computer reconstruction of such an

event in a jet chamber is shown in Figure 5.11.

Events like these provided the first unambiguous evidence for gluons, because

the angular distributions of the jets are found to be in good agreement with the

theoretical expectation for spin-1 gluons, but are inconsistent with what would

be expected if, for example, the third jet originated from a particle of spin-0. The

ratio of three-jet to two-jet events can also be calculated, assuming that the third jet is

a gluon, because the probability that a quark or antiquark will emit a gluon is

determined by the strong coupling �s, in the same way that the probability that an

electron or positron will emit a photon is determined by the fine structure constant �.

This leads to a value of�s and hence�, the QCD scale parameter. The value obtained

is consistent with Equation (5.12) found from other determinations and lends further

support for the whole picture of quarks interacting via the exchange of gluons.

5.6 Colour Counting

What evidence is there that quarks exist in just three colour states? This question can

be settled by using data from electron–positron annihilation. The cross-sections for

Figure 5.11 Computer reconstruction of a three-jet event in electron--positron annihilation
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electron–positron annihilation to hadrons and for electron–positron annihilation to

muons12 both decrease rapidly with energy, but their ratio

R � �ðeþe� ! hadronsÞ
�ðeþe� ! þ�Þ ð5:20Þ

is almost energy independent. The near constancy of this ratio follows from the

dominance of the two-step mechanism of Figure 5.10, with the total annihilation

rate being determined by that of the initial reaction eþe� ! q þ �qq. The value of

the ratio R then directly confirms the existence of three colour states, each with the

same electric charge, for each quark flavour.

To understand this, let us suppose that each quark flavour f ¼ u, d, s . . . exists

in NC colour states, so that NC ¼ 3 according to QCD, while NC ¼ 1 if the colour

degree of freedom does not exist. Since the different colour states all have the same

electric charge, they will all be produced equally readily by the mechanism of

Figure 5.10, and the rate for producing quark pairs of any given flavour f ¼ u, d,

s, . . . will be proportional to the number of colours NC. The cross-section is also

proportional to the squared charge of the produced pair (because this is a first-order

electromagnetic process), and since muon pairs are produced by an identical

mechanism, we obtain

�ðeþe� ! q�qqÞ ¼ NC e2
f �ðeþe� ! þ�Þ; ð5:21Þ

where ef is the electric charge, in units of e, on a quark of flavour f.

The cross-section for eþ þ e� ! hadrons will receive an additional contribution

of the form of Equation (5.21) when the energy passes a threshold for a new quark

flavour to be produced. Thus R at low energies will have a series of ‘steps’

corresponding to the production of pairs of new quarks and this is what is observed

experimentally. At high energies above the threshold for the production of b�bb pairs

and assuming that hadron production is completely dominated by the two-step

process of Figure 5.10, we would have13

R ¼ R0 � NCðe2
u þ e2

d þ e2
s þ e2

c þ e2
bÞ ¼ 11NC=9: ð5:22Þ

When the small contribution from the three-jet events and other corrections of

order �s are taken into account, this expression for R is modified to

R ¼ R0ð1 þ �s=�Þ; ð5:23Þ

12The cross-section for the production of muon pairs is essentially a purely electromagnetic one, except at
very high energies where the effect of the weak interaction may be seen. This will be discussed in Chapter 6.
13There is no contribution from the top quark because it is too heavy to be produced, even at the high
energies we are considering.

COLOUR COUNTING 167



giving rise to a weak energy dependence of R from the energy dependence of �s

discussed earlier (Equation (5.17)). Although these corrections of order �s are

small compared to the dominant contribution, they must be included if the most

precise experimental data on R are to be accounted for. The data are in excellent

agreement with the theoretical prediction for the value NC ¼ 3 (see Figure 5.12)

and hence prove that quarks exist in just three colour states.

5.7 Deep Inelastic Scattering and Nucleon Structure

In Chapter 2 we discussed the scattering of electrons from nuclei to determine their

radial charge distributions. This was done by assuming a form for the charge

distribution, calculating the resulting form factor (i.e. the Fourier transform of the

charge distribution) and using it to fit experimental cross-sections. In a somewhat

similar way we can use high-energy inelastic scattering to investigate the charge

distribution within nucleons. This is referred to as deep inelastic scattering,

because the projectiles probe deep into the internal structure of the nucleon.

This type of interaction was mentioned in Section 2.9 in the context of classifying

nuclear reaction mechanisms. The original experiments of this type in particle

physics were done in the 1960s and provided the first definitive evidence for the

existence of quarks. We will deduce that nucleons have a sub-structure of point-

like charged constituents.14

14The pioneering work on deep inelastic scattering done by Jerome Friedman, Henry Kendall and Richard
Taylor resulted in their receiving the 1990 Nobel Prize in Physics.

Figure 5.12 Measured values of the cross-section ratio R and the theoretical prediction from
QCD for NC ¼ 3 colours; the dashed line shows the prediction without QCD corrections
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The dominant one-photon contribution to the inelastic scattering of a charged

lepton from a proton in the spectator quark model is shown in Figure 5.13. Unlike

elastic scattering, where at a given lepton energy E there is only one free variable

(e.g. the scattering angle), in inelastic scattering the excitation energy of the

nucleon adds a further degree of freedom, so we can define two independent

variables. These are usually taken to be �, defined by

2M� � W2c2 þ Q2 � M2c2 ð5:24Þ

and a dimensionless quantity (called the scaling variable) given by

x � Q2=2M�: ð5:25Þ

Here, M is the proton mass, W is the invariant mass of the final-state hadrons and

Q2 is the squared energy–momentum transfer

Q2 ¼ ðE � E0Þ2=c2 � ðp � p0Þ2: ð5:26Þ

The physical interpretation of x will be discussed below. In the rest frame of the

initial proton, � reduces to

� ¼ E � E0 ð5:27Þ

and so is the Lorentz-invariant generalization for the energy transferred from the

lepton to the proton.

In Chapter 2 we discussed several modifications to the formalism for describing

the structure of nuclei obtained from scattering experiments. Here we are dealing

with high-energy projectiles and so we will need to take all those corrections into

account. In particular, the magnetic interaction introduces a second form factor.

(cf Equation (2.14)). The two form factors, denoted W1 and W2, are called structure

Figure 5.13 Dominant one-photon exchange mechanism for inelastic lepton--proton
scattering where ‘ ¼ e or 
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functions in this context. In terms of these, the differential cross-section may be

written

d2�

d�dE0 ¼
d�

d�

� �
Mott

½W2ðQ2; �Þ þ 2W1ðQ2; �Þ tan2ð�=2Þ	; ð5:28Þ

where � is the lepton scattering angle. For values of W � 2:5 GeV=c2, the cross-

sections show considerable structure due to the excitation of nucleon resonances, but

above this mass they are smoothly varying. In the latter region, the values of the

structure functions can be extracted from the data by choosing suitable parameter-

izations and fitting the available data in an analogous way to the way charge

distributions of nuclei were deduced in Chapter 2.

Rather than W1 and W2, it is usual to work with two related dimensionless

structure functions defined by

F1ðx;Q2Þ � Mc2W1ðQ2; �Þ and F2ðx;Q2Þ � �W2ðQ2; �Þ: ð5:29Þ

It is a remarkable fact that at fixed values of x the structure functions have only a

very weak dependence on Q2. This behaviour is referred to as scaling and is

illustrated in Figure 5.14. As the Fourier transform of a spherically symmetric

point-like distribution is a constant, we conclude that the proton has a sub-structure

of point-like charge constituents.

The interpretation of scaling is simplest in a reference frame where the target

nucleon is moving with a very high velocity, so that the transverse momenta and

Figure 5.14 The structure function F2 of the proton as a function of x, for Q2 between 2 and
18 ðGeV=cÞ2 (reproduced from At82 with kind permission of Springer Science and Business
Media)
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rest masses of its constituents may be neglected. The structure of the nucleon is

then given by the longitudinal momentum of its constituents. This approach was

first adopted by Feynman and Bjorken, who called the constituents partons. (We

now identify charged partons with quarks and neutral partons with gluons.) In

the parton model, deep inelastic scattering is visualized as shown in Figure 5.15.

The target nucleon is a stream of partons each with four-momentum xP, where

P ¼ ðp; pÞ is the four-momentum of the nucleon and p ¼ pj j, is its (very large)

three-momentum, so that the nucleon mass may be neglected.

Suppose now that one parton of mass m is scattered elastically by the exchanged

photon of four-momentum Q. Then

ðxP þ QÞ2 ¼ ðx2P2 þ 2xP � Q þ Q2Þ ¼ m2c4  0: ð5:30Þ

If x2P2
�� �� ¼ x2M2c4 � Q2, then

x ¼ � Q2

2P � Q
¼ Q2

2M�
; ð5:31Þ

where the invariant scalar product has been evaluated in the laboratory frame

in which the energy transfer is � and the nucleon is at rest. This is our previous

definition Equation (5.25). Thus, the physical interpretation of x is the fractional

three-momentum of the parton in the reference frame where the nucleon has

a very high velocity. This is equivalent to having a parton of mass m stationary

in the laboratory system, with the elastic relation Q2 ¼ 2m�. So provided

Q2 � M2,

x ¼ Q2

2M�
¼ m

M
; ð5:32Þ

i.e. x may also be interpreted as the fraction of the nucleon mass carried by the

struck parton.

Figure 5.15 The parton model of deep inelastic scattering
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To identify the constituent partons with quarks we need to know their spins and

charges. For the spin, it can be shown that

F1ðx;Q2Þ ¼ 0 ðspin 0Þ ð5:33Þ

and

2xF1ðx;Q2Þ ¼ F2ðx;Q2Þ ðspin 1=2Þ: ð5:34Þ

The latter relation, known as the Callan–Gross relation, follows by comparing the

coefficients in the equation for the double differential cross-section Equation (5.28)

with that in Chapter 2 (Equation (2.14)). This gives

2W1=W2 ¼ 2�; ð5:35Þ

where � ¼ Q2=4m2 c2 and m is the mass of the target, in this case the mass of the

struck parton. Replacing W1 by F1=Mc2 and W2 by F2=�, gives

�

Mc2

F1

F2

¼ Q2

4m2c2
ð5:36Þ

and since now Q2 ¼ 2m�, we have m ¼ Q2=2� ¼ xM. Finally, using this mass in

Equation(5.36) yields the Callan–Gross relation. Figure 5.16 shows some results

for the ratio 2xF1=F2. It is clear that spin-1
2

is strongly favoured.

To deduce the parton charges is more complicated. We will assume that the

constituent partons are quarks and show that this is consistent with experimental

data. We start by defining qf ðxÞ to be the momentum distribution of a quark of

flavour f, i.e. qf ðxÞdx is the probability of finding in a nucleon a quark of flavour f,

with momentum fraction in the interval x to x þ dx. A given nucleon will consist of

a combination of valence quarks (i.e. those that give rise to the observed quantum

numbers in the quark model) and additional quark–antiquark pairs that are

continually produced and annihilated by the radiation of virtual gluons by the

quarks.15 (Recall the discussion of quantum fluctuations in electrodynamics in

Section 5.4.) Thus, in general, a structure function can be written as the sum of

contributions from quarks and antiquarks of all flavours. Also, from the cross-

section formula Equation (5.28), we would expect the structure functions to

involve the quark distributions weighted by the squares of the quark charges zf

(in units of e) for a given quark flavour f.

15These are the ‘sea’ quarks referred to in the discussion of the static quark model in Chapter 3.
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Thus, for example, F2 is

F2ðxÞ ¼ x
X

f

z2
f qf ðxÞ þ �qqf ðxÞ
� 	

: ð5:37Þ

If we concentrate on the scattering of charged leptons, i.e. electrons or muons, and

consider just the possibility of light quarks u, d and s within nucleons, then we

have (for ‘ ¼ e; )

F
‘p
2 ðxÞ ¼ x

1

9
ðd p þ �dd

pÞ þ 4

9
ðup þ �uupÞ þ 1

9
ðsp þ �sspÞ

� �
ð5:38aÞ

and

F‘n
2 ðxÞ ¼ x

1

9
ðd n þ �dd

nÞ þ 4

9
ðun þ �uunÞ þ 1

9
ðsn þ �ssnÞ

� �
; ð5:38bÞ

where, for example, un;p is the distribution of u quarks in the neutron and proton.

Using isospin symmetry, interchanging u and d quarks changes neutron to proton,

Figure 5.16 The ratio 2xF1=F2 at fixed x
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i.e. u $ d implies n $ p. Thus,

upðxÞ ¼ dnðxÞ � uðxÞ; ð5:39aÞ
dpðxÞ ¼ unðxÞ � dðxÞ; ð5:39bÞ

and

spðxÞ ¼ snðxÞ � sðxÞ; ð5:39cÞ

with similar relations for the antiquarks. Then if we work with a target nucleus

with equal numbers of protons and neutrons (an isoscalar target), its structure

function will have the approximate form (neglecting purely nuclear effects)

F‘N
2 ðxÞ ¼ 1

2
½F‘p

2 ðxÞ þ F‘n
2 ðxÞ	 ¼ 5

18
x
X

q¼d;u

½qðxÞ þ �qqðxÞ	 þ 1

9
x½sðxÞ þ �ssðxÞ	: ð5:40Þ

The second term is small because s quarks are only present in the sea component at

the level of a few percent. Thus the mean squared value of the charges of the u and

d quarks is approximately 5
18

.

The final step is to extract information from deep inelastic scattering using

neutrinos and antineutrinos as projectiles. This is more complicated because, as we

shall see in Chapter 6, neutrinos and antineutrinos couple differently to the different

quarks and antiquarks and there is also a third form factor involved. Without proof,

we shall just quote the result:

F�N
2 ðxÞ ¼ x

X
q¼d;u

½qðxÞ þ �qqðxÞ	: ð5:41Þ

There is no electric charge factor outside the summation because, just as quarks form

strong interaction isospin multiplets with different electric charges, the leptons also

form weak isospin multiplets, but in this case the resulting weak charge is the same

for all quarks.16

From Equation (5.40) and (5.41), we expect

F�N
2 ðxÞ � 18

5
F‘N

2 ðxÞ: ð5:42Þ

The experimental data illustrated in Figure 5.17 show that F‘N
2 ðxÞ and F�N

2 ðxÞ are

equal within errors except possibly at small values of x where antiquarks are more

important. Thus one can conclude that the partons do have charges 2
3

and � 1
3
, which

completes the evidence for identifying partons with quarks.

16Weak isospin will be discussed briefly in Chapter 6.
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Combining data from different experiments, with electrons, muons, neutrinos and

antineutrinos as projectiles, enables individual quark/parton momentum distribu-

tions to be extracted from combinations of cross-sections. Some typical results at

Q2 ¼ 10 ðGeV=cÞ2
are shown in Figure 5.18 for the combinations

QðxÞ ¼ dðxÞ þ uðxÞ ð5:43aÞ

and

�QQðxÞ ¼ �ddðxÞ þ �uuðxÞ: ð5:43bÞ

The difference

QvðxÞ � QðxÞ � �QQðxÞ ð5:44Þ

can be identified as the distribution of the valence quarks of the quark model. It can

be seen that Qv is concentrated around x  0:2 and dominates except at small

values of x where the antiquarks �qq in the sea distribution are important.

The results of Figure 5.18 reveal an interesting and unexpected result concerning

gluons within the nucleon. If we integrate the momentum distributions for quarks

and antiquarks over all x we might expect to recover the total momentum of the

nucleon, whereas the curves of Figure 5.18 yield a value of approximately 0.5.

Thus it follows that about 50 per cent of the momentum is carried by gluons.

Although scaling is approximately correct, it is certainly not exact. In Fig-

ure 5.19 we show some deep inelastic scattering data plotted in more detail. The

Figure 5.17 Comparison of F2ðxÞ from deep inelastic muon (data from Ar97) and neutrino
(data from Se97) scattering experiments; the data points are the average over a range of
Q2 > 2 ðGeV=cÞ2 and the error bars express the range of data values within the Q2 ranges
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deviations from scaling are due to QCD corrections to the simple quark model, i.e.

the quark in the proton that is struck by the exchanged photon can itself radiate

gluons. Again, without further details, the scaling violations are explained by QCD

using a value of the strong interaction parameter � that is consistent with that

obtained from other sources (e.g. the three-jet events that we have discussed

above).17

Finally, it is worth noting that the nucleon structure functions and hence the

quark densities are found from lepton scattering experiments using a range of

different nuclear targets. We have seen that the average binding energy of nucleons

in heavy nuclei is of the order of 7–8 MeV per nucleon. As this energy is much

smaller than those used in deep inelastic scattering experiments, it might be

thought safe to ignore nuclear effects (except those due to the internal motion of

the nucleons – the Fermi momentum – that are typically about 200 MeV/c).

However, experiments have shown that the structure functions do in fact depend

17Scaling violations are discussed in detail, but at a more advanced level than here in, for example Ha84.

Figure 5.18 Quark and antiquark momentum distributions in the nucleon
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slightly on the nuclear medium. Although the effects are very small and not

enough to alter the conclusions of this chapter, it is a reminder that there are still

things to be learnt about the role of nuclear matter and that this may hold

information on the nuclear force in terms of the fundamental quark–gluon

interaction.

Problems

5.1 The general combination of m quarks and n antiquarks qm�qqn, with baryon number

B > 0 has a colour wavefunction that may be written r� g� b
 �rr ��� �gg
��� �bb

�


, where r�

means that there are � quarks in the r colour state, etc.. By imposing the condition of

colour confinement, show that m � n ¼ 3p, where p is a non-negative integer and

hence show that states with the structure qq are not allowed.

Figure 5.19 A compilation of values of F2 measured in deep inelastic electron and muon
scattering from a deuterium target -- different symbols denote different experiments; for clarity,
the data at different values of x have been multiplied by the factors shown in brackets and the
solid line is a QCD fit with � ¼ 0:2 GeV (adapted from Mo94, copyright the American Physical
Society)
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5.2 Draw the lowest-order Feynman diagrams for the following processes:

(a) the interaction of a quark and a gluon to produce a quark and a photon;

(b) the production of a single Z0-boson in a collision of protons and antiprotons;

(c) the annihilation of an electron and a positron to produce a pair of W-bosons.

5.3 A p�pp collider with equal beam energies is used to produce a pair of top quarks. Draw

a Feynman diagram for this process that involves a single gluon. If the three quarks

of the proton (or antiproton) carry between them 50 per cent of the hadron total

energy–momentum, calculate the minimum beam momentum required to produce

the t�tt pair.

5.4 The lowest Feynman diagram for inelastic electron–proton scattering at high

energies

e�ðE; pcÞ þ pðEP;PpcÞ ! e�ðE0; p0cÞ þ XðhadronsÞ

is shown in Figure 5.20.

Use energy–momentum conservation to show that the variable � defined in

Equation (5.24) becomes � ¼ E � E0 in the rest frame of the proton. Hence show

that the variable x defined in Equation (5.25) lies in the range 0 � x � 1 if the mass

of the electron is neglected.

5.5 If hadron–hadron total cross-sections are assumed to be the sum of the cross-sections

between their constituent quarks, show that the quark model predicts the

relationship:

�ð�pÞ ¼ �ðppÞ þ �ðK�nÞ � �ð�þpÞ:

5.6 The 3
 decay of positronium (the bound state of eþe�) has a width that in QED is

predicted to be �ð3
Þ ¼ 2ð�2 � 9Þ�6mec2=9�, where � is the fine structure constant.

If the hadronic decay of the c�cc bound state J=�ð3100Þ proceeds via an analogous

Figure 5.20 Kinematics of inelastic electron--proton scattering
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mechanism, but involving three gluons, use the experimental hadronic width

�ð3gÞ ¼ 80 keV to estimate the strong interaction coupling constant �s. Use an

analogous assumption to estimate �s from the radiative width �ðgg
Þ ¼ 0:16 keV of

the b�bb bound state �ð9460Þ.

5.7 Use Equations (5.38) and (5.39) to derive the Gottfried sum rule,

ð1

0

½Fep
2 ðxÞ � Fen

2 ðxÞ	 dx

x
¼ 1

3
þ 2

3

ð1

0

½�uuðxÞ � �ddðxÞ	dx;

where the quark distributions refer to the proton.

5.8 Estimate the cross-section ratio R defined in Equation (5.20) at centre-of-mass

energies ECM ¼ 2:8 GeV and 15 GeV. How would R change if the energy were

increased so that top quark pairs could be produced?

5.9 Common forms assumed for the momentum distributions of valence quarks in the

proton are:

FuðxÞ ¼ xuðxÞ ¼ að1 � xÞ3; FdðxÞ ¼ xdðxÞ ¼ bð1 � xÞ3:

If the valence quarks account for half the proton’s momentum, find the values of a

and b.

5.10 The cross-section �ðu�dd ! WþÞ near the mass of the Wþ is given by the Breit–

Wigner form

� ¼ �ð�hcÞ2��2��u �dd

3½4ðE � MW c2Þ2 þ �2	
;

where ðMW ;�Þ are the mass and total width of the Wþ, �u �dd is the partial width for

Wþ ! u�dd , E is the total centre-of-mass energy of the u�dd pair and ��¼ 2=E. Find the

maximum value of �, i.e. �max, given that the branching ratio for Wþ ! u�dd is 1=3.

Use this result and the quark distributions of Question 5.9 to find an expression for

the cross-section �ðp�pp ! Wþ þ � � �Þ in terms of the p�pp total centre-of-mass energyffiffi
s

p
and �max and evaluate your result for

ffiffi
s

p
¼ 1 TeV. (Use the narrow width, i.e.

delta function, approximation

�u�ddðEÞ ¼ �
�W

MW c2
�max� 1 � E2

ðMW c2Þ2

 !

in integrals.)
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6
Electroweak Interactions

We have already discussed some aspects of weak and electromagnetic interactions

when we discussed nuclear stability in Chapter 2 and again when we introduced

the basic properties of leptons in Chapter 3. In this chapter we will consider wider

aspects of the weak interaction and also its unification with electromagnetism to

produce the spectacularly successful electroweak theory.

6.1 Charged and Neutral Currents

Like the strong and electromagnetic interactions, the weak interaction is also

associated with elementary spin-1 bosons, which act as ‘force carriers’ between

quarks and/or leptons. Until 1973 all observed weak interactions were consistent

with the hypothesis that they were mediated by the exchange of the charged bosons

W� only. However, in the 1960s, a theory was developed which unified electro-

magnetic and weak interactions in a way that is often compared with the

unification of electric and magnetic interactions by Maxwell a century earlier.

This new theory made several remarkable predictions, including the existence of

the heavy neutral vector boson Z0 and of weak reactions arising from its exchange.

The latter processes are called neutral current reactions (the word neutral referring

to the charge of the exchanged particle) to distinguish them from the so-called

charged current reactions arising from charged W� boson exchange. In particular,

neutral current reactions of the type �� þ N ! �� þ X were predicted to occur via

the mechanism of Figure 6.1, where N is a nucleon and X is any set of hadrons

allowed by the conservation laws. Although difficult to detect, such reactions were

first observed in a bubble chamber experiment in 1973.

The prediction of the existence and properties of neutral currents, prior to their

discovery, is only one of many remarkable successes of the unified theory of

electromagnetic and weak interactions. Others include the prediction of the

existence of the charmed quark, prior to its discovery in 1974 and the prediction

Nuclear and Particle Physics B. R. Martin
# 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01999-9



of the masses of the W� and Z0 bosons prior to the long-awaited detection of these

particles in 1983. In general, the theory is in agreement with all data on both weak

and electromagnetic interactions, which are now referred to collectively as the

electroweak interaction, in the same way that electric and magnetic interactions

are referred to collectively as electromagnetic interactions. Furthermore, the theory

predicts the existence of a new spin-0 boson, the so-called Higgs boson, which is

associated with the origin of particle masses within the model. This was mentioned

in passing in earlier chapters. Although a detailed discussion of the Higgs boson is

beyond the scope of this book, there is a brief discussion of the role of this very

important particle in Chapter 9.

The new unification only becomes manifest at high energies, and at low energies

weak and electromagnetic interactions can still be clearly separated. This follows

from the general form of the amplitude Equation (1.41):

Fðq2Þ ¼ �g2�h2

jqj2 þ M2
Xc2

; ð6:1Þ

where M2
X is the mass of the exchanged particle and g is the appropriate coupling.

For weak interactions, MX ¼ MW ;Z 	 80 GeV=c2 and for the electromagnetic

interaction MX ¼ M� ¼ 0. Thus, even with gweak 
 gem, the amplitudes for the

two interactions will only become of comparable size for jqj2 
 M2
Xc2, i.e. at high

energies. We therefore start by considering the weak interaction at low energies

and deduce some of its general properties that are valid at all energies. Later we

will consider how unification arises and some of its consequences.

6.2 Symmetries of the Weak Interaction

In this section we will discuss the parity (P) and charge conjugation (C ) operators,

which were introduced in Chapter 1. These are conserved in the strong and

Figure 6.1 Feynman diagram for the weak neutral current reaction �� þ N ! �� þ X
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electromagnetic interactions. The first indication that parity might be violated in

weak interactions came from observations on the pionic decays of K-mesons, i.e.

K ! �� and K ! ���,1 and these led Lee and Yang in 1956 to make a thorough

study of all previous experiments in which parity conservation had been assumed

or apparently proved. They came to the startling conclusion that there was in fact

no firm evidence for parity conservation in weak interactions; and they suggested

experiments where the assumption could be tested.2 This led directly to the classic

demonstration of parity violation from a study of the �-decay of polarized 60Co

nuclei. We shall just describe the principles of this experiment.3

The experiment was done in 1957 by Wu and co-workers, who placed a sample

of 60Co inside a magnetic solenoid and cooled it to a temperature of 0.01 K. At

such temperatures, the interaction of the magnetic moments of the nuclei with the

magnetic field overcomes the tendency to thermal disorder, and the nuclear spins

tend to align parallel to the field direction. The polarized 60Co nuclei produced in

this way decay to an excited state of 60Ni by the �-decay

60Co ! 60Ni� þ e� þ ���e: ð6:2Þ

Parity violation was established by the observation of a ‘forward–backward

decay asymmetry’, i.e. the fact that fewer electrons were emitted in the forward

hemisphere than in the backward hemisphere with respect to the spins of the

decaying nuclei.

We can show that this implies parity violation as follows. The parity transforma-

tion reverses all particle momenta p while leaving their orbital angular momenta

r � p, and by analogy their spin angular momenta, unchanged. Hence in the rest

frame of the decaying nuclei its effect is to reverse the electron velocity while

leaving the nuclear spins unchanged, as shown in Figure 6.2. Parity invariance would

then require that the rates for the two processes Figure 6.2(a) and Figure 6.2(b) were

equal, so that equal numbers of electrons would be emitted in the forward and

backward hemispheres with respect to the nuclear spins, in contradiction to what

was observed. The discovery of parity violation was a watershed in the history of

weak interactions because the effect is large, and an understanding of weak

interactions is impossible if it is neglected.

The charge conjugation operator C changes all particles to antiparticles and as

we will see presently is also not conserved in weak interactions. In examining

these operators, two interconnected themes will emerge. The first is that these

effects have their origin in the spin dependence of weak interactions; the second is

1Two particles, called at that time 	 and 
, were observed to decay via the weak interaction to �� and ���
final states, respectively, which necessarily had different final-state parities. However, the 	 and 
 had
properties, including the near equality of their masses, which strongly suggested that they were in fact the
same particle. Analysis of the ‘	–
 puzzle’ suggested that parity was not conserved in the decays.
2For their work on parity non-conservation, Chen Yang and Tsung-Dao Lee were awarded the 1957 Nobel
Prize in Physics.
3This classic experiment is described in readable detail in Chapter 10 of Tr75.
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that while P-violation and C-violation are large effects, there is a weaker combined

symmetry, called CP-invariance, which is almost exactly conserved. This has its

most striking consequences for the decays of neutral mesons, which are also

discussed below. We start by considering the P and C operators in more detail.

C-violation and P-violation are both conveniently illustrated by considering the

angular distributions of the electrons and positrons emitted in the decays

�� ! e� þ ���e þ �� ð6:3aÞ

and

�þ ! eþ þ �e þ ���� ð6:3bÞ

of polarized muons. In the rest frame of the decaying particle these were found to

be of the form

��� ðcos 
Þ ¼ 1

2
�� 1 � ��

3
cos 


� �
; ð6:4Þ

where 
 is the angle between the muon spin direction and the direction of the

outgoing electron or positron, as shown in Figure 6.3(a). The quantities �� are

called the asymmetry parameters, and �� are the total decay rates, or equivalently

the inverse lifetimes, i.e.

	�1
� 

ðþ1

�1

d cos 
���ðcos 
Þ ¼ ��; ð6:5Þ

as may easily be checked by direct substitution.

Figure 6.2 Effect of a parity transformation on 60Co decay: the thick arrows indicate the
direction of the spin of the 60Co nucleus, while the thin arrows show the direction of the
electron’s momentum
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We consider now the consequences of assuming parity and charge conjugation

for these decays, starting with the latter as it is the simpler. Under charge

conjugation, �� decay converts to �þ decay. C-invariance then implies that the

rates and angular distributions for these decays should be the same, i.e.

�þ ¼ �� ðC-invarianceÞ ð6:6Þ

and

�þ ¼ �� ðC-invarianceÞ: ð6:7Þ

The parity transformation preserves the identity of the particles, but reverses

their momenta while leaving their spins unchanged. Its effect on muon decay is

shown in Figure 6.3, where we see that it changes the angle 
 to �� 
, so that cos 

changes sign. Hence P-invariance implies

��� cos 
ð Þ ¼ ��� � cos 
ð Þ ðP-invarianceÞ: ð6:8Þ

Substituting Equation (6.4), leads to the prediction that the asymmetry parameters

vanish,

�� ¼ 0 ðP-invarianceÞ: ð6:9Þ

Experimentally, the �� lifetimes are equal to a very high level of precision, so

that the prediction for the lifetimes is satisfied; but the measured values of the

µ+

θ

− µ+−

e+

e+

−

−

P π−θ

(a) (b)

Figure 6.3 Effect of a parity transformation on muon decays: the thick arrows indicate the
direction of the muon spin, while the thin arrows indicate the direction of the electron’s
momentum
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asymmetry parameters are

�� ¼ ��þ ¼ 1:00 � 0:04; ð6:10Þ

which shows that both C-invariance and P-invariance are violated. The violation is

said to be ‘maximal’, because the asymmetry parameters are defined to lie in the

range �1 � �� � 1.

In view of these results, a question that arises is: why do the �þ and �� have

the same lifetime if C-invariance is violated? The answer lies in the principle of

CP-conservation, which states that the weak interaction is invariant under the

combined operation CP even though both C and P are separately violated. The CP

operator transforms particles at rest to their corresponding antiparticles at rest, and

CP-invariance requires that these states should have identical properties. Thus, in

particular, the masses of particles and antiparticles are predicted to be the same.

Specifically, if we apply the CP operator to muon decays, the parity operator

changes 
 to �� 
 as before, while the C operator changes particles to anti-

particles. Hence CP-invariance alone implies that the condition obtained from

P-invariance is replaced by the weaker condition

��þ cos 
ð Þ ¼ ��� � cos 
ð Þ: ð6:11Þ

Again, substituting Equation (6.4) into Equation (6.11), gives

�þ ¼ �� ðCP-invarianceÞ; ð6:12Þ

implying equal lifetimes and also

�þ ¼ ��� ðCP-invarianceÞ; ð6:13Þ

in agreement with the experimental results. Thus CP-invariance retains the

symmetry between particles and antiparticles as observed by experiment, at

least for �-decays. In fact CP-invariance has been verified in a wide variety of

experiments involving weak interactions, and it is believed to be exact for purely

leptonic processes (i.e. ones involving only leptons) and a very good approxima-

tion for those involving hadrons. (The only known violations will be discussed in

Section 6.6.1.) Particles and antiparticles have the same masses and lifetimes even

if CP is not conserved.

6.3 Spin Structure of the Weak Interactions

We turn now to the spin structure of the weak interactions, which is closely related

to the symmetry properties discussed above. As this spin structure takes its

simplest form for zero-mass particles, we will discuss the case of neutrinos and
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antineutrinos first, assuming that they have zero mass for the purpose of this

discussion.

6.3.1 Neutrinos

In discussing neutrinos, it is convenient to use the so-called helicity states, in

which the spin is quantized along the direction of motion of the particle, rather

than along some arbitrarily chosen ‘z-direction’. For a spin-1
2

particle, the spin

component along the direction of its motion can be either þ 1
2

or � 1
2

(in units of �h),

as illustrated in Figure 6.4, corresponding to positive or negative helicity

respectively. These states are called right-handed or left-handed, respectively,

since the spin direction corresponds to rotational motion in a right-handed or left-

handed sense when viewed along the momentum direction.

We will denote these states by a subscript R or L, so that, for example, �L means

a left-handed neutrino. The remarkable fact about neutrinos and antineutrinos,

which only interact via the weak interaction, is that only left-handed neutrinos �L

and right-handed antineutrinos ���R are observed in nature. This obviously violates

C-invariance, which requires neutrinos and antineutrinos to have identical weak

interactions. It also violates P-invariance, which requires the states �L and �R to

also have identical weak interactions, since the parity operator reverses the

momentum while leaving the spin unchanged and so converts a left-handed

neutrino into a right-handed neutrino. It is, however, compatible with CP-

invariance, since the CP operator converts a left-handed neutrino to a right-handed

antineutrino, as illustrated in Figure 6.5.

The helicity of the neutrino was first measured in an ingenious experiment by

Goldhaber and co-workers in 1958. Again, we will only discuss the principles of

the experiment. They studied electron capture in 152Eu, i.e.

e� þ 152EuðJ ¼ 0Þ ! 152Sm�ðJ ¼ 1Þ þ �e; ð6:14Þ

Figure 6.4 Helicity states of a spin-1
2 particle: the long thin arrows represent the momenta of

the particles and the shorter thick arrows represent their spins
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where the spins of the nuclei are shown in brackets. The excited state of samarium

that is formed decays to the ground state by �-emission

152Sm�ðJ ¼ 1Þ ! 152SmðJ ¼ 0Þ þ � ð6:15Þ

and it is these �-rays which were detected in the experiment. In the first reaction

(Equation (6.14)), the electrons are captured from the K-shell and the initial

state has zero momentum, so that the neutrino and the 152Sm� nucleus recoil in

opposite directions. The experiment selected events in which the photon was

emitted in the direction of motion of the decaying 152Sm� nucleus, so that overall

the observed reaction was

e� þ 152EuðJ ¼ 0Þ ! 152SmðJ ¼ 0Þ þ �e þ �; ð6:16Þ

where the three final-state particles were co-linear, and the neutrino and photon

emerged in opposite directions, as shown in Figure 6.6.

The helicity of the neutrino can then be deduced from the measured helicity of

the photon by applying angular momentum conservation about the event axis to

the overall reaction. In doing this, no orbital angular momentum is involved,

because the initial electron is captured from the atomic K-shell and the final-state

particles all move along the event axis. Hence the spin components of the neutrino

and photon, which can be � 1
2

and �1 respectively, must add to give the spin

component of the initial electron, which can be � 1
2
. This gives two possible spin

configurations, as shown in Figures 6.6(a) and 6.6(b). In each case the photon and

neutrino have the same helicities. In the actual experiment, the polarization of the

photons was determined by studying their absorption in magnetized iron (which

depends on the polarization of the photon) and the results obtained were consistent

with the occurrence of left-handed neutrinos only, corresponding to Figure 6.6(a).

Figure 6.5 Effect of C, P and CP transformations; only the states shown in boxes are observed
in nature
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Later experiments have shown that only right-handed antineutrinos take part in

weak interactions.

6.3.2 Particles with mass: chirality

To see the effect of the spin dependence in weak interactions involving particles

with mass, we will look at the decays of the pion and muon which are, of course,

examples of charged current reactions. The spin dependence is of a special form,

called a V–A interaction. This name is derived from the behaviour under a parity

transformation of the weak interaction analogue of the electromagnetic current.

The letter V denotes a proper vector, which is one whose direction is reversed by a

parity transformation (an example is momentum p). The familiar electric current,

to which photons couple, transforms as a proper vector under parity. Because

parity is not conserved in weak interactions, the corresponding weak current, to

which W�-bosons couple, has in addition to a vector (V) component another

component whose direction is unchanged by a parity transformation. Such a

quantity is called an axial-vector (A) (an example of an axial-vector is orbital

angular momentum L ¼ r � p). Since observables are related to the modulus

squared of amplitudes, either term would lead by itself to parity conservation.

Parity non-conservation is an interference effect between the two components.

Here we shall consider only the most important characteristic of this spin

dependence, which is that the results discussed above for neutrinos, hold for all

fermions in the ultra-relativistic limit. That is, in the limit that their velocities

approach that of light, only left-handed fermions �L, e�L etc. and right-handed

antifermions ���R, eþR etc. are emitted in charged current interactions. These

Figure 6.6 Possible helicities of the photon and neutrinos emitted in the reaction
e� þ 152EuðJ ¼ 0Þ ! 152SmðJ ¼ 0Þ þ �e þ � for those events in which they are emitted in
opposite directions. Experiment selects configuration (a)
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right-handed and left-handed particles are called chiral states and these are the

eigenstates that take part in weak interactions. In general, chiral states are linear

combinations of helicity states,4 with the contributions of the ‘forbidden’ heli-

city states e�R , eþL etc. suppressed by factors which are typically of the order of

ðmc2=EÞ2
, where m is the appropriate fermion mass and E its energy. For massless

neutrinos this is always a good approximation and chiral states and helicity states

are identical. However, for particles with mass, it is only a good approximation for

large energies E. These spin properties can be verified most easily for the electrons

and muons emitted in weak decays, by directly measuring their spins. Here we

shall assume them to hold and use them to understand some interesting features of

pion and muon decays.

We start by considering the pion decay mode

�þ ! ‘þ þ �‘ : ð‘ ¼ e; �Þ ð6:17Þ

In the rest frame of the decaying pion, the charged lepton and the neutrino recoil in

opposite directions, and because the pion has zero spin, their spins must be

opposed to satisfy angular momentum conservation about the decay axis. Since the

neutrino (assumed to be zero mass) is left-handed, it follows that the charged

lepton must also be left-handed, as shown in Figure 6.7, in contradiction to the

expectations for a relativistic antilepton.

For the case of a positive muon this is unimportant, since it is easy to check

that it recoils non-relativistically and so both chirality states are allowed. However,

if a positron is emitted it recoils relativistically, implying that this mode is

suppressed by a factor that we can estimate from the above to be of the order

of ðme=m�Þ2 	 10�5. Thus the positron decay mode is predicted to be much rarer

than the muonic mode. This is indeed the case, and the measured ratio

�ð�þ ! eþ þ �eÞ
�ð�þ ! �þ þ ��Þ

¼ 1:218 � 0:014ð Þ � 10�4 ð6:18Þ

is in excellent agreement with a full calculation that takes into account both the

above suppression and the difference in the density-of-final states (i.e. the

difference in the Q-values) for the two reactions.

4This is another example where linear combinations of states are the ones of physical interest; compare
neutrino mixing (Section 3.1.3).

π ++ ν

Figure 6.7 Helicities of the charged leptons in pion decays: the short arrows denote spin
vectors and the longer arrows denote momentum vectors
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A second consequence of the chirality argument is that the muons emitted in

pion decays are 100 per cent polarized (see Figure 6.7).5 We have mentioned this

earlier in connection with measuring the muon decay asymmetries. These have

their origins in the spin structure of the interaction, as we shall illustrate for the

highest-energy electrons emitted in the decay of the muon. These have energy

E ¼ m�c2

2
1 þ m2

e

m2
�

 !
� mec2 ð6:19Þ

and correspond to decays in which the neutrino and antineutrino are both emitted

in the direction opposite to the electron. This is illustrated in Figure 6.8 for the two

simplest cases in which the electron is emitted in the muon spin direction

(Figure 6.8(a)) and opposite to it (Figure 6.8(b)).

Since the neutrino and antineutrino have opposite helicities, the muon and

electron must have the same spin component along the event axis in order to

conserve angular momentum, implying the electron helicities shown in Figure 6.8.

When combined with the fact that the relativistic electrons emitted must be left-

handed, this implies that electrons cannot be emitted in the muon spin direction.

We thus see that the spin structure of the interaction automatically gives rise to a

forward–backward asymmetry in polarized muon decays. Of course not all the

electrons have the maximum energy and the actual asymmetry, averaged over all

electron energies, can only be calculated by using the full form of the V–A

5This is in the rest frame of the decaying pion and assumes that the neutrino has zero mass. The degree of
polarization in the laboratory frame is a function of the muon momentum.

Figure 6.8 Muon decays in which electrons of the highest possible energy are emitted: (a) in
the muon spin direction, and (b) opposite to the muon spin direction
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interaction.6 The resulting prediction is in excellent agreement with the measured

values.

Finally, we have seen in earlier chapters that there is increasing evidence

that neutrinos are not strictly massless. How then can we ensure that the

weak interactions only couple to �L and ���R? To understand this we return to

the Dirac equation, which was mentioned in Chapter 1. As was stated there, the

solution of this equation for a massive spin-1
2

particle is in the form of a four-

component spinor, whose components are interpreted as the two possible spin

projections for the particle and its antiparticle of a given energy (see Section 1.2

and Equation (1.4)). However, in the case of a massless fermion the Hamiltonian

of Equation (1.2) consists only of a spin projection term and there is a simpler

solution of the Dirac equation consisting of two independent two-component

wavefunctions. If we assume for definiteness the case of neutrinos (assumed to

be massless), then these would correspond to the pairs ð�L, ���R) and ð�R, ���L).

This observation was first made by Weyl in 1929, but was rejected as unphysical

because under a parity transformation �L ! �R (see Figure 6.5) and hence the

interaction would not be invariant under parity. However, we now know that

parity is not conserved in the weak interactions, so this objection is no longer valid.

A possible solution is therefore to make the neutrino its own antiparticle. In this

case ð�L, ���RÞ are identified as two helicity components of a four-component spinor

and the other two components ð�R, ���LÞ, if they exist, can then be a fermion of a

different mass. This scheme is due to Majorana and is very different to the

structure of a spinor describing a massive spin-1
2

fermion such as an electron. A test

of this idea would be the observation of neutrinoless double �-decay, such as that

given in Equation (3.37), which is only possible if �e  ���e.

6.4 W� and Z0 Bosons

The three intermediate vector bosons mediating weak interactions, the two charged

bosons Wþ and W� and the neutral Z0, were all discovered at CERN in 1983 in the

reactions

�pp þ p ! Wþ þ X�; �pp þ p ! W� þ Xþ; and �pp þ p ! Z0 þ X0; ð6:20Þ

where X� and X0 are arbitrary hadronic states allowed by the conservation laws.

The beams of protons and antiprotons were supplied by a proton–antiproton

collider, which was specifically built for this purpose. At the time it had proton and

antiproton beams with maximum energies of 270 GeV each, giving a total centre-

of-mass energy of 540 GeV. Two independent experiments were mounted (called

6See, for example, Chapter 12 of Ha84.
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UA1 and UA2), both of which were examples of the ‘layered’ detector systems

that were discussed in Chapter 4.7 One of the main problems facing the

experimenters was that for each event in which a W� or Z0 is produced and

decays to leptons, there were more than 107 events in which hadrons alone are

produced and so the extraction of the signal required considerable care.

In contrast to the zero mass photons and gluons, the W� and Z0 bosons are both

very massive particles, with measured masses

MW ¼ 80:6 GeV=c2; MZ ¼ 91:2 GeV=c2; ð6:21Þ

while their lifetimes are about 3 � 10�25 s. Their dominant decays lead to jets of

hadrons, but the leptonic decays

Wþ ! ‘þ þ �‘; W� ! ‘� þ ���‘ ð6:22Þ

and

Z0 ! ‘þ þ ‘�; Z0 ! �‘ þ ���l; ð6:23Þ

where ‘ ¼ e, � or 	 as usual, are also important. The particles are detected as

resonance-like enhancements in plots of the invariant mass of suitable final states

seen in reactions such as Equation (6.20).8

We have seen that an important feature of an exchange interaction is its strength.

As in the case of electromagnetism, Feynman diagrams for weak interactions are

constructed from fundamental three-line vertices. Those for lepton–W� interac-

tions are shown in Figure 6.9.

7Simon van der Meer lead the team that built the accelerator and Carlo Rubbia lead the UA1 experimental
team that subsequently discovered the bosons. They shared the 1984 Nobel Prize in Physics for their work.
8A more detailed description of the UA1 experiment is given in, for example, Section 8.1 of Ma97.

Figure 6.9 The two basic vertices for W�-lepton interactions

W� AND Z0 BOSONS 193



At each vertex a boson is emitted or absorbed; while both fermion lines belong

to the same generation ‘ ¼ e, � or 	 , with one arrow pointing inwards and one

outwards to guarantee conservation of each lepton number Ne, N� and N	 .

Finally, associated with each vertex is a dimensionless parameter with the same

value

W ¼ g2
W=4��hc 	 1=400 ð6:24Þ

at high energies for all three generations (because of lepton universality). This

constant is the weak analogue of the fine structure constant  	 1=137 in

electromagnetic interactions, with gW the weak analogue of the electronic charge

e in appropriate units.

We see from the above that, despite its name, the weak interaction has a similar

intrinsic strength to the electromagnetic interaction. Its apparent weakness in many

low-energy reactions, is solely a consequence of its short range, which arises

because the exchange bosons are heavy. From Equation (6.1) we see that the

scattering amplitude has a denominator that contains the squared mass of the

exchanged particle and so at energies where the de Broglie wavelengths � ¼ h=p

of the particles are large compared with the range of the weak interaction, which is

an excellent approximation for all lepton and hadron decays, the range can be

neglected altogether. In this approximation the weak interaction becomes a point

or zero range interaction, whose effective interaction strength can be shown to be

eff ¼ W
�EE=MWc2
� �2

; �EE � MWc2; ð6:25Þ

where �EE is a typical energy scale for the process in question. (For example in muon

decay it would be the mass of the muon.) Thus we see that the interaction is both weak

and very energy dependent at ‘low energies’, but becomes comparable in strength

with the electromagnetic interaction at energies on the scale of the W-boson mass.

6.5 Weak Interactions of Hadrons

The weak decays of hadrons are understood in terms of basic processes in which

W� bosons are emitted or absorbed by their constituent quarks. In this section we

will consider both decays and scattering processes, starting with the former.

6.5.1 Semileptonic decays

A typical semileptonic decay (i.e. one that involves both hadrons and leptons) is

that of the neutron, which at the quark level is

d ! u þ e� þ ���e; ð6:26Þ
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as illustrated in Figure 6.10, where the other two quarks play the role of spectators.

Similarly, in the pion decay process

��ðd�uuÞ ! �� þ ���� ð6:27Þ

the initial quarks annihilate to produce a W boson as shown in Figure 6.11.

However, the weak interactions of quarks are more complicated than those of

leptons, and are best understood in terms of two ideas: lepton–quark symmetry, and

quark mixing.

For simplicity, we will look firstly at the case of just two generations of quarks

and leptons. In this case, lepton–quark symmetry asserts that the first two

generations of quarks

u

d

� 	
and

c

s

� 	
ð6:28Þ

Figure 6.10 Quark diagram for the decay n ! pe����e

Figure 6.11 Quark diagram for the process �� ! �� þ ����
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and the first two generations of leptons

�e

e�

� 	
and

��
��

� 	
ð6:29Þ

have identical weak interactions. That is, one can obtain the basic W� quark

vertices by making the replacements �e ! u ; e� ! d ; �� ! c ; �� ! s in

the basic W� lepton vertices, leaving the coupling constant gW unchanged. The

resulting W� quark vertices are shown in Figure 6.12.

Quark symmetry in the simple form stated above then implies that the

fundamental processes d þ �uu ! W� and s þ �cc ! W� occur with the same

couplings gW as the corresponding leptonic processes, i.e. in Figure (6.12) we

have gcs ¼ gud ¼ gW, while the processes s þ �uu ! W� and d þ �cc ! W� are

forbidden. This works quite well for many reactions, like the pion decay

�� ! �� þ ����, but many decays that are forbidden in this simple scheme are

observed to occur, albeit at a rate which is suppressed relative to the ‘allowed’

decays. An example of this is the kaon decay K� ! �� þ ���� , which requires a

s þ �uu ! W� vertex, which is not present in the above scheme.

All these suppressed decays can be successfully incorporated into the theory by

introducing quark mixing. According to this idea, the d and s quarks participate in

the weak interactions via the linear combinations

d0 ¼ d cos 
C þ s sin 
C ð6:30aÞ

and

s0 ¼ �d sin 
C þ s cos 
C; ð6:30bÞ

Figure 6.12 The W� quark vertices obtained from quark--lepton symmetry, without quark
mixing
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where the parameter 
C is called the Cabibbo angle.9 That is, lepton–quark

symmetry is assumed to apply to the doublets

u

d0

� 	
and

c

s0

� 	
: ð6:31Þ

This then generates new vertices previously forbidden. For example, the usW vertex

required for the decay K� ! �� þ ���� arises from the interpretation of the ud0W
vertex shown in Figure 6.13. In a similar way a new cdW vertex is also generated.

Quark mixing enables theory and experiment to be brought into good agreement

by choosing a value 
C 	 13� for the Cabibbo angle. One then finds that the rates

for the previously ‘allowed’ decays occur at rates which are suppressed by a factor

cos2 
C 	 0:95, while the previously ‘forbidden’ decays are now allowed, but with

rates which are suppressed by a factor sin2 
C 	 0:05.

Historically, the most remarkable thing about these ideas is that they were

formulated before the discovery of the charmed quark. In 1971 seven fundamental

fermions were known: the four leptons �e, e�, �� and ��, and the three quarks u, d

and s. This led Glashow, Iliopolous and Maiani to propose the existence of a fourth

quark c to complete the lepton–quark symmetry and to solve problems associated

with neutral currents that we will discuss in Section 6.7. The existence of the

charmed quark was subsequently confirmed in 1974 with the discovery of the first

charmonium states (this is why their discovery was so important – see the

discussion in Section 5.3) and its measured weak couplings are consistent with

the predictions of lepton–quark symmetry and quark mixing.

We now know that there are six leptons

�e

e�

� 	
��
��

� 	
�	
	�

� 	
ð6:32Þ

9This is yet another example of physical states being mixtures of other states.

Figure 6.13 The ud0W vertex and its interpretation in terms of udW and usW vertices
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and six known quarks

u

d

� 	
c

s

� 	
t

b

� 	
: ð6:33Þ

When the third generation is taken into account, the mixing scheme becomes more

complicated, as we must allow for the possibility of mixing between all three

‘lower’ quarks d, s and b instead of just the first two and more parameters are

involved. In general the mixing can be written in the form

d0

s0

b0

0
@

1
A ¼

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

0
@

1
A d

s

b

0
@

1
A; ð6:34Þ

where Vijði ¼ u; c; t ; j ¼ d; s; bÞ the so-called CKM matrix,10 is unitary to ensure

the orthonormality of the new states generated by the transformation. The matrix

elements Vij are all obtainable from various decay processes and values exist for

them, although the smaller off-diagonal terms are not very well measured.11 For

the first two generations, the changes introduced by this more complex mixing are

very small. However, a new feature that emerges is the possibility of CP violation.

We shall see in the Section 6.6.1 that CP violation does actually occur in the

decays of neutral K-mesons and neutral B-mesons and it is of considerable interest

to see if the size of the violation is consistent with the CKM mixing formalism and

the standard model.

6.5.2 Neutrino scattering

Consider the elastic scattering process �e þ e� ! �e þ e� at high energies,

proceeding via the exchange of a W-meson, i.e. a charged current weak interaction.

We know the W-meson couples only to left-handed fermions and from the

discussion of Section 6.3.1 that neutrinos have negative helicity, i.e. they are

polarized along the direction of their motion (which we will take to be the z-axis).

We also know from the work of Section 6.3.2 that in the relativistic limit, the same

is true of electrons. We are therefore led to the centre-of-mass spin/momentum

configurations before the collision shown in Figure 6.14(a). If the interaction

scatters the particles through an angle of 180�, then the centre-of-mass spin/

momentum configurations after the collision are those shown in Figure 6.14(b). In

10The initials stand for Cabibbo, Kobayashi and Maskawa, the last two of whom extended the original
Cabibbo scheme to three generations of quarks.
11A review is given Ei04.
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both cases the total spin component along the z-axis is zero. This result is true for

all angles and the scattering is isotropic.

From this we can calculate the differential cross-section using the formulae of

Chapter 1. We will assume that the squared momentum transfer Q2 is such that

Q2
max � M2

Wc2, so that the matrix element may be written [cf. Equation (6.1)]

f ð�e þ e� ! �e þ e�Þ ¼ �GF; ð6:35Þ

where GF is the Fermi coupling constant of Equation (1.42), i.e.

GF ¼ 4�ð�hcÞ3W

ðMWc2Þ2
ð6:36Þ

and W ¼ g2=4��hc is the equivalent of the fine structure constant for charged

current weak interactions. Hence, using Equation (1.57) and recalling that the

velocities of both the neutrino and electron are equal to c,

d�

d�
ð�ee�Þ ¼ 1

4�2

G2
F

ð�hcÞ4
E2

CM: ð6:37Þ

At high energies E2
CM is given by

E2
CM 	 2mec2E�; ð6:38Þ

where E� is the energy of the neutrino. So finally the total cross-section is

�totð�ee�Þ ¼ 2mec2G2
F

�ð�hcÞ4
E� ð6:39Þ

Figure 6.14 Spin (thick arrows) and momentum (thin arrows) configurations for �ee
� and ���ee

�

interactions: (a) �ee
� before collision; (b) �ee

� after scattering through 180�; (c) ���ee
� before

collision; (d) ���ee
� after scattering through 180�
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and increases linearly with E� .
12

If we apply the same argument to the scattering of antineutrinos, we are lead to

the configurations shown in Figures 6.14(c) and 6.14(d). The initial state has

Jz ¼ 1, but the final state has Jz ¼ �1. Thus scattering through 180� is forbidden

by angular momentum conservation and the amplitude must contain a factor

ð1 þ cos 
Þ. This is borne out by a full calculation using the V–A formalism which

gives, in the same approximation,

d�

d�
ð���ee�Þ ¼ 1

16�2

G2
F

ð�hcÞ4
E2

CM ð1 þ cos 
Þ2: ð6:40Þ

Integrating over angles gives

�totð���ee�Þ ¼ 1

3
�totð�ee�Þ: ð6:41Þ

Neutrino–electron scattering is not, of course, a very practical reaction to study

experimentally, but these ideas may be taken over to deep inelastic neutrino

scattering from nucleons, where the latter are assumed to be composed of

constituent quarks whose masses may be neglected at high energies. This will

enable us to extend the discussion of Section 5.7 for charged leptons. In this case

the neutrino is assumed to interact with a single quark within the nucleon (this is

again the spectator model) and we must take account of all relevant quarks and

antiquarks. In practice we can neglect interactions with s and �ss quarks as these will

be suppressed by the Cabibbo factor. So, taking into account only the u and d

quarks and their antiparticles, we can generalize Equations (6.39) and (6.41) to

give

�totð�eNÞ ¼ MNc2G2
FEv

�ð�hcÞ4
H þ 1

3
H

� 	
ð6:42aÞ

and

�totð���eNÞ ¼ MNc2G2
FEv

�ð�hcÞ4

1

3
H þ H

� 	
; ð6:42bÞ

for scattering from an isoscalar nucleus, i.e. one with an equal number of neutrons

and protons, where MN is the mass of the nucleon. The quantities H and H are

given by

H 
ð1

0

x½uðxÞ þ dðxÞ�dx and H 
ð1

0

x½�uuðxÞ þ �ddðxÞ�dx; ð6:43Þ

12This behaviour has arisen because of the approximation Equation (6.35). It cannot of course continue
indefinitely. At very high values of Q2 the full form of the propagator would have to be taken into account
and this would introduce an energy dependence in the denominator of Equation (6.39).
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where uðxÞ etc. are the quark densities defined in Section 5.7 and the integral is

over the scaling variable x.

Setting y ¼ H=H, we have from Equations (6.42)

R  �ð���eNÞ
�ð�eNÞ ¼

1 þ 3y

3 þ y
: ð6:44Þ

Some data for R are shown in Figure 6.15 from an experiment using muon–

neutrinos. These show that R is approximately constant, as predicted by

Equation (6.44), and has a value of about 0.51, which implies y 	 0:2, i.e.

antiquarks exist in the nucleon at the level of about 20 per cent. Other experiments

yield similar results in the range 15–20 per cent.

6.6 Neutral Meson Decays

Neutral mesons are of particular interest not only because they enable very

sensitive tests of CP-conservation to be made, but also because the application

of basic quantum mechanics leads to surprising effects that, for example, allow the

symmetry between particles and antiparticles to be tested with extraordinary

precision. In both cases the crucial ingredient is the phenomenon of particle

mixing that we have met before in connection with the mixing of neutrino flavour

Figure 6.15 Neutrino and antineutrino total cross-sections (data from Se97)
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states. Because most work has been done on the neutral kaons, we will mainly

discuss this system as an example. The equivalent formalisms for B- and D-decays

are similar. We start with a discussion of CP violation.

6.6.1 CP violation

We have seen that there are two neutral kaon states

K0ð498Þ ¼ d�ss and K
0ð498Þ ¼ s�dd; ð6:45Þ

which have strangeness S ¼ þ1 and S ¼ �1 respectively. However, because

strangeness is not conserved in weak interactions, these states can be converted

into each other by higher-order weak processes like those shown in Figure 6.16.

This is in marked contrast to most other particle–antiparticle systems, for which

such transitions are forbidden, because the particle and its antiparticle differ by

quantum numbers that are conserved in all known interactions. For example, the

�þ and �� have opposite electric charges, and the neutron and antineutron have

opposite baryon numbers. For neutral kaons, however, there is no conserved

quantum number to distinguish the K0 and K
0

states when weak interactions are

taken into account and the observed physical particles correspond not to the K0

and K0 states themselves, but to linear combinations of them. Similar mixing can

occur between B0 � B0 and D0 � D
0

states. We have met the idea that observed

states can be linear combinations of other states in the CKM mixing scheme for

quarks above and earlier when we discussed neutrino oscillations in the absence of

lepton number conservation in Chapter 3. In the present case it leads to the

phenomena of K0 � K
0

mixing, and strangeness oscillations.

We start by assuming that CP-invariance is exact and that neutral kaons are

eigenstates of the combined CP operator. In this case, using the standard phase

convention, we can define

CjK0; pi ¼ �jK0
; pi; CjK0

;pi ¼ �jK0; pi; ð6:46Þ

where jK0;pi denotes a K0 state with momentum p, etc.. Since kaons have

negative intrinsic parity, we also have for p ¼ 0

PjK0; 0i ¼ �jK0; 0i ; PjK0
; 0i ¼ �jK0

; 0i; ð6:47Þ

Figure 6.16 Example of a process that can convert a K0 state to a �KK0 state
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so that

CPjK0; 0i ¼ jK0
; 0i; CPjK0

; 0i ¼ jK0; 0i: ð6:48Þ

Thus CP eigenstates K0
1;2 are

jK0
1;2; 0i ¼

1ffiffiffi
2

p jK0; 0i � jK0
; j0i

n o
ðCP ¼ �1Þ: ð6:49Þ

If CP is conserved, then K0
1 should decay entirely to states with CP ¼ 1 and K0

2

should decay entirely into states with CP ¼ �1. We examine the consequences of

this for decays leading to pions in the final state.

Consider the state �0�0. Since the kaon has spin-0, by angular momentum

conservation the pion pair must have zero orbital angular momentum in the rest

frame of the decaying particle. Its parity is therefore given by [cf. Equation (1.14)]

P ¼ P2
� �1ð ÞL¼ 1; ð6:50Þ

where P� ¼ �1 is the intrinsic parity of the pion. The C-parity is given by

C ¼ ðC�0Þ2 ¼ 1; ð6:51Þ

where C�0 ¼ 1 is the C-parity of the neutral pion. Combining these results gives

CP ¼ 1. The same result holds for the �þ�� final state.

The argument for three-pion final states �þ���0 and �0�0�0 is more compli-

cated, because there are two orbital angular momenta to consider, If we denote by

L12 the orbital angular momentum of one pair (either �þ�� or �0�0) in their

mutual centre-of-mass frame, and L3 is the orbital angular momentum of the third

pion about the centre-of-mass of the pair in the overall centre-of-mass frame, then

the total orbital angular momentum L  L12 þ L3 ¼ 0, since the decaying particle

has spin-0. This can only be satisfied if L12 ¼ L3. This implies that the parity of the

final state is

P ¼ P3
� �1ð ÞL12 �1ð ÞL3¼ �1: ð6:52Þ

For the �0�0�0 final state, the C-parity is

C ¼ C�0ð Þ3¼ 1 ð6:53Þ

and combining these results gives CP ¼ �1 overall. The same result can be shown

to hold for the �þ���0 final state.

The experimental position is that two neutral kaons are observed, called K0-short

and K0-long, denoted K0
S and K0

L, respectively. They have almost equal masses of

about 499 MeV/c2, but very different lifetimes and decay modes. The K0
S has a
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lifetime of 0:89 � 10�10 s and decays overwhelmingly to two pions; the longer-

lived K0
L has a lifetime of 0:52 � 10�7s with a significant branching ratio to three

pions, but not to two. In view of the CP analysis above, this immediately suggests

the identification

K0
S ¼ K0

1 ; and K0
L ¼ K0

2 : ð6:54Þ

However, in 1964 it was discovered that the K0
L also decayed to two pions13

K0
L ! �þ þ ��; ð6:55Þ

but with a very small branching ratio of the order of 10�3. This result is clear

evidence of CP violation. This was confirmed in later experiments on the decay

K0 ! �0�0.

Because CP is not conserved, the physical states K0
S and K0

L need not correspond

to the CP-eigenstates K0
1 and K0

2 , but can contain small components of states with

the opposite CP, i.e. we may write

jK0
S; 0i ¼

1

ð1 þ j"j2Þ1=2
jK0

1 ; 0i � "jK0
2 ; 0i

� �
ð6:56aÞ

and

jK0
L; 0i ¼

1

ð1 þ j"j2Þ1=2
"jK0

1 ; 0 i þ jK0
2 ; 0 i

� �
; ð6:56bÞ

where e is a small complex parameter. (The factor in front of the brackets is to

normalize the states.) The CP-violating decays can then occur in two different

ways: either (a) the CP-forbidden K0
1 component in the K0

L decays via a CP-

allowed processe, giving a contribution proportional to the probability

j" j2½1 þ j" j2��1 	 j" j2 of finding a K0
1 component in the K0

L; or (b) the CP-

allowed K0
2 component in the K0

L decays via a CP-violating reaction. A detailed

analysis of the data for the �� decay modes14 shows that it is the former

mechanism that dominates, with j"j 	 2:2 � 10�3.

This is confirmed in the semileptonic decays

K0 ! �� þ eþ þ �e ð6:57aÞ

13The experiment was led by James Cronin and Val Fitch. They received the 1980 Nobel Prize in Physics for
their discovery.
14See, for example, Ei04.
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and

�KK0 ! �þ þ e� þ ���e: ð6:57bÞ

For example, if we start with a beam of K0 particles, with initially equal amounts

of K0
S and K0

L, then after a time that is large compared with the K0
S lifetime, the K0

S

component will have decayed leaving just the K0
L component, which itself will be

an equal admixture of K0 and �KK
0

components. We would therefore expect to

observe identical numbers of electrons (N�) and positrons (Nþ) from the decays of

Equations (6.57). However, if K0
L is not an eigenstate of CP, then there will be an

asymmetry in these numbers, which will depend on the relative strengths of the K0

and �KK
0

components in K0
L. The asymmetry is given by 2Re ", where " is the CP-

violating parameter defined in Equation (6.56).

Figure 6.17 shows data on the asymmetry ðNþ � N�Þ=ðNþ þ N�Þ as a function

of proper time. After the initial oscillations there is seen to be an asymmetry whose

value is 2Re " 	 3:3 � 10�3, which is consistent with the value of " obtained

from the �� modes. Thus CP-violation in K-decay occurs mainly, though not

entirely, by the mixing of the CP-eigenstates in the physical states rather than by

direct CP-violating decays, both of which are allowed in the CKM mixing scheme.

What do these results mean for the CKM mixing scheme? The CKM matrix is a

3 � 3 matrix and in general contains nine complex elements. However, the unitary

nature of the matrix implies that there are relations between the elements, such as

VudV�
ub þ VcdV�

cb þ VtdV�
tb ¼ 0: ð6:58Þ

Figure 6.17 The charge asymmetry observed for K0 ! ��eþ�e and �KK0 ! �þe����e as a function
of proper time, for a beam that is initially predominantly K0 (adapted from Gj74, copyright
Elsevier, with permission)
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Using these and exploiting the freedom to define the phases of the basic quark

states, the matrix may be parameterized by just four quantities. A number of

different parameterizations are used, but an approximate form that is commonly

used to discuss CP violation is

V ¼
1 � 1

2
�2 � A�3ð�� i�Þ

�� 1 � 1
2
�2 A�2

A�3ð1 � �� i�Þ �A�2 1

0
@

1
Aþ Oð�4Þ; ð6:59Þ

with parameters A; �; � and �. The quantity � ¼ jVusj 	 0:22 plays the role of an

expansion parameter in this approximation and a non-zero value of � would be

indicative of CP violation.

The parameter " in Equations (6.56) is just one CP-violating parameter that may

be measured in various K-decay modes. We will not pursue this further, but note

that by combining the values of the parameters with information on other elements

of the CKM matrix, a value of the CP-violating parameter � may be deduced and

used to predict the size of CP-violating effects in other decays. There are very few

other places where such mixing effects can occur, but in principle they should be

possible in the D0 �DD0 and B0�BB0 systems, which are analogues of the K-mesons, but

with a strange quark replaced by a charmed and bottom quark, respectively.

Mixing in the B0�BB
0

states due to B0�BB
0

oscillations has in fact been observed and

also very recently direct CP violation. The latter was established by comparing the

decay B0 ! Kþ�� with the decay �BB0 ! K��þ. Moreover, the size of the effect is

much stronger than in neutral kaon decays and this is in agreement with the

predictions of the CKM mixing scheme.

There is still much to be done in studying CP violation. For example,

the cleanest measurement of the CP-violating parameter would be from the

decays B0=�BB ! ðJ= ÞK0
S, where J= is the 3S1 ground state of charmonium,

but the present limits on these decays are orders of magnitude from those required

to test the predictions. On the theoretical side, although the CKM mixing model

accounts for all CP-violating data to date, it fails by several orders of magnitude to

account for the observed matter–antimatter asymmetry observed in the universe

(which will be discussed in Chapter 9) and so there is probably a CP-violating

mechanism beyond the standard model awaiting to be discovered.

6.6.2 Flavour oscillations

One interesting consequence of flavour mixing for the K0 – �KK0 system is the

phenomenon of strangeness oscillation, which occurs whenever a neutral kaon is

produced in a strong interaction process. For example, the neutral kaon produced

in the strong interaction

�� þ p ! K0 þ �0

S ¼ 0 0 1 �1
ð6:60Þ
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must necessarily be a K0 state with S ¼ 1, in order to conserve strangeness.

However, if the produced particle is allowed to travel through free space and its

strangeness is measured, one finds that it no longer has a definite strangeness

S ¼ 1, but has components with both S ¼ 1 and S ¼ �1 whose intensities oscillate

with time. These are called strangeness oscillations. The phenomenon is very

similar mathematically to that describing the flavour oscillations of neutrinos we

met in Chapter 3 and enables the mass difference between K0
S and K0

L particles to

be measured with extraordinary precision, as we will now show.

In what follows, we shall measure time in the rest frame of the produced

particle, and define t ¼ 0 as the moment when it is produced. If we ignore the very

small CP violations, the initial state produced in the ��p reaction above is

jK0; pi ¼ 1ffiffiffi
2

p jK0
S ;pi þ jK0

L; pi
� �

: ð6:61Þ

At later times, however, this will become

1ffiffiffi
2

p aSðtÞjK0
S; pi þ aLðtÞjK0

L; pig;
�

ð6:62Þ

where

a tð Þ ¼ e�imt e��t=2 ða ¼ S;LÞ ð6:63Þ

and m and � are the mass and decay rate of the particle concerned. Here the first

exponential factor is the usual oscillating time factor e�iEt associated with any

quantum mechanical stationary state, evaluated in the rest frame of the particle.

The second exponential factor reflects the fact that the particles decay, and it

ensures that the probability

���� 1ffiffiffi
2

p a tð Þ
����
2

¼ 1

2
e��t ða ¼ S;LÞ ð6:64Þ

of finding a K0
S or K0

L decreases exponentially with a mean lifetime 	 ¼ ��1


(a¼ S, L). Because 	S � 	L, for times t such that 	S � t <
	L only the K0
L

component survives, implying equal intensities for the K0 and �KK0 components.

Here we are interested in the intensities of the K0 and �KK0 components at shorter

times, and to deduce these we rewrite the expression

1ffiffiffi
2

p aSðtÞjK0
S; pi þ aLðtÞjK0

L;pi
� �

ð6:65Þ

in the form

A0 tð ÞjK0;pi þ �AA0 tð ÞjK0; pi
� �

; ð6:66Þ
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where

A0 tð Þ ¼ 1

2
aS tð Þ þ aL tð Þ½ � and �AA0 tð Þ ¼ 1

2
aS tð Þ � aL tð Þ½ �: ð6:67Þ

The intensities of the two components are then given by

IðK0Þ  jA0 tð Þj2 ¼ 1

4
e��St þ e��Lt þ 2e� �Sþ�Lð Þt=2 cos �mtð Þ
h i

ð6:68aÞ

and

IðK0Þ  j�AA0 tð Þj2 ¼ 1

4
e��St þ e��Lt � 2e� �Sþ�Lð Þt=2 cos �mtð Þ
h i

ð6:68bÞ

where �m  jmS � mLj and we have used Equation (6.63) explicitly to evaluate

the amplitudes.

The variation of the K
0

intensity IðK0Þ with time can be determined experi-

mentally by measuring the rate of production of hyperons (baryons with non-zero

strangeness) in strangeness-conserving strong interactions such as

K
0 þ p ! �þ þ �0

! �0 þ �þ ð6:69Þ

as a function of the distance from the K0 source. The data are then fitted by

Equations (6.68) with �m as a free parameter and the predictions are in good

agreement with the experiments for a mass difference

�m ¼ 3:522 � 0:016ð Þ � 10�12 MeV=c
2: ð6:70Þ

The states K0
S and K0

L are not antiparticles but the K0 and K
0

are, of course, and the

mass difference �m can be shown to arise solely from the possibility of transitions

K $ K
0
, whose magnitude can be calculated from diagrams like that shown in

Figure 6.16. We shall not discuss this further, but merely note that the resulting

agreement between the predicted and measured values confirms the equality

mK0 ¼ m�KK0 to better than one part in 1017. (This should be compared with the

next most precisely tested particle–antiparticle mass relation meþ ¼ me� which

only verified to within an experimental error of the order of one part in 107.) This

equality is a prediction of the so-called CPT theorem, which states that under very

general conditions any relativistic quantum theory will be invariant under the

combined operations of C, P and T.

6.7 Neutral Currents and the Unified Theory

Neutral current reactions are those that involve the emission, absorption or

exchange of Z0 bosons. The unified electroweak theory predicted the existence
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of such reactions before their discovery in 1973. This theory15 was proposed

mainly in order to solve problems associated with Feynman diagrams in which

more than one W boson was exchanged, like that shown in Figure 6.18, which

contributes to the reaction eþ�� ! eþ��.

Such contributions are expected to be small because they are higher order in the

weak interaction and this appears to be confirmed by experimental data, which are

in good agreement with theoretical predictions that neglect them entirely. (For

example, in the experimentally accessible reaction eþ þ e� ! �þ þ ��.) How-

ever, when these higher-order contributions are explicitly calculated, they are

found to be proportional to divergent integrals, i.e. they are infinite. In the unified

theory, this problem is solved when diagrams involving the exchange of Z0 bosons

and photons are taken into account. These also give infinite contributions, but

when all the diagrams of a given order are added together the divergences

cancel (!), giving a well-defined and finite contribution overall.16 This cancellation

is not accidental, but is a consequence of a fundamental symmetry relating the

weak and electromagnetic interactions. Here we will simply comment on some

phenomenological consequences of the theory.

15The formulation of the theory is in terms of four massless vector bosons arranged as multiplets of ‘weak
isospin’ and ‘weak hypercharge’. Specifically, three states are a weak isospin triplet and the fourth is a weak
isospin singlet. The fact that they all have zero masses ensures that gauge invariance is satisfied. These fields
then interact with additional scalar fields associated with new postulated particles called Higgs bosons, which
we have mentioned elsewhere. This process, known as ‘spontaneous symmetry breaking’ generates the
observed masses of the W, Z and � bosons, while still preserving gauge invariance. (For further details see,
for example, Section 8.4 of Pe00.) The originators of this theory, Sheldon Glasow, Abdus Salam and Steven
Weinberg, shared the 1979 Nobel Prize in Physics for their contributions to formulating the electroweak
theory and the prediction of weak neutral currents.
16The first people to demonstrate that this occurred were Gerardus ‘t Hooft and Martinus Veltman. They
shared the 1999 Nobel Prize in Physics for this discovery.

Figure 6.18 Higher order contribution to the reaction eþ�� ! eþ�� from the exchange of
two W-bosons
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The first is that to ensure the cancellation, the theory requires a relation between

the weak and electromagnetic couplings, called the unification condition. This is

e

2
ffiffiffi
2

p
"

1=2
0

¼ gw sin 
W ¼ gz cos 
W; ð6:71Þ

where the weak mixing angle 
W (also called the Weinberg angle after one of the

authors of the theory) is given by

cos 
W  MW=MZ ð0 < 
 < �=2Þ ð6:72Þ

and gz is a coupling constant which characterizes the strength of the neutral current

vertices. The unification condition relates the strengths of the various interactions

to the W and Z masses, and historically was used to predict the latter from the

former before the W� and Z0 bosons were discovered.

Secondly, just as all the charged current interactions of leptons can be under-

stood in terms of the basic W�-lepton vertices, in the same way all known neutral

current interactions can be accounted for in terms of basic Z0-lepton vertices

shown in Figures 6.19(a) and 16.19(b). The corresponding quark vertices can be

obtained from the lepton vertices by using lepton–quark symmetry and quark

mixing, in the same way that W�-quark vertices are obtained from the W�-lepton

vertices. Thus, making the replacements

�e ! u; �� ! c; e� ! d0; �� ! s0 ð6:73Þ

in the lepton vertices

�e�eZ0; ����Z0; e�e�Z0; ����Z0; ð6:74Þ

Figure 6.19 Z0 and � couplings to leptons and quarks in the unified electroweak theory, where
‘ ¼ e; � and 	 and a denotes a quark
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leads to the quark vertices

uuZ0; ccZ0; d0d0Z0; s0s0Z0: ð6:75Þ

Finally, we interpret the latter two of these using Equations (6.30). Thus, for

example,

d0d0Z0 ¼ ðd cos 
C þ s sin 
CÞ ðd cos 
C þ s sin 
CÞZ0

¼ ddZ0 cos2 
C þ ssZ0 sin2 
C þ ðdsZ0 þ sdZ0Þ sin 
C cos 
C ð6:76Þ

When all the terms in Expression (6.75) are evaluated, ones obtains a set of

vertices equivalent to

uuZ0; ccZ0; ddZ0; ssZ0; ð6:77Þ

which are shown in Figure 6.19(c).

One important difference from charged current reactions that follows from

Figure 6.19 is that neutral current interactions conserve individual quark numbers.

Thus, for example, strangeness-changing weak neutral current reactions are

forbidden. An example is the decay K0 ! �þ�� and indeed this is not seen

experimentally, although nothing else forbids it.

It follows from the above that in any process in which a photon is exchanged, a

Z0 boson can be exchanged as well. At energies that are small compared with the

Z0 mass, the Z0-exchange contributions can be neglected compared to the

corresponding photon exchange contributions, and these reactions can be regarded

as purely electromagnetic to a high degree of accuracy. However, at very high

energy and momentum transfers, Z0-exchange contributions become comparable

with those of photon exchange and we are therefore dealing with genuinely

electroweak processes which involve both weak and electromagnetic interactions

to a comparable degree.

These points are clearly illustrated by the cross-section for the muon pair

production reaction eþ þ e� ! �þ þ ��. If we assume that the energy is large

enough for the lepton masses to be neglected, then the centre-of-mass energy E is

the only quantity in the system that has dimensions. Because a cross-section has

the dimensions of area, on dimensional grounds the electromagnetic cross-section

for one-photon exchange is of the form �� 	 2ð�hcÞ2=E2. For Z0-exchange with

E � MZc2, a similar argument gives for the weak interaction cross-section

�Z 	 2
ZE2ð�hcÞ2=ðMZc2Þ4

. (The factor in the denominator comes from the propa-

gator of the Z0-boson.) Thus the one-photon exchange diagram dominates at low

energies, and the cross-section falls as E�2. This is in agreement with the observed

behaviour shown in Figure 6.20 and justifies our neglect of the Z0-exchange

contribution at low energies. However, the relative importance of the Z0-exchange

contribution increases rapidly with energy and at beam energies of about 35 GeV it
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begins to make a significant contribution to the total cross-section. At still higher

energies, the cross-section is dominated by a very large peak at an energy

corresponding to the Z0 mass, as illustrated in Figure 6.20. At this energy the

low-energy approximation is irrelevant and Figure 6.20 corresponds to

the formation of physical Z0 bosons in the process eþ þ e� ! Z0 followed

by the subsequent decay Z0 ! �þ þ �� to give the final-state muons. Finally,

beyond the peak we once again regain the electroweak regime where both

contributions are comparable.

If the exchange of a Z0 boson always accompanies the exchange of a photon,

then there will also in principle be parity-violating effects in reactions that at first

sight we would expect to be purely electromagnetic. Their observation would be

further unambiguous evidence for electroweak unification. This was first tested in

1978 by scattering polarized electrons from a deuterium target and measuring the

parity-violating asymmetry

APV  �R � �L

�R þ �L

; ð6:78Þ

where �Rð�LÞ is the cross-section for incident right (left)-handed electrons. To

produce polarized electrons is a complicated multistage process that starts with

linearly polarized photons from a laser source that are then converted to states with

circular polarization. Finally these are used to pump a GaAs crystal (photocathode)

to produce the require electrons. Polarizations of about 80 per cent are obtained by

this means. The asymmetry is very small and in this experiment APV is predicted to

be only a few parts per million. Nevertheless, a non-zero value was definitely

established. Moreover, APV was also measured as a function of the fractional

energy loss of the initial electron. This is a function of the weak mixing angle and a

Figure 6.20 Total cross-section for the reaction eþe� ! �þ��
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value was found in agreement with other determinations, e.g. from deep inelastic

neutrino scattering. A later experiment confirmed the effect in polarized electron–

proton scattering.

A very recent experiment (2004) has measured APV for e�e� scattering. This

was done using electrons of about 50 GeV primary energy from the SLAC linear

accelerator in Stanford, USA, and scattering them from a liquid hydrogen target.

The experiment was able to distinguish final-state electrons scattered from the

atomic electrons from those scattered from protons. Taking account of all sources

of error, the measured value was APV ¼ ð�175 � 40Þ � 10�9 (note the exponent –

parts per billion) and the experiment also yielded a value of sin2 
W consistent with

other determinations. These remarkable experiments provide unambiguous evi-

dence for parity violation in ‘electromagnetic’ processes at the level predicted by

theory and hence for the electroweak unification as specified in the standard

model.17

It should also in principle be possible to detect parity violating effects in atomic

physics, where the electromagnetic interactions of the electrons dominate. For

example, measurements have been made of the slight change in the polarization

angle of light passing through a vapour of metallic atoms. In this case the rotation

angle is extremely small (
10�7 rad), but very sensitive experiments can measure

the effect to an accuracy of 
1 per cent. However, to predict the size of the effects

requires a detailed knowledge of the atomic theory of the atom and in all cases to

date the uncertainties on the predictions are such that a null effect cannot be ruled

out. Thus at present, atomic physics does not compete with particle physics

experiments in detecting parity-violating effects and measuring sin2 
W, although

this could change in the future.

Problems

6.1 Define charged and neutral current reactions in weak interactions and give an

example of each in symbol form. How do they differ in respect of conservation of

the strangeness quantum number? Why does observation of the process

���� þ e� ! ���� þ e� constitute unambiguous evidence for weak neutral currents,

whereas the observation of ���e þ e� ! ���e þ e� does not?

6.2 The reaction eþe� ! �þ�� is studied using colliding beams each of energy 7 GeV

and at these energies the reaction is predominantly electromagnetic. Draw its lowest

order Feynman diagram. The differential cross-section is given by

d�

d�

� 	
¼ 2�h2c2

4E2
CM

1 þ cos2 

� �

;

17Incidentally, all these experiments are of the fixed-target type, showing that this type of experiment still has
a lot to offer.
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where ECM is the total centre-of-mass energy and 
 is the scattering angle with

respect to the beam direction. Calculate the total cross-section in nanobarns at this

energy.

The weak interaction also contributes to this process. Draw the corresponding

lowest-order Feynman diagram. The weak interaction adds an additional term to the

differential cross-section of the form

d�

d�

� 	
¼ 2�h2c2

4E2
CM

Cwk cos 
:

The constant Cwk may be determined experimentally by measuring the ‘forward–

backward’ asymmetry, defined by

AFB ¼ �F � �B

�F þ �B

;

where �Fð�BÞ is the total cross-section for scattering in the forward (backward)

hemisphere, i.e. 0 � cos 
 � 1 ð�1 � cos 
 � 0Þ. Derive a relation between Cwk

and AFB.

6.3 Draw a Feynman diagram at the quark level for the decay � ! p þ ��. If nature

were to double the weak coupling constant and decrease the mass of the W boson by

a factor of four, what would be the effect on the decay rate �ð� ! p þ ��Þ?

6.4 Neglecting the electron mass, the energy spectrum for the electrons emitted in muon

decay is give by

d!

dEe

¼ 2G2
Fðm�c2Þ2

E2
e

ð2�Þ3ð�hcÞ6
1 � 4Ee

3m�c2

� 	
:

What is the most probable energy for the electron? Draw a diagram showing the

orientation of the momenta of the three outgoing particles and their helicities for the

case when Ee 	 m�c2=2. Show also the helicity of the muon. Integrate the energy

spectrum to obtain an expression for the total decay width of the muon. Hence

calculate the muon lifetime in seconds ðGF=ð�hcÞ3 ¼ 1:166 � 10�5 GeV�2Þ:

6.5 Use lepton universality and lepton–quark symmetry to estimate the branching ratios

for (a) the decays b ! c þ e� þ ���e (where the b and c quarks are bound in hadrons)

and (b) 	� ! e� þ ���e þ �	 . Ignore final states that are Cabibbo-suppressed relative

to the lepton modes.

6.6 The couplings of the Z0 to right-handed (R) and left-handed (L) fermions are given by

gRðf Þ ¼ �qf sin2 
W; gLðf Þ ¼ �1=2 � qf sin2 
W;

where qf is the electric charge of the fermion f in units of e and 
W is the weak

mixing angle. The positive sign in gL is used for neutrinos and the q ¼ u; c; t
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quarks; the negative sign is used for charged leptons and the q ¼ d; s; b quarks. If

the partial width for Z0 ! f�ff is given by

�f ¼
GFM3

Zc6

3�
ffiffiffi
2

p
ð�hcÞ3

g2
Rðf Þ þ g2

Lðf Þ
� �

;

calculate the partial widths to neutrinos �� and to q�qq pairs �q and explain the

relation of �q to the partial width to hadrons �hadron.

The widths to hadrons and to charged leptons are measured to be

�had ¼ ð1738 � 12Þ MeV and �lep ¼ ð250 � 2ÞMeV, and the total width to all

final states is measured to be �tot ¼ ð2490 � 7Þ MeV. Use these experimental results

and your calculated value for the decay width to neutrinos to show that there are

only three generations of neutrinos with masses M� < MZ=2.

6.7 Explain, with the aid of Feynman diagrams, why the decay D0 ! K� þ �þ can

occur as a charged-current weak interaction at lowest order, but the decay

Dþ ! K0 þ �þ cannot.

6.8 Why is the decay rate of the charged pion much smaller than that of the neutral pion?

Draw Feynman diagrams to illustrate your answer.

6.9 Draw the lowest-order Feynman diagrams for the decays �� ! �� þ ��� and

K� ! �� þ ����. Use lepton–quark symmetry and the Cabibbo hypothesis with the

Cabibbo angle 
C ¼ 12� to estimate the ratio

R  RateðK� ! �� þ ����Þ
Rateð�� ! �� þ ����Þ

;

ignoring all kinematic and spin effects. Comment on your result.

6.10 Estimate the ratio of decay rates

R  �ð�� ! n þ e� þ ���eÞ
�ð�� ! �þ e� þ ���eÞ

and explain why the decay �ð�þ ! n þ eþ þ �eÞ has never been seen.

6.11 One way of looking for the Higgs boson H is in the reaction eþe� ! Z0H. If this

reaction is studied at a centre-of-mass energy of 500 GeV in a collider operating for

107 s per year and the cross-section at this energy is 60 fb, what instantaneous

luminosity (in units of cm�2 s�1) would be needed to collect 2000 events in one year

if the detection efficiency is 10 per cent. For a Higgs boson with mass

MH < 120 GeV, the branching ratio for H ! b�bb is predicted to be 85 per cent.

Why will looking for b quarks help distinguish eþe� ! Z0H from the background

reaction eþe� ! Z0Z0?

6.12 Hadronic strangeness-changing weak decays approximately obey the so-called

‘�I ¼ 1
2

rule’, i.e. the total isospin changes by 1
2

in the decay. By assuming a
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fictitious strangeness zero I ¼ 1
2

particle S0 in the initial state, find the prediction of

this rule for the ratio

R  �ð�� ! �þ ��Þ
�ð�0 ! �þ �0Þ :

Assume that the state j�0; S0i is an equal mixture of states with I ¼ 0 and I ¼ 1.

6.13 The charged-current differential cross-sections for � and ��� scattering from a spin-1
2

target are given by generalizations of Equations (6.37) and (6.40) and may be written

d�CCð�Þ
dy

¼ 1

�

G2Hs

ð�hcÞ4
;

d�CCð���Þ
dy

¼ d�CCð�Þ
dy

ð1 � yÞ2;

where s ¼ E2
CM, y ¼ 1

2
ð1 � cos 
Þ and H is the integral of the quark density for the

target (cf. Equation (6.43)). The corresponding cross-sections for neutral current

scattering are

d�NCð�Þ
dy

¼ d�CCð�Þ
dy

½g2
L þ g2

Rð1 � yÞ2�;

d�NCð���Þ
dy

¼ d�CCð�Þ
dy

½g2
Lð1 � yÞ2 þ g2

R�;

where the right- and left-hand couplings to u and d quarks are given by

gLðuÞ ¼
1

2
� 2

3
sin2 
W; gRðuÞ ¼ � 2

3
sin2 
W;

gLðdÞ ¼ � 1

2
þ 1

3
sin2 
W; gRðdÞ ¼

1

3
sin2 
W:

Derive expressions for the ratios �NCð�Þ=�CCð�Þ and �NCð���Þ=�CCð���Þ in the case of

an isoscalar target consisting of valence u and d quarks only.
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7
Models and Theories
of Nuclear Physics

Nuclei are held together by the strong nuclear force between nucleons, so we start

this chapter by looking at the form of this, which is more complicated than that

generated by simple one-particle exchange. Much of the phenomenological evi-

dence comes from low-energy nucleon–nucleon scattering experiments which we

will simply quote, but we will interpret the results in terms of the fundamental strong

interaction between quarks. The rest of the chapter is devoted to various models and

theories that are constructed to explain nuclear data in particular domains.

7.1 The Nucleon -- Nucleon Potential

The existence of stable nuclei implies that overall the net nucleon–nucleon force

must be attractive and much stronger than the Coulomb force, although it cannot

be attractive for all separations, or otherwise nuclei would collapse in on

themselves. So at very short ranges there must be a repulsive core. However,

the repulsive core can be ignored in low-energy nuclear structure problems

because low-energy particles cannot probe the short-distance behaviour of the

potential. In lowest order, the potential may be represented dominantly by a central

term (i.e. one that is a function only of the radial separation of the particles),

although there is also a smaller non-central part. We know from proton–proton

scattering experiments1 that the nucleon–nucleon force is short-range, of the same

order as the size of the nucleus, and thus does not correspond to the exchange of

gluons, as in the fundamental strong interaction. A schematic diagram of the

resulting potential is shown in Figure 7.1. In practice of course this strong

1For reviews see, for example, Chapter 7 of Je90 and Chapter 14 of Ho97.
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interaction potential must be combined with the Coulomb potential in the case in

the case of protons.

A comparison of nn and pp scattering data (after allowing for the Coulomb

interaction) shows that the nuclear force is charge-symmetric (pp ¼ nn) and

almost charge-independent ðpp ¼ nn ¼ pnÞ.2 We have commented in Chapter 3

that there is also evidence for this from nuclear physics. Charge-symmetry is seen in

comparisons of the energy levels of mirror nuclei (see, for example, Figure 3.9) and

evidence for charge-independence comes from the energy levels of triplets of

related nuclei with the same A values. Nucleon–nucleon forces are, however,

spin-dependent. The force between a proton and neutron in an overall spin-1 state

(i.e. with spins parallel) is strong enough to support a weakly bound state (the

deuteron), whereas the potential corresponding to the spin-0 state (i.e. spins

antiparallel) has no bound states. Finally, nuclear forces saturate. This describes

that fact that a nucleon in a typical nucleus experiences attractive interactions only

with a limited number of the many other nucleons and is a consequence of the short-

range nature of the force. The evidence for this is the form of the nuclear binding

energy curve and was discussed in Chapter 2.

Ideally one would like to be able to interpret the nucleon–nucleon potential in

terms of the fundamental strong quark–quark interactions. It is not yet possible to

give a complete explanation along these lines, but it is possible to go some way in

this direction. If we draw an analogy with atomic and molecular structure, with

2For a discussion of these data see, for example, the references in Footnote 1.

Figure 7.1 Idealized square well representation of the strong interaction nucleon--nucleon
potential. The distance R is the range of the nuclear force and � � R is the distance at which the
short-range repulsion becomes important. The depth V0 is approximately 40 MeV
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quarks playing the role of electrons, then possibilities are: an ionic-type bond, a van

der Waals type of force, or a covalent bond.3 The first can be ruled out because the

confining forces are too strong to permit a quark to be ‘lent’ from one nucleon to

another and the second can also be ruled out because the resulting two-gluon

exchange is too weak. This leaves a covalent bond due to the sharing of single quarks

between the nucleons analogous to the covalent bond that binds the hydrogen

molecule. However, nucleons have to remain ‘colourless’ during this process and so

the shared quark from one nucleon has to have the same colour as the shared quark

from the other nucleon. The effect of this is to reduce the effective force (because

there are three possible colour states) and by itself it is unable to explain the depth

of the observed potential. In addition to the three (valence) quarks within the nucleon

there are also present quark–antiquark pairs due to vacuum fluctuations.4 Such pairs

can be colourless and so can also be shared between the nucleons. These quarks

actually play a greater role in generating the nuclear strong interaction than single

quarks. The lightest such diquarks will be pions and this exchange gives the largest

contribution to the attractive part of the nucleon–nucleon force (see, for example, the

Feynman diagram Figure 1.4).

In principle, the short-range repulsion could be due to the exchange of heavier

diquarks (i.e. mesons), possibly also in different overall spin states. Experiment

provides many suitable meson candidates, in agreement with the predictions of the

quark model, and each exchange would give rise to a specific contribution to the

overall nucleon–nucleon potential, by analogy with the Yukawa potential resulting

from the exchange of a spin-0 meson, as discussed in Chapter 1. It is indeed possible

to obtain excellent fits to nucleon–nucleon scattering data in a model with several

such exchanges.5 Thus this approach can yield a satisfactory potential model, but is

semi-phenomenological only, as it requires the couplings of each of the exchanged

particles to be found by fitting nucleon–nucleon scattering data. (The couplings that

result broadly agree with values found from other sources.) Boson-exchange models

therefore cannot give a fundamental explanation of the repulsion. The reason for

the repulsion at small separations in the quark model lies in the spin dependence

of the quark–quark strong interaction, which like the phenomenological nucleon–

nucleon interaction, is strongly spin-dependent. We have discussed this in the

context of calculating hadron masses in Section 3.3.3. When the two nucleons are

very close, the wavefunction is effectively that for a 6-quark system with zero

angular momentum between the quarks, i.e. a symmetric spatial wave function.

Since the colour wave function is antisymmetric, (recall the discussion of

Chapter 5), it follows that the spin wavefunction is symmetric. However, the

3Recall from chemistry that in ionic bonding, electrons are permanently transferred between constituents to
form positive and negative ions that then bind by electrostatic attraction; in covalent bonding the constituents
share electrons; and the van der Waals force is generated by the attraction between temporary charges
induced on the constituents by virtue of slight movements of the electrons.
4These are the ‘sea’ quarks mentioned in connection with the quark model in Chapter 3 and which are probed
in deep inelastic lepton scattering that was discussed in Chapter 6.
5This approach is discussed in, for example, Chapter 3 of Co01 and also in the references given in Footnote1.
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potential energy increases if all the quarks remain in the L ¼ 0 state with

spins aligned.6 The two-nucleon system will try to minimize its ‘chromomagnetic’

energy, but this will compete with the need to have a symmetric spin wavefunction.

The optimum configuration at small separations is when one pair of quarks is in

an L ¼ 1 state, although the excitation energy is comparable to the decrease in

chromomagnetic energy, so there will still be a net increase in energy at small

separations.

Some tantalizing clues exist about the role of the quark–gluon interaction in

nuclear interactions, such as the small nuclear effects in deep inelastic lepton

scattering mentioned in Chapter 5. There is also a considerable experimental

programme in existence (for example at CEBAF, the superconducting accelerator

facility at the Jefferson Laboratory, Virginia, USA, mentioned in Chapter 4) to learn

more about the nature of the strong nucleon–nucleon force in terms of the

fundamental quark–gluon strong interaction and further progress in this area may

well result in the next few years. Meanwhile, in the absence of a fundamental theory

to describe the nuclear force, specific models and theories are used to interpret the

phenomena in different areas of nuclear physics. In the remainder of this chapter we

will discuss a number of such approaches.

7.2 Fermi Gas Model

In this model, the protons and neutrons that make up the nucleus are assumed to

comprise two independent systems of nucleons, each freely moving inside the

nuclear volume subject to the constraints of the Pauli principle. The potential felt by

every nucleon is the superposition of the potentials due to all the other nucleons. In

the case of neutrons this is assumed to be a finite-depth square well; for protons, the

Coulomb potential modifies this. A sketch of the potential wells in both cases is

shown in Figure 7.2.

For a given ground state nucleus, the energy levels will fill up from the bottom of

the well. The energy of the highest level that is completely filled is called the

Fermi level of energy EF and has a momentum pF ¼ ð2MEFÞ1=2
, where M is the

mass of the nucleon. Within the volume V, the number of states with a momentum

between p and p þ dp is given by the density of states factor

nðpÞdp ¼ dn ¼ 4�V

ð2��hÞ3
p2dp; ð7:1Þ

6Compare the mass of the �(1232) resonance, where all three quarks spins are aligned, to that of the lighter
nucleon, where one pair of quarks spins is anti-aligned to give a total spin of zero. This is discussed in detail
in Section 3.3.3.
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which is derived in Appendix A. Since every state can contain two fermions of the

same species, we can have (using n ¼ 2
Ð pF

0
dnÞ

N ¼ Vðpn
FÞ

3

3�2�h3
and Z ¼ Vðpp

FÞ
3

3�2�h3
ð7:2Þ

neutrons and protons, respectively, with a nuclear volume

V ¼ 4

3
�R3 ¼ 4

3
�R3

0A; ð7:3Þ

where experimentally R0 ¼ 1:21 fm, as we have seen from electron and hadron

scattering experiments discussed in Chapter 2. Assuming for the moment that the

depths of the neutron and proton wells are the same, we find for a nucleus with

Z ¼ N ¼ A=2, the Fermi momentum

pF ¼ pn
F ¼ p

p
F ¼ �h

R0

9�

8

� �1=3

� 250 MeV=c: ð7:4Þ

Thus the nucleons move freely within the nucleus with quite large momenta.

The Fermi energy is

EF ¼ p2
F

2M
� 33 MeV: ð7:5Þ

The difference between the top of the well and the Fermi level is constant

for most heavy nuclei and is just the average binding energy per nucleon

Figure 7.2 Proton and neutron potentials and states in the Fermi gas model
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~BB � B=A ¼ 7–8 MeV. The depth of the potential and the Fermi energy are to a

good approximation independent of the mass number A:

V0 ¼ EF þ ~BB � 40 MeV: ð7:6Þ

Heavy nuclei generally have a surplus of neutrons. Since the Fermi levels of the

protons and neutrons in a stable nucleus have to be equal (otherwise the nucleus

can become more stable by �-decay) this implies that the depth of the potential

well for the neutron gas has to be deeper than for the proton gas, as shown in

Figure 7.2. Protons are therefore on average less tightly bound in nuclei than are

neutrons.

We can use the Fermi gas model to give a theoretical expression for some of the

dependence of the binding energy on the surplus of neutrons, as follows. First, we

define the average kinetic energy per nucleon as

hEkini �
ðpF

0

Ekinp2dp

� � ðpF

0

p2dp

� �
1

: ð7:7Þ

Evaluating the integrals gives

hEkini ¼
3

5

p2
F

2M
� 20 MeV: ð7:8Þ

The total kinetic energy of the nucleus is then

EkinðN;ZÞ ¼ NhEni þ ZhEpi ¼
3

10 M
½Nðpn

FÞ
2 þ Zðpp

FÞ
2�; ð7:9Þ

which may be re-expressed as

EkinðN;ZÞ ¼
3

10 M

�h2

R2
0

9�

4

� �2=3
N5=3 þ Z5=3

A2=3

� �
; ð7:10Þ

where again we have taken the radii of the proton and neutron wells to be equal.

This expression is for fixed A but varying N and has a minimum at N ¼ Z. Hence

the binding energy gets smaller for N 6¼ Z. If we set N ¼ ðA þ�Þ=2,

Z ¼ ðA 
�Þ=2, where � � N 
 Z, and expand Equation (7.10) as a power series

in �=A, we obtain

EkinðN;ZÞ ¼
3

10 M

�h2

R2
0

9�

8

� �2=3

A þ 5

9

ðN 
 ZÞ2

A
þ . . . :

" #
; ð7:11Þ

which gives the dependence on the neutron excess. The first term contributes to the

volume term in the semi-empirical mass formula (SEMF), while the second
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describes the correction that results from having N 6¼ Z. This is a contribution to the

asymmetry term we have met before in the SEMF and grows as the square of the

neutron excess. Evaluating this term from Equation (7.11) shows that its contribu-

tion to the asymmetry coefficient defined in Equation (2.51) is about 44 MeV=c2,

compared with the empirical value of about 93 MeV=c2 given in Equation (2.54). In

practice, to reproduce the actual term in the SEMF accurately we would have to take

into account the change in the potential energy for N 6¼ Z.

7.3 Shell Model

The nuclear shell model is based on the analogous model for the orbital structure

of atomic electrons in atoms. In some areas it gives more detailed predictions than

the Fermi gas model and it can also address questions that the latter model cannot.

Firstly, we recap the main features of the atomic case.

7.3.1 Shell structure of atoms

The binding energy of electrons in atoms is due primarily to the central Coulomb

potential. This is a complicated problem to solve in general because in a multi-

electron atom we have to take account of not only the Coulomb field of the nucleus,

but also the fields of all the other electrons. Analytic solutions are not usually

possible. However, many of the general features of the simplest case of hydrogen

carry over to more complicated cases, so it is worth recalling the former.

Atomic energy levels are characterized by a quantum number n = 1, 2, 3, 4, . . . :
called the principal quantum number. This is defined so that it determines the energy

of the system.7 For any n there are energy-degenerate levels with orbital angular

momentum quantum numbers given by

‘ ¼ 0; 1; 2; 3; . . . ; ðn 
 1Þ ð7:12Þ

(this restriction follows from the form of the Coulomb potential) and for any value

of ‘ there are ð2‘þ 1Þ sub-states with different values of the projection of orbital

angular momentum along any chosen axis (the magnetic quantum number):

m‘ ¼ 
‘;
‘þ 1; . . . ; 0; 1; . . . ; ‘
 1; ‘: ð7:13Þ

Due to the rotational symmetry of the Coulomb potential, all such sub-states are

degenerate in energy. Furthermore, since electrons have spin-1
2
, each of the above

7In nuclear physics we are not dealing with the same simple Coulomb potential, so it would be better to call n
the radial node quantum number, as it still determines the form of the radial part of the wavefunction.
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states can be occupied by an electron with spin ‘up’ or ‘down’, corresponding to

the spin-projection quantum number

ms ¼ �1=2: ð7:14Þ

Again, both these states will have the same energy. So finally, any energy eigenstate

in the hydrogen atom is labelled by the quantum numbers ðn; ‘;m‘;msÞ and for any n,

there will be nd degenerate energy states, where

nd ¼ 2
Xn
1

‘¼0

ð2‘þ 1Þ ¼ 2n2: ð7:15Þ

The high degree of degeneracy can be broken if there is a preferred direction in

space, such as that supplied by a magnetic field, in which case the energy levels

could depend on m‘ and ms. One such interaction is the spin–orbit coupling, which is

the interaction between the magnetic moment of the electron (due to its spin) and the

magnetic field due to the motion of the nucleus (in the electron rest frame). This

leads to corrections to the energy levels called fine structure, the size of which are

determined by the electromagnetic fine structure constant �.

In atomic physics the fine-structure corrections are small and so, if we ignore them

for the moment, in hydrogen we would have a system with electron orbits

corresponding to shells of a given n, with each shell having degenerate sub-shells

specified by the orbital angular momentum ‘. Going beyond hydrogen, we can

introduce the electron–electron Coulomb interaction. This leads to a splitting in any

energy level n according to the ‘value. The degeneracies in ml and ms are unchanged.

It is straightforward to see that if a shell or sub-shell is filled, then we have

X
ms ¼ 0 and

X
m‘ ¼ 0; ð7:16Þ

i.e. there is a strong pairing effect for closed shells. In these cases it can be shown

that the Pauli principle implies

L ¼ S ¼ 0 and J ¼ L þ S ¼ 0: ð7:17Þ

For any atom with a closed shell or a closed sub-shell structure, the electrons are

paired off and thus no valence electrons are available. Such atoms are therefore

chemically inert. It is straightforward to work out the atomic numbers at which this

occurs. These are

Z ¼ 2; 10; 18; 36; 54: ð7:18Þ

For example, the inert gas argon ArðZ ¼ 18Þ has closed shells corresponding to

n ¼ 1, 2 and closed sub-shells corresponding to n ¼ 3; ‘ ¼ 0; 1. These values of Z

are called the atomic magic numbers.
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7.3.2 Nuclear magic numbers

In nuclear physics, there is also evidence for magic numbers, i.e. values of Z and N at

which the nuclear binding is particularly strong. This can been seen from the B=A

curves of Figure 2.10 where at certain values of N and Z the data lie above the SEMF

curve. This is also shown in Figure 7.3, where the inset shows the low-A region

magnified. (The figure only shows results for even values of the mass number A.)

The nuclear magic numbers are found from experiment to be

N ¼ 2; 8; 20; 28; 50; 82; 126

Z ¼ 2; 8; 20; 28; 50; 82
ð7:19Þ

and correspond to one or more closed shells, plus eight nucleons filling the s and p

sub-shells of a nucleus with a particular value of n. Nuclei with both N and Z having

one of these values are called doubly magic, and have even greater stability. An

example is the helium nucleus, the �-particle.

Shell structure is also suggested by a number of other phenomena. For example:

‘magic’ nuclei have many more stable isotopes than other nuclei; they have very

Figure 7.3 Binding energy per nucleon for even values of A: the solid curve is the SEMF (from
Bo69)
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small electric dipole moments, which means they are almost spherical, the most

tightly bound shape; and neutron capture cross-sections show sharp drops compared

with neighbouring nuclei. However, to proceed further we need to know something

about the effective potential.

A simple Coulomb potential is clearly not appropriate and we need some form that

describes the effective potential of all the other nucleons. Since the strong nuclear

force is short-ranged we would expect the potential to follow the form of the density

distribution of nucleons in the nucleus. For medium and heavy nuclei, we have seen

in Chapter 2 that the Fermi distribution fits the data and the corresponding potential

is called the Woods–Saxon form

VcentralðrÞ ¼

V0

1 þ eðr
RÞ=a
: ð7:20Þ

However, although these potentials can be shown to offer an explanation for the

lowest magic numbers, they do not work for the higher ones. This is true of all purely

central potentials.

The crucial step in understanding the origin of the magic numbers was taken in

1949 by Mayer and Jensen who suggested that by analogy with atomic physics there

should also be a spin–orbit part, so that the total potential is

Vtotal ¼ VcentralðrÞ þ V‘sðrÞL � S; ð7:21Þ

where L and S are the orbital and spin angular momentum operators for a single

nucleon and V‘sðrÞ is an arbitrary function of the radial coordinate.8 This form for the

total potential is the same as that used in atomic physics except for the presence of

the function V‘sðrÞ. Once we have coupling between L and S then m‘ and ms are no

longer ‘good’ quantum numbers and we have to work with eigenstates of the total

angular momentum vector J, defined by J ¼ L þ S. Squaring this, we have

J2 ¼ L2 þ S2 þ 2L � S; ð7:22Þ

i.e.

L � S ¼ 1

2
ðJ2 
 L2 
 S2Þ ð7:23Þ

and hence the expectation value of L � S, which we write as h‘si, is

h‘si ¼ �h2

2
½ jð j þ 1Þ 
 ‘ð‘þ 1Þ 
 sðs þ 1Þ� ¼ ‘=2 for j ¼ ‘þ 1

2


ð‘þ 1Þ=2 for j ¼ ‘
 1
2



:

ð7:24Þ

8For their work on the shell structure of nuclei. Maria Goeppert-Mayer and J. Hans Jensen were awarded a
half share of the 1963 Nobel Prize in Physics. (They shared the prize with Wigner, mentioned in Chapter 1
for his development of the concept of parity.)
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(We are always dealing with a single nucleon, so that s ¼ 1
2
.) The splitting between

the two levels is thus

�Els ¼
2‘þ 1

2
�h2hV‘si: ð7:25Þ

Experimentally, it is found that V‘sðrÞ is negative, which means that the state with

j ¼ ‘þ 1
2

has a lower energy than the state with j ¼ ‘
 1
2
. This is the opposite of the

situation in atoms. Also, the splittings are substantial and increase linearly with ‘.
Hence for higher ‘, crossings between levels can occur. Namely, for large ‘, the

splitting of any two neighbouring degenerate levels can shift the j ¼ ‘
 1
2

state of the

initial lower level to lie above the j ¼ ‘þ 1
2

level of the previously higher level.

An example of the resulting splittings up to the 1G state is shown in Figure 7.4,

where the usual atomic spectroscopic notation has been used, i.e. levels are written

n‘j with S, P, D, F, G, . . . : used for ‘ ¼ 0, 1, 2, 3, 4, . . .. Magic numbers occur when

there are particularly large gaps between groups of levels. Note that there is no

restriction on the values of ‘ for a given n because, unlike in the atomic case, the

strong nuclear potential is not Coulomb-like.

The configuration of a real nuclide (which of course has both neutrons and

protons) describes the filling of its energy levels (sub-shells), for protons and for

neutrons, in order, with the notation ðn‘jÞk
for each sub-shell, where k is the

occupancy of the given sub-shell. Sometimes, for brevity, the completely filled

Figure 7.4 Low-lying energy levels in a single-particle shell model using a Woods--Saxon
potential plus spin--orbit term; circled integers correspond to nuclear magic numbers
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sub-shells are not listed, and if the highest sub-shell is nearly filled, k can be given as

a negative number, indicating how far from being filled that sub-shell is. Using the

ordering diagram above, and remembering that the maximum occupancy of each

sub-shell is 2j þ 1, we predict, for example, the configuration for 17
8O to be:

ð1s1
2
Þ2ð1p3

2
Þ4ð1p1

2
Þ2

for the protons ð7:26aÞ

and

ð1s1
2
Þ2ð1p3

2
Þ4ð1p1

2
Þ2ð1d5

2
Þ1

for the neutrons: ð7:26bÞ

Notice that all the proton sub-shells are filled, and that all the neutrons are in filled

sub-shells except for the last one, which is in a sub-shell on its own. Most of the

ground state properties of 17
8O can therefore be found from just stating the neutron

configuration as ð1d5
2
Þ1

.

7.3.3 Spins, parities and magnetic dipole moments

The nuclear shell model can be used to make predictions about the spins of ground

states. A filled sub-shell must have zero total angular momentum, because j is always

an integer-plus-a-half, so the occupancy of the sub-shell, 2j þ 1, is always an even

number. This means that in a filled sub-shell, for each nucleon of a given mjð¼ jzÞ
there is another having the opposite mj. Thus the pair have a combined mj of zero and

so the complete sub-shell will also have zero mj. Since this is true whatever axis we

choose for z, the total angular momentum must also be zero. Since magic number

nuclides have closed sub-shells, such nuclides are predicted to have zero contribu-

tion to the nuclear spin from the neutrons or protons or both, whichever are magic

numbers. Hence magic-Z/magic-N nuclei are predicted to have zero nuclear spin.

This is indeed found to be the case experimentally.

In fact it is found that all even-Z/even-N nuclei have zero nuclear spin. We can

therefore make the hypothesis that for ground state nuclei, pairs of neutrons and

pairs of protons in a given sub-shell always couple to give a combined angular

momentum of zero, even when the sub-shell is not filled. This is called the pairing

hypothesis. We can now see why it is the last proton and/or last neutron that

determines the net nuclear spin, because these are the only ones that may not be

paired up. In odd-A nuclides there is only one unpaired nucleon, so we can predict

precisely what the nuclear spin will be by referring to the filling diagram. For even-

A/odd-Z/odd-N nuclides, however, we will have both an unpaired proton and an

unpaired neutron. We cannot then make a precise prediction about the net spin

because of the vectorial way that angular momenta combine; all we can say is that

the nuclear spin will lie in the range jjp 
 jnj to ðjp þ jnÞ.
Predictions can also be made about nuclear parities. First, recall the following

properties of parity: (1) parity is the transformation r ! 
r; (2) the wavefunction
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of a single-particle quantum state will contain an angular part proportional to the

spherical harmonic Yl
mð	, 
Þ, and under the parity transformation

PYl
mð	; 
Þ ¼ ð
Þ‘Yl

mð	; 
Þ; ð7:27Þ

(3) a single-particle state will also have an intrinsic parity, which for nucleons is

defined to be positive. Thus the parity of a single-particle nucleon state depends

exclusively on the orbital angular momentum quantum number with P ¼ ð
1Þ‘.
The total parity of a multiparticle state is the product of the parities of the individual

particles. A pair of nucleons with the same ‘will therefore always have a combined

parity of þ1. The pairing hypothesis then tells us that the total parity of a nucleus is

found from the product of the parities of the last proton and the last neutron. So we

can predict the parity of any nuclide, including the odd/odd ones, and these

predictions are in agreement with experiment.

Unless the nuclear spin is zero, we expect nuclei to have magnetic (dipole)

moments, since both the proton and the neutron have intrinsic magnetic moments,

and the proton is electrically charged, so it can produce a magnetic moment when it

has orbital motion. The shell model can make predictions about these moments.

Using a notation similar to that used in atomic physics, we can write the nuclear

magnetic moment as

� ¼ gj j�N; ð7:28Þ

where �N is the nuclear magneton that was used in the discussion of hadron

magnetic moments in Section 3.3.3, gj is the Landé g-factor and j is the nuclear spin

quantum number. For brevity we can write simply � ¼ gj j nuclear magnetons.

We will find that the shell model does not give very accurate predictions for

magnetic moments, even for the even–odd nuclei where there is only a single

unpaired nucleon in the ground state. We will therefore not consider at all the much

more problematic case of the odd–odd nuclei having an unpaired proton and an

unpaired neutron.

For the even–odd nuclei, we would expect all the paired nucleons to contribute

zero net magnetic moment, for the same reason that they do not contribute to the

nuclear spin. Predicting the nuclear magnetic moment is then a matter of finding

the correct way to combine the orbital and intrinsic components of magnetic moment

of the single unpaired nucleon. We need to combine the spin component of the

moment, gss, with the orbital component, g‘‘ (where gs and g‘ are the g-factors for

spin and orbital angular momentum.) to give the total moment gj j. The general

formula for doing this is9

gj ¼
jðj þ 1Þ þ ‘ð‘þ 1Þ 
 sðs þ 1Þ

2jðj þ 1Þ g‘ þ
jðj þ 1Þ 
 ‘ð‘þ 1Þ þ sðs þ 1Þ

2jðj þ 1Þ gs; ð7:29Þ

9See, for example, Section 6.6 of En66.
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which simplifies considerably because we always have j ¼ ‘� 1
2
. Thus

jgj ¼ g‘‘þ gs=2 for j ¼ ‘þ 1
2

ð7:30aÞ

and

jgj ¼ g‘j 1 þ 1

2‘þ 1

� �

 gsj

1

2‘þ 1

� �
for j ¼ ‘
 1

2
: ð7:30bÞ

Since g‘ ¼ 1 for a proton and 0 for a neutron, and gs is approximately þ5.6 for the

proton and 
3.8 for the neutron, Equations (7.30) yield the results (where

gprotonðneutronÞ is the g-factor for nuclei with an odd proton(neutron))

jgproton ¼ ‘þ 1

2
� 5:6 ¼ j þ 2:3 for j ¼ ‘þ 1

2

jgproton ¼ j 1 þ 1

2‘þ 1

� �

 5:6 � j

1

2‘þ 1

� �
¼ j 
 2:3j

j þ 1
for j ¼ ‘
 1

2

jgneutron ¼ 
1

2
� 3:8 ¼ 
1:9 for j ¼ j ¼ ‘þ 1

2

jgneutron ¼ 3:8 � j
1

2‘þ 1

� �
¼ 1:9j

j þ 1
for j ¼ ‘
 1

2
:

ð7:31Þ

Accurate values of magnetic dipole moments are available for a wide range of

nuclei and plots of a sample of measured values for a range of odd-Z and odd-N

nuclei across the whole periodic table are shown in Figure 7.5. It is seen that for a

given j, the measured moments usually lie somewhere between the j ¼ ‘
 1
2

and the

j ¼ ‘þ 1
2

values (the so-called Schmidt lines), but beyond that the model does not

predict the moments accurately. The only exceptions are a few low-A nuclei where

the numbers of nucleons are close to magic values.

Why should the shell model work so well when predicting nuclear spins and

parities, but be poor for magnetic moments? There are several likely problem areas,

including the possibility that protons and neutrons inside nuclei may have effective

intrinsic magnetic moments that are different to their free-particle values, because of

their very close proximity to one another.

7.3.4 Excited states

In principle, the shell model’s energy level structure can be used to predict nuclear

excited states. This works quite well for the first one or two excited states when there

is only one possible configuration of the nucleus. However, for higher states the
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spectrum becomes very complicated because several nucleons can be excited

simultaneously into a superposition of many different configurations to produce a

given nuclear spin and parity. When trying to predict the first one or two excited

states using a filling diagram like Figure 7.4, we are looking for the configuration

that is nearest to the ground state configuration. This will normally involve either

Figure 7.5 Magnetic moments for odd-N, even-Z nuclei (upper diagram) and odd-Z, even-N
(lower diagram) as functions of nuclear spin compared with the predictions of the single-particle
shell model (the Schmidt lines)
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moving an unpaired nucleon to the next highest level, or moving a nucleon from the

sub-shell below the unpaired nucleon up one level to pair with it. Thus it is necessary

to consider levels just above and below the last nucleons (protons and neutrons).

As an example, consider the case of 17
8O. Its ground-state configuration is given in

Equations (7.26). All the proton sub-shells are filled, and all the neutrons are in filled

sub-shells except for the last one, which is in a sub-shell on its own. There are three

possibilities to consider for the first excited state:

1. promote one of the 1p1
2

protons to 1d5
2
, giving a configuration of ð1p1

2
Þ
1ð1d5

2
Þ1

,

where the superscript 
1 means that the shell is one particle short of being

filled;

2. promote one of the 1p1
2

neutrons to 1d5
2
, giving a configuration of ð1p1

2
Þ
1ð1d5

2
Þ2

;

3. promote the 1d5
2

neutron to the next level, which is probably 2s1
2

(or the nearby

1d3
2
), giving a configuration of ð1s1

2
Þ1

or ð1d3
2
Þ1

.

Following the diagram of Figure 7.4, the third of these possibilities would

correspond to the smallest energy shift, so it should be favoured over the others.

The next excited state might involve moving the last neutron up a further level to 1d3
2
,

or putting it back where it was and adopting configurations (1) or (2). Option (2) is

favoured over (1) because it keeps the excited neutron paired with another, which

should have a slightly lower energy than creating two unpaired protons. When

comparing these predictions with the observed excited levels it is found that the

expected excited states do exist, but not necessarily in precisely the order predicted.

The shell model has many limitations, most of which can be traced to its

fundamental assumption that the nucleons move independently of one another in

a spherically symmetric potential. The latter, for example, is only true for nuclei that

are close to having doubly-filled magnetic shells and predicts zero electric quadruple

moments, whereas in practice many nuclei are deformed and quadruple moments are

often substantial. We discuss this important observation in the next section.

7.4 Non-Spherical Nuclei

So far we have discussed only spherical nuclei, but with non-sphericity new

phenomena are allowed, including additional modes of excitation and the possibility

of an electric quadrupole moment.

7.4.1 Electric quadrupole moments

The charge distribution in a nucleus is described in terms of electric multipole

moments and follows from the ideas of classical electrostatics. If we have a localized
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classical charge distribution with charge density �ðxÞ within a volume  , then the

first moment that can be non-zero is the electric quadrupole Q, defined by

eQ �
ð
�ðxÞð3z2 
 r2Þd3x; ð7:32Þ

where we have taken the axis of symmetry to be the z-axis. The analogous definition

in quantum theory is

Q ¼ 1

e

X
i

ð
 �qið3z2

i 
 r2Þ d3x; ð7:33Þ

where  is the nuclear wavefunction and the sum is over all relevant nucleons,

each with charge qi.
10 The quadrupole moment is zero if j j2 is spherically

symmetric and so a non-zero value of Q would be indicative of a non-spherical

nuclear charge distribution.

If we consider a spheroidal distribution with semi-axes defined as in Figure 2.14,

then evaluation of Equation (7.32) leads to the result

Qintrinsic ¼
2

5
Zeða2 
 b2Þ; ð7:34Þ

where Qintrinsic is the value of the quadrupole moment for a spheroid at rest and Ze

is its total charge. For small deformations,

Qintrinsic �
6

5
ZeR2"; ð7:35Þ

where " is defined in Equation (2.70) and R is the nuclear radius. Thus, for a

prolate distribution ða > bÞ, Q > 0 and for an oblate distribution ða < bÞ, Q < 0,

as illustrated in Figure 7.6. The same results hold in the quantum case.

If the nucleus has a spin J and magnetic quantum number M, then Q will depend

on M because it depends on the shape and hence the orientation of the charge

distribution. The quadrupole moment is then defined as the value of Q for which M

has its maximum value projected along the z-axis. This may be evaluated from

Equation (7.33) in the single-particle shell model and without proof we state the

resulting prediction that for odd-A, odd-Z nuclei with a single proton having a total

angular moment j outside closed sub-shells, the value of Q is given by

Q � 
R2 ð2j 
 1Þ
2ðj þ 1Þ : ð7:36Þ

10The electric dipole moment dz ¼ 1
e

P
i

Ð
 �qizi d vanishes because it will contain a sum of terms of the

form h ijzij ii, all of which are zero by parity conservation.
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Thus, Q ¼ 0 for j ¼ 1
2
. For odd-A, odd-N nuclei with a single neutron outside

closed sub-shells Q is predicted to be zero because the neutron has zero electric

charge, as will all even-Z, odd-N nuclei because of the pairing effect.

Unlike magnetic dipole moments, electric quadrupole moments are not always well

measured and the quoted experimental errors are often far larger than the differences

between the values obtained in different experiments. Significant (and difficult to

apply) corrections also need to be made to the data to extract the quadrupole moment

and this is not always done. The compilation of electric dipole moment data shown in

Figure 7.7 is therefore representative. The solid lines are simply to guide the eye and

Figure 7.6 Shapes of nuclei leading to (a) Q > 0 (prolate), and (b) Q < 0 (oblate)

Figure 7.7 Some measured electric quadrupole moments for odd-A nuclei, normalized by dividing
by R2, the squared nuclear radius: grey circles denote odd-N nuclei and black circles odd-Z nuclei;
the solid lines have no theoretical significance and the arrows denote the position of closed shells
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have no theoretical significance. The arrows indicate the positions of major closed

shells. A change of sign of Q at these points is expected because a nucleus with one

proton less than a closed shell behaves like a closed-shell nucleus with a negatively

charged proton (a proton hole) and there is some evidence for this in the data.

Two features emerge from this diagram. Firstly, while odd-A, odd-Z nuclei with

only a few nucleons outside a closed shell do have moments of order 
R2, in general

the measured moments are larger by factors of two to three and for some nuclei the

discrepancy can be as large as a factor of 10. Secondly, odd-A, odd-N nuclei also

have non-zero moments, contrary to expectations and, moreover, there is little

difference between these and the moments for odd-A, odd-Z nuclei, except that

the former tend to be somewhat smaller. These results strongly suggest that for some

nuclei it is not a good approximation to assume spherical symmetry and that these

nuclei must be considered to have non-spherical mass distributions.

The first attempt to explain the measured electric quadrupole moments in terms

of non-spherical nuclei was due to Rainwater. His approach can be understood

using the model we discussed in Chapter 2 when considering fission and used

above to derive the results of Equations (7.34) and (7.35). There the sphere was

deformed into an ellipsoid (see Figure 2.14) with axes parameterized in terms of a

small parameter " via Equation (2.70). The resulting change in the binding energy

�EB was found to be

�EB ¼ 
�"2; ð7:37Þ

where

� ¼ 1

5
ð2asA

2
3 
 acZ2A
1

3Þ ð7:38Þ

and the coefficients as and ac are those of the SEMF with numerical values given

in Equation (2.54). Rainwater assumed that this expression only held for closed-

shell nuclei, but not for nuclei with nucleons in unfilled shells. In the latter cases he

showed that distortion gives rise to an additional term in �EB that is linear in ", so

that the total change in binding energy is

�EB ¼ 
�"2 
 �"; ð7:39Þ

where � is a parameter that could be calculated from the Fermi energy of the

nucleus. This form has a minimum value �2=4� where " ¼ 
�=2�. The ground

state would therefore be deformed and not spherical.

Finally, once the spin of the nucleus is taken into account in quantum theory, the

measured electric quadrupole moment for ground states is predicted to be

Q ¼ jð2 j 
 1Þ
ð j þ 1Þð2 j þ 1ÞQintrinsic: ð7:40Þ
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This model gives values for Q that are of the correct sign, but overestimates them by

typically a factor of two. Refined variants of the model are capable of bringing the

predictions into agreement with the data by making better estimates of the parameter�.

7.4.2 Collective model

The Rainwater model is equivalent to assuming an aspherical liquid drop and Aage

Bohr (the son of Neils Bohr) and Mottelson showed that many properties of heavy

nuclei could be ascribed to the surface motion of such a drop. However, the single-

particle shell model cannot be abandoned because it explains many general features

of nuclear structure. The problem was therefore to reconcile the shell model with the

liquid-drop model. The outcome is the collective model.11

This model views the nucleus as having a hard core of nucleons in filled shells, as

in the shell model, with outer valence nucleons that behave like the surface

molecules of a liquid drop. The motions of the latter introduce non-sphericity in

the core that in turn causes the quantum states of the valence nucleons to change

from the unperturbed states of the shell model. Such a nucleus can both rotate and

vibrate and these new degrees of freedom give rise to rotational and vibrational

energy levels. For example, the rotational levels are given by EJ ¼ JðJ þ 1Þ�h2=2I,

where I is the moment of inertia and J is the spin of the nucleus. The predictions of

this simple model are quite good for small J, but overestimate the energies for larger

J. Vibrational modes are due predominantly to shape oscillations, where the nucleus

oscillates between prolate and oblate ellipsoids. Radial oscillations are much rarer

because nuclear matter is relatively incompressible. The energy levels are well

approximated by a simple harmonic oscillator potential with spacing �E ¼ �h!,

where ! is the oscillator frequency.

In practice, the energy levels of deformed nuclei are very complicated, because

there is often coupling between the various modes of excitation, but nevertheless

many predictions of the collective model are confirmed experimentally.12

7.5 Summary of Nuclear Structure Models

The shell model is based upon the idea that the constituent parts of a nucleus move

independently. The liquid-drop model implies just the opposite, since in a drop of

incompressible liquid, the motion of any constituent part is correlated with the

motion of all the neighbouring pairs. This emphasizes that models in physics have a

limited domain of applicability and may be unsuitable if applied to a different set of

phenomena. As knowledge evolves, it is natural to try and incorporate more

11For their development of the collective model, Aage Bohr, Ben Mottelson and Leo Rainwater shared the
1975 Nobel Prize in Physics.
12The details are discussed, for example, in Section 2.3 of Je90 and Chapter 17 or Ho97.
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phenomena by modifying the model to become more general, until (hopefully) we

have a model with firm theoretical underpinning which describes a very wide range

of phenomena, i.e. a theory. The collective model, which uses the ideas of both the

shell and liquid drop models, is a step in this direction. We will conclude this section

with a brief summary of the assumptions of each of the nuclear models we have

discussed and what each can tell us about nuclear structure.

Liquid-drop model

This model assumes that all nuclei have similar mass densities, with binding

energies approximately proportional to their masses, just as in a classical

charged liquid drop. The model leads to the SEMF, which gives a good description

of the average masses and binding energies. It is largely classical, with some

quantum mechanical terms (the asymmetry and pairing terms) inserted in an

ad hoc way. Input from experiment is needed to determine the coefficients of the

SEMF.

Fermi gas model

The assumption here is that nucleons move independently in a net nuclear

potential. The model uses quantum statistics of a Fermi gas to predict the depth

of the potential and the asymmetry term of the SEMF.

Shell model

This is a fully quantum mechanical model that solves the Schrödinger equation with

a specific spherical nuclear potential. It makes the same assumptions as the Fermi

gas model about the potential, but with the addition of a strong spin–orbit term. It is

able to successfully predict nuclear magic numbers, spins and parities of ground-

state nuclei and the pairing term of the SEMF. It is less successful in predicting

magnetic moments.

Collective model

This is also a fully quantum mechanical model, but in this case the potential is

allowed to undergo deformations from the strictly spherical form used in the shell

model. The result is that the model can predict magnetic dipole and electric

quadrupole magnetic moments with some success. Additional modes of excitation,

both vibrational and rotational, are possible and are generally confirmed by

experiment.
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It is clear from the above that there is at present no universal nuclear model. What

we currently have is a number of models and theories that have limited domains of

applicability and even within which they are not always able to explain all the

observations. For example, the shell model, while able to give a convincing account

of the spins and parities of the ground states of nuclei, is unable to predict the spins of

excited states with any real confidence. And of course the shell model has absolutely

nothing to say about whole areas of nuclear physics phenomena. Some attempt has

been made to combine features of different models, such as is done in the collec-

tive model, with some success. A more fundamental theory will require the full

apparatus of many-body theory applied to interacting nucleons and some progress

has been made in this direction for light nuclei, as we will mention in Chapter 9.

A theory based on interacting quarks is a more distant goal.

7.6 a-Decay

To discuss �-decays, we could return to the semiempirical mass formula of Chapter

2 and by taking partial derivatives with respect to A and Z find the limits of �-

stability, but the result is not very illuminating. To get a very rough idea of the

stability criteria, we can write the SEMF in terms of the binding energy B. Then

�-decay is energetically allowed if

Bð2; 4Þ > BðZ;AÞ 
 BðZ 
 2;A 
 4Þ: ð7:41Þ

If we now make the approximation that the line of stability is Z ¼ N (the actual

line of stability deviates from this, see Figure 2.7), then there is only one independent

variable. If we take this to be A, then

Bð2; 4Þ > BðZ;AÞ 
 BðZ 
 2;A 
 4Þ � 4
dB

dA
; ð7:42Þ

and we can write

4
dB

dA
¼ 4 A

dðB=AÞ
dA

þ B

A

� �
: ð7:43Þ

From the plot of B=A (Figure 2.2), we have dðB=AÞ=dA � 
7:7 � 10
3 MeV for

A � 120 and we also know that Bð2; 4Þ ¼ 28:3 MeV, so we have

28:3 � 4½B=A 
 7:7 � 10
3 A�; ð7:44Þ

which is a straight line on the B=A versus A plot which cuts the plot at A � 151.

Above this value of A, Equation (7.41) is satisfied by most nuclei and �-decay

becomes energetically possible.
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Lifetimes of �-emitters span an enormous range, and examples are known from

10 ns to 1017 years. The origin of this large spread lies in the quantum mechanical

phenomenon of tunelling. Individual protons and neutrons have binding energies in

nuclei of about 8 MeV, even in heavy nuclei (see Figure 2.2), and so cannot in

general escape. However, a bound group of nucleons can sometimes escape because

its binding energy increases the total energy available for the process. In practice,

the most significant decay process of this type is the emission of an �-particle,

because unlike systems of two and three nucleons it is very strongly bound by

7 MeV/ nucleon. Figure 7.8 shows the potential energy of an�-particle as a function

of r, its distance from the centre of the nucleus.

Beyond the range of the nuclear force, r > R, the �-particle feels only the

Coulomb potential

VCðrÞ ¼
2Z��hc

r
; ð7:45Þ

where we now use Z to be the atomic number of the daughter nucleus. Within the

range of the nuclear force, r < R, the strong nuclear potential prevails, with its

strength characterized by the depth of the well. Since the �-particle can escape from

the nuclear potential, E� > 0. It is this energy that is released in the decay. Unless E�
is larger than the Coulomb barrier (in which case the decay would be so fast as to be

unobservable) the only way the �-particle can escape is by quantum mechanical

tunelling through the barrier.

The probability T for transmission through a barrier of height V and thickness

�r by a particle of mass m with energy E� is given approximately by

T � e
2��r; ð7:46Þ

Figure 7.8 Schematic diagram of the potential energy of an �-particle as a function of its
distance r from the centre of the nucleus
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where �h� ¼ ½2mjVC 
 E�j�1=2
. Using this result, we can model the Coulomb

barrier as a succession of thin barriers of varying height. The overall transmission

probability is then

T ¼ e
G; ð7:47Þ

where the Gamow factor G is

G ¼ 2

�h

ðrC

R

2mjVCðrÞ 
 E�j½ �1=2
dr; ð7:48Þ

with � ¼ v=c and v is the velocity of the emitted particle.13 This assumes that

the orbital angular momentum of the �-particle is zero, i.e. we ignore

possible centrifugal barrier corrections.14 Since rC is the value of r where

E� ¼ VCðrCÞ,

rC ¼ 2Ze2=4�"0E� ð7:49Þ

and hence

VCðrÞ ¼ 2Ze2=4�"0r ¼ rCE�=r: ð7:50Þ

So, substituting into Equation (7.48) gives

G ¼ 2ð2mE�Þ1=2

�h

ðrC

R

rC

r

 1

h i1=2

dr; ð7:51Þ

where m is the reduced mass of the �-particle and the daughter nucleus, i.e.

m ¼ m�mD=ðm� þ mDÞ � m�. Evaluating the integral in Equation (7.51) gives

G ¼ 4Z�
2mc2

E�

� �1=2

cos
1

ffiffiffiffiffi
R

rC

r



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

rC

1 
 R

rC

� �s" #
: ð7:52Þ

Finally, since E� is typically 5 MeV and the height of the barrier is typically

40 MeV, rC � R and from (7.52), G � 4��Z=�, where � ¼ v�=c and v� is the

velocity of the alpha particle within the nucleus.

The probability per unit time � of the �-particle escaping from the nucleus

is proportional to the product of: (a) the probability wð�Þ of finding the �-particle in

the nucleus; (b) the frequency of collisions of the �-particle with the barrier (this

13These formulae are derived in Appendix A.
14The existence of an angular momentum barrier will suppress the decay rate (i.e. increase the lifetime)
compared with a similar nucleus without such a barrier. Numerical estimates of the suppression factors,
which increase rapidly with angular momentum, have been calculated by Blatt and Weisskopf and are given
in their book B152.
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is v�=2R); and (c) the transition probability. Thus, combining these factors, � is

given by

� ¼ wð�Þ v�

2R
e
G ð7:53Þ

and since

G / Z

�
/ Zffiffiffiffiffiffi

E�
p ; ð7:54Þ

small differences in E� have strong effects on the lifetime.

To examine this further we can take logarithms of Equation (7.53) to give

log10 t1
2
¼ a þ bZE


1
2

� ; ð7:55Þ

where t1
2

is the half-life. The quantity a depends on the probability wð�Þ and so is a

function of the nucleus, whereas b is a constant that may be estimated from the above

equations to be about 1.7. Equation (7.55) is a form of a relation that was found

empirically by Geiger and Nuttall in 1911 long before its theoretical derivation in

1928. It is therefore called the Geiger-Nuttall relation. It predicts that for fixed Z,

the log of the half-life of �-emitters varies linearly with E

1

2
� .

Figure 7.9 shows lifetime data for the isotopes of four nuclei. The very strong

variation with �-particle energy is evident; changing E� by a factor of about 2.5

changes the lifetime by 20 orders of magnitude. In all cases the agreement with the

Geiger–Nuttall relation is very reasonable and the slopes are compatible with the

Figure 7.9 Comparison of the Geiger--Nuttall relation with experimental data for some
�-emitters
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estimate for b above. Thus the simple barrier penetration model is capable of

explaining the very wide range of lifetimes of nuclei decaying by �-emission.

7.7 b-Decay

In Chapter 2 we discussed in some detail the phenomenology of �-decay using the

SEMF. In this section we return to these decays and examine their theoretical

interpretation.

7.7.1 Fermi theory

The first successful theory of nuclear �-decay was proposed in the 1930s by Fermi,

long before the W and Z bosons were known and the quark model formulated. He

therefore had to construct a theory based on very general principles, working by

analogy with the quantum theory of electromagnetic processes (QED), the only

successful theory known at the time for quantum particles.

The general equation for electron �-decay is

A
ZX ! A

Zþ1 Y þ e
 þ ���e: ð7:56Þ

In Chapter 2, we interpreted this reaction as the decay of a bound neutron, i.e.

n ! p þ e
 þ ���e, and in Chapter 3 we gave the quark interpretation of this decay. In

general, it is possible for the internal state of the nucleus to change in other ways

during the transition, but we will simplify matters by considering just the basic

neutron decay process.

We have also met the Second Golden Rule, which enables transition rates to be

calculated provided the interaction is relatively weak. We will write the Golden

Rule as

! ¼ 2�

�h
jMfij2nðEÞ; ð7:57Þ

where ! is the transition rate (probability per unit time), Mfi is the transition

amplitude (also called the matrix element because it is one element of a matrix

whose elements are all the possible transitions from the initial state i to different final

states f of the system) and nðEÞ is the density of states, i.e. the number of quantum

states available to the final system per unit interval of total energy. The density-

of-states factor can be calculated from purely kinematical factors, such as energies,

momenta, masses and spins where appropriate.15 The dynamics of the process is

contained in the matrix element.

15This is done explicitly in Appendix A.
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The matrix element can in general be written in terms of five basic Lorentz

invariant interaction operators, ÔO:

Mfi ¼
ð
��

f ðgÔOÞ�i d3x; ð7:58Þ

where �f and �i are total wavefunctions for the final and initial states, respectively,

g is a dimensionless coupling constant, and the integral is over three-dimensional

space The five categories are called scalar (S), pseudo-scalar (P), vector (V), axial-

vector (A), and tensor (T ); the names having their origin in the mathematical

transformation properties of the operators. (We have met the V and A forms

previously in Chapter 6 on the electroweak interaction.) The main difference

between them is the effect on the spin states of the parent and daughter nuclei.

When there are no spins involved, and at low energies, ðgÔOÞ is simply the interaction

potential, i.e. that part of the potential that is responsible for the change of state of the

system.

Fermi guessed that ÔO would be of the vector type, since electromagnetism is a

vector interaction, i.e. it is transmitted by a spin-1 particle – the photon. (Decays of

the vector type are called Fermi transitions.) We have seen from the work of

Chapter 6 that we now know that the weak interaction violates parity conservation

and is correctly written as a mixture of both vector and axial-vector interactions (the

latter are called Gamow–Teller transitions in nuclear physics), but as long as we are

not concerned with the spins of the nuclei, this does not make much difference, and

we can think of the matrix element in terms of a classical weak interaction potential,

like the Yukawa potential. Applying a bit of modern insight, we can assume the

potential is of extremely short range (because of the large mass of the W boson), in

which case we have seen that we can approximate the interaction by a point-like

form and the matrix element then becomes simply a constant, which we write as

Mfi ¼
GF

V
; ð7:59Þ

where GF is the Fermi coupling constant we met in Chapter 6. It has dimensions

[energy][length]3 and is related to the charged current weak interaction coupling

�W by

GF ¼ 4�ð�hcÞ3�W

ðMWc2Þ2
: ð7:60Þ

In Equation (7.59) it is convenient to factor out an arbitrary volume V, which is used

to normalize the wavefunctions. (It will eventually cancel out with a factor in the

density-of-states term.)

In nuclear theory, the Fermi coupling constant GF is taken to be a universal

constant and with appropriate corrections for changes of the nuclear state this
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assumption is also used in �-decay. Experimental results are consistent with the

theory under this assumption. However, the theory goes beyond nuclear �-decay,

and can be applied to any process mediated by the W boson, provided the energy is

not too great. In Chapter 6, for example, we used the same ideas to discuss

neutrino scattering. The best process to determine the value of GF is one not

complicated by hadronic (nuclear) effects and muon decay is usually used. The

lifetime of the muon � is given to a very good approximation by (ignoring the

Cabbibo correction)

1

�
¼ ðm�c2Þ5

192�3�hð�hcÞ6
G2

F; ð7:61Þ

from which we can deduce that the value of GF is about 90 eV fm3. It is usually

quoted in the form GF=ð�hcÞ3 ¼ 1:166 � 10
5 GeV
2.

7.7.2 Electron momentum distribution

We see from Equation (7.58) that the transition rate (i.e. �-decay lifetime) depends

essentially on kinematical factors arising through the density-of-states factor, nðEÞ.
To simplify the evaluation of this factor, we consider the neutron and proton to be

‘heavy’, so that they have negligible kinetic energy, and all the energy released in the

decay process goes into creating the electron and neutrino and in giving them kinetic

energy. Thus we write

E ¼ Ee þ E�; ð7:62Þ

where Ee is the total (relativistic) energy of the electron, E� is the total energy

of the neutrino, and E is the total energy released. (This equals ð�mÞc2, if �m is

the neutron–proton mass difference, or the change in mass of the decaying

nucleus.)

The transition rate ! can be measured as a function of the electron momentum, so

we need to obtain an expression for the spectrum of �-decay electrons. Thus we will

fix Ee and find the differential transition rate for decays where the electron has

energy in the range Ee to Ee þ dEe. From the Golden Rule, this is

d! ¼ 2�

�h
jMj2n�ðE 
 EeÞneðEeÞdEe; ð7:63Þ

where ne and n� are the density of states factors for the electron and neutrino,

respectively. These may be obtained from our previous result:

nðpeÞdpe ¼
V

ð2��hÞ3
4�p2

edpe; ð7:64Þ
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with a similar expression for n�, by changing variables using

dp

dE
¼ E

pc2
; ð7:65Þ

so that

nðEeÞdEe ¼
4�V

ð2��hÞ3
c2

peEedEe; ð7:66Þ

with a similar expression for nðE�Þ. Using these in Equation (7.57) and setting

M ¼ GF=V , gives

d!

dEe

¼ G2
F

2�3�h7c4
peEep�E� ð7:67Þ

where in general

p�c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
� 
 m2

�c
4

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE 
 EeÞ2 
 m2

�c
4

q
: ð7:68Þ

Finally, it is useful to change the variable to pe by writing

d!

dpe

¼ dEe

dpe

d!

dEe

¼ G2
F

2�3�h7c2
p2

ep�E�: ð7:69Þ

If we take the antineutrino to be precisely massless, then p� ¼ E�=c and Equation

(7.69) reduces to

d!

dpe

¼ G2
Fp2

ep2
�

2�3�h7c
¼ G2

Fp2
eE2

�

2�3�h7c3
¼ G2

Fp2
eðE 
 EeÞ2

2�3�h7c3
: ð7:70Þ

This expression gives rise to a bell-shaped electron momentum distribution,

which rises from zero at zero momentum, reaches a peak and falls to zero again at an

electron energy equal to E, as illustrated in the curve labelled Z ¼ 0 in Figure 7.10.

Studying the precise shape of the distribution near its upper end-point is one way in

principle of finding a value for the antineutrino mass. If the neutrino has zero mass,

then the gradient of the curve approaches zero at the end-point, whereas any non-

zero value results in an end-point that falls to zero with an asymptotically infinite

gradient. We will return to this later.

There are several factors that we have ignored or over-simplified in deriving this

momentum distribution. The principal ones are to do with the possible changes

of nuclear spin of the decaying nucleus, and the electric force acting between

the �-particle (electron or positron) and the nucleus. In the first case, when the

electron–antineutrino carry away a combined angular momentum of 0 or 1, the
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above treatment is essentially correct: these are the so-called ‘allowed transitions’.

However, the nucleus may change its spin by more than 1 unit, and then the

simplified short-range potential approach to the matrix element is inadequate. The

decay rate in these cases is generally suppressed, although not completely

forbidden, despite these being traditionally known as the ‘forbidden transitions’.16

In the second case, the electric potential between the positive nucleus and a

positive �-particle will cause a shift of the low end of its momentum spectrum to

the right, since it is propelled away by electrostatic repulsion. Conversely, the low

end of the negative �-spectrum is shifted to the left (see Figure 7.10). The precise

form of these effects is difficult to calculate, and requires quantum mechanics, but

the results are published in tables of a factor FðZ;EeÞ, called the Fermi screening

factor, to be applied to the basic �-spectrum.

7.7.3 Kurie plots and the neutrino mass

The usual way of experimentally testing the form of the electron momentum

spectrum given by the Fermi theory is by means of a Kurie plot. From

Equation (7.70), with the Fermi screening factor included, we have

d!

dpe

¼ FðZ;EeÞG2
Fp2

eðE 
 EeÞ2

2�3�h7c3
; ð7:71Þ

which can be written as

HðEeÞ �
d!

dpe

� �
1

p2
eKðZ; peÞ

� �1
2

¼ E 
 Ee; ð7:72Þ

16For a discussion of forbidden transitions see, for example, Co01.

Figure 7.10 Predicted electron spectra: Z ¼ 0, without Fermi screening factor; ��, with Fermi
screening factor
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where KðZ; peÞ includes FðZ;EeÞ and all the fixed constants in Equation (7.71). A

plot of the left-hand side of this equation – using the measured d!=dpe and pe,

together with the calculated value of KðZ; peÞ – against the electron energy Ee should

then give a straight line with an intercept of E. An example is shown in Figure 7.11.

If the neutrino mass is not exactly zero then it is straightforward to repeat the above

derivation and to show that the left-hand side of the Kurie plot is proportional to

fðE 
 EeÞ½ðE 
 EeÞ2 
 m2
�c

4�
1
2g

1
2: ð7:73Þ

This will produce a very small deviation from linearity extremely close to the end-

point of the spectrum and the straight line will curve near the end point and cut the

axis vertically at E
0
0 ¼ E0 
 m�c

2. In order to have the best conditions for measuring

the neutrino mass, it is necessary to use a nucleus where a non-zero mass would have

a maximum effect, i.e. the maximum energy release E ¼ E0 should only be a few

keV. Also at such low energies atomic effects have to be taken into account, so the

initial and final atomic states must be very well understood. The most suitable case is

the decay of tritium,

3H ! 3He þ e
 þ ���e; ð7:74Þ

where E0 ¼ 18:6 keV. The predicted Kurie plot very close to the end-point is

shown in Figure 7.12.

Since the counting rate near E0 is vanishingly small, the experiment is extremely

difficult. In practice, the above formula is fitted to data close to the end-point of the

spectrum and extrapolated to E0. The best experiments are consistent with a zero

Figure 7.11 Kurie plot for the �-decay of 36Cl (the y-axis is proportional to the function HðEeÞ
above)

b-DECAY 247



neutrino mass, but when experimental and theoretical uncertainties are taken into

account, an upper limit of about 2–3 eV/c2 results.

7.8 c-Emission and Internal Conversion

In Chapter 2 we mentioned that excited states of nuclei frequently decay to lower

states (often the ground state) by the emission of photons in the energy range

appropriate to �-rays and that in addition it is possible for the nucleus to de-excite by

ejecting an electron from a low-lying atomic orbit. We shall discuss this only briefly

because a proper treatment requires using a quantized electromagnetic radiation

field and is beyond the scope of this book. Instead, we will outline the results,

without proof.

7.8.1 Selection rules

Gamma emission is a form of electromagnetic radiation and like all such radiation is

caused by a changing electric field inducing a magnetic field. There are two

possibilities, called electric (E) radiation and magnetic (M) radiation. These

names derive from the semiclassical theory of radiation, in which the radiation

field arises because of the time variation of charge and current distributions. The

classification of the resulting radiation is based on the fact that total angular

momentum and parity are conserved in the overall reaction, the latter because it is

an electromagnetic process.

Figure 7.12 Expected Kurie plot for tritium decay very close to the end-point of the electron
energy spectrum for two cases: m� ¼ 0 and m� ¼ 5 eV=c2
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The photon carries away a total angular momentum, given by a quantum number

L17, which must include the fact that the photon is a spin-1 vector meson. The

minimum value is L ¼ 1. This is because a real photon has two possible polarization

states corresponding, for example, to Lz ¼ �1. Thus in the transition, there must be a

change of Lz for the emitting nucleus of �1 and this cannot happen if L ¼ 0. Hence,

if the spins of the initial and final nuclei states are denoted by Ji and Jf respectively,

the transition Ji ¼ 0 ! Jf ¼ 0 is strictly forbidden. In general, the photons are said

to have a multipolarity L and we talk about multipole radiation; transitions are called

dipole ðL ¼ 1Þ, quadrupole ðL ¼ 2Þ, octupole ðL ¼ 3Þ etc.. Thus, for example, M2

stands for magnetic quadrupole radiation. The allowed values of L are restricted by

the conservation equation relating the photon total angular momentum L and the

spins of the initial and final nuclei states, i.e.

Ji ¼ Jf þ L: ð7:75Þ

Thus, L may lie in the range

Ji þ Jf � L � jJi 
 Jf j: ð7:76Þ

It is also necessary to take account of parity. In classical physics, an electric dipole

qr is formed by having two equal and opposite charges q separated by a distance r. It

therefore has negative parity under r ! 
r. Similarly, a magnetic dipole is

equivalent to a charge circulating with velocity v to form a current loop of radius

r. The magnetic dipole is then of the form qr � v, which does not change sign under a

parity inversion and thus has positive parity. The general result, which we state

without proof, is that electric multipole radiation has parity ð
1ÞL
, whereas magnetic

multipole radiation has parity ð
1ÞLþ1
. We thus are led to the selection rules for �

emission shown in Table 7.1. Using this table we can determine which radiation

types are allowed for any specific transition. Some examples are shown in Table 7.2.

Although transitions Ji ¼ 0 ! Jf ¼ 0 are forbidden because the photon is a real

particle, such transitions could occur if a virtual photon is involved, provided parity

does not change. The reason for this is that a virtual photon does not have the

17As this is the total angular momentum, logically it would be better to employ the symbol J. However, as L
is invariably used in the literature, it will be used in what follows.

Table 7.1 Selection rules for � emission

Multipolarity Dipole Quadrupole Octupole

Type of radiation E1 M1 E2 M2 E3 M3

L 1 1 2 2 3 3

�P Yes No No Yes Yes No
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restriction on its states of polarization that a real photon does. In practice, the energy

of the virtual photon can be transferred to an orbital atomic electron that can thereby

be ejected. This is the process of internal conversion. There is another possibility

whereby the virtual photon can create an internal eþe
 pair. This is referred to as

internal pair production.

7.8.2 Transition rates

In semi-classical radiation theory, the transition probability per unit time, i.e. the

emission rate, is given by18

T
E;M
fi ðLÞ ¼ 1

4�"0

8�ðL þ 1Þ
L½ð2L þ 1Þ!!�2

1

�h

E�

�hc

� �2Lþ1

B
E;M
fi ðLÞ; ð7:77Þ

where E� is the photon energy, E and M refer to electric and magnetic radiation,

and for odd-n, n!! � nðn 
 2Þðn 
 4Þ . . . 3:1. The function B
E;M
fi ðLÞ is the so-called

reduced transition probability and contains all the nuclear information. It is

essentially the square of the matrix element of the appropriate operator causing

the transition producing photons with multipolarity L, taken between the initial and

final nuclear state wave functions. For electric transitions, B is measured in units of

e2 fm2L and for magnetic transitions in units of ð�N=cÞ2
fm2L
2 where �N is the

nuclear magneton.

To go further requires knowledge of the nuclear wave functions. An approxima-

tion due to Weisskopf is based on the single-particle shell model. This approach

assumes that the radiation results from the transition of a single proton from an initial

orbital state of the shell model to a final state of zero angular momentum. In this

model the general formulas reduce to

BEðLÞ ¼ e2

4�

3RL

L þ 3

� �2

ð7:78aÞ

18See, for example, Chapter 16 of Ja75.

Table 7.2 Examples of nuclear electromagnetic transitions

jPi

i J
Pf

f �P L Allowed transitions

0þ 0þ No – None
1
2

þ 1
2



Yes 1 E1

1þ 0þ No 1 M1

2þ 0þ No 2 E2
3
2


 1
2

þ
Yes 1, 2 E1, M2

2þ 1þ No 1, 2, 3 M1, E2, M3
3
2


 5
2

þ
Yes 1, 2, 3, 4 E1, M2, E3, M4
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for electric radiation and

BMðLÞ ¼ 10
�h

mpcR

� �2

BEðLÞ ð7:78bÞ

for magnetic radiation, where R is the nuclear radius and mp is the mass of the

proton. Finally, from the work in Chapter 2 on nuclear sizes, we can substitute

R ¼ R0A1=3, with R0 ¼ 1:21 fm, to give the final results:

BEðLÞ ¼ e2

4�

3

L þ 3

� �2

ðR0Þ2L
A2L=3 ð7:79aÞ

and

BMðLÞ ¼ 10

�

e�h

2mpc

� �2
3

L þ 3

� �2

ðR0Þ2L
2
Að2L
2Þ=3: ð7:79bÞ

Figure 7.13 shows an example of the transition rates TE;M calculated from

Equation (7.77) using the approximations of Equations (7.79). Although these are

only approximate predictions, they do confirm what is observed experimentally: for

a given transition there is a very substantial decrease in decay rates with increasing

L, and electric transitions have decay rates about two orders of magnitude higher

than the corresponding magnetic transitions.

Finally, it is often useful to have simple formulas for radiative widths 	� . These

follow from Equations (7.77), (7.78) and (7.79) and for the lowest multipole

transitions may be written

	�ðE1Þ ¼ 0:068E3
�A2=3; 	�ðM1Þ ¼ 0:021E3

�; 	�ðE2Þ ¼ ð4:9 � 10
8ÞE5
�A4=3;

ð7:80Þ

Figure 7.13 Transition rates using single-particle shell model formulas of Weisskopf as a
function of photon energy for a nucleus of mass number A ¼ 60
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where	� is measured in eV, the transition energy E� is measured in MeVand A is the

mass number of the nucleus. These formulae are based on the single-particle

approximation and in practice collective effects often give values that are much

greater than those predicted by Equations (7.80).

Problems

7.1 Assume that in the shell model the nucleon energy levels are ordered as shown in

Figure 7.4. Write down the shell-model configuration of the nucleus 7
3Li and hence

find its spin, parity and magnetic moment (in nuclear magnetons). Give the two most

likely configurations for the first excited state, assuming that only protons are

excited.

7.2 A certain odd-parity shell-model state can hold up to a maximum of 16 nucleons;

what are its values of j and ‘?

7.3 The ground state of the radioisotope 17
9F has spin-parity jP ¼ 5

2

þ
and the first excited

state has jP ¼ 1
2



. By reference to Figure 7.4, suggest two possible configurations for

the latter state.

7.4 What are the configurations of the ground states of the nuclei 93
41Nb and 33

16S and what

values are predicted in the single-particle shell model for their spins, parities and

magnetic dipole moments?

7.5 Show explicitly that a uniformly charged ellipsoid at rest with total charge Ze and

semi-axes defined in Figure 2.14, has a quadrupole moment Q ¼ 2
5
Zeða2 
 b2Þ.

7.6 The ground state of the nucleus 165
67Ho has an electric quadrupole moment Q � 3:5 b.

If this is due the fact that the nucleus is a deformed ellipsoid, use the result of

Question 7.5 to estimate the sizes of its semi-major and semi-minor axes.

7.7 The decay 244
98Cfð0þÞ ! 240

96Cmð0þÞ þ � has a Q-value of 7.329 MeVand a half-life of

19.4 mins. If the frequency and probability of forming �-particles (see Equation

(7.53)) for this decay are the same as those for the decay 228
90Thð0þÞ ! 224

88Rð0þÞ þ �,

estimate the half-life for the �-decay of 228
90Th, given that its Q-value is 5.520 MeV.

7.8 The hadrons 
0 and �0 can both decay via photon emission:


0ð1193Þ ! �ð1116Þ þ � (branching ratio � 100 per cent); �0ð1232Þ ! n þ �
(branching ratio 0.56 per cent). If the lifetime of the �0 is 0:6 � 10
23 s, estimate

the lifetime of the 
0.

7.9 The reaction 34Sðp, nÞ34Cl has a threshold proton laboratory energy of 6.45 MeV.

Calculate non-relativistically the upper limit of the positron energy in the �-decay of
34Cl, given that the mass difference between the neutron and the hydrogen atom is

0.78 MeV.
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7.10 To determine the mass of the electron neutrino from the �-decay of tritium requires

measurements of the electron energy spectrum very close to the end-point where

there is a paucity of events (see Figure 7.12.). To see the nature of the problem,

estimate the fraction of electrons with energies within 10 eV of the end-point.

7.11 The electron energy spectra of �-decays with very low-energy end-points E0 may be

approximated by d!=dE ¼ E1=2ðE0 
 EÞ2
. Show that in this case the mean energy is

1
3
E0.

7.12 The ground state of 35
73Br has JP ¼ 1

2



and the first two excited states have

JP ¼ 5
2


ð26:92 keVÞ and JP ¼ 3
2


ð178:1 keVÞ. List the possible �-transitions

between these levels and estimate the lifetime of the 3
2



state.

7.13 Use the Weisskopf formulas of Equations (7.79) to calculate the radiative width

	�ðE3Þ expressed in a form analogous to Equations (7.80).
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8
Applications of Nuclear Physics

Nuclear physics impinges on our everyday lives1 in a way that particle physics

does not, at least not yet. A minor example of this is radioactive dating of historical

artefacts which we discussed in Chapter 2. It is appropriate, therefore, to discuss

some of these applications. For reasons of space, we will consider just three

important areas: fission, fusion and biomedical applications, concentrating in the

latter on medical imaging and the therapeutic use of radiation.

8.1 Fission

Fission was discussed in Chapter 2 in the context of the semi-empirical mass

formula and among other things we showed that spontaneous fission only occurs

for very heavy nuclei. In this section we discuss fission in more detail in the

context of its use in the production of energy.

8.1.1 Induced fission -- fissile materials

In Chapter 2 we saw that for a nucleus with A � 240, the Coulomb barrier, which

inhibits spontaneous fission, is between 5 and 6 MeV. If a neutron with zero kinetic

energy enters a nucleus to form a compound nucleus, the latter will have an

excitation energy above its ground state equal to the neutron’s binding energy in

that state. For example, a zero-energy neutron entering a nucleus of 235U forms a

state of 236U with excitation energy of 6.5 MeV. This energy is well above the

fission barrier and the compound nucleus quickly undergoes fission, with decay

products similar to those found in the spontaneous decay of 236U. To induce fission

1This is literally true, because we shall see that the energy of the Sun has its origins in nuclear reactions.

Nuclear and Particle Physics B. R. Martin
# 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01999-9



in 238U on the other hand, requires a neutron with kinetic energy of at least

1.2 MeV. The binding energy of the last neutron in 239U is only 4.8 MeV and an

excitation energy of this size is below the fission threshold of 239U.

The differences in the binding energies of the last neutron in even-A and odd-A

nuclei are given by the pairing term in the semi-empirical mass formula.

Examination of the value of this term (see Equation (2.52)) leads to the explana-

tion of why the odd-A nuclei

233
92U; 235

92U; 239
94Pu; 241

94Pu ð8:1Þ

are ‘fissile’, i.e. fission may be induced by even zero-energy neutrons, whereas the

even-A (even-Z/even-N) nuclei

232
90Th; 238

92U; 240
94Pu; 242

94Pu ð8:2Þ

require an energetic neutron to induce fission.

A nuclear reactor is a device designed to produce useful energy. The most

commonly used fuel in reactors is uranium, so we will focus on this element.

Natural uranium consists of 99.3 per cent 238U and only 0.7 per cent 235U. The

total and fission cross-sections, �tot and �fission, respectively, for neutrons incident

on 235U and 238U are shown in Figure 8.1.

The most important features of these figures are (cf. the discussion of nuclear

reactions in Section 2.9) as follows.

1. At energies below 0.1 eV, �tot for 235U is much larger than that for 238U and the

fission fraction is large (�84 per cent). (The other 16 per cent is mainly

radiative capture with the formation of an excited state of 236U, plus one or

more photons.)

2. In the region between 0.1 eV and 1 keV, the cross-sections for both isotopes

show prominent peaks corresponding to neutron capture into resonances. The

widths of these states are �0:1 eV and thus their lifetimes are of the order of

�f � �h
�
�f � 10�14 s. In the case of 235U these compound nuclei lead to fission,

whereas in the case of 238U, neutron capture leads predominantly to radiative

decay of the excited state.

3. Above 1 keV, the ratio �fission=�tot for 235U is still significant, although smaller

than at very low energies. In both isotopes, �tot is mainly due to contributions

from elastic scattering and inelastic excitation of the nucleus.

The fission fragments (which are not unique – several final states are possible)

carry away about 90 per cent of the energy of the primary fission reaction. The

accompanying neutrons in the primary fission process (referred to as prompt

256 CH8 APPLICATIONS OF NUCLEAR PHYSICS



neutrons) carry away only about 2 per cent of the energy. For 235U, the average

number of prompt neutrons per fisson is n � 2:5, with the value depending a little

on the incident neutron energy and they have an average energy of about 2 MeV.

In addition to the neutrons produced in the primary fission, the decay products

will themselves decay by chains of �-decays and some of the resulting nuclei will

Figure 8.1 Total cross-section �tot and fission cross-section �fission as functions of energy for
neutrons incident on (a)235U and (b)238U (adapted from Ga76, Courtesy of Brookhaven National
Laboratory)
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themselves give off further neutrons. This delayed component constitutes about

13 per cent of the energy release in the fission of 235U. Although the mean delay is

about 13 s, some components have very long lifetimes and may not decay until

many years later. One consequence of this is that a reactor will still produce heat

even after it has ceased to be used for power production and another is that the

delayed component may be emitted after the fuel has been used and removed from

the reactor, leading to the biological hazard of radioactive waste.2

8.1.2 Fission chain reactions

We have seen in Chapter 2 that in each fission reaction a large amount of energy is

produced, which of course is what is needed for power production. However, just

as important is the fact that the fission decay products contain other neutrons. For

example, we have said that in the case of fission of 235U, on average n ¼ 2:5
neutrons are produced. Since neutrons can induce fission, the potential exists for a

sustained chain reaction, although a number of conditions have to be fulfilled for

this to happen in practice. If we define

k � number of neutrons produced in the ðn þ 1Þ th stage of fission

number of neutrons produced in the nth stage of fission
; ð8:3Þ

then for k ¼ 1 the process is said to be critical and a sustained reaction can occur.

This is the ideal situation for the operation of a power plant based on nuclear

fission. If k < 1, the process is said to be subcritical and the reaction will die out; if

k > 1, the process is supercritical and the energy will grow very rapidly, leading to

an uncontrollable explosion, i.e. a nuclear fission bomb.

Again we will focus on uranium as the fissile material and consider the length

and timescales for a chain reaction to occur. If we assume that the uranium is a

mixture of the two isotopes 235U and 238U with an average neutron total cross-

section ���tot, then the mean free path, i.e. the mean distance the neutron travels

between interactions (see Chapter 4), is given by

‘ ¼ 1=ð
nucl���totÞ; ð8:4Þ

where 
nucl ¼ 4:8 	 1028 nuclei/m3 is the nuclei density of uranium metal. For

example, the average energy of a prompt neutron from fission is 2 MeV and at this

energy we can see from Figure 8.1 that ���tot � 7 barns, so that ‘ � 3 cm. A 2 MeV

neutron will travel this distance in about 1:5 	 10�9 s.

Consider first the case of the explosive release of energy in a nuclear bomb,

using the highly enriched isotope 235U (for simplicity we will assume a sample of

2We will return to the effect of radiation on living tissue later in this chapter, in Section 8.3.1.
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100 per cent 235U). From Figure 8.1, we see that a neutron with energy of 2 MeV

has a probability of about 18 per cent to induce fission in an interaction with a 235U

nucleus. Otherwise it will scatter and lose energy, so that the probability for a

further interaction will be somewhat increased (because the cross-section increases

with decreasing energy). If the probability of inducing fission in a collision is p, the

probability that a neutron has induced fission after n collisions is pð1 � pÞn�1
and

the mean number of collisions to induce fission will be

�nn ¼
X1
n¼1

npð1 � pÞn�1; ð8:5Þ

provided the neutron does not escape outside the target. The value of �nn can be

estimated using the measured cross-sections and is about six. Thus the neutron will

move a linear (net) distance of 3
ffiffiffi
6

p
cm � 7 cm in a time tp � 10�8 s before

inducing a further fission and being replaced on average by 2.5 new neutrons with

average energy of 2 MeV.3

The above argument suggests that the critical mass of uranium 235U that would

be necessary to produce a nuclear explosion is a sphere of radius about 7 cm.

However, not all neutrons will be available to induce fission. Some will escape

from the surface and some will undergo radiative capture. If the probability that a

newly created neutron induces fission is q, then each neutron will on average lead

to the creation of ðnq � 1Þ additional neutrons in the time tp. If there are NðtÞ
neutrons present at time t, then at time t þ �t there will be

Nðt þ �tÞ ¼ NðtÞ 1 þ ðnq � 1Þ ð�t
�

tpÞ
� �

; ð8:6Þ

neutrons and hence

Nðt þ �tÞ
�t

¼ NðtÞ ðnq � 1Þ
tp

: ð8:7Þ

In the limit as �t ! 0, this gives

dN

dt
¼ ðnq � 1Þ

tp

NðtÞ; ð8:8Þ

3The square root appears because we are assuming that at each collision the direction changes randomly, i.e.

the neutron executes a random walk. Thus if the distance travelled in the ith collision is li, the displacement

vector d after n collisions will be d ¼
Pn
i¼1

li and the net distance travelled d will be given by

d2 ¼
Xn

i¼1

Xn

j¼1

ðli  ljÞ ¼ l2
1 þ l2

2 þ l2
3 þ    þ l2

n þ 2ðl1  l2 þ l1  l3 þ   Þ:

When the average is taken over several collisions, the scalar products will cancel because the direction of

each step is random. Finally, setting li ¼ l, the mean distance travelled per collision, gives d ¼ l
ffiffiffi
n

p
.
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and hence by integrating Equation (8.8)

NðtÞ ¼ Nð0Þ exp ðnq � 1Þt
�

tp

� �
: ð8:9Þ

Thus the number increases or decreases exponentially, depending on whether

nq > 1 or nq < 1. For 235U, the number increases if q > 1=n � 0:4 (recall that

n � 2:5). Clearly if the dimensions of the metal are substantially less than 7 cm, q

will be small and the chain reaction will die out exponentially. However, a

sufficiently large mass brought together at t ¼ 0 will have q > 0:4. There will

always be some neutrons present at t ¼ 0 arising from spontaneous fission and

since tp � 10�8 s, an explosion will occur very rapidly. For a simple sphere of 235U

the critical radius at which nq ¼ 1 is actually close to 9 cm and the critical mass is

about 50 kg.

Despite the above simple analysis, it is not easy to make a nuclear bomb! This is

because the thermal energy released as the assembly becomes critical will produce

an outward pressure that is sufficient to blow apart the fissile material unless

special steps are taken to prevent this. In early ‘atom bombs’, a sub-critical mass

was assembled and a small plug fired into a prepared hollow in the material so that

the whole mass became supercritical. In later devices, the fissile material was a

sub-critical sphere of 239Pu surrounded by chemical explosives. These were

specially designed (‘shaped’) so that when they exploded, the resulting shock

wave imploded the plutonium, which as a result became supercritical.

8.1.3 Nuclear power reactors

The production of power in a controlled way for peaceful use is carried out in a

nuclear reactor and is just as complex as producing a bomb. There are several

distinct types of reactor available. We will discuss just one of these, the thermal

reactor, which uses uranium as the fuel and low-energy neutrons to establish a

chain reaction. The discussion will concentrate on the principles operating such a

reactor and not on practical details.

A schematic diagram of the main elements of a generic example of a thermal

reactor is shown in Figure 8.2. The most important part is the core, shown

schematically in Figure 8.3. This consists of fissile material (fuel elements),

control rods and the moderator. The roles of the control rods and the moderator

will be explained later. The most commonly used fuel is uranium and many

thermal reactors use natural uranium, even though it has only 0.7 per cent of 235U.

Because of this, a neutron is much more likely to interact with a nucleus of 238U.

However, a 2 MeV neutron from the primary fission has very little chance of

inducing fission in a nucleus of 238U. Instead it is much more likely to scatter

inelastically, leaving the nucleus in an excited state and after a couple of such

collisions the energy of the neutron will be below the threshold of 1.2 MeV for

inducing fission in 238U.
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Figure 8.2 Sketch of the main elements of a thermal reactor -- the components are not to scale
(after Li01, Copyright, John Wiley & Sons)

Figure 8.3 Sketch of the elements of the core of a reactor
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A neutron with its energy so reduced will have to find a nucleus of 235U if it is

to induce fission, but its chances of doing this are very small unless its energy

has been reduced to very low energies below 0.1 eV, where the cross-section is

large (see Figure 8.1). Before that happens it is likely to have been captured into

one of the 238U resonances with the emission of photons. Thus, to sustain a chain

reaction, either the fuel must be enriched with a greater fraction of 235U (2–

3 per cent is common in some types of commercial reactor), or if natural uranium

is to be used, some method must be devised to overcome this problem.

This is where the moderator comes in. This surrounds the fuel elements and

its volume is much greater than that of the fuel elements themselves. Its main

purpose is to slow down fast neutrons produced in the fission process. Fast

neutrons will escape from the fuel rods into the moderator and are reduced to very

low energies by elastic collisions. In this way the absorption into resonances of
238U is avoided. The moderator must therefore be a material with a negligible

cross-section for absorption and ideally should also be inexpensive. In practice,

heavy water (a form of water where the hydrogen atoms are replaced by atoms of

deuterium), or carbon (in the form of graphite), are the moderators of choice in

many thermal reactors using natural uranium. For enriched reactors, ordinary

water may be used.

Consider now the stability of the chain reaction. This is where the control rods

play their part. They are usually made of cadmium, which has a very high

absorption cross-section for neutrons. By mechanically manipulating the control

rods, i.e. by retracting or inserting them, the number of neutrons available to

induce fission can be regulated. This mechanism is the key to maintaining a

constant k value of unity and therefore a constant power output. However, safe

working of the reactor is not possible with prompt neutrons alone. To see this, we

return to Equation (8.9) and set nq � 1 ¼ k � 1, so that

NðtÞ ¼ Nð0Þ exp ðk � 1Þt
�

tp

� �
: ð8:10Þ

The value of tp is determined by the mean free path for neutron absorption and

unlike the case of pure 235U we considered in Section 8.1.2, is given approximately

by tp � 10�3s. Thus, for example, if we take k ¼ 1:001, i.e. an increase of only

0.1 per cent, the reactor flux would increase by e60 � 1026 in only one minute.

Clearly a much smaller rate of increase has to be achieved for safe manipulation of

the control rods if a disaster is to be averted. This is where the delayed neutrons

play a crucial role.

In a nuclear weapon, the delayed neutrons are of no consequence, because the

explosion will have taken place long before they would have been emitted, but in a

power reactor they are vital for reactor safety. Taking account of delayed neutrons,

each fission leads to ðn þ �nÞq � 1½ � additional neutrons, where we have defined

�n as the number of delayed neutrons per fission. In practice �n � 0:02. In the

steady-state operation, with constant energy output, the neutron density must
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remain constant (i.e. k ¼ 1 in Equation (8.3)). Thus q must satisfy the critical

condition

ðn þ �nÞq � 1 ¼ 0: ð8:11Þ

Equation (8.10) is now modified to have an additional term that depends on the

mean time td of the delayed neutrons, which is about 13 s. Provided

nðk � 1Þ � �n, it is the latter term that dominates and (without proof) the modified

form of Equation (8.10) is given approximately by

NðtÞ � Nð0Þ exp
nðk � 1Þt

�n � nðk � 1Þ½ �td

� �
: ð8:12Þ

Thus the timescale to manipulate the control rods is determined by that of the

delayed neutrons. For example, using n ¼ 2:5; �n ¼ 0:02; k ¼ 1:001 and td ¼ 13 s

in Equation (8.12) gives an increase in reactor flux of less than a factor two in one

minute. Clearly, the precise increase is sensitive to the parameters chosen, but

factors of this size are manageable. The reactor design therefore ensures that

nq � 1 < 0 always, so that the reactor can only become critical in the presence of

delayed neutrons.

This simple discussion has ignored many practical details that will modify the

real formulas used in reactor dynamics, such as the fact that the fuel and moderator

are not uniformly distributed throughout the core and that some of the fission

products themselves have appreciable cross-sections for neutron absorption and

will therefore reduce the flux of neutrons available to sustain the chain reaction.4

Returning to Figure 8.2, the core is surrounded by a coolant (often water), which

removes the heat generated in the core from the energy deposited by the fission

fragments. A thick concrete shield to prevent radiation leaks surrounds the entire

set-up. At start-up, the value of k is set slightly higher than unity and is kept at that

value until the desired power output is achieved and the operating temperature is

reached, after which the value of k is lowered by adjusting the control rods. It is

very important for safety reasons that dq=dT < 0, so that an increase in tempera-

ture T leads to a fall in reaction rate. The rest of the plant is conventional

engineering. Thus, the heated coolant gives up its heat in a heat exchanger and is

used to boil water and drive a steam turbine, which in turn produces electricity.

It is worth calculating the efficiency with which one can expect to produce

energy in a nuclear reactor. We can use the SEMF to calculate the energy released

during fission, by finding the binding energies of the two fission products and

comparing their sum to the binding energy of the decaying nucleus. For the fission

of a single 235U nucleus this is �200 MeVor 3:2 	 10�11 J. (As we have mentioned

above, about 90 per cent of this is in the form of ‘prompt’ energy.) We also know

4More details of reaction dynamics are discussed in, for example, Section 10.3 of Li01. In Section 10.6 of

this reference there is also a discussion of several other types of commercial reactor.
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that 1 g of any element contains NA=A atoms, where NA is Avogadro’s number.

Thus 1g of 235U has about 6 	 1023=235 � 3 	 1021 atoms and if fission were

complete would yield a total energy of about 1011 J, or 1 MW-day. This is about

3 	 106 times greater than the yield obtained by burning (chemical combustion)

1 g of coal. In practice only about 1 per cent of the energy content of natural

uranium can be extracted (the overall efficiency is greatly reduced by the

conventional engineering required to produce electricity via steam turbines), but

this can be increased significantly in another type of reactor, called a fast breeder

discussed briefly below.

We can also calculate the power output from an ideal thermal reactor for a given

mass of uranium. From Equation (1.44) of Chapter 1, the reaction rate for fission

Wf is given by

Wf ¼ J N �fission; ð8:13Þ

where J is the flux, N is the number of nuclei undergoing fission and �fission is the

fission cross-section. Consider, for example, a reactor containing 100 tonnes of

natural uranium, generating a neutron flux of 1013 cm�2 s�1 and with a fission

cross-section for 235U of 580 b at the appropriate energy (see Figure 8.1). Since the

fraction of 235U in natural uranium is 0.072 per cent, the number of 235U nuclei

undergoing fission is given by

N ¼ 100 	 103 	 0:0072 	 NA

A
¼ 1:82 	 1027; ð8:14Þ

where A ¼ 238:03 is the mass number of natural uranium. The power generated is

thus

P ¼ WfE; ð8:15Þ

where E ¼ 200 MeV is the total energy released per fission (see above). Evaluating

Equation (8.15) gives P � 340 MW. In addition to causing fission, neutrons will be

absorbed by 235U without causing fission. If the total absorption cross-section �a is

680 b, then the number of 235U nuclei that will be consumed per second will be

N J�a, i.e. 1:24 	 1019 s�1. Since we started with 1:82 	 1027 nuclei, the fuel will

be used at the rate of about 1.8 per cent per month.

We turn now to the fast breeder reactor mentioned above. In this reactor there

is no large volume of moderator and no large density of thermal neutrons is

established. In such a reactor, the proportion of fissile material is increased to

about 20 per cent and fast neutrons are used to induce fission. The fuel used is
239Pu rather than 235U, the plutonium being obtained by chemical separation from

the spent fuel rods of a thermal reactor. This is possible because some 238U nuclei

in the latter will have captured neutrons to produce 239U, which subsequently
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decays via a chain of �-decays to plutonium. The whole sequence is as follows:

nþ 238U ! 239U ð23 minsÞ ! 239Np ð2:4 daysÞ ! 239Pu ð2:4	 104 yearsÞ: ð8:16Þ

The mean number of neutrons produced in the fission of 239Pu is 2.96, so this

nucleus is very suitable for use in a fast reactor. In practice, the core is a mixture of

20 per cent 239Pu and 80 per cent 238U surrounded by a blanket of more 238U,

where more plutonium is made. The 238U obtained from spent fuel rods in thermal

reactors is called depleted uranium. Such a reactor can produce more fissile 239Pu

than it consumes, hence the name ‘breeder’. In principle such a reactor can

consume all the energy content of natural uranium, rather than the 1 per cent used

in thermal reactors, although in practice there are limits to its efficiency.

Whatever type of reactor is used, a major problem is the generation of

radioactive waste, including transuranic elements and long-lived fission fragments,

which in some cases may have to be stored safely for hundreds of years.5 Much

effort has been expended on this problem, but a totally satisfactory solution is still

not available. Short-lived waste with low activity (for example, consumables such

as protective clothing) is simply buried in the ground. One idea for long-lived

waste with high activity is to ‘glassify’ it into stable forms that can be stored

underground without risk of spillage, leakage into the water table, etc..

A particularly ingenious idea is to ‘defuse’ long-lived fission fragments by using

the resonance capture of neutrons to convert them to short-lived, or even stable,

nuclei. For example, 99Tc (technetium), which concentrates in several organs of

the body and also in the blood, has a very long half-life. However, it has a large

resonant cross-section for neutron capture to a completely stable isotope 100Ru

(ruthenium) and in principle this reaction could be used to ‘neutralize’ 99Tc.

Needless to say, the problems to be overcome are far from trivial. First, the amount

of radioactive waste is very large, so one problem is to find a source of neutrons

capable of handling it. (Reactors themselves are one possible source!) Secondly,

the neutron energy has to be matched to the particular waste material, which

therefore would have to be separated and prepared before being bombarded by

the neutrons. All this would take energy and would increase the overall cost of

energy production by nuclear power, which is already more expensive than

conventional burning of fossil fuels. Nevertheless, there is considerable interest

in the principle of this method and proposals have been made to exploit it without

the attendant drawbacks above. We will return to this in Chapter 9, where we

discuss some of the outstanding problems in nuclear physics and their possible

future solutions. However, until such time as this, or some other, method is

realized in practice, the safe long-term disposal of radioactive waste remains a

serious unsolved problem.

5In principle, there would be no such problem with fast breeder reactors, but in practice the ideal is not

realized.
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8.2 Fusion

We have seen that the plot of binding energy per nucleon (Figure 2.2) has a

maximum at A � 56 and slowly decreases for heavier nuclei. For lighter nuclei,

the decrease is much quicker, so that with the exception of magic nuclei, lighter

nuclei are less tightly bound than medium size nuclei. Thus, in principle, energy

could be produced by two light nuclei fusing to produce a heavier and more

tightly bound nucleus – the inverse process to fission. Just as for fission, the energy

released comes from the difference in the binding energies of the initial and final

states. This process is called nuclear fusion. Since light nuclei contain fewer

nucleons than heavier nuclei, the energy released per fusion is smaller than in

fission. However, as a potential source of power, this is more than balanced by the

far greater abundance of stable light nuclei in nature than very heavy nuclei. Thus

fusion offers enormous potential for power generation, if the huge practical

problems could be overcome.

8.2.1 Coulomb barrier

The practical problem to obtaining fusion, whether in power production or more

generally, has its origin in the Coulomb repulsion, which inhibits two nuclei

getting close enough together to fuse. This is given by the Coulomb potential

VC ¼ 1

4�"0

ZZ 0e2

R þ R0 ; ð8:17Þ

where Z and Z 0 are the atomic numbers of the two nuclei and R and R0 are their

effective radii. The quantity ðR þ R0Þ is therefore classically the distance of closest

approach. Recalling, from the work on nuclear structure in Chapter 2, that for

medium and heavy nuclei R ¼ 1:2A
1
3 fm, we have

VC ¼ e2

4�"0�hc

	 

�hc Z Z 0

1:2
�
A1=3 þ ðA0Þ1=3

�
fm

¼ 1:198
Z Z 0

A1=3 þ ðA0Þ1=3
MeV: ð8:18Þ

If, for illustration, we set A � A0 � 2Z � 2Z 0, then

VC � 0:15A
5
3 MeV: ð8:19Þ

Thus, for example, with A � 8, VC � 4:8 MeV and this energy has to be supplied

to overcome the Coulomb barrier.

This is a relatively small amount of energy to supply and it might be thought

that it could be achieved by simply colliding two accelerated beams of light nuclei,

but in practice nearly all the particles would be elastically scattered. The only
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practical way is to heat a confined mixture of the nuclei to supply enough thermal

energy to overcome the Coulomb barrier. The temperature necessary may

be estimated from the relation E ¼ kT , where kB is Boltzmann’s constant, given

by kB ¼ 8:6 	 10�5 eV K�1. For an energy of 4.8 Mev, this implies a temperature

of 5:6 	 1010 K. This is well above the typical temperature of 108 K found in

stellar interiors.6 It is also the major hurdle to be overcome in achieving a

controlled fusion reaction in a reactor, as we shall see later.

Fusion actually occurs at a lower temperature than this estimate due to a

combination of two reasons. The first and most important is the phenomenon of

quantum tunnelling, which means that the full height of the Coulomb barrier does

not have to be overcome. In Chapter 7 we discussed a similar problem in the

context of �-decay, and we can draw on that analysis here. The probability of

barrier penetration depends on a number of factors, but the most important is the

Gamow factor, which is a function of the relative velocities and the charges of the

reaction products. In particular, the probability is proportional to exp �GðEÞ½ �,
where GðEÞ is a generalization of the Gamow factor of Chapter 7. This may be

written as G ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
EG=E

p
, where again, generalizing the equations in Chapter 7,

EG ¼ 2mc2 ��Z1Z2ð Þ2: ð8:20Þ

Here, m is the reduced mass of the two fusing nuclei and they have electric charges

Z1e and Z2e. Thus the probability of barrier penetration increases as E increases.

Nevertheless, the probability of fusion is still extremely small. For example, if we

consider the fusion of two protons (which we will see below is an important

ingredient of the reactions that power the Sun), at a typical stellar temperature of

107 K, we find EG � 490 keV and E � 1 keV. Hence the probability of fusion is

proportional to exp½�ðEG=EÞ1=2� � expð�22Þ � 10�9:6 which is a very large

suppression factor and so the actual fusion rate is still extremely slow.

The other reason that fusion occurs at a lower temperature than expected is that

a collection of nuclei at a given mean temperature, whether in stars or elsewhere,

will have a Maxwellian distribution of energies about the mean and so there will be

some with energies substantially higher than the mean energy. Nevertheless, even a

stellar temperature of 108 K corresponds to an energy of only about 10 keV, so the

fraction of nuclei with energies of order 1 MeV in such a star would only be of the

order of expð�E=kTÞ � expð�100Þ � 10�43, a minute amount. We will return to

these questions in more detail in Section. 8.2.3.

8.2.2 Stellar fusion

The energy of the Sun comes from nuclear fusion reactions, foremost of which is

the so-called proton–proton cycle. This has more than one branch, but one of these,

6Because of this, many scientists refused to accept that fusion occurred in stars when the suggestion was first

made. When challenged on this, Eddington’s reposte was simple: ‘. . . . go and find a hotter place’.
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the PPI cycle, is dominant. This starts with the fusion of hydrogen nuclei to

produce deuterium via the weak interaction:

1H þ 1H ! 2H þ eþ þ �e þ 0:42 MeV: ð8:21Þ

The deuterium then fuses with more hydrogen to produce 3He via the electro-

magnetic interaction:

1H þ 2H ! 3He þ � þ 5:49 MeV ð8:22Þ

and finally, two 3He nuclei fuse to form 4He via the nuclear strong interaction:

3He þ 3He ! 4He þ 2ð1HÞ þ 12:86 MeV: ð8:23Þ

The relatively large energy release in the last reaction is because 4He is a doubly

magic nucleus and so is very tightly bound. The first of these reactions, being a

weak interaction, proceeds at an extremely slow rate and sets the scale for the long

lifetime of the Sun. Combining these equations, we have overall

4ð1HÞ ! 4He þ 2eþ þ 2�e þ 2� þ 24:68 MeV: ð8:24Þ

Because the temperature of the Sun is �107 K, all its material is fully ionized.

Matter in this state is referred to as a plasma. The positrons produced above will

annihilate with electrons in the plasma to release a further 1.02 MeV of energy per

positron and so the total energy released is 26.72 MeV. However, of this each

neutrino will carry off 0.26 MeV on average, which is lost into space.7 Thus on

average, 6.55 MeV of electromagnetic energy is radiated from the Sun for every

proton consumed in the PPI chain.

The PPI chain is not the only fusion cycle contributing to the energy output of

the Sun, but it is the most important. Another interesting cycle is the carbon, or

CNO chain. Although this contributes only about 3 per cent of the energy output

of the Sun, it plays an important role in the evolution of other stellar objects. In the

presence of any of the nuclei 12
6C, 13

6C, 14
7N or 15

7N, hydrogen will catalyse burning

via the reactions

12C þ 1H ! 13N þ � þ 1:95 MeV

13N ! 13C þ eþ þ �e þ 1:20 MeV
ð8:25Þ

13C þ 1H ! 14N þ � þ 7:55 MeV ð8:26Þ

14N þ 1H ! 15O þ � þ 7:34 MeV

15O ! 15N þ eþ þ �e þ 1:68 MeV
ð8:27Þ

7These are the main contributors to the neutrino flux observed at the surface of the Earth that was discussed

in Chapter 3.
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and

15N þ 1H ! 12C þ 4He þ 4:96 MeV ð8:28Þ

Thus, overall in the CNO cycle we have

4 ð1HÞ ! 4He þ 2eþ þ 2�e þ 3� þ 24:68 MeV: ð8:29Þ

These and other fusion chains all produce electron neutrinos as final-state products

and using detailed models of the Sun, the flux of such neutrinos at the surface of

the Earth can be predicted.8 The actual count rate is far lower than the theoretical

expectation. This is the solar neutrino problem that we met in Section 3.1.4. The

solution to this problem is almost certainly neutrino oscillations, where some �e

are converted to neutrinos of other flavours in their passage from the Sun to the

Earth. We saw in Chapter 3 that this is only possible if neutrinos have mass, so a

definitive measurement of neutrino masses would be an important piece of

evidence to finally resolve the solar neutrino problem. Such measurements should

be available in a few years.

The process whereby heavier elements (including the 12C required in the

CNO cycle) are produced by fusion of lighter ones can continue beyond the

reactions above. For example, when the hydrogen content is depleted, at high

temperatures helium nuclei can fuse to form an equilibrium mixture with 8Be via

the reaction

4He þ 4He Ð 8Be ð8:30Þ

and the presence of 8Be allows the rare reaction

4He þ 8Be ! 12C� ð8:31Þ

to occur, where C� is an excited state of carbon. A very small fraction of the latter

will decay to the ground state, so that overall we have9

3ð4HeÞ ! 12C þ 7:27 MeV: ð8:32Þ

8The expectations are based on a detailed model of the Sun known as the standard solar model that we met in

Chapter 3.
9The occurrence of this crucial reaction depends critically on the existence of a particular excited state of 12C.

For a discussion of this and the details of the other reactions mentioned below see, for example, Section 4.3

of Ph94. Very recent experiments (2005) have found evidence for other nearby excited states that change the

accepted energy dependence (or equivalently the temperature dependence) of this reaction which will have

implications for theories of stellar evolution.
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The presence of 12C enables another series of fusion reactions to occur, in addition

to the CNO cycle. Thus 16O can be produced via the reaction

4He þ 12C ! 16O þ � ð8:33Þ

and the production of neon, sodium and magnesium is possible via the reactions

12C þ 12C ! 20Ne þ 4He ; 23Na þ p ; 23Mg þ n: ð8:34Þ

Fusion processes continue to synthesize heavier elements until the core of the

stellar object is composed mainly of nuclei with A � 56, i.e. the peak of the

binding energy per nucleon curve. Heavier nuclei are produced in supernova

explosions, but this is properly the subject of astrophysics and we will not pursue it

further here, although we will return to it briefly in Chapter 9.

8.2.3 Fusion reaction rates

We have mentioned in Section 8.2.1 that quantum tunnelling and the Maxwellian

distribution of energies combine to enable fusion to occur at a lower temperature

than might at first be expected. The product of the increasing barrier penetration

factor with energy and the Maxwellian decreasing exponential actually means that

in practice fusion takes place over a rather narrow range of energies. To see this we

will consider the fusion between two types of nuclei, a and b, having number

densities na and nb (i.e. the number of particles per unit volume) and at a

temperature T. We assume that the temperature is high enough so that the nuclei

form a plasma, with uniform values of number densities and temperature. We also

assume that the velocities of the two nuclei are given by the Maxwell–Boltzmann

distribution, so that the probability of having two nuclei with a relative speed v in

the range v to v þ dv is

PðvÞ dv ¼ 2

�

	 
1=2
m

kT

� 3=2

exp
�mv2

2kT

� �
v2 dv; ð8:35Þ

where m is the reduced mass of the pair. The fusion reaction rate per unit volume is

then

Rab ¼ nanb �abvh i; ð8:36Þ

where �ab is the fusion cross-section10 and the brackets denote an average, i.e.

�abvh i �
ð1

0

�abvPðvÞ dv: ð8:37Þ

10The product nAnB is the number of pairs of nuclei that can fuse. If the two nuclei are of the same type, with

nA ¼ nB ¼ n, then the product must be replaced by 1
2

nðn � 1Þ � 1
2

n2, because in quantum theory such nuclei

are indistinguishable.
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The fusion cross-section may be written

�abðEÞ ¼
SðEÞ

E
exp � EG

E

	 
1=2
" #

; ð8:38Þ

where the exponential follows from the previous discussion of quantum tunnelling

and SðEÞ contains the details of the nuclear physics. The term 1=E is conveniently

factored out because many nuclear cross-sections have this behaviour at low

energies. Using (8.35) and (8.38) in (8.37) gives, from (8.36):

Rab ¼ nanb

8

�m

	 
1=2
1

kT

	 
3=2ð1

0

SðEÞexp � E

kT
� EG

E

	 
1=2
" #

dE: ð8:39Þ

Because the factor 1=E has been taken out of the expression for �ðEÞ, the quantity

SðEÞ is slowly varying and the behaviour of the integrand is dominated by the

behaviour of the exponential term. The falling exponential of the Maxwellian

energy distribution combines with the rising exponential of the quantum tunnelling

effect to produce a maximum in the integrand at E ¼ E0 where

E0 ¼ 1

4
EGðkTÞ2

� �1=3

ð8:40Þ

and fusion takes place over a relatively narrow range of energies E0 ��E0 where

�E0 ¼ 4

31=221=3
E

1=6
G ðkTÞ5=6: ð8:41Þ

The importance of the temperature and the Gamow energy EG ¼ 2mc2ð��ZaZbÞ2

is clear. A schematic illustration of the interplay between these two effects is

shown in Figure 8.4.

As a real example, consider the pp reaction (Equation (8.21)), at a temperature

of 2 	 107 K. We have EG ¼ 493 keV and kT ¼ 1:7 keV, so that fusion is most

likely at E0 ¼ 7:2 keV and the half-width of the distribution is �E0=2 ¼ 4:1 keV.

The resulting function exp½�E=kT � ðEG=EÞ1=2� is shown in Figure 8.5.

In the approximation where SðEÞ is taken as a constant SðE0Þ, the integral in

Equation (8.39) may be done and gives

�abvh i � 8

9
SðE0Þ

2

3mEG

	 
1=2

�2exp ��½ �; ð8:42Þ

where � ¼ 3 1
2

� �2=3ðEG=kTÞ1=3:
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Figure 8.4 The right-hand dashed curve is proportional to the barrier penetration factor and
the left-hand dashed curve is proportional to the Maxwell distribution. The solid curve is the
combined effect and is proportional to the overall probability of fusion with a peak at E0 and a
width of �E0

Figure 8.5 The exponential part of the integrand in Equation (8.39) for the case of pp fusion at
a temperature of 2 	 107 K
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If we take the masses to be Aa;b in atomic mass units we can evaluate

Equation (8.36) using the expression (8.20) for EG to give

Rab ¼ 7:21 	 10�22

ZaZb

nanb

ðAa þ AbÞ
AaAb

SðE0Þ
1 MeV b

	 

�2exp ��½ �m3s�1; ð8:43Þ

with

� ¼ 18:8 ZaZbð Þ2=3 AaAb

Aa þ Ab

	 
1=3
1 keV

kT

	 
1=3

: ð8:44Þ

The rate depends very strongly on both the temperature and the nuclear species

because of the factor �2exp ��½ �. This is illustrated in Figure 8.6 for the pp and

p12C reactions, the initial reactions in the pp and CNO cycles.

8.2.4 Fusion reactors

There is currently an international large-scale effort to achieve controlled fusion in

the laboratory, with the eventual aim of producing power. For this, the pp reactions

are far too slow to be useful. However, the Coulomb barrier for the deuteron 2
1H is

the same as for the proton and the exothermic reactions

2
1H þ 2

1H ! 3
2H þ n þ 3:27 MeV ð8:45aÞ

and

2
1H þ 2

1H ! 3
1H þ p þ 4:03 MeV ð8:45bÞ

Figure 8.6 The function �2expð��Þ of Equation (8.43) for the pp and p12C reactions
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suggest that deuterium might be a suitable fuel for a fusion reactor. Deuterium is

also present in huge quantities in sea water and is easy to separate at low cost.

An even better reaction in terms of energy output is deuterium–tritium fusion:

2
1H þ 3

1H ! 4
2He þ n þ 17:62 MeV: ð8:46Þ

The values of �vh i for the d–t reaction of Equation (8.46) and the combined d–d

reactions of Equations (8.45) are shown in Figure 8.7. It can be seen that the

deuterium–tritium (d–t) reaction has the advantage over the deuterium–deuterium

(d–d) reaction of a much higher cross-section. The heat of the reaction is also

greater. The principal disadvantage is that tritium does not occur naturally (it has a

mean life of only 17.7 years) and has to be manufactured, which increases the

overall cost. From Figure 8.7 it can be seen that the rate for the d–t reaction peaks

at about E ¼ kT ¼ 30�40 keV and a working energy where the cross-section is

still considered reasonable is about 20 keV, i.e. 3 	 108 K.

The effective energy produced by the fusion process will be reduced by the heat

radiated by the hot plasma. The mechanism for this is predominantly electron

bremmstrahlung. The power loss per unit volume due to this process is propor-

tional to T1=2Z2, where Z is the atomic number of the ionized atoms. Thus for a

plasma with given constituents and at a fixed ion density, there will be a minimum

Figure 8.7 Values of the quantity ��h i for the d--t reaction of Equation (8.46) and the
combined d--d reactions of Equations (8.45) (adapted from Ke82 and reproduced by permission
of Annual Reviews)
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temperature below which the radiation losses will exceed the power produced

by fusion. For example, for the d–t reaction with an ion density 1021 m�3,

kTmin � 4 keV. It would be 10 times larger for the d–d reaction of Equation (8.45a)

because of the form of �vh i (see Figure 8.7), which is another reason for using the

d–t reaction. In practice, the situation is worse than this because most of the

neutrons in Equation (8.46) will escape, so even at the theoretical ‘break-even’

temperature, external energy would have to be supplied to sustain the fusion

process. Only when the energy deposited in the plasma by the �-particles exceeds

the radiation losses would the reaction be self-sustaining. This is referred to as the

‘ignition point’.

A numerical expression that embodies these ideas is the so-called Lawson

criterion, which provides a measure of how close to practicality is a particular

reactor design. We will assume a d–t reaction. To achieve a temperature T in a

deuterium–tritium plasma, there has to be an input of energy 4ndð3kT=2Þ per unit

volume. Here nd is the number density of deuterium ions and the factor of 4 comes

about because nd is equal to the number density of tritium ions and the electron

density is twice this, giving 4nd particles per unit volume. The reaction rate in the

plasma is n2
d �dtvh i. If the plasma is confined for time tc, then per unit volume of

plasma,

L � energy output

energy input
¼ n2

d �dtvh i tcQ

6nd k T
¼ nd �dtvh i tcQ

6 k T
; ð8:47Þ

where Q is the energy released in the fusion reaction. For a useful device, L > 1.

For example, If we assume k T ¼ 20 keV and use the experimental value

�dtvh i � 10�22 m3 s�1, then the Lawson criterion may be written

nd tc > 7 	 1019 m�3s: ð8:48Þ

Thus either a very high particle density or a long confinement time, or both, is

required.

At the temperatures required for fusion, any material container will vaporize and

so the central problem is how to contain the plasma for sufficiently long times for

the reaction to take place. The two main methods are magnetic confinement and

inertial confinement. Both techniques present enormous technical challenges. In

practice, most work has been done on magnetic confinement and so this method

will be discussed in more detail than the inertial confinement method.

In magnetic confinement, the plasma is confined by magnetic fields and heated

by electromagnetic fields. Firstly we recall the behaviour of a particle of charge q

in a uniform magnetic field B, taking the two extreme cases where the velocity v of

the particle is (a) at right angles to B and (b) parallel to B. In case (a) the particle

traverses a circular orbit of fixed radius (compare the principle of the cyclotron

discussed in Chapter 4) and in case (b) the path is a helix of fixed pitch along the

direction of the field (compare the motion of electrons in a time projection
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chamber, also discussed in Chapter 4). Two techniques have been proposed to stop

particle losses: magnetic ‘mirrors’ and a geometry that would ensure a stable

indefinite circulation. In the former, it is arranged that the field in a region is

greater at the boundaries of the region than in the interior. Then as the particle

approaches the boundary, the force it experiences will develop a component that

points into the interior where the field is weaker. Thus the particle is trapped and

will oscillate between the interior and the boundaries.11 However, most practical

work has been done on case (b) and for that reason we will restrict our discussion

to this technique.

The simplest configuration is a toroidal field produced by passing a current

through a doughnut-shaped solenoid. In principle, charged particles in such a field

would circulate endlessly, following helical paths along the direction of the

magnetic field. In practice, the field would be weaker at the outer radius of the

torus and the non-uniformity of the field would produce instabilities in the orbits of

some particles and hence lead to particle loss. To prevent this a second field is

added called a poloidal field. This produces a current around the axis of the torus

and under the combined effect of both fields, charged particles in the plasma

execute helical orbits about the mean axis of the torus. Most practical realizations

of these ideas are devices called tokamaks, in which the poloidal field is generated

along the axis of the torus through the plasma itself.

One of the largest tokamaks in existence is the Joint European Torus (JET), which

is a European collaboration and sited at the Culham Laboratory in Berkshire, UK. A

schematic view of the arrangement of the fields in JET is shown in Figure 8.8(a).

This shows the external coils that generate the main toroidal field. The poloidal field

is generated by transformer action on the plasma. The primary windings of the

transformer are shown with the plasma itself forming the single-turn secondary.

The current induced in the plasma not only generates the poloidal field, but also

supplies several megawatts of resistive heating to the plasma. However, even this is

insufficient to ensure a sufficient temperature for fusion and additional energy is

input via other means, including rf sources.

In the inertial confinement method, small pellets of the deuterium–tritium ‘fuel’

mixture are bombarded with intense energy from several directions simultaneously

which might, for example, be supplied by pulsed lasers. As material is ejected from the

surface, other material interior to the surface is imploded, compressing the core of the

pellet to densities and temperatures where fusion can take place. The laser pulses are

extremely short, typically 10�7�10�9 s, which is many orders of magnitude shorter

than the times associated with the pulsed poloidal current in a tokamak (which could

be as long as 1s), but this is compensated for by much higher plasma densities.

Considerable progress has been made towards the goal of reaching the ignition

point. However, although appropriate values of nd, tc, and T have been obtained

11The Van Allen radiation belts that occur at high altitudes consist of charged particles from space that have

become trapped by a magnetic mirror mechanism because the Earth’s magnetic field is stronger at the poles

than at the equator.
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separately, to date no device has yet succeeded in achieving the Lawson criterion.

Tokamaks have reached the break-even point, but the best value of the Lawson

ratio that has been achieved is still about a factor of two too small. Much work

remains to be done on this important problem and in recognition of this at least one

major new tokamak machine is planned as a global collaboration. Even when the

ignition point is achieved, experience with fission power reactors suggests that it

will probably take decades of further technical development before fusion power

becomes a practical reality.

8.3 Biomedical Applications

The application of nuclear physics to biomedicine is a very large subject and for

reasons of space we will therefore concentrate on just two topics: the therapeutic

uses of radiation and medical imaging.

8.3.1 Biological effects of radiation: radiation therapy

Radiation therapy is a long-standing treatment for cancer, often combined with

chemotherapy and/or surgery. By damaging DNA, the ability of the cell to

reproduce is inhibited and so tumour tissue can, in principle, be destroyed.

However, the same of course applies to healthy tissue so, when using radiation

in a medical environment, a balance has to be struck between the potential

diagnostic and/or therapeutic benefits and the potential deleterious effects of

damage done by the radiation. This is a particularly delicate balance for cancer

treatment because, as we shall see below, highly oxygenated tissue has a greater

sensitivity to radiation and unfortunately many tumours are less oxygenated than

healthy tissue and therefore more resistant to radiation. We start by reviewing the

biological effects of radiation and then describe the use of various types of

radiation for cancer treatment.

Exposure of living tissue to radiation is a complex process. Immediate physical

damage may be caused by the initial deposition of energy, but in addition there can

also be secondary damage due to the production of highly active chemicals. The

latter may not be evident in full for several hours after exposure. For low levels of

radiation this effect is the only one. High levels of damage may lead to the rapid

death of living cells, but cells that survive in a damaged form may still have serious

consequences. However caused, damage to the DNA of the nucleus of cells can

result in long-term biological effects, such as cancer or genetic abnormalities,

which may not reveal themselves for years, even decades, after the original

exposure.12

12This has been known for a long time. For example, Hermann Muller was awarded the 1946 Nobel Prize in

Physiology and Medicine for his discovery that mutations can be induced by X-rays.
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To make descriptions like ‘low-level’ and ‘high-level’ used above meaningful

needs a more detailed discussion, including the question of how dosages are

defined. We will do this only very briefly. Roughly speaking, the average absorbed

dose is the total energy deposited per unit mass of tissue. This is measured in

‘grays’, defined by 1 Gy ¼ 1 J kg�1, which has largely replaced the older unit of

the ‘rad’ (1 Gy ¼ 100 rads). However, in practice, biological effects depend not

only on the total dose, but also on other factors, including the type of radiation, the

rate of deposition and whether the whole organ is uniformly radiated. These

considerations lead to the definitions used in medical applications of equivalent

and effective doses, where multiplicative weighting factors are included to take

account of different types of radiation and different organs being radiated. To

distinguish these latter doses from the simple absorbed dose, the sievert (Sv) unit is

used, also defined as 1 J kg�1 because the weighting factors are dimensionless. For

example, the dose rate absorbed in tissue at a distance r from an external source of

activity A emitting �-rays of energy E� is given approximately by

dD

dt
ð�Sv h�1Þ � AðMBqÞ 	 E�ðMeVÞ

6r2ðm2Þ ð8:49aÞ

and for an internal source emitting radiation of energy ER, the effective dose rate

for an organ of mass M is

dD

dt
¼ AERf

M
; ð8:49bÞ

where f is the fraction of the energy deposited in the organ.

To get some idea of scale, the total annual effective dose to the UK population is

approximately 2600mSv, of which 85 per cent is due to naturally occurring

background radiation, although much higher doses can occur in specific cases –

for example, workers whose occupational activities expose them to radiation on a

daily basis, or people who live in areas rich in granite rocks (which emit radon, the

source of about half of the background radiation). The recommended limit for

additional whole-body exposure of the general population is 1 mSv y�1.13

The primary deposition of energy is due, as in non-living matter, to ionization

and excitation of atoms and molecules in the path of the radiation. This occurs on a

timescale of 10�16 s or less and was described in Chapter 4. We can draw on that

discussion here, bearing in mind that living tissue consists mainly of light elements

and in particular has a high proportion (about 80 per cent) of water.

For heavy particles, such as protons and �-particles, the most important process is

ionization via interactions with electrons and the energy losses are given by the

Bethe–Bloch formula Equation (4.11). The rate of energy loss by a heavy particle is

13For a discussion of Equations (8.49) and quantitative issues of acceptable doses for various sections of the

population and to different organs, see for example, Chapter 7 of Li01 and Chapter 11 of De99.
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high, peaking near the end of its range and so the penetrating power is low. For

example, a 1 MeV �-particle travels only a few tens of microns and is easily stopped

by skin. However, considerable damage can be caused to sensitive internal organs if

an �-emitting isotope is ingested. An exception to the above is neutron radiation,

which being electrically neutral does not produce primary ionization. Its primary

interaction is via the nuclear strong force and it will mainly scatter from protons

contained in the high percentage of water present. The scattered protons will,

however, produce ionization as discussed above. The overall effect is that neutrons

are more penetrating than other heavy particles and at MeV energies can deposit

their energy to a depth of several centimetres. Electrons also lose energy by

interaction with electrons, but the rate of energy loss is smaller than for heavy

particles. Also, as they have small mass, they are subject to greater scatter and so their

paths are not straight lines. In addition, electrons can in principle lose energy by

bremsstrahlung, but this is not significant in the low Z materials that make up the

patient. The overall result is that electrons are more penetrating than heavy particles

and deposit their energy over a greater volume. Finally, photons lose energy via a

variety of processes (see Section 4.4.4), the relative importance of which depends on

the photon energy. Photons are very penetrating and deposition of their energy is not

localized.

In addition to the physical damage that may be caused by the primary ionization

process, there is also the potential for chemical damage, as mentioned above. This

comes about because most of the primary interactions result in the ionization of

simple molecules and the creation of neutral atoms and molecules with an

unpaired electron. The latter are called free radicals (much discussed

in advertising material for health supplements). These reactions occur on much

longer timescales of about 10�6 s. For example, ionization of a water molecule

produces a free electron and a positively charged molecule:

H2O�����!
radiation

H2Oþ þ e� ð8:50aÞ

and the released electron is very likely to be captured by another water molecule

producing a negative ion:

e� þ H2O ! H2O�: ð8:50bÞ

Both ions are unstable and dissociate to create free radicals (denoted by black

circles):

H2Oþ ! Hþ þ OH� ð8:51aÞ

and

H2O� ! H� þ OH�: ð8:51bÞ

Free radicals are chemically very active, because there is a strong tendency for

their electrons to pair with one in another free radical. Thus the free radicals in
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Equations (8.51) will interact with organic molecules (denoted generically by RH)

to produce organic free radicals:

RH þ OH� ! R� þ H2O ð8:52aÞ

and

RH þ H� ! R� þ H2: ð8:52bÞ

The latter may then induce chemical changes in critical biological structures (e.g.

chromosomes) some way from the site of the original radiation interaction that

produced them. Alternatively, the radiation may interact directly with the molecule

RH again releasing a free radical R�:

RH����!
radiation

RHþ þ e� ; RHþ ! R� þ H�: ð8:53Þ

Finally, if the irradiated material is rich in oxygen, yet another set of reactions is

possible:

R� þ O2 ! RO�
2; ð8:54aÞ

followed by

RO�
2 þ RH ! RO2H þ R�; ð8:54bÞ

with the release of another free radical. This is the oxygen effect mentioned above

that complicates the treatment of tumours.

Fortunately, for low-level radiation, living matter itself has the ability to repair

much of the damage caused by radiation and so low-level radiation does not lead to

permanent consequences. Indeed, if this were not so, then life may not have

evolved in the way it has, because we are all exposed to low levels of naturally-

occurring radiation throughout our lives (which may well have been far greater in

the distant past) and the modern use of radiation for a wide range of industrial and

medical purposes has undoubtedly increased that exposure. However, the repair

mechanism is not effective for high levels of exposure.

In the context of radiation therapy an important quantity is the linear energy

transfer (LET) which measures the energy deposited per unit distance over the

path of the radiation. Except for bremsstrahlung, LET is the same as dE=dx

discussed in Chapter 4. High-LET particles are heavy ions and �-particles, which

lose their energy rapidly and have short ranges. LET values of the order of

100 keV=mm and ranges 0.1–1.0 mm are typical. Low-LET particles are electrons

and photons with LET values of the order of 1 keV=mm and ranges of the order of

1 cm. Much cancer therapy work uses low-LET particles. Treatment consists of

directing a beam at a cancer site from several directions to reduce the exposure
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of healthy tissue, while maintaining the total dose to the tumour. Other techniques

include giving the dose in several stages so that the outer regions of the tumour,

which are relatively oxygen-rich, are successively destroyed as they become re-

oxygenated. Other treatments, particularly for localized cancers, involve the

introduction of a radionuclide either physically via a needle or by ingestion/

injection of a compound containing the radionuclide. Chemicals that preferentially

target specific organs or bones are commonly used.

Neutron therapy, as an example of a high-LET particle, is not widely used

because of the problem of producing a strongly collimated beam plus the difficulty

of ensuring that the energy is deposited primarily at the tumour site. Neutrons also

share with low-LET radiation the drawback that their attenuation in matter is

exponential. On the other hand, the rate of energy loss of protons and other

charged particles increases with penetration depth, culminating at a maximum, the

Bragg peak, close to the end of their range. In principle, this means that a greater

fraction of the energy would be deposited at the tumour site and less damage

would be caused along the path length to the site. There is also an increasing

interest in using heavy charged particles. For example, carbon ions at the

beginning of their path in tissue have a low rate of energy loss more like an

LET particle, but near the end of their range the local ionization increases

dramatically as it approaches the Bragg peak. Thus considerable energy can be

deposited at a precise depth without the danger of massive destruction of healthy

tissue en route to the target. Another potential advantage is that nuclear interac-

tions along the path length will convert a small fraction of the nuclei to radioactive

positron-emitting isotopes which could then be used to image the irradiated region

(using the PET technique described below) and thus monitor the effectiveness of

the treatment programme. Unfortunately, the use of protons and heavy particles

requires access to an accelerator and for this reason proton and heavy ion therapy

is not commonly used.

8.3.2 Medical imaging using radiation

There are several techniques for producing images useful for diagnostic purposes

and in this section we will describe the principles of the main ones, but without

technical details.14

Imaging using projected images

The use of an external source of radiation for medical imaging is of long-standing

and well known. Basically, the system consists of a source placed some distance in

14A readable account of medical imaging at the appropriate level is given in Chapter 7 of Li01 and a short

useful review of the whole field is He97.
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front the patient and a detector (usually a special type of sensitive film) placed

immediately behind the patient. Because the radiation is absorbed according to an

exponential law, a measurement of the intensities just before and after the patient

yields information on the integrated mean free path (or equivalently the attenuation

coefficient � � 1=�) of the photons in the body.

Thus, referring to Figure 8.9, we have for the ray shown, using Equation (4.17),

ln I1=I2ð Þ ¼
ðx2

x1

�ðxÞ dx: ð8:55Þ

The full image reveals variations of this integral only in two dimensions and thus

contains no depth information. A three-dimensional effect comes from overlapping

shadows in the two-dimensional images and part of the skill of a radiologist is to

interpret these effects.

The most commonly used radiation is X-rays. The attenuation coefficient is

dependent on the material and is greater for elements with high Z than for elements

with low Z. Thus X-rays are good for imaging bone (which contains calcium with

Z ¼ 20), but far less useful for imaging soft tissue (which contains a high

proportion of water).

Images can also be obtained using an internal source of radiation. This is done

by the patient ingesting, or being injected with, a substance containing a radio-

active �-emitting isotope. As photon detectors are very sensitive, the concentration

of the radioisotope can be very low and any risk to the patient is further minimized

by choosing an isotope with a short lifetime. If necessary, the radioisotope can be

combined in a compound that is known to be concentrated preferentially in a

specific organ if that is to be investigated, for example iodine in the thyroid. In

practice, more than 90 per cent of routine investigations use the first excited state

of 99
43Tc as the radioisotope. This has a lifetime of about 6 hours and is easily

produced from the �-decay of 99
42Mo which has a lifetime of 67 hours. The

Figure 8.9 Basic layout for imaging using an external source
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usefulness of this metastable state (written 99Tcm) is that it emits a single 140 keV

photon with negligible �-decay modes, decaying to the very long-lived

(2 	 105 years) ground state.

Because the radiation is emitted in all directions, a different technique is used

to detect it. The patient is stationary and is scanned by a large-area detector consisting

of a collimated single-crystal scintillator, usually NaI, the output from which is

viewed by an array of photomultipliers (PMTs) via a light guide (see Section 4.4.2).

A schematic diagram of such a �-camera is shown in Figure 8.10. The output from

the scintillator is received in several PMTs and the relative intensities of these signals

depend on the point of origin. The signals can be analysed to locate the point to

within a few millmetres. The collimator restricts the direction of photons that can

be detected and, combined with the information from the PMTs, the overall

spatial resolution is typically of the order of 10 mm, provided the region being

examined has an attenuation coefficient that differs by at least 10 per cent from its

surroundings.

Radioisotope investigations principally demonstrate function rather than anat-

omy, in contrast to X-ray investigations that show mainly anatomical features.

Thus better images of soft tissue, such as tumours, can be obtained than those

obtained using external X-rays, because the ability of the tumour to metabolize has

been exploited, but the exact location of the tumour with respect to the anatomy is

often lost or poorly defined.

Figure 8.11 shows part of a whole body skeletal image of a patient who had been

injected with a compound MDP which moves preferentially to sites of bone

cancer, labelled with the isotope 99Tcm. The image clearly shows selective take-up

of the isotope in many tumours distributed throughout the body. (The concentra-

tion in the bladder is probably not significant.)

Figure 8.10 Schematic diagram of a �-camera
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Figure 8.11 Part of a whole-body skeletal image obtained using 99Tcm MDP (image courtesy of
Prof. R. J. Ott, Royal Marsden Hospital, London, UK)
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Computed tomography

A radiographic image is a two-dimensional display of a three-dimensional

structure and although the overlapping images give a useful three-dimensional

effect, details are always partially obscured by the superposition of information

from underlying and overlying planes. The result is loss of contrast. Thus while

images from the projection methods have good spatial resolution they have poor

resolution in depth. A major advance which addresses this problem was made in

1971 with the introduction of a new scanning technique called computed

tomography (CT).15 This enables a series of two-dimensional sections to be

imaged as small as a millimetre across, even when the attenuation coefficient

differs by less than 1 per cent from its surroundings.

The principle behind the CT technique is the observation that all the information

needed to construct an image of a two-dimensional section of tissue is contained in

the one-dimensional projections that cover all possible directions within the plane

of the slice. Thus for example, if the slice is in the x–y plane, a projected image of

the slice contains information on �ðx,yÞ in the form of a set of line integrals of �
taken through the region in a particular direction. As the angle in the plane of the

slice is varied, a different representation of �ðx, yÞ is obtained in the form of a

different set of line integrals. Once a complete set of line integrals has been

obtained there are mathematical methods (including some that have been devel-

oped by particle physicists to reconstruct events from high-energy collisions) that

allow the required two-dimensional function to be reconstructed. Modern high-

speed computers are able to perform this construction very rapidly, so that images

can now be obtained in real time and motion as fast as heartbeats can be captured.

Computed tomography may be used in conjunction with both external and

internal radiation. As an example, the arrangement for a CT X-ray scan is shown

schematically in Figure 8.12. In this example (known as a fourth-generation

machine), the patient remains stationary within a ring of several hundred detectors

(solid-state scintillators are frequently used). Within this ring there is an X-ray

source that moves on another ring and provides a fan of X-rays. Each alignment of

the source and a detector in the ring defines a line through the patient and the

recorded count rate enables a line integral to be computed from Equation (8.55).

By moving the source through its full angular range, a complete set of such line

integrals is generated, enabling a two-dimensional section to be computed through

the patient. This type of scanner is relatively expensive in both capital and

maintenance costs and another type (known as a third-generation machine) is

more common. This differs from Figure 8.12 in having a single bank of detectors

opposite the source and both source and detectors are rotated to cover the full

angular range. Although the CT method can produce scans of soft tissue better

than conventional X-ray projections, the images are achieved at the expense of the

15The CT system was devised independently by Godfrey Hounsfield and Allan Cormack who were jointly

awarded the 1979 Nobel Prize in Physiology and Medicine for their work.
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patient receiving a higher dose of potentially harmful radiation. An example of a

CT X-ray scan is shown in Figure 8.13(a).

CT can also be used to construct images obtained from projections from internal

radiation using radioisotopes that emit a single �-ray. This technique is called

single-photon emission computed tomography (SPECT). The arrangement is in

Figure 8.12 Schematic diagram of the arrangement for a CT X-ray scanner

Figure 8.13 (a) X-ray CT scan of the brain, and (b) SPECT brain scan using a 99Tcm labelled
blood flow tracer, showing high perfusion in the tumour (indicated by arrows) (image courtesy of
Prof. R. J. Ott, Royal Marsden Hospital, London, UK)
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some sense the ‘inverse’ of that in Figure 8.12. Thus the source is now within the

patient and the fixed ring of detectors is replaced by one or more �-cameras

designed so that they can rotate in a circle about the patient. An example of an

image obtained using SPECT is shown in Figure 8.13(b).

For a number of technical reasons, including the fact that the emitted radiation is

isotropic, there are more stringent requirements on the �-cameras and SPECT

images have a resolution of only about 10 mm. However, although not suitable for

accurate quantitative measurement of anatomy, they are of great use for clinical

diagnostic work involving function. For example, the technique is used to make

quantitative measurements of the functioning of an organ, i.e. clearance rates in

kidneys, lung volumes, etc..

Since radionuclide imaging provides functional and physiological information,

it would be highly desirable to be able to image the concentrations of elements

such as carbon, oxygen and nitrogen that are present in high abundances in

the body. The only radioisotopes of these elements that are suitable for imaging

are short-lived positron emitters: 11C (half-life �20 min), 13N (�10 min) and 15O

(� 2 min). For these emitters, the radiation detected is the two �-rays emitted when

the positron annihilates with an electron. This occurs within a few millimetres

from the point of production of the positron, whose initial energy is typically less

than 0.5 MeV. The photons each have energies equal to the rest mass of an

electron, i.e. 0.511 MeV and emerge ‘back-to-back’ to conserve momentum. This

technique is called positron emission tomography (PET) and was mentioned

earlier in connection with radiation treatment using heavy ions.

The arrangement of a PET scanner is shown in Figure 8.14. If the detectors D1

and D2 detect photons of the correct energy in coincidence, then the count rate is a

measure of the integral of the source activity within the patient along the line AB

passing through P. The ring of detectors defines a plane through the patient and the

Figure 8.14 Schematic diagram of the arrangement of a PET scanner
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complete set of data from all combinations of detector pairs contains all

the information needed to generate the set of line integrals which can be

converted into a two-dimensional image of the source using standard CT image

reconstruction techniques. An example of an image using the PET technique is

shown in Figure 8.15.

This account of medical imaging has ignored many technical points. For

example, there are a number of corrections that have to be made to the raw

data, particularly in the SPECT technique, and the most useful radioisotopes used

in PET are produced in a cyclotron, so the scanner has to be near such a facility,

which considerably limits is use. The interested reader is referred to specialized

texts for further details.16

Figure 8.15 Part of a whole-body PET scan showing uptake of the chemical FDG (labelled by
99Tcm) in lung cancer (image courtesy of Prof. R. J. Ott, Royal Marsden Hospital, London, UK)

16For a more detailed discussion see, for example, De99.
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8.3.3 Magnetic resonance imaging

We conclude this brief description of imaging with an account of a remarkable

technique which in a relatively short time has become one of the most sophisti-

cated tools for clinical diagnostic work and medical research. It is not only capable

of producing images of unprecedented clarity, but it does so in a way that is

intrinsically safe and without using potentially harmful ionising radiation.

Magnetic resonance imaging (MRI) is based on the phenomenon of nuclear

magnetic resonance that was discovered independently by Bloch and Purcell and

used by them to study the structure and diffusion properties of molecules.17 It is

based on the fact that the quantum spin states of nuclei (strictly their associated

magnetic moments) can be manipulated by magnetic fields. A brief overview of

the method is as follows. First, nuclear spins in tissue are aligned by a powerful

static magnetic field, typically in the range 0.2–3 T, usually supplied by a super-

conducting magnet. As living tissue is predominantly water, the spins in question

are mainly those of protons. (Oxygen is an even–even nucleus and so plays no

role.) Secondly, oscillating magnetic field pulses at radio frequency are applied in

a plane perpendicular to the magnetic field lines of the static field, which causes

some of the protons to change from their aligned positions. After each pulse, the

nuclei relax back to their original configuration and in so doing they generate

signals that can be detected by coils wrapped around the patient. Differences in the

relaxation rates and associated signals are the basis of contrast in MRI images. For

example, water molecules in blood have different relaxation rates from water

molecules in other tissues.

There are many different types of MRI scan, each with their own specialized

procedures and the full mathematical analysis of these is complex. We will

therefore give only a rather general account concentrating on the basic physics.

The interested reader is referred to more detailed texts at an appropriate level.18

The proton has spin-1
2

and magnetic moment lP. In the absence of an external

magnetic field, the two states corresponding to the two values of the magnetic

quantum number ms ¼ � 1
2

are equally populated and the net magnetization M (i.e.

the average magnetic moment per unit volume) is zero. In the presence of a static

magnetic field B, taken to be in the z-direction, there is an interaction energy

ð�lP  BÞ and the two states have different energies with different probabilities

given by the Boltzmann distribution. The energy difference between the states is

�E ¼ 2�PB ¼ h f , where f is the Larmor (or nuclear resonance) frequency,19

17Felix Bloch and Edward Purcell were awarded the 1952 Nobel Prize in Physics for their discovery of

nuclear magnetic resonance (NMR) and subsequent researches. Although the term NMR is still used in

research environments, the term magnetic resonance imaging (MRI) is preferred in clinical environments to

prevent patients associating the technique with ‘harmful nuclear radiation’.
18See, for example, De99, McR03 and Ho97a.
19In general, the nuclear resonance frequency is defined by f ¼ jljB=j h, where j is the spin of the particle

involved and � is its magnetic dipole moment.
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which is the frequency of a photon that would correspond to a transition between

the two nuclear spin states. The energy difference is small. For example, for a field

of 1 T, �E � 1:8 	 10�7eV and f is about 43 MHz, i.e. in the radio region of the

electromagnetic spectrum. Although there is a net magnetization in the z-direction,

the resultant magnetization M0 is too small to be measured.

The situation changes, however, if M no longer points along the z-axis and a

signal is generated if the magnetization has a component in the plane orthogonal to

B. This is illustrated in Figure 8.16(a). In this figure, M has been rotated to lie in

the xy-plane and since there is an angular momentum associated with the

magnetization, M will precess about B under the action of the torque M 	 B.

The rotation can be achieved by applying an alternating r.f. magnetic field Brf

to the sample at right angles to B and at the Larmor frequency. As M precesses

about B, one component of Brf rotates in phase with it. The resulting motion is

complicated and is best viewed in a frame of reference rotating at the Larmor

frequency about the z-axis, which we label by ðx0; y0; z0Þ with z0 parallel to z. This is

shown in Figure 8.16(b). The full mathematical analysis is given, for example, in

the book by Hobbie (see Footnote 18) and we will just quote the result. This is that

the magnetization vector can be rotated through an arbitrary angle depending on the

strength and duration of the r.f. pulse. In particular, it is possible to rotate it

through 90� so that the magnetization vector precesses about the the x0-axis, i.e.

rotating with a frequency that depends on the magnitude of the r.f. field. As the r.f.

pulse forces all the protons to precess exactly in phase, there will be a component

of magnetization along the y-axis in the rotating frame. When the r.f. pulse is

turned off, the system returns to equilbrium with M aligned along the z-axis by re-

emitting the energy absorbed from the r.f. pulse. As it does so, the external field

due to M will vary with time with the same frequency and can be detected as an

induced emf in a coil surrounding the patient. This is the basic MRI signal.

Figure 8.16 (a) Precession of the magnetization M in the xy-plane under the action of a torque
M 	 B resulting from an external field B; (b) motion viewed in a frame of reference ðx0; y0; z0Þ
rotating at the Larmor frequency about the z-axis � the r.f. pulse Brf applied in the x0-direction
has rotated M so that it points in the y0-direction
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Crucially, the frequency of the external r.f. field must match the Larmor frequency

of the protons to be excited.

The induced signal will decay as equilibrium is restored. If B were uniform

throughout the selected region, all the protons would precess at the same frequency

and remain in phase. In that case the interaction of the proton spins with the

surrounding lattice, the so-called spin-lattice interactions, would cause M to relax

to its equilibrium state M0 parallel to B. Under reasonable assumptions the

radiated signal is proportional to the difference ðM0 � MÞ and decreases expo-

nentially with a characteristic spin-lattice, or longitudinal, relaxation time T1.

Typical spin-lattice relaxation times are of the order of a few hundred milliseconds

and are significantly different for different materials, such as muscle, fat and water.

However, because there are always small irregularities in the field due to local

atomic and nuclear effects, individual protons actually precess at slightly different

rates and the signal decays because the component of M orthogonal to B (i.e. in the

xy-plane) decreases as the individual moments loose phase coherence. This

decrease is characterized by a second time T2, called the spin–spin, or transverse,

relaxation time. This is normally much shorter than T1, but again varies with

material. Both relaxation times can be measured.

The above assumes that the external field B is perfectly uniform, but of course

the ideal is not realized in practice. The effects of macroscopic inhomogeneity in

the magnetic field can be eliminated by generating so-called spin echoes, which

may crudely be described as making two ‘orthogonal’ measurements such that the

unwanted effects cancel out exactly in the sum. Many MRI imaging sequences use

this technical device and again we refer the interested reader to the literature cited

in Footnote 18 for further details.

All the above assumes we are scanning the whole body. The original develop-

ment of the method as a medical diagnostic technique is due to the realization that

gradients in the static magnetic field could be used to encode the signal with

precise spatial information and be processed to generate two-dimensional images

corresponding to slices through the tissue of the organ being examined.20 The

patient is placed in the fixed field B pointing along the z-direction. A second static

field Bg parallel to z, but with a gradient in the z-direction is then applied so that

the total static field is a function of z. This means that the Larmor frequency (which

is proportional to the magnetic field) will vary as a function of z. Thus when the r.f.

field Brf is applied with a narrow band of frequencies about fr:f:, the only protons to

be resonantly excited will be those within a narrow slice of thickness dz at the

particular value of z corresponding to the narrow band of frequencies. The field

Brf is applied until the magnetization in the slice has been rotated through either

90 or 180� depending on what measurements are to be taken. Both Brf and Bg are

then turned off.

20This discovery was first made by Paul Lauterbur and an analysis of the effect was first made by Sir Peter

Mansfield. They shared the 2003 Nobel Prize in Physiology and Medicine for their work is establishing MRI

as a medical diagnostic technique.
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The final step is to obtain a spatial image of the magnetization as a function of x

and y. This entails encoding the MRI signal with information linking it to a point

of origin in real space. There are many ways this can be done (one utilizes the CT

method encountered earlier) and again we refer the interested reader to the

specialized texts quoted earlier for the details. The outcome is that M and the

two relaxation times can both be measured. All three quantities vary spatially

within the body and can give valuable biomedical information. For example,

relaxation times are usually different for tumour tissue compared with normal

tissue.

In some areas MRI scans have considerable advantages over other forms of

imaging. For example, the contrast of soft tissue is much better than CT scans,

leading to very high quality images, especially of the brain. Examples of such

images are shown in Figure 8.17.

As ionizing radiation is not used, MRI is intrinsically safe at the field intensities

used. The only exception to this is that because of the presence of high magnetic

fields, care must be taken to keep all ferromagnetic objects away from the scanner.

This means that patients with heart pacemakers, or metal implants cannot in

general be scanned and care has to be taken to screen out people who have had an

occupational exposure to microscopic fragments of steel (such as welders) as these

may well have lodged in critical organs such as the eyes and the latter could be

seriously damaged if the fragments moved rapidly under the action of the very

strong magnetic field.

Figure 8.17 Two MRI scans of a brain � (a) T1-weighted, and (b) T2-weighted � showing a
frontal lobe tumour (images courtesy of the MRI Unit of the Royal Marsden NHS Foundation
Trust, London, UK)
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Problems

8.1 The fission of 235U is induced by a neutron and the fission fragments are 92
37Rb and

140
55Cs. Use the SEMF to calculate the energy released (in MeV) per fission. Ignore

the (negligible) contributions from the pairing term. The reaction is used to power a

100 MW nuclear reactor whose core is a sphere of radius 100 cm. If an average of

one neutron per fission escapes the core, what is the neutron flux at the outer surface

of the reactor in m�2 s�1? The core is surrounded by 1:3 m3 of ideal gas maintained

at a pressure of 1 	 105 Pa and a temperature of 298 K. All neutrons escaping the

reactor core pass through the gas. If the interaction cross-section between the

neutrons and the gas is 1 mb, calculate the rate of neutron interactions in the gas.

8.2 A neutron with non-relativistic laboratory speed v collides elastically with a nucleus

of mass M. If the scattering is isotropic, show that the average kinetic energy of the

neutron after the collision is

Efinal ¼
M2 þ m2

ðM þ mÞ2
Einitial;

where m � mn. Use this result to estimate the number of collisions necessary to

thermalize neutrons from the fission of 235U using a graphite moderator (assume this

is pure 12C).

8.3 A thermal fission reactor uses natural uranium. The energy released from fission is

200 MeV per atom of 235U and the total power output is 500 MW. If all neutrons

captured by 238U lead to the production of 239Pu, calculate the rate of production of

plutonium in kg/year. The cross-sections at the relevant neutron energy are

�capture ¼ 3 b and �fission ¼ 600 b; and the relative abundance of 238U to 235U in

natural uranium is 138:1.

8.4 In a particular thermal reactor, each fission releases 200 MeV of energy with an

instantaneous power output 3 t�1:2, where t is measured in seconds. After burning

with a steady power output P0 ¼ 2 GW for a time T, the reactor is shut-down. Show

that the mean thermal power P from a fuel rod of the reactor after time t ð> 1 sÞ is

approximately

PðtÞ ¼ 0:075P0 t�0:2 � ðT þ tÞ�0:2
h i

and, taking the mean age of the fuel rods to be 1 year, calculate the power output

after 6 months.

8.5 If the Sun were formed 4.6 billion years ago and initially consisted of 9 	 1056

hydrogen atoms and since then has been radiating energy via the PPI chain at a

detectable rate of 3:86 	 1026 W, how much longer will it be before the Sun’s supply

of hydrogen is exhausted (assuming that the nature of the Sun does not change)?
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8.6 In the PPI cycle, helium nuclei are produced by the fusion of hydrogen nuclei and

6.55 MeV of electromagnetic energy is produced for every proton consumed. If the

electromagnetic radiation energy at the surface of the Earth is 8:4 J cm�2s�1 and is

due predominantly to the PPI cycle, what is the expected flux of solar neutrinos at

the Earth in cm�2 s�1?

8.7 In a plasma of equal numbers of deuterium and tritium atoms (in practice, deuteron

and triton nuclei) at an energy kT ¼ 10 keV, the Lawson criterion is just satisfied for

a total of 5 s. Estimate the number density of deuterons.

8.8 A thermal power station operates using inertial confinement fusion. If the ‘fuel’

consists of 1 mg pellets of frozen deuterium–tritium mixture, how many would have

to be supplied per second to provide an output of 750 MW if the efficiency for

converting the material is 25 per cent?

8.9 In some extensions of the standard model (to be discussed in Chapter 9) the proton is

unstable and can decay, e.g. via p ! �0 þ eþ. If all the energy in such decays is

deposited in the body and assuming that an absorbed dose of 5 Gy per year is lethal

for humans, what limit does the existence of life place on the proton lifetime?

8.10 The main decay mode of 60
27Co is the emission of two photons, one with energy

1.173 MeV and the other with 1.333 MeV. In an experiment, an operator stands 1 m

away from an open source of 40 KBq of 60
27Co for a total period of 18 h. Estimate the

approximate whole-body radiation dose received.

8.11 A bone of thickness b cm is surrounded by tissue with a uniform thickness of t cm. It

is irradiated with 140 keV �-rays. The intensities through the bone (Ib) and through

the tissue only (It) are measured and their ratio R � Ib=It is found to be 0.7. If the

attenuation coefficients of bone and tissue at this energy are �b ¼ 0:29 cm�1 and

�t ¼ 0:15 cm�1, calculate the thickness of the bone.

8.12 The flux of relativistic cosmic ray muons at the surface of the Earth is approximately

250 m�2s�1. Use Figure 4.8 to make a rough estimate of their rate of ionization

energy loss as they traverse living matter. Hence estimate in grays the annual human

body dose of radiation due to cosmic ray muons.

8.13 Calculate the nuclear magnetic resonance frequency for the nucleus 55
25Mn in a field

of 2 T if its magnetic dipole moment is 3.46 �N.
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9
Outstanding Questions and Future
Prospects

In this chapter we shall describe a few of the outstanding questions in both nuclear

and particle physics and future prospects for their solution. The list is by no means

exhaustive (particularly for nuclear physics, which has a very wide range of

applications) and concentrates mainly on those areas touched on in earlier

chapters. The examples should be sufficient to show that nuclear and particle

physics remain exciting and vibrant subjects with many interesting phenomena

being discovered and questions awaiting explanations.

9.1 Particle Physics

Unlike nuclear physics, particle physics does have a comprehensive theory, but

although the standard model is very successful at explaining a wide range of

phenomena, there are still questions that remain to be answered and some hints

from experiments of phenomena that lie outside the model, for example neutrino

oscillations and the possibility of lepton number violation. In addition, the success

of the standard model has spurred physicists to construct theories that incorporate

the strong interaction, and even in some cases gravity, in wider unification

schemes. A full discussion of these topics is beyond the scope of this book, but

in this chapter we will briefly review some of these questions and also look at the

rapidly growing field of particle astrophysics.

9.1.1 The Higgs boson

The Higgs boson is an electrically neutral spin-0 boson whose existence is

predicted by the unified electroweak theory, but which has not yet been observed.

Nuclear and Particle Physics B. R. Martin
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It is required because of a fundamental symmetry associated with theories in

which the force carriers are spin-1 bosons. This symmetry is called gauge

invariance and has been mentioned in previous chapters. Gauge invariance can

be shown to require that the spin-1 ‘gauge bosons’ have zero masses if they are the

only bosons in the theory. This is acceptable for QED and QCD, since the gauge

bosons are photons and gluons and they do indeed have zero masses. Gauge

invariance also plays a crucial role in the unified electroweak theory, where it is

needed to ensure the cancellation of the divergences that occur in individual

higher-order Feynman diagrams. In this case the result is even stronger and it can

be shown that gauge invariance requires that the all the fundamental particles –

quarks, leptons and gauge bosons – have zero masses if gauge bosons are the only

bosons in the theory. This prediction is clearly in contradiction with experiment,

because the W and Z bosons have masses about 80–90 times that of the nucleon.

This problem, known as the origin of mass, is overcome by assuming that the

various particles interact with a new field, called the Higgs field, whose existence

can be shown to allow the gauge bosons to acquire masses without violating the

gauge invariance of the interaction.1 The ‘price’ of this is that there must exist

electrically neutral quanta associated with the Higgs field, called Higgs bosons, in

the same way that there are quanta associated with the electromagnetic field, i.e.

photons.

We saw in Chapter 3, that there is evidence that neutrinos, originally assumed to

have zero masses in the standard model, are in fact not massless. The Higgs

mechanism can also, in principle, be invoked to generate masses for neutrinos.

However, it would be natural to expect that such masses would then be roughly the

same size as the masses generated for the gauge bosons and we have seen that this is

clearly not the case. This problem can only be avoided if the coupling of the

neutrinos to the Higgs field is at least 12 orders of magnitude smaller than that of the

coupling of the top quark. Many physicists reject such an explanation as implausible

and alternative mechanisms have been suggested for generating very small neutrino

masses. All have problems of their own and at present none is universally accepted.

Experiments currently being planned should help resolve the matter.

The existence of the Higgs boson is the most important prediction of the

standard model that has not been verified by experiment, and searches for it are of

the highest priority. A problem in designing suitable experiments is that its mass is

not predicted by the theory. However, its couplings to other particles are predicted

and are essentially proportional to the masses of the particles to which it couples.

The Higgs boson therefore couples very weakly to light particles like neutrinos,

electrons, muons and u, d, s quarks; and much more strongly to heavy particles like

W� and Z0 bosons, and presumably b and t quarks. Hence attempts to produce

Higgs bosons are made more difficult by the need to first produce the very heavy

particles to which they couple.

1This process is called ‘spontaneous symmetry breaking’ and was mentioned in Chapter 6.
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The failure to observe Higgs bosons in present experiments leads to limits on

their mass. The best results come from the Large Electron–Positron (LEP)

accelerator at CERN. This machine (which is no longer operational) had a

maximum energy of 208 GeV, which is enough to produce Higgs bosons with

masses up to almost 120 GeV/c2 in the reaction

eþ þ e� ! H0 þ Z0; ð9:1Þ

which is expected to occur by the dominant mechanism of Figure 9.1.

Attempts were made to detect Higgs bosons by their decays to b�bb pairs, where

the quarks would be observed as jets containing short-lived hadrons with non-zero

beauty. The results were tantalizing. By the time LEP closed down in November

2000 to make way for another project, it had shown that no Higgs bosons existed

with a mass less than 113.5 GeV/c2; and some evidence had been obtained for the

existence of a Higgs boson with a mass of 115 GeV/c2. This is very close to the

upper limit of masses that were accessible by LEP, but because the Higgs boson

would have a width, its mass distribution would extend down to lower energies and

would give a signal. Unfortunately, while this signal was statistically likely to be a

genuine result rather than a statistical fluctuation, the latter cannot be completely

ruled out.

Future investigations will involve the use of new accelerators currently under

construction, particularly the LHC proton–proton collider mentioned in Chapter 4.

(One of the detectors at the LHC, ATLAS was shown in Figure 4.19.) This will

enable searches to be made for Higgs bosons with masses up to 1 TeV/c2 via

reactions of the type

p þ p ! H0 þ X; ð9:2Þ

where X is any state allowed by the conservation laws. The mechanism for this

reaction is the weak interaction between the constituent quarks of the protons, an

example of which is shown in Figure 9.2, where the other quarks in the protons are

spectators, as usual.

Figure 9.1 Dominant mechanism for Higgs boson production in eþe� annihilation
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The reaction in Equation (9.2) will take place against a large background of

strong interaction processes and the method of detecting it will depend on the

actual Higgs boson mass. If MH > 2MW, then the Higgs boson can decay to a pair

of W-mesons or Z0-mesons, which themselves decay. For example, from the

leptonic decay of the Z0 s, we could have overall the reaction

H0 ! ‘þ þ ‘� þ ‘þ þ ‘�; ð‘ ¼ e; �Þ: ð9:3Þ

This would enable the mass range 200 GeV=c2 � MH � 500 GeV=c2 to be explored.

However, the branching ratios are such that only a few per cent of decays will have

such a distinctive signal and other decays modes will also have to be explored. For

lower masses such that MH < 2MW where these decays are energetically forbidden,

one might think of looking for decays to fermion–antifermion pairs. Because the

Higgs boson preferentially couples to heavy particles, the dominant decay of this

type will be H0 ! b þ �bb with accompanying jets. This was the method used in the

LEP experiments referred to above. Unfortunately, it is very difficult to distinguish

these jets from those produced by other means. Rarer decay modes, but with more

distinctive signals, will have to be sought, such as H0 ! � þ �, which in the

standard model has a branching ratio of about 10�3.

All the above is based on the standard model with a single neutral Higgs boson,

but we will see in Section 9.1.3 that realistic extensions of the standard model

require several Higgs bosons, not all of which are electrically neutral. Experi-

mental investigations of the Higgs sector will undoubtedly play a central role in the

future of particle physics for many years to come.

9.1.2 Grand unification

Whether or not the Higgs boson exists is the most pressing unanswered question of

the standard model but, even if it is found with its predicted properties, this is not

Figure 9.2 An example of a process that can produce Higgs bosons in pp collisions
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the end of the story, because one of the goals of particle theory is to have a single

universal theory that explains all the phenomena of the subject. Since we already

have a unified theory for the weak and electromagnetic interactions, the next

logical step is to try to include the strong interaction. Attempts to do this are called

grand unified theories (GUTs).

We have seen that unification of the weak and electromagnetic interactions does

not manifest itself until energies of the order of the W and Z masses. To get some

idea of the energy scale of a grand unified theory, we show in Figure 9.3 the

couplings2

g 	 2
ffiffiffi
2

p
gW ; g0 	 2

ffiffiffi
2

p
gZ ð9:4Þ

and the strong coupling gs (this is related to 	s by 	s ¼ g2
s=4
Þ as functions of Q2,

the squared energy–momentum transfer in a typical GUT. A naı̈ve extrapolation in

Q2 (using, for example, Equation (5.11)) from the region where these couplings

are presently known suggests that they become approximately equal to a single

value gU at the enormous energy Q2 ¼ M2
Xc4, where MX, the so-called unification

mass, is of the order of 1015 GeV/c2. In practice, which couplings to extrapolate

depends on which version of GUT one considers, but if the extrapolation is done

accurately the three curves actually fail to meet at a point by an amount that cannot

be explained by uncertainties in the models.

2Recall that the electromagnetic coupling e is related to these couplings by the unification condition

Equation (6.71).

Figure 9.3 Idealized behaviour of the strong and electroweak coupling as functions of the
squared energy--momentum transfer Q2 in a simple grand unified theory; gU is the unification
coupling
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There are many potential grand unified theories, but the simplest incorporates

the known quarks and leptons into common families. For example, one way is to

put the three coloured d-quarks and the doublet ðeþ; ���eÞ (strictly their right-handed

components) into a common family, i.e.

ðdr; db; dg; eþ; ���eÞ: ð9:5Þ

The fundamental vertex interactions allowed in this model are shown in Figure 9.4.

In addition to the known QCD interaction in (a) and the electroweak interaction

in (b), there are two new interactions represented by (c) and (d) involving the

emission or absorption of two new gauge bosons X and Y with electric charges � 4
3

and � 1
3
, respectively, and masses of the order of MX . In this theory all the

processes of Figure 9.4 are characterized by a single GUT coupling given by

�U � g2
U

4�
� 1

42
; ð9:6Þ

which is found by extrapolating the known coupling of the standard model to the

energy MXc2.

This simple model has a number of attractive features. For example, it can be

shown that the sum of the electric charges of all the particles in a given multiplet is

zero. So, using the multiplet ðdr; db; dg; eþ; ���eÞ, it follows that

3qd þ e ¼ 0; ð9:7Þ

Figure 9.4 Fundamental vertices that can occur for the multiplet of particles in Equation (9.5)
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where qd is the charge of the down quark. Thus qd ¼ �e=3 and the fractional

charges of the quarks is seen to originate in the fact that they exist in three colour

states. By a similar argument, the up quark has charge qu ¼ 2e=3 and so with the

usual quark assignment p ¼ uud, the proton charge is given by

qp ¼ 2qu þ qd ¼ e: ð9:8Þ

Thus, we also have an explanation of the long-standing puzzle of why the proton

and positron have precisely the same electric charge.

GUTs make a number of predictions that can be tested at presently accessible

energies. For example, if the three curves of Figure 9.3 really did meet at a point, then

the three low-energy couplings of the standard model would be expressible in terms

of the two parameters 	U and MX. This could be used to predict one of the former, or

equivalently the weak mixing angle �W. The result is sin2 �W ¼ 0:214 � 0:004,

which is close to the measured value of 0:2313 � 0:0003, although not strictly

compatible with it. (This is true even if the effect of the Higgs boson is taken into

account when evaluating the evolution of the coupling constants.)

In addition to the interactions of the X and Y bosons shown in Figure 9.4, there

are a number of other possible vertices, which are shown in Figure 9.5. (There is

also another set where particles are changed to antiparticles.) A consequence of

these interactions and those of Figure 9.4(c) and (d) is the possibility of reactions

that conserve neither baryon nor lepton numbers. The most striking prediction of

this type is that the proton would be unstable, with decay modes such as

p ! 
0 þ eþ and p ! 
þ þ ���e. Examples of Feynman diagrams for these decays

are shown in Figure 9.6 and are constructed by combining the vertices of Figure 9.4

and 9.5. In all such processes, although lepton number L and baryon number B are

not conserved, the combination

R 	 B �
X
‘

L‘ ð‘ ¼ e; �; Þ ð9:9Þ

is conserved.

Figure 9.5 The three fundamental vertices predicted by the simplest GUT involving the gauge
bosons X and Y (these are in addition to those shown in Figure 9.4)

PARTICLE PHYSICS 303



Since the masses of the X and Y bosons are far larger than the quarks and

leptons, we can use the zero-range approximation to estimate the lifetime of proton

decay. In this approximation, and by analogy with the lifetime for the muon

Equation (7.62), we have for the proton lifetime

p � ðMXc2Þ4

g4
UðMpc2Þ5

: ð9:10Þ

Taking account of reasonable uncertainties on gU and MX , this gives

p � 1030�1 years: ð9:11Þ

Proton decay via these modes has been looked for experimentally. The most

extensive search has been made using the Kamiokande detector described in

Chapter 4. To date no events have been observed and this enables a lower limit to

be put on the proton lifetime of about 1032 years, which rules out the simplest

version of a grand unified theory. However, there are other, more complicated,

versions that still cannot be completely ruled out by present experiments. Some of

these incorporate the idea of supersymmetry which is described below.

Finally, GUTs may offer an explanation for the very small neutrino masses

observed in the oscillation experiments discussed in Chapter 3. In Section 6.3 we

discussed the possibility that the neutrino was its own antiparticle (a so-called

Majorana neutrino). In GUTs the right-handed neutrino states are predicted to be

very massive (of order 1017 GeV/c2) and mix with the massless left-handed

neutrinos of the standard model to give physical neutrinos with masses

m�  m2
L=MX; ð9:12Þ

where mL is the typical mass of a charged lepton or quark.

9.1.3 Supersymmetry

One of the problems with GUTs is that if there are new particles associated with

the unification energy scale, then they would have to be included as additional

Figure 9.6 Examples of processes that contribute to the proton decay mode p ! 
0 þ eþ
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contributions in the higher-order calculations in the electroweak theory, for

example for the mass of the W-boson. These contributions would upset the delicate

cancellations that ensure finite results from higher-order diagrams in the standard

model, unless there were some way of cancelling these new contributions.

Supersymmetry (SUSY) does exactly this.

Supersymmetry is the proposal that every known elementary particle has a

partner, called a superpartner, which is identical to it all respects except its spin.

Spin-1
2

particles have spin-0 superpartners and spin-1 particles have spin-1
2

super-

partners. To distinguish between a spin-1
2

particle and its superpartner, an ‘s’ is

attached to the front of its name in the latter case. Thus, for example, a spin-1
2

electron has a spin-0 selectron as its superpartner. The full set of elementary

particles and their superpartners in the simplest SUSY model (the so-called

Minimal Supersymmetric Standard Model – MSSM) is shown in Table 9.1.

(This is actually a simplification because even the simplest SUSY requires a

number of different Higgs bosons, not all electrically neutral.)

If the symmetry were exact then a particle and its superparticle would have equal

masses. This is clearly not the case or such states would have already been found. So

supersymmetry is at best an approximate symmetry of nature. Nevertheless, even in

an approximate symmetry, the couplings of the two states are equal and opposite,

thereby ensuring the required cancellation, providing their masses are not too large.

In practice, it is usually assumed in GUTs that incorporate supersymmetry that the

masses of the superparticles are of the same order as the masses of the W and Z

bosons. With the inclusion of superparticles, the evolution of the coupling constants

of the standard model as functions of Q2 changes slightly and when extrapolated

they meet very close to a single point. The unification mass is increased somewhat to

about 1016 GeV/c2, while the value of gU remains roughly constant. Thus the

predicted lifetime of the proton is increased to about 1032 – 1033 years, conveniently

beyond the ‘reach’ of current experiments. At the same time, the value of the weak

mixing angle is brought into almost exact agreement with the measured value.

Whether this is simply a coincidence or not is unclear.

Table 9.1 The particles of the MSSM and their superpartners

Particle Symbol Spin Superparticle Symbol Spin

Quark q 1
2

Squark ~qq 0

Electron e 1
2

Selectron ~ee 0

Muon � 1
2

Smuon ~�� 0

Tauon  1
2

Stauon ~ 0

W-boson W 1 Wino eWW 1
2

Z-boson Z 1 Zino eZZ 1
2

Photon � 1 Photino ~�� 1
2

Gluon g 1 Gluino ~gg 1
2

Higgs boson H 0 Higgsino eHH 1
2
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To verify supersymmetry it will of course be essential to detect the superparticles

and that will not be easy. For example, the virtual exchange of superparticles

could contribute to the deviation of the muon magnetic dipole moment from its

Dirac value, although it would be difficult to separate these contributions from

other corrections. To date, activity has concentrated on the direct detection of

superparticles in reactions. In the simplest version of a SUSY theory, super-

particles are produced in pairs (like leptons or strange particles in strong

interactions, i.e. associated production) so that the decay of a superparticle must

have at least one superparticle in the final state and the lightest such particle will

necessarily be stable. Most versions of SUSY theories assume that the lightest

particle will be a neutralino e��0, which is the name given to a mixture of the

photino, the higgsino and the zino, the three spin-1
2

superparticles that interact

purely by the electroweak interaction. If this is the case, a possible reaction that

could be studied is

eþ þ e� ! ~eeþ þ ~ee�; ð9:13Þ

followed by the decays

~ee� ! e� þ e��0; ð9:14Þ

giving overall

eþ þ e� ! eþ þ e� þ e��0 þ e��0: ð9:15Þ

The cross-section for Equation (9.13) is predicted to be comparable to that for

producing pairs of ordinary charged particles. As the neutralinos only have weak

interactions they will be undetectable in practice and so the reaction would be

characterized by eþe� pairs in the final state with only a fraction (typically

50 per cent) of the initial energy and not emerging ‘back-to-back’ (because it is

not a two-body reaction). This and many other reactions have been studied, mainly

in experiments at LEP, but to date no evidence for the existence of superparticles

has been found. The null results have enabled lower limits to be set on the masses

of neutralinos and sleptons of various flavours in the range, 40 – 100 GeV/c2. This

is not very useful in practice, as the masses are believed to be of the order of the W

and Z masses. Much larger lower limits for the masses of gluinos and squarks have

been obtained in experiments using the CDF detector that was described in

Chapter 4 (see Figure 4.18). The search for supersymmetric particles will be a

major activity of detectors at the LHC accelerator currently under construction at

CERN.3

Undeterred by the lack of immediate success of supersymmetry, some bold

physicists have attempted to incorporate gravity into even larger unified schemes.

3For a review of the current state of experimental searches for superparticles see, for example, Ei04.
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The problems here are formidable, not least of which is that the divergences

encountered in trying to quantize gravity are far more severe than those in either

QCD or the electroweak theory and there is at present no successful ‘stand-alone’

quantum theory of gravity analogous to the former two. The theories that have

been proposed that include gravity invariably replace the idea of point-

like elementary particles with tiny quantized strings as a device to reduce these

technical problems and are formulated in many more dimensions (usually 10 or

11) than we observe in nature. More recently, even strings have been superceded

by theories based on mathematical objects called membranes, or simply branes.

The problem with these theories, leaving aside their formidable mathematical

complexity, is that they apply at an energy scale where gravitational effects are

comparable to those of the gauge interactions, i.e. at energies defined by the so-

called Planck mass MP, which is given by

MP ¼ �hc

G

� �1=2

¼ 1:2 � 1019 GeV=c2; ð9:16Þ

where G is the gravitational constant.4 This energy is so large that it is difficult to

think of a way that the theories could be tested at currently accessible energies, or

even indeed at energies accessible in the conceivable future. Their appeal at

present is, therefore, the mathematical beauty and ‘naturalness’ that their sponsors

claim for them. Needless to say, experimentalists will remain sceptical until

definite experimental tests can be suggested and carried out.

9.1.4 Particle astrophysics

Particle physics and astrophysics interact in an increasing number of areas and the

resulting field of particle astrophysics is a rapidly expanding one. The interactions

are particularly important in the field of cosmology where, for example, the

detection of neutrinos can provide unique cosmological information. Another

reason is because the conditions in the early Universe implied by standard

cosmological theories (the big bang model) can only be approached, however

remotely, in high-energy particle collisions. At the same time, these conditions

occurred at energies that are relevant to the grand unified and SUSY theories of

particle physics and so offer a possibility of testing the predictions of such

theories. This is important because, as mentioned above, it is difficult to see

other ways of testing such predictions. For reasons of space, we will discuss just

three examples of particle astrophysics. We will return to the question of

conditions in the early universe in Section 9.2.2.

4This implies that strings have dimensions of order ‘P  �h=MPc ¼ 1:6 � 10�35 m.
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Neutrino astrophysics

We have seen in Chapter 3 that cosmic rays and emissions from the Sun are

important sources of information about neutrinos and have led us to revise the view

that neutrinos are strictly massless, as is assumed in the standard model. At the

same time, there is considerable interest in studying ultra high-energy neutrinos as

a potential source of information about galactic and extra-galactic objects and

hence cosmology in general.

One of the first neutrino astrophysics experiments was the observation of

neutrinos from a supernova. Supernovas are very rare events where a star literally

explodes with a massive output of energy over a very short timescale measured in

seconds. The mechanism for this (briefly) is as follows. If a star has a mass greater

than about 11 solar masses, it can evolve through all stages of fusion, ending in a

core of iron surrounded by shells of lighter elements. Because energy cannot be

released by the thermonuclear fusion of iron, the core will start to contract under

gravity. Initially this is resisted by the pressure of the dense gas of degenerate

electrons in the core (electron degeneracy pressure), but as more of the outer core is

burned and more iron deposited in the core, the resulting rise in temperature makes

the electrons become increasingly relativistic. When the core mass reaches about

1.4 solar masses (the so-called Chandrasekhar limit), the electrons become ultra

relativistic and they can no longer support the core. At this point the star is on the

brink of a catastrophic collapse.

The physical reactions that lead to this are as follows. Firstly, photodisintegra-

tion of iron (and other nuclei) takes place,

� þ 56Fe ! 134He þ 4n; ð9:17Þ

which further heats the core and enables the photodisintegration of the helium

produced, i.e.

� þ 4He ! 2p þ 2n: ð9:18Þ

As the core continues to collapse, the energy of the electrons present increases to a

point where the weak interaction

e� þ p ! n þ �e ð9:19Þ

becomes possible and eventually the hadronic matter of the star is predominantly

neutrons. This stage is therefore called a neutron star. The collapse ceases when

the gravitational pressure is balanced by the neutron degeneracy pressure. At this

point the radius of the star is typically just a few kilometres. The termination of the

collapse is very sudden and as a result the core material produces a shock wave

that travels outwards through the collapsing outer material, leading to a supernova

(actually a so-called Type II supernova). Initially there is an intense burst of �e
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with energies of a few MeV from the reaction of Equation (9.19). This lasts for a

few milliseconds because the core rapidly becomes opaque even to neutrinos and

after this the core material enters a phase where all its constituents (nucleons,

electrons, positrons and neutrinos) are in thermal equilibrium. In particular, all

flavours of neutrino are present via the reactions

� Ð eþe� Ð �‘���‘; ð‘ ¼ e; �; Þ ð9:20Þ

and these will eventually diffuse out of the collapsed core and escape. Neutrinos

of all flavours, with average energies of about 15 MeV, will be emitted in all

directions over a period of 0.1–10 s. Taken together, the neutrinos account for

about 99 per cent of the total energy released in a supernova. Despite this, the

output in the optical region is sufficient to produce a spectacular visual effect.

The first experiments to detect neutrinos from a supernova were an earlier

version of the Kamiokande experiment described in Chapter 3 and the IMB

collaboration, which also used a water C̆erenkov detector. Both had been

constructed to search for proton decay as predicted by GUTs, but by good fortune

both detectors were ‘live’ in 1987 at the time of a spectacular supernova explosion

(now named SN1987A) and both detected a small number of antineutrino events.

The data are shown in Figure 9.7. The Kamiokande experiment detected 12 ���e

events and the IMB experiment eight events, both over a time interval of

approximately 10 s and with energies in the range 0–40 MeV. These values are

consistent with the estimates for the neutrinos that would have been produce by the

reaction in Equation (9.20) and then diffused from the supernova after the initial

pulse.

Figure 9.7 Data for neutrinos from SN1987A detected in the Kamiokande and IMB experiments:
the threshold for detecting neutrinos in the experiments are 6 MeV (Kamiokande) and 20 MeV
(IMB) -- in each case the first neutrino detected is assigned the time zero
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The data can be used to make an estimate of the neutrino mass as follows. The

time of arrival on Earth of a neutrino i is given by

ti ¼ t0 þ
L

c

� �
1 þ m2c4

2E2
i

� �
; ð9:21Þ

where t0 is the time of emission from the supernova and ðm; EiÞ are the mass and

total energy of the neutrino. Thus

ð�tÞij 	 ti � tj ¼
L m2c4

2c

1

E2
i

� 1

E2
j

" #
: ð9:22Þ

Using data for pairs of neutrinos, Equation (9.22) leads to the result

m���e
� 20 eV; ð9:23Þ

which, although larger than the value from tritium decay, is still a remarkable

measurement.

The neutrinos from SN1987A were of low energy, but there is also a great

interest in detecting ultra high-energy neutrinos. For example, it is known that

there exist point sources of �-rays with energies in the TeV range, many of which

have their origin within so-called active galactic nuclei. It is an open question

whether this implies the existence of point sources of neutrinos with similar

energies. The neutrinos to be detected would be those travelling upwards through

the Earth, as the signal from downward travelling particles would be swamped

by neutrinos produced via pion decay in the atmosphere above the detector. Like

all weak interactions the intrinsic rate would be very low, especially so for such

high-energy events, but this is partially compensated by the fact that the �–nucleon

cross-section increases with energy, as we showed in Chapter 6.

To detect neutrinos in the TeV energy range using the C̆erenkov effect in water

requires huge volumes, orders-of-magnitude larger than used in the Super-

Kamiokande detector. An ingenious solution to this problem is to use the vast

quantities of water available in liquid form in the oceans, or frozen in the form of

ice at the South Pole, and several experiments have been built, or are being built,

using these sources. The largest so far is the Antartic Muon and Neutrino Detector

Array (AMANDA) which is sited at the geographical South Pole. A schematic

diagram of this detector is shown in Figure 9.8.

The detector consists of strings of optical modules containing photomultiplier

tubes that convert the C̆erenkov radiation to electrical signals. The enlarged inset

in Figure 9.8 shows the details of an optical module. They are located in the ice at

great depths by using a novel hot-water boring device. The ice then refreezes

around them. In the first phase of the experiment in 1993/94 (AMANDA-A) four

detector strings were located at depths of between 800 and 1000 m. The ice at
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these depths is filled with air bubbles and so the detectors are not capable of

precision measurements, but they proved the validity of the technique. In the next

phase a few years later (AMANDA-B10), 10 more strings containing 320 optical

modules were located at depths between 1.5 and 2.0 km, where the properties of

ice are suitable for muon detection. Finally, the current version of the detector

(AMANDA-II) has an additional nine strings extending to a depth of 2.35 km. In

total there are 680 optical modules covering a cylindrical volume with a cross-

sectional diameter of 120 m.

The AMANDA detector has successfully detected atmospheric neutrinos and

has produced the most detailed map of the high-energy neutrino sky to date.

However, no source of continuous emission has yet been observed that would be a

candidate for a point source.

Figure 9.8 A schematic diagram of the AMANDA neutrino detector
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AMANDA can detect neutrinos with energies up to about 1015 eV, but an even

bigger detector, called IceCube, is under construction at the South Pole. This uses 80

strings each containing 60 optical modules regularly spaced over an area of 1 km2 at

depths of between 1.4 and 2.4 km (the volume covered by AMANDA is only

1.5 per cent of the volume to be covered by IceCube) and will be capable of detecting

neutrinos with energies as high as 1018 eV. IceCube is due for completion in 2010.

Dark matter

The modern description of the universe is based on the observation that it is

expanding and assumes that the origin of this is a sudden explosion at some time in

the past. For this reason the description is called the big bang model. However, this

does not mean an explosion from a singular space–time point. Because the universe

appears isotropic at large distance scales, there can be no preferred points in space

and so the big bang must have occurred everywhere at once, thus ensuring that the

expansion appears the same to all observers irrespective of their locations. Two pieces

of evidence for this model are the existence of a cosmic background radiation

consistent with a black-body spectrum at an effective temperature of 2.7 K, and the

cosmic abundance of light elements.5 Whether the expansion will continue indefi-

nitely depends on the average density of the universe �. The critical density �c at

present times, below which the expansion will continue indefinitely, and above which

it will eventually halt and the universe start to contract, can be written

�c ¼
3H2

0

8
G
 10�26 kg m�3 � 5:1 ðGeV=c2Þm�3; ð9:24Þ

where G is the gravitational constant and we have used the best current value for

Hubble’s constant H0 to evaluate Equation (9.24). In the most popular version of

the model, called the inflationary big bang model, the relative density

� 	 �=�c ¼ 1: ð9:25Þ

The relative density is conveniently written as the sum of three components,

� ¼ �r þ �m þ ��; ð9:26Þ

where �r is the contribution due to radiation, �m is that due to matter and �� is

related to a term in the equation governing the evolution of the universe that

5For an accessible discussion of the big bang model and other matters discussed in this section see, for

example, Pe03.
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contains a so-called cosmological constant �. The latter contribution can be

estimated from various cosmological observations, including recently measured

temperature fluctuations in the microwave background radiation. Its value is about

0.7 and is the largest contribution to �. The value of the radiation term is of the

order of 10�5 and so makes a negligible contribution to �. Finally, the total matter

density contribution can be deduced from the gravitational energy needed for

consistency with observations on the rotation of galaxies and the kinematics of

large-scale structures in the universe. Its value is about 0.3. Thus we see that the

value of � is consistent with Equation (9.25), although the uncertainties are

considerable. An unsatisfactory feature is that the origin of the largest term, also

referred to as dark energy, is totally unknown.

The contribution of baryons to the mass term may be inferred from knowledge

of how nuclei are formed in the universe (nucleosynthesis) and its value is about

0.05, of which only about 20 per cent is accounted for in the form of stars, gas and

dust, i.e. in the form of visible luminous baryonic matter. There could be other

sources of non-luminous baryonic matter, for example in the form of brown dwarfs

and small black holes the size of planets, and there is experimental evidence that

such ‘massive, compact halo objects’ (MACHOs) do indeed exist, but in unknown

quantities. However, it is not thought that they alone can account for the ‘missing’

matter. Thus we are forced to conclude that the bulk of matter, as much as

85 per cent, is non-baryonic. It is referred to collectively as dark matter.

There are several dark matter candidates. Massive neutrinos might be one

possibility. Such particles would have to be heavy enough to have been non-

relativistic in the early stages of the universe (so-called cold dark matter), because

if they were relativistic (hot dark matter) they would have rapidly dispersed,

giving rise to a uniform energy distribution in space. Calculations suggest that in

this case there would have been insufficient time for the observed galaxies to have

formed. Although neutrinos may still play a minor role in contributing to the

matter deficit, it is now believed that the bulk of the contribution comes from cold

dark matter in the form of ‘weakly interacting massive particles’ (WIMPs).

Although there are no known particles that have the required properties, for

various reasons the most likely candidates are SUSY particles and in particular the

lightest such state, usually taken to be the neutralino.

Experiments such as AMANDA can search for WIMPs, but they were not

designed to do so as a priority. However, several dedicated experiments have been

mounted to detect WIMPs by detecting the recoil energy of interacting nuclei,

which is about 50 keV. Such recoils can, in principle, be detected in a number of

ways. For example, in semiconductors such as GaAs, free charge will be produced

that can be detected electronically; in a scintillator such as NaI the emission of

photons can be detected using photomultipliers; and in crystals at low temperatures

the energy can be converted to phonons that can be detected by a very small rise in

temperature. In practice, the problems are formidable because of the very low

expected event rate. This can be calculated from the expected WIMP velocities

and assumed masses. For example, if WIMPs are identified with neutralinos, then
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expectations range from 1–10 events per kg of detector per week. This is very

small compared with the event rate from naturally occurring radioactivity,

including that in the materials of the detectors themselves. The former is

minimized by working deep underground to shield the detector from cosmic

rays and in areas with geological structures where radioactive rocks are absent; and

the latter is minimized by building detectors of extreme purity. Finally, WIMP

recoils should exhibit a small seasonal time variation due to the motion of the

Earth around the Sun and the motion of the Sun within the galaxy. One experiment

claims to have seen this variation. Present experiments are at an early stage, but

some versions of SUSY theories with low-mass neutralinos can probably already

be ruled out.6

Matter–antimatter asymmetry

One of the most striking facts about the universe is the paucity of antimatter

compared with matter. There is ample evidence for this. For example, cosmic

rays are overwhelmingly composed of matter and what little antimatter is present

is compatible with its production in intergalactic collisions of matter with photons.

Neither do we see intense outbursts of electromagnetic radiation that would

accompany the annihilation of clouds of matter with similar clouds of antimatter.

The absence of antimatter is completely unexpected because, in the original

big bang, it would be natural to assume a total baryon number B ¼ 0.7 Then

during the period when kT was large compared with hadron energies, baryons

and antibaryons would be in equilibrium with photons via reversible reactions

such as

p þ �pp Ð � þ � ð9:27Þ

and this situation would continue until the temperature fell to a point where the

photons no longer had sufficient energy to produce p�pp pairs and the expansion had

proceeded to a point where the density of protons and antiprotons was such that

their mutual annihilation became increasingly unlikely. The critical temperature is

kT � 20 MeV and at this point the ratios of baryons and antibaryons to photons

‘freezes’ to values that can be calculated to be

NB=N� ¼ NB=N�  10�18; ð9:28Þ

6An up-to-date review of the status of dark matter searches is given in Pe03 and Ei04.
7One could of course simply bypass the problem by arbitrarily assigning an initial non-zero baryon number

to the universe, but it would have to be exceedingly large to accommodate the observed asymmetry, as well

as being an unaesthetic solution.
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with of course NB=NB ¼ 1. These ratios would then be maintained in time,

whereas the actual observed ratios are

NB=N� � 10�9; NB=N�  10�13; ð9:29Þ

with NB=NB  10�4. The simple big bang model fails spectacularly.

The conditions whereby a baryon–antibaryon asymmetry could arise were first

stated by Sakharov. It is necessary to have: (a) an interaction that violates baryon

number conservation, (b) an interaction that violates charge conjugation, and (c) a

non-equilibrium situation must exist at some point to ‘seed’ the process. We have

seen in Chapter 6 that there is evidence that CP is violated in the decays of

some neutral mesons, but its source and size are not compatible with that required

for the observed baryon–antibaryon asymmetry and we must conclude that there

is another, as yet unknown, source of CP violation. Likewise a method for

generating a non-equilibrium situation is also unknown, although it may be that

the baryon-violating interactions of GUTs, which are necessary for condition (a),

may provide one. Clearly, matter–antimatter asymmetry remains a serious

unsolved problem.

9.2 Nuclear Physics

Despite more than a century of research, nuclear physics is by no means a ‘closed’

subject. Even the basic strong nucleon–nucleon force is not fully understood at a

phenomenological level, let alone in terms of the fundamental quark–gluon strong

interaction. Indeed one of the outstanding problems of nuclear physics is to

understand how models of interacting nucleons and mesons arise as approxima-

tions to the quark–gluon picture of QCD and where these two descriptions merge.

A related question is whether the nuclear environment modifies the quark–gluon

structure of nucleons and mesons. It follows from our lack of knowledge in these

areas that the properties of nuclei cannot at present be calculated from first

principles, although some progress has been made in this direction. Meanwhile, in

the absence of a fundamental theory to describe the nuclear force, we have seen

in earlier chapters that specific models and theories are used to interpret the

phenomena in different areas of nuclear physics. Current nuclear physics models

must break down at very high energy-densities and at sufficiently high tempera-

tures the distinction between individual nucleons in a nucleus should disappear.

This is the regime that is believed to have existed in the very early times of the

universe and is of great interest to astrophysicists.

Nuclear physics is a mature subject and has implications in many other areas of

physics and wide applications in industry, biology and medicine that are at the core

of the subject. Examples include: the nuclear physics input required to understand

many processes that occur in cosmology and astrophysics, such as supernovae and
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the production of chemical elements; the many applications of NMR, such as

studies of protein structure and its use in medical diagnostics; and industrial

applications such as the production of power. In Chapter 8 we touched on just three

applications and the ‘applied’ problems to be solved in those – safe disposal of

nuclear waste, better medical imaging diagnostics and therapeutics, controlled

nuclear fusion, etc. – are as demanding as the ‘fundamental’ ones, simply different.

They are also vitally important for the future well-being of everyone. In the

sections that follow we will take a brief look at a few of these pure and applied

problems.8

9.2.1 The structure of hadrons and nuclei

In the standard model, the structure of nucleons is specified in terms of quarks and

gluons, but questions remain. One concerns the spin of the proton. This must be

formed from combining the spins and the relative orbital angular momenta of its

constituent quarks and gluons. Measuring these various contributions can be done

in deep inelastic scattering experiments of the type described in Chapter 5, but

using spin-polarized targets, sometimes with spin-polarized beams. Experiments to

date have shown the surprising result that the spins of all the quarks and antiquarks

together contribute only about 20–30 per cent to the total spin of the proton (the

so-called ‘proton spin crisis’). There is some information that the angular

momentum contributions of the quarks play an important role, but very little is

known about the contribution of the total angular momentum of the gluon. This is

an area where the type of experiment that can be pursued at the CEBAF accelerator

described in Section 4.2.2 will be vital in unravelling the details of each

contribution and thus further testing QCD.

Nucleons and mesons are the building blocks of nuclear matter, but there is no

guarantee that the properties of these particles in nuclei are identical to those

exhibited as free particles. According to QCD the properties of hadrons are

strongly influenced by the sea of quark–antiquark pairs and gluons that we have

seen in Chapter 5 are always present around confined quarks due to quantum

fluctuations. However, these influences could well be different in the case of

closely spaced nucleons in nuclear matter from those for a free nucleon. Indeed

there are theoretical predictions that the probability of finding a qq pair decreases

as the density of the surrounding nuclear matter increases. If such effects could be

established they would have a profound influence on our understanding of quark

confinement.

8A comprehensive overview of the field as at 1999 is a report of the Board on Physics and Astronomy of the

National Research Council, USA: ‘‘Nuclear Physics: The Core of Matter, The Fuel of Stars’’, National

Academy Press, Washington, D.C. (1999) – NRC99. Other useful sources are the publications of the Nuclear

Physics European Collaboration Committee (NuPecc) and in particular its ‘‘Report on Impact, Applications,

Interactions of Nuclear Science’’ (2002) and the NuPecc Long-Range Plan 2004.

316 CH9 OUTSTANDING QUESTIONS AND FUTURE PROSPECTS



Another consequence of these predictions is that the effective masses of hadrons

will in general change in nuclear matter, as will their sizes and interactions. There

is already some evidence in favour of this suggestion from deep inelastic scattering

from nucleons (see Section 5.7) where the structure functions obtained using

targets of light and heavier nuclei differ slightly, even after allowing for calculable

effects such as nuclear binding energies and the internal Fermi motion of the

nucleons. (This is the so-called ‘EMC effect’, named after the group that first

discovered it.) It is illustrated in Figure 9.9, which shows the ratios FCa
2 =FD

2 and

FC
2 =FD

2 , i.e. the F2 nucleon structure function deduced from calcium and carbon

targets divided by the structure function deduced using a deuterium target.

A number of other experiments have been performed to detect the effect of the

nuclear environment on effective masses (for example, by determining the mass of

mesons produced in nuclear matter) but nothing significant has been found

elsewhere. This will be a continuing field of study.

It is also important to study how the interactions of lower-energy hadrons

change when they are embedded in nuclear matter. For example, there is

considerable interest in the interactions of hadrons containing a strange valence

quark. (One reason is that they may play an important role in the high-density

matter present in neutron stars.) The lightest mesons that contain a strange valence

quark or antiquark are the kaons and these can be implanted in nuclei by nuclear

reactions that substitute a strange quark for an up or down quark. (This is an

example of a so-called ‘hypernucleus’.) Experiments at CEBAF and other

Figure 9.9 The ratios of the F2 structure function found from nuclear targets to that found
from deuterium, as a function of the scaling variable x (Carbon data from Ar95, calcium data from
Am95)
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laboratories will provide information on the interaction of implanted, negatively

charged kaons with the surrounding nucleons in a nucleus.

The facilities at CEBAF and RHIC (the relativistic heavy ion accelerator

described in Section 4.2.2) will enable a range of new experimental possibilities

to be explored, in addition to those above. One is the intriguing question of the

existence of glueballs (mesons made of gluons alone) and hybrid quark–gluon

mesons, mentioned in Section 5.2 and vital for the theory of confinement via QCD.

The results may well help to find a solution to one of the central questions posed

at the start of this section: how are the properties of the strong nuclear force related

to the standard model formulation in terms of quarks and gluons?

There are also questions to be answered in the realm of nuclear structure,

many with implications elsewhere. For example, can the properties of nuclei

be related to those of an underlying nucleon–nucleon interaction and can they be

derived from many-body theory? At present we have a good knowledge from

scattering experiments of the long-range part of the nucleon–nucleon force in

terms of meson exchanges (see Section 7.1), but models that fit data differ

about the short-range part. This is not surprising because at separations of less

than 1 fm a description in terms of quarks and gluons is necessary and the

interface with QCD is critical. Experiments on meson production in nucleon–

nucleon collisions are sensitive to the short-range part of the forces and should

provide information on this region. On the theoretical side, advances in computer

power and calculational techniques have enabled the binding energies of all light

nuclei to be successfully calculated using the best available parameterization of

the nucleon–nucleon force. However, this is only possible by including an

explicit weaker three-nucleon force, which has to be adjusted to obtain the

correct binding energies. A satisfactory theory of the three-body force between

nucleons is lacking. This work also needs to be extended to heavier nuclei, but

present computer power is inadequate to the task using current computational

techniques.

One approach to the latter problem is to work within the framework of the shell

model, where each nucleon moves in the average potential (the mean field) generated

by its interactions with all the other nucleons in the nucleus. We have seen the

successes of this approach in simple applications in Section 7.3. When combined

with further computational improvements, it has enabled nuclear structure calcula-

tions to be extended to A ¼ 56. This is an important point for astrophysics, because

the details of the nuclear reactions of iron control the critical process occurring in the

collapse of a supernova, as we have seen above in Section 9.1.4.

Very often in science new insights are achieved by pushing experiments to their

limits. Nuclear physics is no exception. One such limit is the quest for super-heavy

elements. Discovery of elements beyond those currently known could explore

questions about possible limits on nuclear charges and masses. According to

nuclear models there should exist a new group of super-heavy elements with

charges Z in the range approximately 114 to 126 that are stabilized by shell effects.
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The heaviest element made to date has Z ¼ 116 and was produced by fusion in the

reaction 48
20Ca þ 248

96Cm ! 292
116Uuh þ 4n (the symbol Uuh is used as the element has

yet to be named). Strenuous efforts are being made to reach the predicted new

island of relative stability. This will require facilities to produce exotic short-lived

nuclear beams and there is much development work going on in this area. One

example of how such a beam can be formed is shown in Figure 9.10. The other

main method employs two independent accelerators: a high-power driver accel-

erator for production of the short-lived nuclei in a thick target that is directly

connected to an ion-source, and a second post-accelerator. Radioactive atoms

diffuse out of a hot target into an ion source where they are ionized for acceleration

in the post-accelerator.

Fewer than 300 stable nuclei occur naturally (see Figure 2.7) and outside the

stability region nuclei decay by the mechanisms discussed in Chapters 2 and 7. In

the uncharted regions there are many fundamental questions to be answered,

such as what are the limiting conditions under which nuclei can remain bound

and do new structures emerge near these limits? The answers to these questions

are important because theoretical descriptions of nuclei far from the line of

stability suggest that their structures are different from what has been seen in

stable nuclei. Nuclei far from stability also play an important role in astro-

physics, for example in understanding the processes in supernovae and how

elements are synthesized in stars. Another limiting region that is expected to

yield interesting information is that of angular momentum. Super-deformed

nuclei have been discovered with highly elongated shapes and very rapid

rotational motion. The states associated with these shapes are extremely stable.

Further investigation of these is expected to yield important information about

nuclear structure.

Figure 9.10 An energetic particle (typically several tens of MeV/u to GeV/u) is fragmented in
a nuclear reaction in a thin target, and radioactive reaction products are separated in-flight and
transported as a secondary beam to the experiment
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9.2.2 Quark--gluon plasma, astrophysics and cosmology

We have touched on the implications of nuclear physics for astronomy at various

places above. Here we look at other areas where improvements in our nuclear

physics knowledge would help astrophysics and cosmology.

In QCD, quarks and gluons are confined within hadrons, although the nature of

this confinement is still not fully understood. At extremely high energy-densities

the quarks and gluons are expected to become deconfined across a volume that

is large compared with that of a hadron. They would then exist in a new state

of matter, called a quark–gluon plasma, which is the state of nuclear matter

believed to have existed in the first few microseconds after the big bang (see

Figure 9.11).

It is possible to probe this state of matter using the RHIC facility (and also in a

few years at the LHC when its construction is complete). RHIC typically collides

two counter-circulating beams of fully-stripped gold ions at a maximum energy of

200 GeV per nucleon. If the ions collide centrally (i.e. head-on) several thousand

final-state particles are produced. An example of an event seen in the STAR

detector (which was shown in Figure 4.20) is illustrated in Figure 9.12. A key

Figure 9.11 Stages in the formation of a quark--gluon plasma and subsequent hadron
emission: two heavy nuclei collide at high energies (a) and interact via the colour field (b); the
very high energy-density produced causes the quarks and gluons to deconfine and form a plasma
that can radiate photons and lepton pairs (c); finally, as the plasma cools, hadrons condense and
are emitted (d) (after NRC99, with permission of the National Academics Press)
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question is whether the energy-density in the collisions is sufficient to have created

a quark–gluon plasma and its subsequent cooling phases. There are many

signatures for this, including the relative abundances of different final-state particle

types (for example, production of the c�cc meson J=� would be suppressed) and

measurements are all consistent with the expected temperature at which hadrons

would be formed (about 176 MeV, corresponding to about 1012 K, close to that

predicted by QCD) and that the temperature of the initial fireball is considerably

higher.

Future experiments at RHIC will play a crucial role in understanding the basic

nature of deconfinement. Questions to be addressed include: what is the nature of

matter at the highest densities (very recent experiments at RHIC suggest that the

plasma behaves more like a liquid than a gas); under what conditions can a quark–

gluon plasma be made; and what are the rules governing the evolution and the

transition to and from this kind of matter?

Figure 9.12 View of a 200 GeV gold--gold interaction in the STAR detector at the RHIC
accelerator (Courtesy of Brookhaven National Laboratory)
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Information gathered from high-energy heavy-ion collisions is potentially

important in astrophysics. It will help constrain the equation of state that relates

the density of matter in neutron stars and supernovae (as well as in the first

microseconds of the early universe) to pressure and temperature. This information

will place stronger theoretical constraints on the maximum mass of a neutron star,

improving the ability to distinguish neutron stars and black holes.

The synthesis of nuclei in the very early universe is one of the cornerstones

of modern astrophysics, but even here there are still surprises. For example, in

the discussion of stellar fusion in Chapter 8, we saw that the production of

heavy elements involves the rare reaction 3 ð4HeÞ ! 12C (Equation (8.31)), the

occurrence of which depends critically on the existence of a particular excited

state of 12C. We also noted that very recently another excited state has been

discovered at a somewhat higher energy which has the effect of significantly

altering the energy dependence (or equivalently the temperature dependence) of

this reaction from the values usually assumed. This could have major conse-

quences for models and theories of stellar evolution. Another recent experiment

has measured for the first time the lifetime of the doubly-magic nucleus 78Ni and

finds it to be shorter than expected, implying that supernova explosions may

produce gold and other heavier elements much faster than had previously been

thought. This is important because 78Ni is believed to produce more than half the

elements heavier than iron in the universe. A reaction of great current interest is

the synthesis of 16O from the reaction of 4He with 12C (Equation (8.32)), which

determines the relative sizes of the carbon and oxygen shells of massive stars that

later explode in supernovae. The sizes of these shells are a crucial factor in

predicting the nucleosynthesis that occurs during the explosion. Nuclear physi-

cists are currently trying to measure the rate of this reaction with sufficient

accuracy to constrain astrophysical models.

One of the outstanding theoretical challenges in nuclear astrophysics is to

understand the process by which a massive, fully-evolved star ejects its mantle

while its core collapses to a neutron star or black hole. In Section 9.1.4 above we

gave a simple description of this process involving the collapse of the iron core to

several times the density of nuclear-matter, thereby producing a powerful shock

wave that travels outward through the mantle of the star. This shock wave, aided

by the heating of the matter by neutrinos emitted by the newly formed neutron

star, is responsible for the ejection of the mantle. This is the broad-brush picture,

but there is still no satisfactory theory that can account for the observed

frequency of supernovae. Efforts to understand dense nuclear matter and to predict

the properties of neutron stars depend on knowledge of nuclear interactions gained

in the laboratory. Heavy-ion collisions will help us better understand the interac-

tions of mesons in hot, dense nuclear matter, which is crucial to the issue of meson

condensation in neutron stars. Future studies of neutron-rich nuclei, near the

limit of stability, in radioactive ion beam facilities, as mentioned in Section 9.2.1

above, will allow more accurate modelling of nuclear forces in neutron star crusts.
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9.2.3 Symmetries and the standard model

An important symmetry that can be tested in nuclear physics is time reversal. We

have seen in Section 6.6 that CP invariance is violated in the weak decays of K and

B mesons and by inference so is T invariance, provided CPT invariance holds.

However, we have also seen in Section 9.1.4 above that the mechanism of violation

that can explain meson decays is unable to explain the observed matter/antimatter

asymmetry in the universe. Thus it is likely there exists another CP-violating

mechanism and hence another source of T violation.

There are several ways in principle of exploring CP violation in the context of

atomic and nuclear physics. One way involves antihydrogen. This was first

produced in a controlled experiment in 2002 by mixing cold antiprotons with a

dense positron plasma confined by electromagnetic fields in a so-called ‘Penning

trap’. If atoms of antihydrogen could be trapped for extended periods their

properties could be compared with those of hydrogen and this might shed light

on matter–antimatter asymmetry. CP violation can also be probed by searching for

electric dipole moments (EDMs) of the neutron, atoms or the electron. In the case

of atoms, an EDM could arise if the electron had an electric dipole moment or if

there were a T-violating interaction within the nucleus. Static EDMs are forbidden

if T invariance is exact and so a non-zero value would imply CP violation,

assuming CPT invariance holds. The present 90 per cent confidence limit on the

EDM dn of the neutron is dn < 6:3 � 10�26 e cm and that for the electron

is de < 1:6 � 10�27 e cm. Improving these presents formidable experimental

challenges. Nevertheless, several experiments are planned or are underway to

measure EDMs, with the aim of reducing the bounds to regions where they could

test the predictions of current theories. For the standard model these are

dn  10�31 e cm and de  10�38 e cm, although some extensions of the standard

model discussed in Section 9.1.3 above predict considerably larger values. Limits

on the existence of atomic and neutron EDMs already provide constraints on

some of the most plausible extensions to the standard model. It is also possible that

T-violation might show up in the decay of an unstable system. Modern experiments

are searching for T-violating correlations in the �-decay of neutrons, mesons and

particular nuclei.

Atomic/nuclear physics can also provide information on the standard model

in other areas of the weak interactions. For example, a recent (2005) study of the

�-decay of a metastable state of 38K in an atomic trap has enabled severe limits to

be placed on a possible spin-0 particle to augment the spin-1 W-meson exchange.

The mixing between the weak and electromagnetic interactions can also be

studied. This is characterized by the Weinberg angle, which can be measured in

the parity-violating interaction between electrons and the nuclei of particular

atoms. This was mentioned at the end of Section 6.7. Parity mixing has been seen

in several atomic systems. The best measurement at present has been made using
133Cs atoms, although the limits on the Weinberg angle do not yet compete with
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those obtained from particle physics experiments. Other experiments plan to study

this effect in atomic francium, where the parity-mixing effect should be about 18

times larger. (The effect of an electric dipole moment of the electron is also

expected to be greatly enhanced in francium.) Unfortunately, francium is an

extremely rare element with no stable isotopes and so experiments will be carried

out with a small number of radioactive atoms collected in a magneto-optic trap.

9.2.4 Nuclear medicine

In Section 8.3.1, we reviewed the use of radiation techniques for cancer therapy.

We also briefly mentioned that in principle heavier particles had advantages over

photons. For example, because of the form of the Bragg curve, protons deposit

more of their energy where they stop, not where they enter the body. Also their

depth of penetration can be precisely controlled so that they stop within the

tumour, thus allowing radiologists to increase the radiation dose to the tumour

while reducing the dose to healthy tissues.

This is illustrated in Figure 9.13, which compares the treatment plans (i.e.

simulations of the pattern of radiation that the patient would receive) for treating a

case of advanced pancreatic cancer. Figure. 9.13(a) shows an X-ray plan using

a ‘state-of-the-art’ nine-beam X-ray system. The amount of radiation received by

nearby organs and other critical areas (kidneys, liver and spinal chord) is seen to be

a substantial fraction of the dose received by the region of the cancer. This is

contrasted with the results of Figure 9.13(b), which is for treatment using a

single proton beam. Although there is some unwanted exposure at the input site

Figure 9.13 Treatment plans for a large pancreatic tumour: (a) using a nine-beam X-ray
system; (b) using a single proton beam. The diffuse grey areas in (a) indicate the spread of
energy deposition outside the region of the tumour (adapted from Zu00, copyright Elsevier, with
permission)
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(which could be lessened by a system of multiple beams or a rotating beam), the

radiation energy is concentrated much more within the area of the tumour.

Although they have great potential, the problem with using particle beams is the

practical one of access to suitable accelerators. There is considerable effort being

made to design proton accelerators for cancer therapy and more than 20 centres

now exist worldwide specifically for proton therapy. Research is also continuing

with other forms of radiation therapy using neutrons and heavy ions. Neutrons

produce a high linear energy transfer (LET) and this overcomes a cancer cell’s

resistance to radiation damage more effectively than low-LET photon, electron or

proton radiation. Thus neutrons appear to be more biologically effective in killing

cancers than many other forms of radiation, especially in oxygen-poor cells.

Beams of heavy ions, such as carbon or neon, with energies of 400–800 MeV per

nucleon, are nearly ideal dose delivery vehicles for radiation therapy. Limited

studies with carbon and neon beams have been conducted and doubtless these

studies will increase in the future.

Progress in the NMR technique in medicine continues. For example, recent

advances have enabled a variation known as functional MRI (fMRI) to be

developed that exploits the paramagnetic behavior of deoxyhaemoglobin in red

blood cells. When in a magnetic field, a blood vessel containing deoxyhaemoglo-

bin distorts the field in its immediate environs, with the degree of distortion

increasing with the concentration of deoxyhaemoglobin. This distortion affects the

behaviour of water protons in the environs and, consequently, the magnetic-

resonance signal arising from these protons. Neural activation of a region of the

brain stimulates increased arterial flow of oxygenated blood, thereby decreasing

the concentration of deoxyhemoglobin in the region. Changes in the magnetic-

resonance signal can be detected and displayed as functional-MRI images. These

so-called BOLD (blood-oxygen-level dependent) images enable studies to be made

of the way the brain works by taking MRI images in real time while the patient is

performing specific tasks. In this way areas of the brain can be studied that are

associated with particular activities or sensations.

As another example, the gases 3He and 129Xe have the magnetic properties

needed for MRI and the atomic structure needed to retain their polarization for

hours at a time. They can be introduced into lungs, allowing MRI studies of lung

function. Because of the strong signal provided by the polarized nuclei in the

gas atoms, the MRI scans are short and can be synchronized with breathing.

Developments are also being made towards general high-speed imaging, which

would be useful for claustrophobic patients and children who are unable to be in

the confined environment of a conventional MRI magnet for sometimes up to an

hour.

Perhaps the greatest potential of all lies in the imaging of nuclei other than

hydrogen, particularly the phosphorus nucleus. Phosphorus is a major constituent

of the molecules adenosine triphosphate (ATP) and phosphocreatine, which

mediate the transfer of energy in living cells. From knowledge of such concentra-

tions it is possible to infer the metabolic status of internal organs, and it may
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eventually be possible to add this capability to an imaging instrument. The future

will undoubtedly see both an improvement in the quality of NMR images and a

growing diversity of applications for nuclear magnetic resonance in clinical

practice.

An area that was not mentioned in Chapter 8 is the use of radioactive nuclear

isotopes produced by accelerators or nuclear reactors in many areas of biological

and biomedical research. For example, by inserting such radioisotopes as 14C and

tritium, it is possible to obtain information on how molecules move through

the body, what types of cells contain receptors, and what kinds of compounds

bind to these receptors. Radioisotopes are also used directly to treat disease and

radioactive tracers are indispensable tools for the new forensic technique of DNA

fingerprinting, as well as for the Human Genome Project.

9.2.5 Power production and nuclear waste

Nuclear fusion still holds the promise of unlimited power without the problem of

radioactive waste, but the road to realization of this goal is long and we are far

from the end. In Section 8.2 we introduced the Lawson criterion as a measure of

how close a design was to the ignition point, i.e. the point at which a fusion

reaction becomes self-sustaining. To date no device has yet succeeded in achieving

the Lawson criterion and much work remains to be done on this important

problem. In recognition of this, at least one major new tokamak machine (to be

built in France) is planned as a global collaboration, but even when the ignition

point is attained, based on experience with fission reactors, it could be many

decades before that achievement is translated into a practical power plant.

In the shorter term and assuming that renewable sources of energy are insufficient

to fulfil the world’s increasing energy needs, it does seem as if power plants based on

fission reactions are the only hope of replacing fossil fuels in the future. The

problems of reactor safety and the safe disposal of radioactive waste are therefore

paramount.

The waste from light-water reactors, the most common type of power reactor,

has two major components: the actinides, i.e. any of the series of radioactive

elements with atomic numbers between 89 and 103 (mainly uranium but also

smaller amounts of heavier elements, the transuranic elements like plutonium and

the minor actinides such as neptunium, americium and curium) and fission

products, which are medium-weight elements from fission processes in the nuclear

fuel. While it is generally agreed that radioactive nuclei with relatively short

lifetimes can be safely stored in deep geological disposal facilities, the same is not

true of waste with very long lifetimes, some of which are water-soluble and so

have the potential to contaminate ground water. An additional problem is the

disposal of material that could be used for nuclear weapons, i.e. 239Pu and 235U.

One option for handling waste with very long lifetimes, which was mentioned as a

theoretical possibility in Section 8.1.3, is to transmute it by neutron reactions into
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shorter-lived, or even stable, isotopes that can be dealt with by conventional

storage.

The idea of using an accelerator to produce materials that can only be made

artificially has been around for more than 40 years, but more recently there has

been considerable interest and research in this idea to ‘incinerate’ nuclear waste

with the aim of reducing the waste lifetimes to less than 100 years. This is referred

to as ADS – Accelerator Driven System. In one proposed scheme, uranium

and most of the plutonium would be separated prior to proton irradiation and

used again as reactor fuel. The most important long-lived components of

the remaining waste would be isotopes of neptunium, americium, curium and

iodine, some with half-lives of 10 000 years or more. The approach would be to

irradiate this material with a new source of fast neutrons produced by spallation

reactions (cf. the discussion of producing neutron beams by this process in

Section 4.2.3) initiated using protons from a high-current accelerator. In this

way the capacity to ‘burn’ long-lived fission products and actnides is greatly

increased, leaving waste with much shorter lifetimes which can be disposed of by

conventional means. The accelerator would deliver a high-power (10–20 mA)

proton beam of about 1 GeV energy to a heavy metal (spallation) target surrounded

by the nuclear waste to be incinerated. The accelerator–waste combination would

be operated at a subcritical level – by itself it could not sustain a chain reaction –

so that no reactor-core meltdown accident could occur.

It has been suggested that this concept might be carried one step further, and a

particle beam might be used to produce additional neutrons directly in a nuclear-

reactor-like core. Versions of this concept have been studied in America and by a

European group. The latter is based on a proposal by Rubbia9 and is called the

Energy Amplifier. In this scheme, the core of the reactor would again be sub-

critical, and the accelerator beams would provide sufficient additional neutrons via

the spallation reaction to run the reactor. An idealized possible set-up is shown in

Figure 9.14.

Because the spallation neutrons would have high energy, a less enriched

element, such as natural thorium, could serve as the fuel. Thorium has the great

advantage over uranium in being an abundant element that does not require costly

isotope separation. Although the thorium fuel would not require enrichment, it

would need to be recharged every 5 years or so. The proposal has a number of

other advantages over a conventional power reactor, including: it is sub-critical

without the spallation neutrons and so is inherently safe – a meltdown or explosion

is not possible; radioactive waste is consumed in the reactor and no long-lived

waste is produced; there is no overlap with the nuclear weapons fuel cycle and so

the energy amplifier cannot be used as the basis for producing materials for nuclear

weapons, making installations politically acceptable worldwide.

9The same man who shared the 1984 Nobel Prize in Physics for the discovery of the W and Z bosons.
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The possible energy flow in a commercial system is shown in Figure 9.15. This

assumes a 1 GeV, 20 ma proton beam requiring about 20 MW of input power. The

latter is taken from the output of the reactor leaving a net electrical output of

580 MW, i.e. a gain factor of about 30.

The current situation on the energy amplifier is that a European collaboration

has shown that initial partitioning at the level of 95–99 per cent is possible

Figure 9.14 Schematic diagram of a possible configuration of an energy amplifier; in this
design the coolant and spallation metal is molten lead (from Sc01, copyright Cavendish Press
Ann Arbor 2001, with permission)

Figure 9.15 Possible energy flows in an energy amplifier system; the conversion efficiencies
are denoted by h
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depending on the actinide species. They have also carried out a number of

successful reactor transmutation and spallation studies and the first full ADS

experiment (TRADE) is currently under construction. This consists of coupling a

cyclotron delivering a 140 MeV, 0.5–1.0 ma proton beam to an existing 1MW

water-cooled reactor sited in Italy and uses a spallation target of tantalum. The

operation date is planned for 2007/08. Additional work is being carried out in

Belgium on coupling a 350 MeV, 5 ma proton beam to a 100 MW subcritical

reactor (the Myrrha experiment) and has already shown that some long-lived

isotopes can be successfully incinerated. Although ADS has enormous potential,

there are still a great many problems to be overcome and questions to be answered.

The estimated time for completion of research and development work and

commencement of an industrial plant based on ADS could be as long as 50 years.
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Appendix A
Some Results in Quantum Mechanics

A.1 Barrier Penetration

Consider the one-dimensional potential shown in Figure A.1(a). Free particles of

mass m and energy E represented by plane waves are incident from the left and

encounter the constant rectangular barrier of height V, where V > E.

In region I ðx < 0Þ, there is an incoming wave eikx, where the wave number k is

given by

�h2k2 ¼ 2mE; ðA:1Þ

and also a wave reflected at the barrier travelling from right to left of the form

e�ikx. Thus the total wavefunction in region I is

 1ðxÞ ¼ Aeikx þ Be�ikx; ðA:2Þ

where A and B are complex constants. Within the barrier, region II ð0 < x < aÞ,
the solution of the Schrödinger equation is a decaying exponential plus an

exponential wave reflected from the boundary at x ¼ a, i.e. the total wavefunction

is

 2ðxÞ ¼ Ce��x þ De�x; ðA:3Þ

where C and D are complex constants and � is given by

�h2�2 ¼ 2mðV � EÞ: ðA:4Þ

Finally, in region III ðx > aÞ to the right of the barrier, there is only an outgoing

wave of the form

 3ðxÞ ¼ Feikx; ðA:5Þ

where again F is a complex constant.
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We are interested in the transmission coefficient T, defined by

T � jF=Aj2: ðA:6Þ

The values of F and A are found by imposing continuity of the wavefunction and

its first derivative, i.e. matching the values of these quantities at the two boundaries

x ¼ 0 and x ¼ a. The algebra may be found in any introductory book on quantum

mechanics.1 The result is

T ¼ 2k�e�ika

2k� coshð�aÞ � iðk2 � �2Þ sinhð�aÞ

����
����
2

: ðA:7Þ

The corresponding incident and transmitted waves are shown in Figure A.1(b)

(the reflected waves are not shown).

For large �a, which corresponds to small penetrations, we can make the

replacement

sinhð�aÞ � coshð�aÞ � 1

2
e�a ðA:8Þ

and hence

T � 4k�

k2 þ �2

� �2

e�2�a: ðA:9Þ

1See, for example, Chapter 6 of Me61.

Figure A.1 Rectangular barrier with (a) wavefunction solutions, and (b) form of the incoming
and outgoing waves; (c) modelling an arbitrary smooth barrier as a series of rectangular barriers
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The first factor is due to the reflection losses at the two boundaries x ¼ 0 and x ¼ a

and the decreasing exponential describes the amplitude decay within the barrier.

The first factor is slowly varying with energy and is usually neglected.

The result of Equation (A.9), ignoring the first factor, may be used to find the

transmission coefficient for an arbitrary smoothly-varying barrier by modelling it

as a series of thin rectangular barriers. This is illustrated in Figure A.1(c). Thus by

replace 2�a by 2
P
�ðxÞ�x and taking the limit of small �x, the summation goes

over to an integral, i.e.

2�a ! 2

ð
dx

2m

�h2
½VðxÞ � E�

� �1
2

ðA:10Þ

and

T � exp �2

ð
dx

2m

�h2
½VðxÞ � E�

� �1
2

" #
: ðA:11Þ

This is the essence of what is known as the WKB approximation in quantum

mechanics. Equation (A.11) was used in Section 7.6 to discuss �-decay and in

Section 8.2.1 to discuss nuclear fusion.

A.2 Density of States

Consider a spinless particle of mass m confined within a cube of sides L and

volume V ¼ L3, oriented so that one corner is at the origin (0,0,0) and the edges

are parallel to the x, y and z axes. If the potential is zero within the box, then the

walls represent infinite potential barriers and the solutions of the Schrödinger

equation must therefore vanish on all faces of the cube. It is straightforward to

show that the solutions of the Schrödinger equation satisfying these boundary

conditions are standing waves of the form

 ðx; y; zÞ ¼ C sinðkxxÞ sinðkyyÞ sinðkzzÞ; ðA:12Þ

where C is a constant and the components of the wave number k ¼ ðkx; ky; kzÞ take

the values

kx ¼
nx	

2
; ky ¼

ny	

2
; kz ¼

nz	

2
; ðnx; ny; nzÞ ¼ 1; 2; 3:::: ðA:13Þ

The energy of the particle is given by

E ¼ �h2

2m
ðk2

x þ k2
y þ k2

z Þ ¼
�h2k2

2m
¼ ð�h	Þ2

8m
ðn2

x þ n2
y þ n2

z Þ; ðA:14Þ
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where k � jkj ¼ p=�h and p is the particle’s momentum. Negative values of the

integers do not lead to new states since they merely change the sign of the wave

function Equation (A.12) and phase factors have no physical significance.

The allowed values of k form a cubic lattice in the quadrant of ‘k-space’ where

all the values of ðnx; ny; nzÞ are positive. Since each state corresponds to

one combination of ðnx; ny; nzÞ, the number of allowed states is equal to the

number of lattice points. The spacing between the lattice points is ðL=	Þ, so the

density of points per unit volume in k-space is ðL=	Þ3
. The number of lattice

points nðk0Þ with k less than some fixed value k0 is the number contained within a

volume that for large values of k0 may be well approximated by the quadrant of a

sphere of radius k0, i.e.

nðk0Þ ¼
1

8

4

3
	k3

0

L

	

� �3

¼ V

ð2	Þ3

4	k3
0

3
: ðA:15Þ

Hence the number of points with k in the range k0 < k < ðk0 þ dk0Þ is

dnðk0Þ ¼
V

ð2	Þ3
4	k2

0dk0: ðA:16Þ

The density of states is defined as 
ðk0Þ � dnðk0Þ=dk0 and so is given by


ðk0Þ ¼
V

ð2	Þ3
4	k2

0: ðA:17Þ

Thus 
ðk0Þdk0 is the number of states with k between k0 and k0 þ dk0, or

equivalently


ðpÞdp ¼ 4	V

ð2	�hÞ3
p2dp ðA:18Þ

is the number of states with momentum between p and p þ dp. This is the form

used in Equation (7.1) when discussing the Fermi energy in the Fermi gas model.

Equation (A.18) can also be written in terms of energy using E ¼ p2=2m, when it

becomes


ðEÞdE ¼ 4	V

ð2	�hÞ3
m p dE ðA:19Þ

and this was the form used in discussing �-decay in Section 7.7.2.

Although the above derivation is for a particle confined in a box, the same

technique can be used for scattering problems. In this case we can consider a large

volume V ¼ L3 and impose ‘periodic’ boundary conditions

 ðx þ L; y; zÞ ¼  ðx; y þ L; zÞ ¼  ðx; y; z þ LÞ ¼  ðx; y; zÞ: ðA:20Þ
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Instead of standing waves, the solutions of the Schrödinger equation consistent

with Equation (A.20) are the travelling waves

eik:r ¼ eikxxeikyyeikzz ðA:21Þ

where

kx ¼
2nx	

L
; ky ¼

2ny	

L
; kz ¼

2nz	

L
; nx; ny; nz ¼ 0;�1;�2 :::: ðA:22Þ

The density of lattice points in k-space now becomes ðL=2	Þ3
, but unlike the

standing wave case, permutations of signs in Equation (A.22) do produce new

states and the whole quadrant of lattice points has to be considered. Thus these two

effects ‘cancel out’ and we arrive at the same result for the density of states in

Equations (A.18) and (A.19). This approach was used in discussing the formal

definitions of cross sections in Chapter 1.

All the above is for spinless particles. If the particle has spin then the density of

states must be multiplied by the appropriate spin multiplicity factor, taking account

of the Pauli principle as necessary. Thus, for example, for spin-1
2

particles, with two

spin states, Equation (A.19) becomes


ðEÞdE ¼ 8	V

ð2	�hÞ3
mp dE: ðA:23Þ

A.3 Perturbation Theory and the Second Golden Rule

Without detailed proof, we will outline the derivation from perturbation theory of

the important relationship between the transition probability per unit time for a

process and its matrix element.2

In perturbation theory, the Hamiltonian at time t may be written in general as

HðtÞ ¼ H0 þ VðtÞ; ðA:24Þ

where H0 is the unperturbed Hamiltonian and VðtÞ is the perturbation, which we

will assume is small. The solution for the eigenfunctions of H starts by expanding

in terms of the complete set of energy eigenfunctions unj i of H0, i.e.

 ðtÞj i ¼
X

n

cnðtÞjunie�iEnt=�h; ðA:25Þ

2We follow the derivation given in Chapter 9 of Ma92.
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where En are the corresponding energies. If  ðtÞj i is normalized to unity, then

the squared coefficient cnðtÞj j2 is the probability that at time t the system is in a

state unj i. Substituting Equation (A.25) into the Schrödinger equation leads to a

differential equation for the transition coefficients:

i�h
dcf ðtÞ

dt
¼
X

n

VfnðtÞei!fntcnðtÞ; ðA:26Þ

where the matrix element Vfn � uf

�
jVðtÞ unj i and the angular frequency

!fn � ðEf � EnÞ=�h. If we assume initially ðt ¼ 0Þ that the system is in a state

uij i, then cnð0Þ ¼ ni and the solutions for cf ðtÞ are found by substituting this result

into the right-hand side of Equation (A.22) giving, to first-order in V,

ciðtÞ ¼ 1 þ 1

i�h

ðt

0

Viiðt0Þdt0 ðA:27aÞ

and

cf ðtÞ ¼
1

i�h

ðt

0

Vfiðt0Þei!fiðt0Þdt0 ðf 6¼ iÞ: ðA:27bÞ

For f 6¼ i, the quantity cf ðtÞ
�� ��2 is the probability, in first-order perturbation theory,

that the system has made a transition from state i to state f.

The above is for a general time-dependent perturbation VðtÞ, but the results can

also be used to describe other situations, for example where the perturbation is

zero up to some time t0 and a constant thereafter. In this case, the integrals in

Equations (A.27) can be evaluated and, in particular, Equation (A.27b) gives, again

to first-order in V,

cf ðtÞ ¼
Vfi

�h!fi

1 � ei!fit
� 

ðA:28Þ

and hence the probability of the transition i ! f is

PfiðtÞ ¼ cf ðtÞ
�� ��2¼ 4 Vfi

�� ��2
�h2

sin2ð1
2
!fitÞ

!2
fi

" #
: ðA:29Þ

The function in the square brackets in Equation (A.29) is shown in Figure A.2.
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For sufficiently large values of t, it has the form of a large central peak with

much smaller side oscillations. In this case Pfi is only appreciable if

�h !fi

�� �� ¼ Ef � Ei

�� �� � 2	�h=t ðA:30Þ

and then the square bracket can be replaced by a Dirac delta function3, i.e.

lim
t!1

sin2ð1
2
!fitÞ

!2
fi

¼ 1

2
	�htðEf � EiÞ; ðA:31Þ

where the external factors are to preserve the normalization. Then

PfiðtÞ ¼ t
2	

�h
Vfi

�� ��2ðEf � EiÞ ðA:32Þ

3The Dirac delta function was the first so-called ‘generalized function’. It is defined by the two conditions:

(i) ðx0 � xÞ ¼ 0 if x 6¼ x0 and (ii)
Ðþ1
�1 ðx0 � xÞdx0 ¼ 1: It follows that if f ðxÞ is a function continuous in the

interval x1 < x < x2, then
Ð x2

x1
f ðx0Þðx0 � xÞdx0 ¼ f ðxÞ if x1 < x < x2 or ¼ 0 if x < x1 or x > x2.

Figure A.2 The function
sin2ð1

2!fitÞ
!2

fi

" #
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and the transition probability per unit time is

dPfiðtÞ
dt

¼ 2	

�h
Vfi

�� ��2ðEf � EiÞ: ðA:33Þ

The above assumes that the final state is discrete, but it is more common for the

final states to form a continuum defined by the density of states 
ðEÞ derived in

Section A.2 above. In this case, since 
ðEÞdE is the number of states with energy

between E and E þ dE, we can write the transition rate per unit time dTfi=dt to a

group of states f with energies in this range as

dTfi

dt
¼
ð

dPfiðtÞ
dt


ðEf ÞdEf ¼
2	

�h
Vfi

�� ��2
ðEf Þ
h i

Ef ¼Ei

; ðA:34Þ

where the integral has been evaluated using the properties of the delta function.

Equation (A.34) is called the Second Golden Rule (sometimes Fermi’s Second

Golden Rule, although strictly the result is not due to Fermi) and has been used

in several places in this book, for example in Chapter 7 when discussing nuclear

�-decay.
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Appendix B
Relativistic Kinematics

In particle physics, most scattering interactions take place between particles whose

speeds are comparable with the speed of light c. This is often true even in decays,

particularly if light particles are emitted. The requirements of special relativity

therefore cannot be ignored. In nuclear physics accurate predictions can also often

only be obtained if relativistic effects are taken into account. In this appendix we

review (usually without proof) some relativistic kinematical results and the use of

invariants to simplify calculations.

B.1 Lorentz Transformations and Four-Vectors

Consider a particle of mass m in an inertial frame of reference S. Its co-ordinates

are ðt; rÞ � ðt; x; y; zÞ and its speed is u ¼ juj, where u is its velocity. In a second

inertial frame S0 its co-ordinates are ðt0; r0Þ � ðt0; x0; y0; z0Þ and its speed is u0 ¼ ju0j
where u0 is its velocity. If S and S0 coincide at t ¼ 0 and S0 is moving with uniform

speed v in the positive z-direction with respect to S, then the two sets of

coordinates are related by the Lorentz transformation

x0 ¼ x

y0 ¼ y

z0 ¼ �ðvÞðz � vtÞ
t0 ¼ �ðvÞðt � vz=c2Þ

ðB:1Þ

where �ðvÞ ¼ ð1 � �2Þ�
1
2 is the Lorentz factor and � � v=c. From the definition of

velocity and using these transformations, the particle’s speed in S0 is related to its

speed in S by

u0 ¼ u � v

1 � uv=c2
ðB:2Þ
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and hence

�ðu0Þ � ½1 � ðu0=cÞ2	�
1
2 ¼ �ðuÞ�ðvÞð1 � uv=c2Þ: ðB:3Þ

As v ! 0, the transformations in Equations (B.1) approach the Galilean transfor-

mations.

The most general Lorentz transformation has its simplest form in terms of four-

vectors, whose general form is a ¼ ða0; a1; a2; a3Þ ¼ ða0; aÞ. Then Equations (B.1)

become

a00 ¼ �ða0 � va3=cÞ; a01 ¼ a1; a02 ¼ a2; a03 ¼ �ða3 � va0=cÞ: ðB:4Þ

For example, the space-time four-vector is x ¼ ðct; xÞ and when used in Equations

(B.4) reproduces Equations (B.1). The scalar product of two four-vectors a and b is

defined as

ab � a0b0 � a � b ðB:5Þ

and is an invariant, i.e. is the same in all inertial frames of references.

The basic four-vector in particle kinematics is the four-momentum, defined by

P � mu; ðB:6Þ

where m is the rest mass and u is the four-velocity, whose components are

u ¼ �ðvÞðc, vÞ, where v is the three-velocity and v � jvj. In terms of the total

energy E (i.e. including the rest mass) and the three-momentum p,

P ¼ ðE=c;pÞ: ðB:7Þ

Thus for two four-momenta P1 and P2 the invariant scalar product is

P1P2 ¼ E1E2=c2 � p1:p2 ðB:8Þ

and for P1 ¼ P2 ¼ P,

P2 ¼ E2=c2 � p2: ðB:9Þ

However, from Equations (B.5) and (B.6) we have u2 ¼ c2 and hence P2 ¼ m2c2,

so combining this with Equation (B.9) gives

E2 ¼ p2c2 þ m2c4: ðB:10Þ

It follows that

E ¼ �ðvÞmc2; p ¼ �ðvÞmv; v ¼ c2p=E: ðB:11Þ
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The Lorentz transformations for energy and momentum follow from these

definitions and Equations (B.4). Thus, in S0 we have

E0 ¼ m c2�ðu0Þ ¼ �ðvÞðE � vpÞ ðB:12aÞ

and

p0 ¼ mu0�ðu0Þ ¼ �ðvÞðp � vE=c2Þ; ðB:12bÞ

where p ¼ jpj and p0 ¼ jp0j. For a set of N non-interacting particles,

p0z ¼ �ðvÞðpz � vE=c2Þ; p0x ¼ px; p0
y ¼ py; ðB:13aÞ

and

E0 ¼ �ðvÞðE � vpzÞ; ðB:13bÞ

where

E ¼
XN

i¼1

Ei and p ¼
XN

i¼1

pi: ðB:13cÞ

In the general case where the relative velocity v of the two frames is in an arbitrary

direction, the transformations in Equations (B.12) become

p0 ¼ p þ �v
� v � p

� þ 1
� E

� �
1

c2
; E0 ¼ �ðE � v � pÞ: ðB:14Þ

B.2 Frames of Reference

The two most commonly used frames of reference for particle kinematics are the

laboratory system (LS) and the centre-of-mass system (CMS). We will start by

discussing these in the context of two-particle scattering. In the LS, a moving

projectile a in a beam strikes a target particle b at rest, i.e.

Pa ¼ ðEa=c;paÞ; Pb ¼ ðmbc; 0Þ: ðB:15Þ

In the CMS, the three-momenta of the two particles a and b are equal and opposite,

so that the total momentum is zero,1 i.e.

Pa ¼ ðEa=c;paÞ; Pb ¼ ðEb=c; pbÞ; ðB:16aÞ

1Although ‘centre-of-mass’ system is the most frequently used name, some authors refer to this as the

‘centre-of-momentum’ system. Logically, a better name would be ‘zero-momentum’ frame.
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with

pa þ pb ¼ 0: ðB:16bÞ

In a colliding beam accelerator, these two views become mixed. The colliding

particles are both moving, but only if they have equal momenta and collide at zero

crossing angle is the system identical to the centre-of-mass system.

The four-vectors of the initial-state particles in the two systems may be written

(L ¼ laboratory, T ¼ target)

Pa ¼ ðEL=c; 0; 0; pLÞ; PT ¼ ðmTc; 0; 0; 0Þ LS ðB:17aÞ

with E2
L ¼ m2

Bc4 þ p2
Lc2 (B ¼ beam), and

Pa ¼ ðEa=c; 0; 0; pÞ; Pb ¼ ðEb=c; 0; 0;�pÞ CMS ðB:17bÞ

with E2
a ¼ m2

Bc4 þ p2c2 and E2
b ¼ m2

Tc4 þ p2c2.

The Lorentz transformations between them are

p ¼ �ðpL � vEL=c2Þ; Ea ¼ �ðEL � vpLÞ; ðB:18Þ

where

v ¼ c2pL

EL þ mTc2
; � ¼ EL þ mTc2

c2
ffiffi
s

p ; v� ¼ pLffiffi
s

p ðB:19Þ

and s is the invariant mass squared of the system defined by

s � ðpa þ pbÞ2=c2 ¼ ½ðEa þ EbÞ2 � ðpac þ pbcÞ2	=c4: ðB:20Þ

In particular, in the LS,

s ¼ m2
T þ m2

B þ 2mTEL=c2: ðB:21Þ

This result was used in Chapter 4 when discussing the relative merits of fixed-

target and colliding beam accelerators.

Substituting Equations (B.19) into Equations (B.18) gives

p ¼ pLmTffiffi
s

p ; Ea ¼ m2
Bc2 þ mTELffiffi

s
p ðB:22aÞ

and similarly for particle b:

p ¼ pLmTffiffi
s

p ; Eb ¼ m2
Tc2 þ mTELffiffi

s
p : ðB:22bÞ
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Finally we state, without proof, the transformation of scattering angles for the

specific case of laboratory and centre-of-mass systems. Consider the general

scattering reaction

BðEL; pLÞ þ Tðm2
T; 0Þ ! PðE; qÞ þ � � � � � � ; ðB:23Þ

where B is a beam particle incident on a target particle T at rest in the laboratory

system and P is one of a number of possible particles in the final state. If pL is

taken along the z-direction, then

pL ¼ ð0; 0; pLÞ and q ¼ ð0; q sin �L; q cos �LÞ; ðB:24Þ

where �L is the scattering angle in the laboratory system, i.e. the angle between the

beam direction and q. In the CMS,

p0
B þ p0

T ¼ 0; ðB:25Þ

where p0
B and p0

T are the CMS momenta of the beam and target, respectively. The

relation between the scattering angle �C in this system and �L is

tan �L ¼ 1

�ðvÞ
q0 sin �C

q0 cos �C þ vE0=c2
; ðB:26Þ

where

E0 ¼ mPc2�ðuÞ and q0 ¼ mPu�ðuÞ ðB:27Þ

and u is the magnitude of the velocity of P in the centre-of-mass frame.

It is instructive to consider the form of Equation (B.26) at high energies. From

Equation (B.19) the velocity of the transformation is

v ¼ pLc2½EL þ mTc2	�1; ðB:28Þ

so at high energies where E2
L � pLc � mBc2, mTc2, v � cð1 � mTc=pLÞ � c and

�ðvÞ � pL

2mTc

� �1=2

: ðB:29Þ

Substituting Equations (B.27), (B.28) and (B.29) into Equation (B.26) gives

tan �L � 2mTc

pL

� �1=2

� u sin �C

u cos �C þ c
: ðB:30Þ

Thus, unless u � c and cos �C � �1, the final-state particles will lie in a narrow

cone about the beam direction in the laboratory system. Similarly, when a
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high-energy particle decays, its decay products will emerge predominantly at small

angles to the initial beam direction.

B.3 Invariants

The transformations between laboratory and centre-of-mass systems for energy

and momentum have been worked out explicitly above, but a more efficient way is

to work with quantities that are invariants, i.e. have the same values in all inertial

frames. We have already met one of these: s the invariant mass squared, defined in

Equation (B.20). We will now find expressions for the energy and momentum in

terms of invariants for both the LS and the CMS.

First, in the LS, from Equations (B.15), we have

pB ¼ 0; EB ¼ mBc: ðB:31Þ

However, from Equation (B.23),

s ¼ m2
B þ m2

T þ 2mTEL=c2 ðB:32Þ

i.e.

EL ¼ ðs � m2
T � m2

BÞc2

2mT

ðB:33Þ

and so

p2
L ¼ E2

L

c2
� m2

Bc2 ¼ ðs � m2
B � m2

TÞ
2
c2 � 4m2

Bm2
Tc2

4m2
T

: ðB:34Þ

This can be written in the useful compact form

pL ¼ c

2mT

�
1
2ðs;m2

B;m
2
TÞ; ðB:35aÞ

where the triangle function � is defined by

�ðx; y; zÞ � ðx � y � zÞ2 � 4yz: ðB:35bÞ

This function is invariant under all permutations of its arguments and in particular

Equation (B.35a) can be written in the form

pL ¼ c

2mT

�
s � ðmT þ mBÞ2
h i

s � ðmT � mBÞ2
h i�1

2

: ðB:36Þ
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In a similar way it is straightforward to show that, in the CMS,

p ¼ c

2
ffiffi
s

p
�

s � ðmT þ mBÞ2
h i

s � ðmT � mBÞ2
h i�1

2

ðB:37Þ

from which it follows that

Ea ¼ ðs þ m2
B � m2

TÞc2

2
ffiffi
s

p ; Eb ¼ ðs � m2
B þ m2

TÞc2

2
ffiffi
s

p : ðB:38Þ

The above formulae have many applications. For example, if we wish to produce

particles with a certain mass M, the minimum laboratory energy of the beam

particles is, from Equation (B.33),

ELðminÞ ¼ M2c2 � m2
Bc2 � m2

Tc2

2mT

: ðB:39Þ

In the case of the decay of a particle A to a set of final-state particles i ¼
1; 2; 3; . . . ;N, i.e.

A ! 1 þ 2 þ 3 þ � � � þ N; ðB:40Þ

the invariant mass W of the final-state particles is given by

W2c4 ¼
X

i

Ei

 !2

�
X

i

pic

 !2

¼ E2
A � ðpAcÞ2 ¼ M2

Ac4: ðB:41Þ

Hence the mass of the decaying particle is equal to the invariant mass of its decay

products. The latter can be measured if the particle is too short-lived for its mass to

be measured directly.

Problems

B.1 The Mandelstam variables s, t and u are defined for the reaction A þ B ! C þ D by

s ¼ ðpA þ pBÞ2=c2; t ¼ ðpA � pCÞ2=c2; u ¼ ðpA � pDÞ2=c2;

where pA etc. are the relevant energy-momentum four-vectors.

(a) Show that

s þ t þ u ¼
X

j¼A;B;C;D

m2
j :

PROBLEMS 345



(b) In the case of elastic scattering show that t ¼ �2p2ð1 � cos �Þ=c2, where

p � jpj, p is the centre-of-mass momentum of particle A and � is its scattering

angle in the CMS.

B.2 A pion travelling with speed v � jvj in the laboratory decays via �! 	þ 
. If the

neutrino emerges at right angles to v, find an expression for the angle � at which the

muon emerges.

B.3 A pion at rest decays via �! 	þ 
. Find the speed of the muon in terms of the

masses involved.

B.4 A neutral particle X0 decays via X0 ! Aþ þ B�. The momentum components of the

final-state particles are measured to be (in GeV/c):

Test the hypotheses that the decay is (a) D0 ! �þ þ K� and (b) � ! p þ ��.

B.5 In a fixed-target e�p scattering experiment, show that the squared four-momentum

transfer is given by Q2 � 2E2ð1 � cos �Þ=c2, where E is the total laboratory energy

of the initial electron and � is the laboratory scattering angle.

B.6 Calculate the minimum laboratory energy Emin of the initial proton for the

production of antiprotons in a fixed-target experiment using the reaction

pp ! ppp�pp. If the protons are bound in nuclei, show that taking the internal motion

of the nucleons into account leads to a smaller minimum energy given by

E0
min � ð1 � p=mPcÞEmin;

where p is the modulus of the average internal longitudinal momentum of a

nucleon. Use a typical value of p to calculate E0
min.

B.7 A particle A decays at rest via A ! B þ C. Find the total energy of B in terms of the

three masses.

B.8 A meson M decays via M ! ��. Find an expression for the angle in the laboratory

between the two momentum vectors of the photons in terms of the photon energies

and the mass of M.

B.9 Pions and protons, both with momentum 2 GV/c, travel between two scintillation

counters distance L m apart. What is the minimum value of L necessary to

px py pz

Aþ �0:488 �0:018 2.109

B� �0.255 �0.050 0.486
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differentiate between the particles if the time-of-flight can be measured with an

accuracy of 200 ps?

B.10 A photon is Compton scattered off a stationary electron through a scattering angle of

60� and its final energy is half its initial energy. Calculate the value of the initial

energy in MeV.
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Appendix C
Rutherford Scattering

C.1 Classical Physics

In Chapter 1 we commented on the experiments of Geiger and Marsden that

provided evidence for the existence of the nucleus. They scattered low-energy

�-particles from thin gold foils and observed that sometimes the projectiles were

scattered through large angles, in extreme cases close to 180�. If we start for the

moment by ignoring the fact that there is a Coulomb interaction present, then it is

easy to show that this behaviour is incompatible with scattering from light particles

such as electrons.

Consider the non-relativistic elastic scattering of an �-particle of mass m� and

initial velocity vi from a target of mass mt stationary in the laboratory. If the final

velocities are vf and vt, respectively, then we have the situation as shown in Figure C.1.

Conservation of linear momentum and kinetic energy are:

m�vi ¼ m�vf þ mtvt ðC:1Þ

and

m�v2
i ¼ m�v2

f þ mtv
2
t ; ðC:2Þ

where vi ¼ vij j etc.. Squaring Equation (C.1) we obtain

m�v2
i ¼ m�v2

f þ
m2

t

m�
v2

t þ 2mtðvf � vtÞ ðC:3Þ

and hence from Equation (C.2),

v2
t 1 � mt

m�

� �
¼ 2vf � vt: ðC:4Þ
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Thus, if the target is an electron, with mt ¼ me 	 m�, the directions of motion of

the outgoing �-particle and the recoiling target are essentially along the direction

of the initial �-particle and no large-angle scatterings are possible. Such events

could, in principle, be due to multiple small-angle scattering, but the thinness of

the gold foil target rules this out.1 If, however, mt ¼ mAu 
 m�, then the left-hand

side of Equation (C.4) will be negative and large scattering angles are possible.

The above only makes plausible the existence of a heavy nucleus, because it has

ignored the existence of the Coulomb force, so we now have to take this into

account. We will do this first using non-relativistic classical mechanics.

Consider the non-relativistic Coulomb scattering of a particle (the projectile) of

mass m and electric charge ze from a target particle of mass M and electric charge

Ze. The kinematics of this are shown in Figure C.2. The target mass is assumed to

be sufficiently large that its recoil may be neglected. The initial velocity of the

projectile is v and it is assumed that in the absence of any interaction it would

travel in a straight line and pass the target at a distance b (called the impact

Figure C.1 Kinematics of the Geiger and Marsden experiment

1For completeness one should also show that the observations cannot be due to scattering from the diffuse

positive charge present. This was done by the authors of the original experiment.

Figure C.2 Kinematics of Rutherford scattering
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parameter). The derivation follows from considering the implications of linear and

angular momentum conservation.

Angular momentum conservation implies that

mvb ¼ mr2 d�

dt
; ðC:5Þ

where v ¼ vj j. Since the scattering is symmetric about the y-axis, the component of

linear momentum in the y-direction is initially p ¼ �mv sinð�=2Þ and changes to

þmv sinð�=2Þ after the interaction, i.e. the total change in momentum in the y-

direction is

�p ¼ 2mv sinð�=2Þ: ðC:6Þ

The change in momentum may also be calculated by integrating the impulse in the

y-direction due to the Coulomb force on the projectile. This gives

�p ¼
ðþ1

�1

zZe2

4�"0r2
cos� dt; ðC:7Þ

where we have taken t ¼ 0 to coincide with the origin of the x-axis. Using

Equation (C.5) to change variables, Equation (C.7) may be written

2mv sinð�=2Þ ¼ zZe2

4�"0

1

bv

� � ðþ�

��

cos� d�; ðC:8Þ

which, using � ¼ ð�� �Þ=2, yields

b ¼ zZe2

8�"0

� 1

Ekin

cotð�=2Þ; ðC:9Þ

where Ekin ¼ 1
2

mv2 is the kinetic energy of the projectile.

Finally, we need to calculate the differential cross-section. If the initial flux of

projectile particles crossing a plane perpendicular to the beam direction is J, then

the intensity of particles having impact parameters between b and b þ db is

2�b Jdb and this is equal to the rate dW at which particles are scattered into a solid

angle d� ¼ 2� sin �d� between � and �þ d�. Thus

dW ¼ 2�bJ db: ðC:10Þ

However, from Equation (1.47) and considering a single target particle,

dW ¼ J
d	

d�
d� ¼ 2�J sin � d�

d	

d�
; ðC:11Þ
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i.e.

d	

d�
¼ b

sin �
� db

d�
: ðC:12Þ

The right-hand side of Equation (C.12) may be evaluated from Equation (C.9) and

gives

d	

d�
¼ zZe2

16� "0 Ekin

� �2

cosec4 ð�=2Þ: ðC:13Þ

This is the final form of the Rutherford differential cross-section for non-

relativistic scattering.

C.2 Quantum Mechanics

While Equation (C.13) is adequate to describe the Geiger and Marsden experi-

ments, in the case of electron scattering we need to take account of both relativity

and quantum mechanics. This may be done using the general formalism for the

differential cross-section in terms of the scattering potential that was derived in

Chapter 1.

The starting point is Equation (1.55), which in the present notation is

d	

d�
¼ 1

4�2�h4

p02

vv0
Mðq2Þ
�� ��2; ðC:14Þ

where v and p are the velocity and momentum respectively of the projectile (which

for convenience we take to have a unit negative charge) with v ¼ vj j, p ¼ pj j and

the primes refer to the final-state values. The matrix element is given by

MðqÞ ¼
ð

VðxÞeiq�x=�hdx; ðC:15Þ

where q ¼ p � p0 is the momentum transfer. VðxÞ is the Coulomb potential

VðxÞ ¼ VCðxÞ ¼ ��Zð�hcÞ
r

; ðC:16Þ

where r ¼ xj j and Ze is the charge of the target nucleus. Inspection of the integral

in Equation (C.15) shows that it diverges at large r. However, in practice, charges
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are always screened at large distances by intervening matter and so we will

interpret the integral as

MCðqÞ ¼
Lt


! 0

ð
� Z�ð�hcÞe�
r

r

� �
eiq�x=�h d3x: ðC:17Þ

To evaluate this, take q along the x-axis, so that in spherical polar coordinates

q � x ¼ qr cos �. The angular integration may then be done and yields

MCðqÞ ¼ � 4�ð�hcÞZ��h
q

Lt


! 0

ð1

0

e�
r sin qr=�hð Þdr: ðC:18Þ

The remaining integral may be done by parts (twice) and taking the limit 
! 0

gives

MCðqÞ ¼ � 4�ð�hcÞZ��h2

q2
: ðC:19Þ

Finally, substituting Equation (C.19) into Equation (C.14) gives

d	

d�
¼ 4Z2�2ð�hcÞ2 p02

vv0q4
; ðC:20Þ

which is the general form of the Rutherford differential cross-section. To see that

this is the same as Equation (C.13) in the non-relativistic limit, we may substitute

the non-relativistic approximations

p2 ¼ p0
2 ¼ 2mEkin; and v ¼ v0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ekin=m

p
; ðC:21Þ

together with the kinematic relation for the scattering angle

q ¼ 2p sinð�=2Þ; ðC:22Þ

into Equation (C.20). The result in Equation (C.13) follows immediately.

Because we are assuming that the target mass is heavy so that its recoil may be

neglected, to a good approximation p ¼ p0 and E ¼ E0, where E is the total energy

of the electron. Also for relativistic electrons v ¼ v0 � c and E � pc. Using these

conditions together with Equation (C.22) in Equation (C.20), gives the relativistic

result for the Rutherford differential cross-section in the convenient form:

d	

d�
¼ Z2�2ð�hcÞ2

4E2 sin4ð�=2Þ
; ðC:23Þ

which is the form used in Chapter 2 and elsewhere.
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Problems

C.1 Calculate the differential cross-section in mb/sr for the scattering of a 20 MeV

�-particle through an angle 20� by a nucleus 209
83Bi, stating any assumptions made.

Ignore spin and form factor effects.

C.2 Show that in Rutherford scattering at a fixed impact parameter b, the distance of

closest approach d to the nucleus is given by d ¼ b 1 þ cosec ð�=2Þ½ �=cosec ð�=2Þ,
where � is the scattering angle.

C.3 Find an expression for the impact parameter b in the case of small-angle Rutherford

scattering. A beam of protons with speed v ¼ 4 � 107 ms�1 is incident normally on a

thin foil of 194
78Pt, thickness 10�5 m (density ¼ 2:145 � 104 kg m�3). Estimate the

proportion of protons that experience double scattering, where each scattering angle

is at least 5�.
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Appendix D
Solutions to Problems

Chapter 1

1.1 Substituting the operators p ¼ �i�h@=@x and E ¼ i�h@=@t into the mass–energy

relation E2 ¼ p2c2 þ M2c4 and allowing the operators to act on the function

�ðx, tÞ, leads immediately to the Klein–Gordon equation. To verify that the Yukawa

potential VðrÞ is a static solution of the equation, set VðrÞ ¼ �ðxÞ, where r ¼ xj j,
and use

r2 ¼ @2

@r2
þ 2

r

@

@r

together with the expression for the range, R ¼ �h=Mc.

1.2 Using Equation (1.11), gives

P̂PY1
1 ¼

ffiffiffi
3

8

r
sinð�� �Þeið�þ�Þ ¼ �

ffiffiffi
3

8

r
sinð�Þei� ¼ �Y1

1 ;

and hence Y1
1 is an eigenfunction of parity with eigenvalue �1.

1.3 Because the initial state is at rest, it has L ¼ 0 and thus its parity is

Pi ¼ PpP�ppð�1ÞL ¼ �1, where we have used the fact that the fermion–antifermion

pair has overall negative intrinsic parity. In the final state, the neutral pions are

identical bosons and so their wavefunction must be totally symmetric under their

interchange. This implies even orbital angular momentum L0 between them and

hence Pf ¼ P2
�ð�1ÞL0

¼ 1 6¼ Pi. The reaction violates parity conservation and is thus

forbidden as a strong interaction.

1.4 Since ĈC2 ¼ 1, we must have ĈC2 b;  bj i ¼ CbĈC �bb;  �bb

�� �
¼ b;  bj i, implying that

ĈC �bb;  �bb

�� �
¼ C�bb b;  bj i with CbC�bb ¼ 1 independent of Cb. The result follows because

an eigenstate of ĈC must contain only particle–antiparticle pairs b�bb, leading to the

intrinsic parity factor CbC�bb ¼ 1, independent of Cb.

Nuclear and Particle Physics B. R. Martin
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1.5 The parity of the deuteron is Pd ¼ PpPnð�1ÞLpn . Since the deuteron is an

S-wave bound state, Lpn ¼ 0 and so, using Pp ¼ Pn ¼ 1, gives Pd ¼ 1. The

parity of the initial state is therefore Pi ¼ P��Pdð�1ÞL�d ¼ P�� , because the

pion is at rest and so L�d ¼ 0. The parity of the final state is

Pf ¼ PnPnð�1ÞLnn ¼ ð�1ÞLnn and therefore P�� ¼ ð�1ÞLnn . To find Lnn impose the

condition that  nn ¼  space spin must be antisymmetric. Examining the spin,

Equation (1.17) shows that there are two possibilities for  spin: either the symmetric

S ¼ 1 state or the S ¼ 0 antisymmetric state. If S ¼ 0, then  space would have to be

symmetric, implying Lnn would be even, but the total angular momentum would not

then be conserved. Thus S ¼ 1 is implied and  space is antisymmetric, i.e.

Lnn ¼ 1; 3; � � � . The only way to combine Lnn and S to give J ¼ 1 is with Lnn ¼ 1

and hence P�� ¼ �1.

1.6 (a) �e þ eþ ! �e þ eþ;

(b) p þ p ! p þ p þ �0 þ �0;

(c) �pp þ n ! �� þ �0 þ �0; �� þ �þ þ ��.

1.7 (a) �e þ �	 ! �e þ �	.

(b) n ! p þ e� þ ���e.
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(c) eþ þ e� ! eþ þ e�.

(d) 
 þ 
 ! eþ þ e�.

1.8 If an exchanged particle approaches to within a distance d fm, this is equivalent to a

momentum transfer q ¼ �h=d ¼ 0:2=dð Þ GeV/c. Thus, q ¼ 0:2 GeV/c for d ¼ 1 fm

and q ¼ 200 GeV/c for d ¼ 10�3 fm. The scattering amplitude is given by

f ðq2Þ ¼ �g2�h2 q2 þ m2
xc2

� ��1
, where mx is the mass of the exchanged particle. Thus,

Rðq2Þ  fEMðq2Þ
fWeakðq2Þ ¼

q2c2 þ m2
W c4

q2c2 þ m2

c4

;

since gEM � gWeak. Using m
 ¼ 0 and mW ¼ 80 GeV/c2, gives

Rð0:2 GeV=cÞ � 1:6 � 105 fm but Rð200 GeV=cÞ � 1:2 fm:

1.9 Using spherical polar coordinates, we have q � x ¼ qr cos � and d3x ¼ r2 dr d cos � d�,

where q ¼ qj j. Thus, from Equation (1.38),

f ðq2Þ ¼ �g2

4�

ð2�

0

d�

ð1

0

dr r2 e�r=R

r

ðþ1

�1

d cos � expðiqr cos �=�hÞ

¼ �g2�h

2iq

ð1

0

dre�r=R expðiqr cos �=�hÞ½ �þ1
�1¼

�g2�h

2iq

ð1

0

dre�r=R eiqr=�h � e�iqr=�h
h i

¼ �g2�h2

q2 þ m2c2
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1.10 Let one of the beams (labelled by 1) refer to the ‘beam’ and let the other beam

(labelled by 2) refer to the ‘target’. Then in Equation (1.43), nb ¼ nN1=2�RA and

vi ¼ 2�R=T , where R is the radius of the circular path. Thus the flux is

J ¼ nbvi ¼ nN1f=A, where f is the frequency. Also N ¼ N2, so finally the luminosity

is L ¼ JN ¼ nN1N2f=A.

1.11 From Equation (1.44c), � ¼ WMA=IðtÞNA. Since the scattering is isotropic, the

total number of protons emitted from the target is W ¼ 20 � ð4�=2 � 10�3Þ
¼ 1:25 � 105 s�1. I can be calculated from the current, noting that the �-particles

carry two units of charge, and is I ¼ 3:13 � 1010 s�1. The density of the target is

t ¼ 1 mg cm�2 ¼ 10�32 kg fm�2. Putting everything together gives � ¼ 161 mb.

Chapter 2

2.1 From Equation (2.21),

Fðq2Þ ¼ 4� �h

q

ðr

0

r sin bðrÞdr 4�

ðr

0

r2 dr


 ��1

¼ 3 sin bðaÞ � bðaÞ cos bðaÞ½ �b�3;

where bðrÞ ¼ qr=�h. To evaluate this we need to find a and q. For the latter, we have

from which q ¼ 2p sinð#=2Þ ¼ 57:5 MeV=c. Also, we know that a ¼ 1:21A
1
3 fm and

so for A ¼ 56, a ¼ 4:63 fm and qa=�h ¼ 1:35 radians. Finally, using this in the

integral, gives F ¼ 0:829 and hence the reduction is F2 ¼ 0:69.

2.2 Setting q ¼ qj j in Equation (2.26), we have

Fðq2Þ ¼ 1

Ze

ð
f ðxÞ

X1
n¼0

1

n!

iqr cos �

�h

 �n

d3x:

Using d3x ¼ r2d cos � d� and doing the � integral, gives

Fðq2Þ ¼ 2�

Ze

ð ð
f ðrÞr2 1 þ iqr cos �

�h
� q2r2 cos2 �

�h2
þ . . .


 �
dr d cos �

¼ 4�

Ze

ð1

0

f ðrÞr2dr � 4�q2

6Ze�h2

ð1

0

f ðrÞr4dr þ . . .
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However, from Equation (2.17), Z e ¼ 4�
Ð1
0

f ðrÞ r2dr and from Equation (2.25),

Ze r2
� �

¼ 4�
Ð1
0

f ðrÞ r4dr so Fðq2Þ ¼ 1 � q2

6�h2 r2
� �

þ � � �

2.3 From Equation (2.28), r2
� �

¼ 6�h2 1 � Fðq2Þ½ �=q2, where q ¼ 2E sinð�=2Þ: Thus,

q ¼ 43:6 MeV=c. Also, F2 ¼ 0:65 and so
ffiffiffiffiffiffiffiffi
r2h i

p
¼ 6:56 fm.

2.4 The charge distribution is spherical, so the angular integrations in the general result

of Equation (2.17) may be done, giving

Fðq2Þ ¼
ð1

0

ðrÞ½sinðqr=�hÞ=ðqr=�hÞ�4�r2dr

2
4

3
5 ð1

0

ðrÞ4�r2dr

2
4

3
5
�1

:

Substituting for ðrÞ, setting x ¼ r=a and using
Ð1
0

x expð�xÞ dx ¼ 1, gives, after

integrating by parts (twice),

Fðq2Þ ¼ �h

qa

 � ð1

0

e�x sin
qax

�h

� �
dx ¼ 1

1 þ q2a2=�h2
� � :

2.5 In 1 g of the isotope there are initially N0 ¼ 1 g=208 � 1:66 � 10�24 g
� �

. Thus

N0 ¼ 2:9� 1021 atoms. At time t there are NðtÞ ¼ N0e�t=� atoms, where � is the

mean life of the isotope. Thus, provided t � � , the average decay rate is

N0 � NðtÞ
t

� N0

�
¼ 75

0:1 � 24
h�1:

Thus, � ¼ 2:4N0=75 h � 1016 years:

2.6 The count rate is proportional to the number of 14C atoms present in the sample.

If we assume that the abundance of 14C has not changed with time, the artefact

was made from living material and is predominantly carbon, then at the time it

was made ðt ¼ 0Þ, 1 g would have contained 5 � 1022 carbon atoms of which

N0 ¼ 6 � 1010 would have been 14C. Thus the average count rate would have been

N0=� ¼ 13:8 m�1. At time t, the number of 14C atoms would be NðtÞ ¼ N0 expð�t=�Þ
and NðtÞ=N0 ¼ e�t=� ¼ 2:1=13:8, from which t ¼ � ln 6:57 ¼ 1:56 � 104 years. The

artefact is approximately 16 000 years old.

2.7 If the transition rate for 212
86Rn decay is !1 and that for 208

84Po is !2 and if the numbers of

each of these atoms at time t is N1ðtÞ and N2ðtÞ , respectively, then the decays are

governed by Equation (2.43), i.e. N2ðtÞ¼!1N1ð0Þ expð�!1tÞ�expð�!2tÞ½ � !2�!1½ ��1
.

The latter is a maximum when dN2ðtÞ=dt ¼ 0, i.e. when!2 expð�!2tÞ¼ !1 expð�!1tÞ,
with tmax ¼ ln !1=!2ð Þ !1 � !2ð Þ�1

. Using !1 ¼ 4:12 � 10�2 min�1 and

!2 ¼ 6:58 � 10�7 min�1, gives tmax ¼ 265 min.
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2.8 The total decay rate of both modes of 138
57La is

ð1 þ 0:5Þ � ð7:8 � 102Þ kg�1 s�1 ¼ 1:17 � 103 kg�1 s�1:

Also, since this isotope is only 0.09 per cent of natural lanthanum, the number

of 138
57La atoms per kg is N ¼ ð9 � 10�4Þ � 1000=138:91ð Þ � ð6:022 � 1023Þ, i.e.

N ¼ 3:90 � 1021 kg�1. The rate of decays is �dN=dt ¼ !N, where ! is the

transition rate, and in terms of this the mean lifetime � ¼ 1=!. Thus,

� ¼ N

�dN=dt
¼ 3:90 � 1021

1:17 � 103
s ¼ 3:33 � 1018s ¼ 1:06 � 1011 years:

2.9 The energy released is the increase in binding energy. Now from the SEMF,

Equations (2.46)–(2.52),

BEð35; 87Þ ¼ avð87Þ � asð87Þ2=3 � ac

ð35Þ2

ð87Þ1=3
� aa

ð87 � 70Þ2

348
;

BEð57; 145Þ ¼ avð145Þ � asð145Þ2=3 � ac

ð57Þ2

ð145Þ1=3
� aa

ð145 � 114Þ2

580
;

BEð92; 235Þ ¼ avð235Þ � asð235Þ2=3 � ac

ð92Þ2

ð235Þ1=3
� aa

ð235 � 184Þ2

940
:

The energy released is thus

E ¼ BEð35; 87Þ þ BEð57; 145Þ � BEð92; 235Þ
¼ �3 av � 9:153 as þ 476:7ac þ 0:280 aa

which using the values given in Equation (2.54) gives E ¼ 154 MeV.

2.10 The most stable nucleus for fixed A has a Z-value given by Z ¼ �=2
, where

from Equation (2.58), � ¼ aa þ ðMn � Mp � meÞ and 
 ¼ aa=A þ ac=ðAÞ1=3
.

Changing � would not change aa, but would effect the Coulomb coefficient

because ac is proportional to �. For A ¼ 111, using the value of aa from Equation

(2.54) gives � ¼ 93:93 MeV=c2 and 
 ¼ 0:839 þ 0:208 ac MeV=c2. For Z ¼ 47,

ac ¼ 0:770 MeV=c2. This is a change of about 10 per cent from the value given in

Equation (2.54) and so � would have to change by the same percentage.

2.11 In the rest frame of the 269
108Hs nucleus, m�v� ¼ mSgvSg. The ratio of the kinetic energies

is ESg=E� ¼ m�=mSg and the total kinetic energy is E� 1 þ m�=mSg

� �
¼ 9:370 MeV.

Thus, mHsc
2 ¼ ðmSg þ m�Þc2 þ 9:370 MeV ¼ 269:154 u.

2.12 If there are N0 atoms of 238
94Pu at launch, then after t years the activity of the source

will be AðtÞ ¼ N0 expð�t=�Þ=� , where � is the lifetime. The instantaneous power is

then PðtÞ ¼ AðtÞ � 0:05 � 5:49 � 1:602� 10�13 W > 200 W . Substituting the value

given for �, gives N0 ¼ 1:88 � 1025 and hence the weight of 238
94Pu at launch would

have to be at least
1:88 � 1025

6:02 � 1023

 �
238

1000

 �
kg ¼ 7:43 kg.
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2.13 If there were N0 atoms of each isotope at the formation of the planet ðt ¼ 0Þ,
then after time t the numbers of atoms are N205ðtÞ ¼ N0 expð�t=�205Þ and

N204ðtÞ ¼ N0 expð�t=�204Þ, with

N205ðtÞ
N204ðtÞ

¼ exp �t
1

�205

� 1

�204

 �
 �
¼ n205

n204

¼ 2 � 10�7:

Now �204 � �205, so t ¼ �205lnð2 � 107Þ ¼ 2:6 � 108 years.

2.14 We first calculate the mass difference between ½p þ 46
21Sc� and ½n þ 46

22Ti�. Using the

information given, we have

Mð21;46Þ�½Mð22;46Þþme�¼ 2:37MeV=c2 and Mn �ðMp þmeÞ¼ 0:78MeV=c2

and hence ½Mp þ Mð21; 46Þ� � ½Mn þ Mð22; 46Þ� ¼ 1:59 MeV=c2. We also need the

mass differences ½M� þ Mð20; 43Þ� � ½Mn þ Mð22; 46Þ� ¼ 0:07 MeV=c2. We can

now draw the energy level diagram where the centre-of-mass energy of the

resonance is at (see Equation (2.10)) 2:76 � 45=47ð Þ ¼ 2:64 MeV.

Thus the resonance could be excited in the 43
20Cað�; nÞ 46

22Ti reaction at an �-

particle laboratory energy of 10:7 � 47=43ð Þ ¼ 11:7 MeV.

2.15 We have dNðtÞ=dt ¼ P � �N, from which

Pe�t ¼ e�t �N þ dNðtÞ
dt

 �
¼ d

dt
Ne�t
� �

:

Integrating and using the fact that N ¼ 0 at t ¼ 0 to determine the constant of

integration, gives the required result.
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2.16 The number of 35Cl atoms in 1 g of the natural chloride is

N ¼ 2 � 0:758 � NA=molecular weight ¼ 7:04 � 1021:

The activity AðtÞ ¼ �N ¼ P 1 � e��t
� �

� P�t, since �t � 1. So

t ¼ AðtÞ
P�

¼
AðtÞt1=2

ln2 � �� F � N
:

Substituting AðtÞ ¼ 3 � 105 Bq and using the other constants given, yields t ¼ 1:55

days.

2.17 At very low energies we may assume the scattering has ‘ ¼ 0 and so in Equation

(1.63) we have j ¼ 1
2
; sn ¼ 1

2
and su ¼ 0. Thus,

�max ¼ ��h2

q2
n

ð�n�n þ �n�
Þ
�2=4

¼ 4��h2�n

q2
n�

;

Therefore, �n ¼ q2
n��max=4��h2 ¼ 0:35�10�3 eV and �
¼���n ¼ 9:65 � 10�3 eV.

Chapter 3

3.1 (a) Forbidden: violates L	 conservation, because L	ð�	Þ ¼ 1, but L	ð	þÞ ¼ �1.

(b) Forbidden: violates electric charge conservation, because Q (left-hand side) ¼ 1,

but Q (right-hand side) ¼ 0.

(c) Forbidden: violates baryon number conservation because B (left-hand side) ¼ 1,

but B (right-hand side) ¼ 0.

(d) Allowed: conserves L	 ; B ; Q etc. (violates S, but this is allowed because it is a

weak interaction).

3.2 (a) The quark compositions are: D� ¼ d�cc ; K0 ¼ d�ss ; �� ¼ d�uu and since the

dominant decay of a c-quark is c ! s, we have
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(b) The quark compositions are: � ¼ sud; p ¼ uud and since the dominant decay

of an s-quark is s ! u, we have

3.3 (a) This would be a baryon because B ¼ 1 and the quark composition would be ssb

which is allowed in the quark model.

(b) This would be a meson because B ¼ 0, but would have to have both an �ss- and a
�bb-quark. However, Qð�ss þ �bbÞ ¼ 2=3, which is incompatible with the quark model

and anyway combinations of two antiquarks are not allowed. Thus this

combination is forbidden.

3.4 ‘Low-lying’ implies that the internal orbital angular momentum between the

quarks is zero. Hence the parity is P ¼ þ and  space is symmetric. Since the

Pauli principle requires the overall wavefunction to be antisymmetric under

the interchange of any pair of like quarks, it follows that  spin is antisymmetric.

Thus, any pair of like quarks must have antiparallel spins, i.e. be in a spin-0

state.

Consider all possible baryon states qqq, where q ¼ u; d; s. There are six

combinations with a single like pair: uud; uus; ddu; dds; ssu; ssd, with the spin

of (uu) etc. equal to zero. Adding the spin of the third quark leads to six states

with JP ¼ 1
2

þ
. In principle, there could be six combinations with all three quarks

the same – uuu; ddd; sss – but in practice these do not occur because it is

impossible to arrange all three spins in an antisymmetric way. Finally, there is one

combination where all three quarks are different: uds. Here there are no restric-

tions from the Pauli principle, so for example, the ud pair could have spin-0 or

spin-1. Adding the spin of the s-quark leads to two states with JP ¼ 1
2

þ
and 1 with

JP ¼ 3
2

þ
.

Collecting the results, gives an octet of JP ¼ 1
2

þ
states and a singlet JP ¼ 3

2

þ
state.

This is not what is observed in nature. In Chapter 5 we will see what additional

assumptions have to be made to reproduce the observed spectrum.

CHAPTER 3 363



3.5 (a)

(b)

3.6 The ground state mesons all have L ¼ 0 and S ¼ 0. Therefore they all have P ¼ �1.

Only in the case of the neutral pion is their constituent quark and antiquark also

particle and antiparticle. Thus C is only defined for the �0 and is C ¼ 1. For the

excited states, L ¼ 0 still and thus P ¼ �1 as for the ground states. However, the

total spin of the constituent quarks is S ¼ 1 and so for the 0, the only state for which

C is defined, C ¼ �1.

For the excited states, by definition there is a lower mass configuration with the

same quark flavours. As the mass differences between the excited states and their

ground states is greater than the mass of a pion, they can all decay by the strong

interaction. In the case of the charged pions and kaons and the neutral kaon ground

states, there are no lower mass configurations with the same flavour structure and so

the only possibility is to decay via the weak interaction, with much longer lifetimes.

In the case of 0 decay, the initial state has a total angular momentum of 1 and

since the pions have zero spin, the �� final state must have L ¼ 1. While this is

possible for �þ��, for the case of �0�0 it violates the Pauli Principle and so is

forbidden.

3.7 In the initial state, S ¼ �1 and B ¼ 1. To balance strangeness (conserved in strong

interactions), in the final state SðY�Þ ¼ �2 and to balance baryon number,
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BðY�Þ ¼ 1. As charm and beauty for the initial state are both zero, these quantum

numbers are zero for the Y. The quark content is therefore dss. In the decay, the

strangeness of the � is �1 and so strangeness is not conserved. This is therefore a

weak interaction and its lifetime will be in the range 10�7–10�13 s:

3.8 The quark composition is � ¼ uds, then ðSu þ SdÞ2 ¼S2
u þ S2

dþ 2Su � Sd ¼ 2�h2 and

hence Su � Sd ¼ �h2=4. Then, from the general formula given in Equation (3.84),

setting mu ¼ md ¼ m, we have

M� ¼ 2m þ ms þ b
Su � Sd

m2
þ Sd � Ss þ Su � Ss

mms


 �

¼ 2m þ ms þ b
Su � Sd

m2
þ S1 � S2 þ S1 � S3 þ S2 � S3 � Su � Sd

mms


 �

which, using S1 � S2 þ S1 � S3 þ S2 � S3 ¼ �3�h2=4 from Equation (3.89), gives

M� ¼ 2m þ ms þ
b

4

1

m2
� 4

mms


 �
:

3.9 The initial reacton is strong because it conserves all individual quark numbers. The

	� decay is weak because strangeness changes by one unit and the same is true for

the decays of the 
0, Kþ and K0. The decay of the �þ is also weak because it

involves neutrinos and finally the decay of the �0 is electromagnetic because only

photons are involved.

3.10 The Feynman diagram is:

The two vertices where the W-boson couples are weak interactions and have

strengths
ffiffiffiffiffiffiffi
�W

p
. The remaining vertex is electromagnetic and has strength

ffiffiffiffiffiffiffiffiffi
�EM

p
.

So the overall strength of the diagram is �W
ffiffiffiffiffiffiffiffiffi
�EM

p
.

3.11 From Equation (3.27a), we have Pð���e!�xÞ¼sin2ð2�Þsin2½�ðm2c4ÞL=ð4�hcEÞ�, which

for maximal mixing (� ¼ �=4) gives Pð���e ! �xÞ ¼ sin2 ½1:27�ðm2c4ÞL=E� where L

is measured in m, E in MeV and �ðm2c4Þ in ðeVÞ2
. If Pð���e ! ���eÞ ¼ 0:90 � 0:10,

then at 95 per cent confidence level, 1:0 � Pð���e ! �xÞ � 0:70 and hence

0:012 � �ðm2c4Þ � 0:019ðeVÞ2
.
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3.12 Reactions (a), (d) and (f) conserve all quark numbers individually and hence are

strong interactions. Reaction (e) violates strangeness and is a weak interaction.

Reaction (c) conserves strangeness and involves photons and hence is an electro-

magnetic interaction. Reaction (b) violates both baryon number and electron lepton

number and is therefore forbidden.

3.13 The doublet of S ¼ þ1 mesons ðKþ;K0Þ has isospin I ¼ 1
2
, with I3ðKþÞ ¼ 1

2
and

I3ðK0Þ ¼ �1
2
. The triplet of S ¼ �1 baryons ð�þ; �0; ��Þ has I ¼ 1, with

I3 ¼ 1; 0;�1 for �þ; �0 and ��, respectively. Thus ðKþ;K0Þ is analogous to the

ðp; nÞ isospin doublet and ð�þ; �0; ��Þ is analogous to the ð�þ; �0; ��Þ isospin

triplet. Hence, by analogy with Equations (3.54a) and (3.54b),

Mð��p ! ��KþÞ ¼ 1

3
M3 þ

2

3
M1; Mð��p ! �0K0Þ ¼

ffiffiffi
2

p

3
M3 �

ffiffiffi
2

p

3
M1

and

Mð�þp ! �þKþÞ ¼ M3;

where M1;3 are the amplitudes for scattering in a pure isospin state I ¼ 1
2
; 3

2
,

respectively. Thus,

�ð�þp ! �þKþÞ : �ð��p ! ��KþÞ : �ð��p ! �0KoÞ

¼ M3j j2: 1

9
M3 þ 2M1j j2: 2

9
M3 � M1j j2:

3.14 Under charge symmetry, nðuddÞ Ð pðduuÞ and �þðu�ddÞ Ð ��ðd�uuÞ and since the

strong interaction is approximately charge symmetry, we would expect

�ð�þnÞ � �ð��pÞ at the same energy, with small violations due to electromagnetic

effects and quark mass differences. However, Kþðu�ssÞ and K�ðs�uuÞ are not charge

symmetric and so there is no reason why �ðKþnÞ and �ðK�pÞ should be equal.

Chapter 4

4.1 In an obvious notation,

E2
CM ¼ ðEe þEpÞ2 � ðpecþ ppcÞ2 ¼ ðE2

e � p2
ec2Þ � ðE2

p � p2
pc2Þ þ 2EeEp � 2pe � ppc2

¼ m2
ec4 þm2

pc4 þ 2EeEp � 2pe � ppc2

At the energies of the beams, masses may be neglected and so with p ¼ pj j,

E2
CM ¼ 2EeEp � 2peppc2 cosð�� �Þ ¼ 2EeEp 1 � cosð�� �Þ½ �;

where � is the crossing angle. Using the values given, gives ECM ¼ 154 GeV. In a

fixed-target experiment, and again neglecting masses, E2
CM ¼ 2EeEp � 2pe � ppc2,
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where Ee ¼ EL; Ep ¼ mpc2; pp ¼ 0. Thus, ECM ¼ 2mpc2EL

� �1=2
and for

ECM ¼ 154 GeV, this gives EL ¼ 1:26� 104 GeV.

4.2 For constant acceleration, the ions must travel the length of the drift tube in half a

cycle of the rf field. Thus, L ¼ v=2 f , where v is the velocity of the ion. Since the

energy is far less than the rest mass of the ion, we can use non-relativistic kinematics

to find v, i.e. v ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200=ð12 � 931:5Þ

p
¼ 4:01� 107 m s�1 and finally L ¼ 1 m.

4.3 A particle with mass m, charge q and speed v moving in a plane perpendicular to a

constant magnetic field of magnitude B will traverse a circular path with radius of

curvature r ¼ mv=qB and hence the cyclotron frequency is f ¼ v=2�r ¼ qB=2�m.

At each traversal the particle will receive energy from the rf field, so if f is kept fixed,

r will increase (i.e. the trajectory will be a spiral). Thus if the final energy is E, the

extraction radius will be R ¼
ffiffiffiffiffiffiffiffiffi
2mE

p
=qB. To evaluate these expressions we use

q ¼ 2e ¼ 3:2 � 10�19C, together with B ¼ 0:8 T ¼ 0:45 � 1030ðMeV=c2Þs�1 C�1

and thus f ¼ 6:15 MHz and R ¼ 62:3 cm.

4.4 A particle with unit charge e and momentum p in the uniform magnetic field B of the

bending magnet will traverse a circular trajectory of radius R, given by p ¼ BR. If B

is in T, R in m and p in GeV/c, then p ¼ 0:3BR. Referring to the figure below, we

have � � L=R ¼ 0:3 LB=p and �� ¼ s=d ¼ 0:3BL�p=p2. Solving for d using the

data given, gives d ¼ 9:3 m.

4.5 The CCerenkov condition is �n � 1. So, for the pion to give a signal, but not the

kaon, we have ��n � 1 � �Kn. The momentum is given by p ¼ mv
 where


 ¼ 1 � v2=c2ð Þ�1=2
, so eliminating 
 gives � ¼ v=c ¼ ð1 þ m2c2=p2Þ�1=2

. For

p ¼ 20 GeV=c, m� ¼ 0:14 GeV=c2 and mK ¼ 0:49 GeV=c2, �� ¼ 0:99997 and

�K ¼ 0:99970, so the condition on the refractive index is 3 � 10�4 � ðn � 1Þ=n

� 3 � 10�5. Using the largest value of n ¼ 1:0003, we have

N ¼ 2�� 1 � 1

�2
�n2

 �
1

�1

� 1

�2

 �

as the number of photons radiated per metre, where �1 ¼ 400 nm and �2 ¼ 700 nm.

Numerically, N ¼ 26:5 photons/m and hence to obtain 200 photons requires a

detector of length 7.5 m. (You could also use

N ¼ 2�� 1 � 1

�2
�n2

 �
�2 � �1

�2

 �
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where � is the mean of �1 and �2, which would give 24.5 photons/m and a length of

8.2 m.)

4.6 Luminosity may be calculated from the formula for colliders, L ¼ n N1 N2 f=A,

where n is the number of bunches, N1 and N2 are the numbers of

particles in each bunch, A is the cross-sectional area of the beam and f is its

frequency. We have, n ¼ 12; N1 ¼ N2 ¼ 3 � 1011; A ¼ ð0:02 � 10�2Þ cm2 and

f ¼ ð3 � 1010=8� � 105Þ s�1, so finally L ¼ 6:44 � 1031 cm�2 s�1.

4.7 (a) The b quarks are not seen directly but, instead, they fragment (hadronize) to B-

hadrons, i.e. hadrons containing b quarks. So one characteristic is the presence of

hadrons with non-zero beauty quantum numbers. As these hadrons are unstable

and the dominant decay of b-quarks is to c-quarks, a second characteristic is the

presence of hadrons with non-zero values of the charm quantum number.

We need to observe the point where the eþe� collision occurred and the point

of origin of the decay products of the B-hadrons. The difference between these

two is due to the lifetime of the B-hadrons. As the difference will be very small,

precise position measurements are required. The daughter particles may be

detected using a silicon micro-vertex detector and an MWPC. In addition, any

electrons from the decays could be detected by an MWPC or an electromagnetic

calorimeter. The same is true for muons in the decay products, except they are

not readily detected in the calorimeter as they are very penetrating. However, if

one places an MWPC behind a hadron calorimeter then one can be fairly

confident that any particle detected is a muon, as everything else (except

neutrinos) will have been stopped in the calorimeter.

(b) In the electronic decay mode, the electron can be measured in both a MWPC

and an EM calorimeter. For high energies the better measurement is made in the

calorimeter. The neutrino does not interact unless there is a very large mass of

material (thousands of tons) and so its presence must be inferred by imposing

conservation of energy and momentum. In a colliding beam machine, the original

colliding particles have zero transverse momentum and a fixed energy. If one

adds up all the energy and momentum of all the final-state particles, then

any imbalance compared to the initial system can be attributed to the neutrino.

For the muonic mode, the muon can be measured in the MWPC but cannot be

measured well in the calorimeter because it only ionizes to a very small extent.

Since the muons only interact to a small extent they (along with neutrinos) are

generally the only particles that emerge from a hadronic calorimeter. So if one

registers a signal in a small MWPC placed behind a calorimeter then one can be

confident that the particle is a muon.

4.8 To be detected, the event must have 150� < � < 30�, i.e. cos �j j < 0:866. Setting

x ¼ cos �, the fraction of events in this range is

f ¼
ðþ0:866

�0:866

d�

dx
dx

� ðþ1:0

�1:0

d�

dx
dx ¼ x þ x3=3

� �þ0:866

�0:866

�
x þ x3=3
� �þ1:0

�1:0
¼ 0:812:
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The total cross-section is given by

� ¼
ð

d�

d	
d	 ¼

ð2�

0

d�

ðþ1

�1

d cos �
d�

d	
¼ 2�

�2�h2c2

4E2
cm

ðþ1

�1

1 þ cos2 �
� �

d cos �:

Using Ecm ¼ 10 GeV, gives � ¼ 4��2�h2c2=3E2
cm ¼ 0:866 nb. The rate of production

of events is given by L� and since L is a constant, the total number of events

produced will be L� t ¼ 86 600:
The �� decay too quickly to leave a visible track in the drift chamber. The eþ and

the 	� will leave tracks in the drift chamber and the eþ will produce a shower in

the electromagnetic calorimeter. If it has enough energy, the 	� will pass through the

calorimeters and leave a signal in the muon chamber. There will be no signal in the

hadronic calorimeter.

4.9 Referring to the figure below, the distance between two positions of the particle �t

apart in time is v�t. The wave fronts from these two positions have a difference in

their distance travelled of c�t=n.

These constructively interfere at an angle �, where

cos � ¼ c�t=n

v�t
¼ 1

� n
:

The maximum value of � corresponds to the minimum of cos � and hence the

maximum of �. This occurs as � ! 1, when �max ¼ cos�1 1=nð Þ. This value occurs

in the ultra-relativistic or massless limit.

The quantity � may be expressed as � ¼ pc=E ¼ pc p2c2 þ m2c4½ ��1=2
. Hence,

cos � ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þ m2c4

p
pc

;

which rearranging, gives x  ðmc2Þ2 ¼ p2c2ðn2 cos2 �� 1Þ. Differentiating this

formula gives dx=d� ¼ �2p2c2n2 cos � sin � and the error on x is then given by
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�x ¼ dx=d�j j��. For very relativistic particles, the derivative can be approximated

by using �max, for which cos �max ¼ 1=n, sin �max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p
=n. Hence

�x � 2p2c2n2 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p

n
�� ¼ 2p2c2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p
��:

4.10 The average distance between collisions of a neutrino and an iron nucleus is the

mean free path � ¼ 1=n�� , where n � =mpc2 is the number of nucleons per cm3.

Using the data given, n � 4:7 � 1024 cm�3 and �� � 3 � 10�36 cm2, so that

� � 7:1 � 1010 cm. Thus if 1 in 109 neutrinos is to interact, the thickness of iron

required is 71 cm.

4.11 Radiation energy losses are given by �dE=dx ¼ E=LR, where LR is the radiation

length. This implies that E ¼ E0 expð�x=LRÞ, where E0 is the initial energy. Using

E0 ¼ 2 GeV, LR ¼ 36:1 cm, x ¼ 10 cm, gives E ¼ 1:51 GeV. Radiation losses at

fixed E are proportional to m�2, where m is the mass of the projectile. Thus for

muons, they are negligible at this energy.

4.12 The total cross section is �tot ¼ �el þ �cap þ �f ¼ 4 � 102 b and the attenuation is

expð�nx�totÞ where nx ¼ 10�1NA=A ¼ 2:56 � 1023 m�2. Thus expð�nx�totÞ ¼ 0:9898,

i.e 1.02 per cent of the incident particles interact and of these the fraction

that elastically scatter is given by the ratio of the cross-sections, i.e.

3 � 10�2=4 � 102 ¼ 0:75 � 10�4. Thus the intensity of elastically-scattered neu-

trons is 0:75 � 10�4 � 0:0102 � 106 ¼ 0:765 s�1 and finally the flux at 5 m is

0:765=ð4 � �� 52Þ ¼ 2:44 � 10�3 m�2 s�1.

4.13 The total centre-of-mass energy is given by ECM � ð2mc2ELÞ
1
2 ¼ 0:23 GeV and so

the cross-section is � ¼ 1:64 � 10�34 m2. The interaction length is ‘ ¼ 1=n�, where

n is the number density of electrons in the target. This is given by n ¼ NAZ=A,

where NA is Avogadro’s number and for lead,  ¼ 1:14 � 107 kg m�3 is the density,

Z ¼ 82 and A ¼ 208. Thus n ¼ 2:7 � 1033 m�3 and ‘ ¼ 2:3 m.

4.14 The target contains n ¼ 1:07 � 1025 protons and so the total number of interactions

per second is N ¼ n � flux � �tot ¼ ð1:07 � 1025Þ � ð2 � 107Þ � ð40 � 10�31Þ ¼
856 s�1. There are thus 856 photons/s produced from the target.

4.15 For small v, the Bethe–Bloch formula may be written

S  � dE

dx
/ 1

v2
ln

2mev2

I

 �
with

dS

dv
/ 2

v3
1 � ln

2mev2

I

 �
 �
:

The latter has a maximum for v2 ¼ eI=2me. Thus for a proton in iron we can use

I ¼ 10Z eV ¼ 260 eV, so that Ep ¼ 1
2
mpv2 ¼ mpIe=4me ¼ 324 keV.

4.16 From Equation (4.24), EðrÞ ¼ V=r lnðrc=raÞ and at the surface of the anode this is

0:5=ð20 � 10�6Þ lnð500Þ ¼ 4023 kV m�1. Also, if EthresholdðrÞ ¼ 750 kV m�1, then

from Equation (4.24) r ¼ 0:107 mm and so the distance to the anode is 0:087 mm.
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This contains 22 mean free paths and so assuming each collision produces an ion

pair, the multiplication factor is 222 ¼ 4:2 � 106 ¼ 106:6.

Chapter 5

5.1 We have m ¼ �þ � þ 
 > n ¼ ���þ ��� þ �

, where the inequality is because baryon

number B > 0. Using the values of the colour charges IC
3 and YC from Table 5.1, the

colour charges for the state are:

IC
3 ¼ ð�� ���Þ=2 � ð� � ���Þ=2 and YC ¼ ð�� ���Þ=3 þ ð� � ���Þ=3 � 2ð
 � �

Þ=3:

By colour confinement, both these colour charges must be zero for observable

hadrons, which implies �� ��� ¼ � � ��� ¼ 
 � �

  p and hence m � n ¼ 3p, where

p is a non-negative integer. Thus the only combinations allowed by colour

confinement are of the form

ð3qÞpðq�qqÞn ðp; n � 0Þ:

It follows that a state with the structure qq is not allowed, as no suitable values of p

and n can be found.

5.2 (a)

(b)
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(c)

5.3 The Feynman diagram is:

The four-momenta are:

PðpÞ ¼ ðE=c; pÞ and Pð�ppÞ ¼ ðE=c; �pÞ;

with

P2 ¼ m2c2 ¼ E2=c2 � p2 and m ¼ mp ¼ m�pp:

Now PðqÞ ¼ ðxE=c; xpÞ and Pð�qqÞ ¼ ðxE=c; �xpÞ with x ¼ 1
6
, so

E2
CM ¼ x2c2 PðpÞ þ Pð�ppÞ½ �2¼ x2 2m2c4 þ 2E2 þ 2p2c2

� �
:

Neglecting the masses of the proton and the antiproton at these energies, gives

E ¼ 3ECM and p ¼ 3 � 350 ¼ 1050 GeV=c:

5.4 Energy–momentum conservation gives,

W2c4 ¼ ðE � E0Þ þ EP½ �2� ðp � p0Þ þ P½ �2c2 ¼ invariant mass of X:
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Using, Q2 ¼ ðp � p0Þ2 � ðE � E0Þ2=c2 and M2c4 ¼ E2
P � P2c2, where M is the mass

of the proton, gives

W2c4 ¼ �Q2c2 þ M2c4 þ 2EPðE � E0Þ � 2P � ðp � p0Þc2:

Also, 2M�  W2c2 þ Q2 � M2c2 and so, in the rest frame of the proton

ðP ¼ 0;EP ¼ Mc2Þ, � ¼ E � E0.
Since some energy must be transferred to the outgoing electron, it follows that

E � E0, i.e. � � 0. Also, since the lightest state X is the proton, W2 � M2. Thus,

2M� ¼ Q2 þ ðW2 � M2Þc2 � Q2:

From the definition of x, it follows that x � 1. Finally, x > 0 because both Q2 and

2M� are positive.

5.5 In the quark model, � ¼ uds; p ¼ uud;K� ¼ s�uu; n ¼ udd and �þ ¼ u�dd. From the

flavour independence of the strong interaction, we can set �ðqqÞ ¼ �ðudÞ ¼
�ðsdÞ etc. and �ðq�qqÞ ¼ �ðu�ddÞ ¼ �ðs�uuÞ etc.. Then �ð�pÞ ¼ �ðppÞ ¼ 9�ðqqÞ and

�ðK�nÞ ¼ �ð�þpÞ ¼ 3�ðqqÞ � 3�ðq�qqÞ. The result follows directly.

5.6 By analogy with the QED formula, we have �ð3gÞ ¼ 2ð�2 � 9Þ�6
s mcc2=9�, where

mc � 1:5 GeV=c2 is the constituent mass of the c-quark. Evaluating this gives

�s ¼ 0:31. In the case of the radiative decay, �ðgg
Þ ¼ 2ð�2 � 9Þ�4
s�

2mbc2=9�,

where mb � 4:5 GeV=c2 is the constituent mass of the b-quark. Evaluating this gives

�s ¼ 0:32. (These values are a little too large because in practice � is replaced by
4
3
�s.)

5.7 From Equation (5.38a)

F
‘p
2 ðxÞ ¼ x

1

9
d þ �ddð Þ þ 4

9
u þ �uuð Þ þ 1

9
s þ �ssð Þ


 �

and from Equations (5.38b) and (5.39)

F‘n
2 ðxÞ ¼ x

4

9
d þ �ddð Þ þ 1

9
u þ �uuð Þ þ 1

9
s þ �ssð Þ


 �
;

so that

ð1

0

F
ep
2 ðxÞ � Fen

2 ðxÞ
� � dx

x
¼ 1

3

ð1

0

uðxÞ þ �uuðxÞ½ � dx � 1

3

ð1

0

dðxÞ þ �ddðxÞ½ �dx:

However, summing over all contributions we must recover the quantum numbers of

the proton, i.e.

ð1

0

½uðxÞ � �uuðxÞ� dx ¼ 2;

ð1

0

½dðxÞ � �ddðxÞ� dx ¼ 1:
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Eliminating the integrals over u and d gives the Gottfried sum rule.

5.8 Substituting Equation (5.22) into Equation (5.23) and setting NC ¼ 3, gives

R ¼ 3ð1 þ �s=�Þ
X

e2
q;

where �s is given by Equation (5.11) evaluated at Q2 ¼ E2
CM and the sum is over

those quarks that can be produced in pairs at the energy considered. At 2.8 GeV the

u, d and s quarks can contribute and at 15 GeV the u, d, s, c and b quarks can

contribute. Evaluating R then gives R � 2:17 at ECM ¼ 2:8 GeV and R � 3:89 at

ECM ¼ 15 GeV. When ECM is above the threshold for t�tt production, R rises to

R ¼ 5ð1 þ �s=�Þ.

5.9 A proton has the valence quark content p ¼ uud. Thus from isospin invariance the u

quarks in the proton carry twice as much momentum as the d quarks, which implies

a ¼ 2b. In addition, we are told that

ð1

0

xFuðxÞdx þ
ð1

0

xFdðxÞdx ¼ 1

2
:

Using the form of the quark distributions with a ¼ 2b gives a ¼ 4
3

and b ¼ 2
3
.

5.10 The peak value of the cross-section is where E ¼ MW c2, i.e.

�max ¼ �ð�hcÞ2ð2=MWc2Þ2�u�dd

3�
¼ 4

3

�ð�hcÞ2

ðMW c2Þ2
brðWþ ! u�ddÞ ¼ 84 nb:

The required integral is

�p�ppðsÞ ¼
ð1

0

ð1

0

�u�ddðEÞ uðxuÞ dðxdÞ dxu dxd

where we have used C-invariance to relate the distribution functions for protons and

antiprotons. In the narrow width approximation and using the quark distributions

from Question 5.9,

�p�ppðsÞ ¼ C

ð1

0

ð1

0

ð1 � xuÞ3

xu

ð1 � xdÞ3

xd

� 1 � xus

ðMW c2Þ2
xd

 !
dxu dxd

where C  ð8��W�maxÞ=ð9MWc2Þ and we have used E2 ¼ xuxds. Thus,

�p�ppðsÞ ¼ C

ð1

k

ð1 � xuÞ3

xu

1 � k

xu

 �3

dxu;
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where k  ðMW c2Þ=s and the lower limit is because k < xu < 1. The integral yields

�p�ppðsÞ ¼
8�

9

�W

MW c2
�max �ð1þ9kþ9k2 þ k3ÞlnðkÞ�11

3
�9kþ9k2 þ11

3
k3

� �
:

Evaluating this for
ffiffi
s

p ¼ 1 TeV gives k ¼ 0:0064 and �p�pp ¼ 9:3 nb, which is about a

factor of two larger than experiment.

Chapter 6

6.1 A charged current weak interaction is one mediated by the exchange of charged W�

boson. A possible example is n ! p þ e� þ ���e. A neutral current weak interaction is

one mediated by a neutral Z0 boson. An example is �	 þ p ! �	 þ p. Charged

current weak interactions do not conserve the strangeness quantum number, whereas

neutral current weak interactions do. For �	 þ e� ! �	 þ e�, the only Feynman

diagram that conserves both Le and L	 is:

which is a weak neutral current. However, for �e þ e� ! �e þ e�, there are two

diagrams:

Thus the reaction has both neutral and charged current components and is not

unambiguous evidence for weak neutral currents.
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6.2 The lowest-order electromagnetic Feynman diagram is

The total cross-section is given by

� ¼
ð2�

0

d�

ð1

�1

d cos �
d�

d	
¼ 2��2�h2c2

4E2
CM

cos �þ 1

3
cos3 �


 �1

�1

¼ 4��2�h2c2

3E2
CM

¼ 0:44 nb:

The lowest-order weak interaction diagram is

With the addition of the weak interaction term,

d�

d	

 �
¼ d�

d	

 �
em

þ d�

d	

 �
wk

¼ �2�h2c2

4E2
CM

1 þ Cwk cos �þ cos2 �
� �

:

Then, using

�F ¼ C

ð1

0

1 þ Cwk cos �þ cos2 �
� �

d cos �

and

�B ¼ C

ð0

�1

1 þ Cwk cos �þ cos2 �
� �

d cos �:

where C  2��2�h2c2=4E2
CM , gives

�F ¼ C
4

3
þ Cwk

2


 �
and �B ¼ C

4

3
� Cwk

2


 �
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and so

AFB ¼ Cwk

2ð4=3Þ ; i:e: 8AFB ¼ 3Cwk:

6.3 The Feynman diagram is

The amplitude has two factors of the weak coupling gW and one W propagator

carrying a momentum q, i.e.

amplitude / g2
W

q2c2 � M2
W c4

/ g2
W

M2
W

;

because qc � M�c2 � MWc2. Now, �ð� ! p��Þ / ðamplitudeÞ2 / g4
W=M4

W and so

doubling gW and reducing MW by a factor of four will increase the rate by a factor

24½ �=½ð1=4Þ4� ¼ 4096:

6.4 The most probable energy is given by

d

dEe

d!

dEe

 �
¼ 0; which gives

2G2
F m2

	

ð2�Þ3ð�hcÞ6
2Ee �

4E2
e

m	c2

 �
¼ 0; i:e Ee ¼ m	c2=2:

When Ee � m	c2=2, the electron has its maximum energy and the two neutrinos

must be recoiling in the opposite direction. Only left-handed particles (and right-

handed antiparticles) are produced in weak interactions. Since the masses of all

particles are neglected, states of definite handiness are also states of definite helicity,

so the orientations of the momenta and spins are therefore as shown:
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Integrating the spectrum gives

� ¼ 2G2
Fðm	c2Þ2

ð2�Þ3ð�hcÞ6

ðm	c2=2

0

E2
e �

4E3
e

3m	c2


 �
dEe ¼

G2
Fðm	c2Þ5

192�3ð�hcÞ6
:

Numerically, � � 3:0 � 10�19 GeV, which gives a lifetime � ¼ �h=� � 2:2 � 10�6 s.

6.5 (a) In addition to the decay b ! c þ e� þ ���e, there are two other leptonic decays

ð‘ ¼ 	�; ��Þ and by lepton universality they will all have equal decay rates.

There are also hadronic decays of the form b ! c þ X where QðXÞ ¼ �1.

Examining the allowed Wq�qq vertices using lepton–quark symmetry shows that

the only forms that X can have, if we ignore Cabibbo-suppressed modes, are

d�uu and s�cc. Each of these hadronic decays has a probability three times that

of a leptonic decay because the quarks exist in three colour states. Thus,

there are effectively six hadronic channels and three leptonic ones. So finally,

BRðb ! c þ e� þ ���eÞ ¼ 1
9
.

(b) The argument is similar to that of (a) above. Thus, in addition to the decay

�� ! e� þ ���e þ �� , there is also the leptonic decay �� ! 	� þ ���	 þ �� with

equal probability and the hadronic decays �� ! �� þ X. In principle, X ¼ d�uu
and s�cc, but the latter is not allowed because ms þ mc > m� . So the only allowed

hadronic decay is �� ! d þ �uu þ �� with a relative probability of three because

of colour. So finally, BRð�� ! e� þ ���e þ ��Þ ¼ 1
5
. (The measured rate is 0.18,

but we have neglected kinematic corrections.)

6.6 For neutrinos, gRð�Þ ¼ 0; gLð�Þ ¼ 1
2
. So, ��e

¼ ��	 ¼ ��� ¼ �0=4, where

�0 ¼ GFM3
Zc6

3�
ffiffiffi
2

p
ð�hcÞ3

¼ 668 MeV:

Thus the partial width for decay to neutrino pairs is �� ¼ 501 MeV. For quarks,

gRðu; c; tÞ ¼ �1
6

and gLðu; c; tÞ ¼ 1
3
. Thus, �u ¼ �c ¼ 10

72
�0. Also, gRðd; s; bÞ ¼ 1

12

and gLðb; s; dÞ ¼ � 5
12

. Thus, �d ¼ �s ¼ �b ¼ 13
72
�0. Finally, �q ¼

P
i

�i, where

i ¼ u; c; d; s; b – no top quark because 2Mt > MZ . So,

�q ¼ 3 � 13

72
þ 2 � 10

72

 �
�0 ¼ 59

72
�0 ¼ 547 MeV:

Hadron production is assumed to be equivalent to the production of q�qq pairs

followed by fragmentation with probability unity. Thus �hadron ¼ 3�q, where the

factor of three is because each quark exists in one of three colour states. Thus

�hadron ¼ 1641 MeV.
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If there are N� generations of neutrinos with M� < MZ=2, so that Z0 ! ���� is

allowed, then �tot ¼ �had þ �lep þ N������ where ����� is the width to a specific ����
pair. Thus

N� ¼
�tot � �had � �lep

�����
¼ ð2490 � 7Þ � ð1738 � 12Þ � ð250 � 2Þ

167

¼ 3:01 � 0:05;

which rules out values of N� greater than 3.

6.7 The quark compositions are: D0 ¼ c�uu; K� ¼ s�uu; �þ ¼ u�dd. Since preferentially

c ! s, we have

i.e. a lowest-order charge current weak interaction. However, for Dþ ! K0 þ �þ,

we have Dþ ¼ c�dd; K0 ¼ d�ss ; �þ ¼ u�dd. Thus we could arrange c ! d via W

emission and the Wþ could then decay to u�dd, i.e. �þ. However, this would leave the
�dd quark in the Dþ to decay to an �ss quark in the K0 which is not possible as they both

have the same charge.

6.8 The relevant Feynman diagrams are:

In the case of the charged pion, there are two vertices of strength
ffiffiffiffiffiffiffi
�W

p
, and there

will be a propagator

1

Q2 þ M2
W c2

� 1

M2
W c2

;
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because the momentum transfer (squared) Q2 carried by the W is very small. Thus

the decay rate will be proportional to

ffiffiffiffiffiffiffi
�W

p ffiffiffiffiffiffiffi
�W

p

M2
W

 �2

¼ �2
W

M4
W

:

In the case of the neutral pion, there are two vertices of strength
ffiffiffiffiffiffiffiffi
�em

p
, but no

propagator. Thus the decay rate will be proportional to �2
em and since �em � �W, the

decay rate for the charged pion will be much smaller than that for the neutral decay,

i.e. the lifetime of the �0 will be much shorter.

6.9 The two Feynman diagrams are:

Using lepton–quark symmetry and the Cabibbo hypothesis, the two hadron vertices

are given by gudW ¼ gW cos �C and gusW ¼ gW sin �C. So, if we ignore kinematic

differences and spin effects, we would expect the ratio of decay rates is given by

R ¼ Rate ðK� ! 	� þ ���	Þ
Rate ð�� ! 	� þ ���	Þ

/ g2
usW

g2
udW

¼ tan2 �C � 0:05

The measured ratio is actually about 1.3, which shows the importance of the

neglected effects. For example, the Q-value for the kaon decay is almost 20 times

that for pion decay.

6.10 To a first approximation the difference in the two decay rates is due to two effects.

First, �� ! n þ e� þ ���e has �Sj j ¼ 1 and hence is proportional to sin2 �C, where

�C is the Cabbibo angle, whereas �� ! �þ e� þ ���e has �Sj j ¼ 0 and is propor-

tional to cos2 �C. Secondly, the Q-values are different for the two reactions. Thus,

using Sargent’s Rule,

R � sin2 �C

cos2 �C

Q�n

Q��

 �5

� 0:053
257

81

 �5

¼ 17:0:

(The experimental value is 17.8.) Whereas, �� ! n þ e� þ ���e is a first-order weak

interaction, no Feynman diagram with a single W-boson exchanged can be drawn for

�þ ! n þ eþ þ �e (try it), i.e. it is higher-order and hence very heavily suppressed –

in practice not seen.
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6.11 The required number of events produced must be 20 000, taking account of the

detection efficiency. If the cross-section is 60 fb ¼ 6 � 10�38 cm2, then the inte-

grated luminosity required is 2 � 104=6 � 10�38 ¼ ð1=3Þ � 10
42

cm�2 and hence

the instantaneous luminosity must be 3:3 � 1034 cm�2 s�1.

The branching ratio for Z0 ! b�bb is found from the partial widths to be 15 per cent.

Thus, if b quarks are detected, the much greater branching ratio for H ! b�bb will

help distinguish this decay from the background of Z0 ! b�bb.

6.12 By ‘adding’ an I ¼ 1
2

particle to the initial state we can assume isospin invariance

holds. Consider 
� þ S0 ! �þ ��. The final state is I ¼ 1; I3 ¼ �1j i and so is the

initial state because I3ðS0Þ ¼ �1
2
. Thus the transition is pure I ¼ 1 and the rate is

M1j j2. For 
0 þ S0 ! �þ �0, the final state is again pure I ¼ 1 but with I3 ¼ 0.

However, the initial state is an equal mixture of I ¼ 0 and I ¼ 1, i.e.


�S0
�� �

¼ 1ffiffiffi
2

p I ¼ 1; I3 ¼ 0j i � 1ffiffiffi
2

p I ¼ 0; I3 ¼ 0j i

and so the rate is 1
2

M1j j2. Thus R ¼ 2: (The measured value is about 1.8.)

6.13 Integrating the differential cross-sections over y (from 0 to 1) gives for a spin-1
2

target

with a specific quark distribution

�NCð�Þ
�CCð�Þ ¼

ð1

0

½g2
L þ g2

Rð1 � yÞ2� dy

2
4

3
5 ð1

0

dy

2
4

3
5
�1

¼ g2
L þ 1

3
g2

R

and

�NCð���Þ
�CCð���Þ ¼

ð1

0

½g2
Lð1 � yÞ2 þ g2

R� dy

2
4

3
5 ð1

0

ð1 � yÞ2
dy

2
4

3
5
�1

¼ g2
L þ 3g2

R:

For an isoscalar target, we must add the contributions for u and d quarks in equal

amounts, i.e.

�NCð�Þ
�CCð�Þ ðisoscalarÞ ¼ g2

LðuÞ þ
1

3
g2

RðuÞ þ g2
LðdÞ þ

1

3
g2

RðdÞ

and

�NCð���Þ
�CCð���Þ ðisoscalarÞ ¼ g2

LðuÞ þ 3g2
RðuÞ þ g2

LðdÞ þ 3g2
RðdÞ:

Substituting for the couplings finally gives for an isoscalar target

�NCð�Þ
�CCð�Þ ¼

1

2
� sin2 �W þ 20

27
sin4 �W;

�NCð���Þ
�CCð���Þ ¼

1

2
� sin2 �W þ 20

9
sin4 �W:
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Chapter 7

7.1 For the 7
3Li nucleus, Z ¼ 3 and N ¼ 4. Hence the configuration is

protons: 1s1=2

� �2
1p3=2

� �1
; neutrons: 1s1=2

� �2
1p3=2

� �2
:

By the pairing hypothesis, the two neutrons in the 1p3=2 sub-shell will have a total

orbital angular momentum and spin L ¼ S ¼ 0 and hence J ¼ 0. Therefore they will

not contribute to the overall nuclear spin, parity or magnetic moment. These will be

determined by the quantum numbers of the unpaired proton in the 1p3=2 sub-shell.

This has J ¼ 3
2

and ‘ ¼ 1, hence for the spin-parity we have JP ¼ 3
2

�
. The magnetic

moment is given by

	 ¼ j gproton ¼ j þ 2:3 ðsince j ¼ ‘þ 1

2
Þ ¼ 1:5 þ 2:3

¼ 3:8 nuclear magnetons:

If only protons are excited, the two most likely excited states are:

protons: 1s1=2

� �2
1p1=2

� �1
; neutrons: 1s1=2

� �2
1p3=2

� �2
;

which corresponds to exciting a proton from the p3=2 sub-shell to the p1=2 sub-shell,

and

protons: 1s1=2

� ��1
1p3=2

� �2
; neutrons: 1s1=2

� �2
1p3=2

� �2
;

which corresponds to exciting a proton from the s1=2 sub-shell to the p3=2 sub-shell.

7.2 A state with quantum number jð¼ ‘� 1
2
Þ can contain a maximum number

Nj ¼ 2ð2j þ 1Þ nucleons. Therefore, if Nj ¼ 16 it follows that j ¼ 7
2

and ‘ ¼ 3 or

4. However, we know that the parity is odd and since P ¼ ð�1Þ‘, it follows that

‘ ¼ 3.

7.3 The configuration of the ground state is

protons: ð1s1=2Þ2ð1p3=2Þ4ð1p1=2Þ2ð1d5=2Þ;
neutrons: ð1s1=2Þ2ð1p3=2Þ4ð1p1=2Þ2:

To get jP ¼ 1
2

�
, one could promote a p1=2 proton to the d5=2 shell, giving

protons: ð1s1=2Þ2ð1p3=2Þ4ð1p1=2Þ�1ð1d5=2Þ2:

Then by the pairing hypothesis, the two d5=2 protons could combine to give jP ¼ 0þ,

so that the total spin-parity would be determined by the unpaired p1=2 neutron, i.e.

jP ¼ 1
2

�
. Alternatively, one of the p3=2 protons could be promoted to the d5=2 shell,

giving

protons: ð1s1=2Þ2ð1p3=2Þ�1ð1p1=2Þ2ð1d5=2Þ2
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and the two d5=2 protons could combine to give jP ¼ 2þ, so that when this combines

with the single unpaired jP ¼ 3
2

�
proton the overall spin-parity is jP ¼ 1

2

�
. There are

many other possibilities.

7.4 For 93
41Nb, Z ¼ 41 and N ¼ 52. From the filling diagram Figure 7.4, the configuration

is predicted to be:

proton: . . . ð2p3=2Þ4ð1f5=2Þ6ð2p1=2Þ2ð1g9=2Þ1; neutron : . . . ð2d5=2Þ2:

So ‘ ¼ 4, j ¼ 9
2
) jP ¼ 9

2

þ
(which agrees with experiment). The magnetic dipole

moment follows from the expression for jproton in Equations (7.31) with j ¼ ‘þ 1
2
, i.e.

	 ¼ ð j þ 2:3Þ	N ¼ 6:8	N. (The measured value is 6:17	N.)

For 33
16S, Z ¼ 16 and N ¼ 17. From the filling diagram Figure 7.4, the configura-

tion is predicted to be:

proton � � � ð1d5=2Þ6ð2s1=2Þ2; neutron: � � � ð1d5=2Þ7ð2s1=2Þ2ð1d3=2Þ1:

So ‘ ¼ 2; j ¼ 3
2
) jP ¼ 3

2

þ
(which agrees with experiment). The magnetic dipole

moment follows from the expression for jneutron in Equations (7.31) with j ¼ ‘� 1
2
,

i.e. 	 ¼ ð1:9jÞ=ð j þ 1Þ	N ¼ 1:14	N. (The measured value is 0:64	N.)

7.5 From Equation (7.32),

eQ ¼
ð
ð2z2 � x2 � y2Þd�

with  ¼ Ze=ð4
3
�b2aÞ and the integral is through the volume of the spheroid

ðx2 þ y2Þ=b2 þ z2=a2 � 1. The integral can be transformed to one over the volume

of a sphere by the transformations x ¼ bx0; y ¼ by0 and z ¼ az0. Then

Q ¼ 3Z

4�

ð ð ð
dx0dy0dz0 ð2a2z02 � b2x02 � b2y02Þ:

But

ð ð ð
x02dx0 dy0dz ði:e: z0Þ ¼ 1

3

ð1

0

r024�r02dr0 ¼ 4�

15
;

and similarly for the other integrals. Thus, by direct substitution, Q ¼ 2
5
Zða2 � b2Þ.

7.6 From Question 7.5 we have Q ¼ 2
5
Zeða2 � b2Þ and using Z ¼ 67 this gives

a2 � b2 ¼ 13:1 fm2. Also, from Equation (2.32) we have A ¼ 4
3
�ab2, where

 ¼ 0:17 fm�3 is the nuclear density. Thus, ab2 ¼ 231:7 fm3. The solution of

these two equations gives a � 6:85 fm and b � 5:82 fm.

7.7 From Equation (7.53), t1=2 ¼ ln2=� ¼ CR ln2 expðGÞ, where C is a constant

formed from the frequency and the probability of forming �-particles in the nucleus.
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Thus t1=2ðThÞ ¼ t1=2ðCfÞ exp½GðThÞ � GðCfÞ�. The Gamow factors may be calcu-

lated from the data given. Some intermediate quantities are: rC ¼ 45:96 fm (Th);

37.72 fm (Cf); R ¼ 9:268 fm (Th); 9.439 fm (Cf) (using R ¼ 1:21 ðA1=3 þ 41=3Þ and

recalling that ðZ;AÞ refer to the daughter nucleus). These give G ¼ 66:5 (Th); 54.9 (Cf)

and t1=2 ðThÞ ¼ e11:6 t1=2ðCfÞ ¼ 4:0 years. (The measured value is 1.9 years).

7.8 The JP values of the �0 and the � are both 1
2

þ
(see Chapter 3), so the photon has

L ¼ 1 and as there is no change of parity the decay proceeds via an M1 transition.

The �0 has JP ¼ 3
2

þ
and again there is no parity change. Therefore both M1 and E2

multipoles could be involved, with M1 dominant (see Section 7.8.2). If we assume

that the reduced transition probabilities are equal in the two cases, then from

Equations (7.80), in an obvious notation,

�ð�0Þ ¼ E
ð�0Þ
E
ð�0Þ


 �3

�ð�0Þ;

i.e. �ð�0Þ ¼ ð292=77Þ3 � ð0:6 � 10�23Þ=0:0056 ¼ 5:8 � 10�20 s (the measured

value is ð7:4 � 0:7Þ � 10�20 s).

7.9 In the centre-of-mass system, the threshold for 34S þ p ! n þ 34Cl is

6:45 � 34=35ð Þ ¼ 6:27 MeV. Correcting for the neutron–proton mass difference

gives the Cl–S mass difference as 5.49 MeV and since in the positron decay
34Cl ! 34S þ eþ þ�e, Q ¼ MðA; ZÞ � MðA; Z � 1Þ � 2me, the maximum positron

energy is 4.47 MeV.

7.10 From Equation (7.71) the electron energy spectrum may be written IðEÞ ¼ AE1=2 �
ðE0 � EÞ2

, where E is the electron energy, E0 is the end-point, A is a constant and we

have neglected the Fermi screening correction and set the neutrino mass to be zero.

We need to calculate the fraction

F 
ðE0

E0��

IðEÞ dE

2
64

3
75
ðE0

0

IðEÞ dE

2
4

3
5
�1

where � is a small quantity. Using
Ð

x1=2ða � xÞ2
dx ¼ 1

2
a2x2 � 2

3
ax3þ

�
1
4
x4�1=2

, gives,

using E0 ¼ 18:6 � 103 eV and � ¼ 10 eV, F ¼ 3:1 � 10�10.

7.11 The mean energy �EE is defined by

�EE 
ðE0

0

E d!ðEÞ

2
4

3
5 ðE0

0

d!ðEÞ

2
4

3
5
�1

:

The integrals are:

ð
E3=2ðE0 � EÞ2

dE ¼ 2

315
E5=2 63E2

0 � 90E0E þ 35E2
� �
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and

ð
E1=2ðE0 � EÞ2

dE ¼ 2

105
E3=2 35E2

0 � 42E0E þ 15E2
� �

:

Substituting the limits gives �EE ¼ 1
3
E0, as required.

7.12 The possible transitions are as follows:

From Figure 7.13, the dominant multipole for a fixed transition energy will be M1

for the 3
2

� ! 5
2

�
and 3

2

� ! 1
2

�
transitions and E2 for the 5

2

� ! 1
2

�
transition. Thus

we need to calculate the rate for an M1 transition with E
 ¼ 178 keV. This can be

done using Equations (7.80) and gives �1=2 � 3:9 � 10�12 s. The measured value is

3:5 � 10�10 s, which confirms that the Weisskopf approximation is not very

accurate.

7.13 Set L ¼ 3 in Equation (7.78a), substitute the result into Equation (7.77) and use

�
 ¼ �hT to give �
ðE3Þ ¼ ð2:3 � 10�14ÞE7

A2 eV, where E
 is expressed in MeV.

Chapter 8

8.1 To balance the number of protons and neutrons, the fission reaction must be

n þ 235
92U ! 92

37Rb þ 140
55Cs þ 4n;

i.e. four neutrons are produced. The energy released is the differences in binding

energies of the various nuclei, because the mass terms in the SEMF cancel out. We

have, in an obvious notation,

�ðAÞ ¼ 3; �ðA2=3Þ ¼ �9:26; �
ðZ � NÞ2

4A

" #
¼ 0:28; �

Z2

A1=3


 �
¼ 485:0:

The contribution from the pairing term is negligible (about 1 MeV). Using the

numerical values for the coefficients in the SEMF, the energy released per fission

EF ¼ 157:9 MeV.

The power of the nuclear reactor is P ¼ nEF ¼ 100 MW ¼ 6:25� 1020 MeV s�1,

where n is the number of fissions per second. Since one neutron escapes per fission and

Initial Final L �P Multipoles

3
2

� 5
2

�
1, 2, 3, 4 No M1, E2, M3, . . .

3
2

� 1
2

�
1, 2 No M1, E2

5
2

� 1
2

�
2, 3 No E2, M3
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contributes to the flux, the flux F is equal to the number of fissions per unit area per

second, i.e.

F ¼ n

4�r2
¼ P

4�r2EF

¼ 6:25 � 1020 MeVs�1

ð157:9 MeVÞ � ð12:57 m2Þ ¼ 3:15 � 1017 s�1 m�2:

The interaction rate R is given by R¼�� F � ðnumber of target particlesÞ. The

latter is given by nT ¼ n � NA, where NA is Avogadro’s number and n is found from

the ideal gas law to be n ¼ PV=RT , where R is the ideal gas constant. Using

T ¼ 298 K, P ¼ 1 � 105 Pa and R ¼ 8:31 Pa m3 mol�1 K�1, gives n ¼ 52:5 mol

and hence nT ¼ 3:2 � 1025. Using the cross-section � ¼ 10�31 m2, the rate is

1:0 � 1012 s�1.

8.2 The neutron speed in the CM system is v � mv=ðM þ mÞ ¼ Mv=ðM þ mÞ and if the

scattering angle in the CM system is �, then after the collision the neutron will have

a speed vðm þ M cos �Þ=ðM þ mÞ in the original direction and Mv sin �=ðM þ mÞ
perpendicular to this direction. Thus the kinetic energy is

Eðcos �Þ ¼ mv2ðM2 þ 2mM cos �þ m2Þ
2ðM þ mÞ2

and the average value is

Efinal ¼ �EE 
ð1

�1

Eðcos �Þ d cos �

2
4

3
5 ð1

�1

d cos �

2
4

3
5
�1

¼ REinitial;

where the reduction factor is R ¼ ðM2 þ m2Þ=ðM þ mÞ2
. For neutron scattering from

graphite, R � 0:86 and after N collisions the energy will be reduced to

Efinal ¼ RNEinitial. The average initial energy of fission neutrons from 235U is

2 MeV and to thermalize them their energy would have to be reduced to about

0.025 eV. Thus N � lnðEfinal=EinitialÞ=lnð0:86Þ ¼ 116.

8.3 From Equation (1.44a), for the fission of 235U, Wf ¼ JNð235Þ�f and the total power

output is P ¼ WfEf , where Ef is the energy released per fission. For the capture by
238U, Wc ¼ JNð238Þ�c. Eliminating the flux J, gives

Wc ¼
Nð238Þ�C

Nð235Þ�f

P

Ef

 �
:

Using the data supplied, gives Wc ¼ 1:08 � 1019 atoms s�1 � 135 kg year�1.

8.4 Consider fissions occurring sequentially separated by a small time interval �t. The

instantaneous power is the sum of the power released from all the fissions up to that

time. If E is the energy released in each fission, then over the lifetime of the reactor,

i.e. up to time T, the power is given by P0 ¼ nE=T, where n is the total number of

fissions and �t ¼ E=P0.
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The power after some time t after the reactor has been shut down is

PðtÞ ¼ 3ðT þ tÞ�1:2 þ 3ðT þ t � �tÞ�1:2 þ 3ðT þ t � 2�tÞ�1:2 � � � þ 3t�1:2:

In this formula, the first term is the power released from the first fission and the last

term is the power released from the last fission before the reactor was shut down. To

sum this series, we convert it to an integral:

PðtÞ ¼ 3
Xn¼P0T=E

n¼0

T þ t � nE=P0ð Þ�1:2 � 3

ðTP0=EF

0

ðT þ t � nE=P0Þ�1:2
dn:

Setting u ¼ T þ t � nE=P0ð Þ, gives

PðtÞ ¼ �3
P0

E

ðt

Tþt

u�1:2 du ¼ 0:075P0 t�0:2 � ðT þ tÞ�0:2
h i

:

Using T ¼ 1 year and t ¼ 0:5 year, gives a power output of approximately 1.1 MW

after 6 months.

8.5 The PPI chain overall is: 4ð1HÞ ! 4He þ 2eþ þ 2�e þ 2
 þ 24:68 MeV. Two

corrections have to be made to this. Firstly, the positrons will annihilate with

electrons in the plasma releasing a further 2me ¼ 1:02 MeV per positron.

Secondly, each neutrino carries off 0.26 MeV of energy into space that will not

be detected. So, making these corrections, the total output per hydrogen atom is
1
4
ð24:68 þ 2:04 � 0:52Þ ¼ 6:55 MeV. The total energy produced to date is

5:60 � 1043 J ¼ 3:50 � 1056 MeV. Thus, the total number of hydrogen atoms

consumed is 5:34 � 1055 and so the fraction of the Sun’s hydrogen used is

5:34 � 1055=9 � 1056 ¼ 5:9 per cent and as this corresponds to 4.6 billion years,

the Sun has another 73 billion years to burn before its supply of hydrogen is

exhausted.

8.6 A solar constant of 8:4 J cm�2 s�1 is equivalent to 5:25 � 1013 MeV cm�2 s�1 of

energy deposited. If this is due to the PPI reaction 4ð1HÞ ! 4He þ 2eþ þ 2�e þ 2
,

then this rate of energy deposition corresponds to a flux of 5:25 � 1013=2�ð
6:55Þ � 4 � 1012 neutrinos cm�2 s�1.

8.7 For the Lawson criterion to be just satisfied, from Equation (8.46),

L ¼ nd �dt�h itcQ

6kT
¼ 1:

We have kT ¼ 10 keV and from Figure 8.7 we can estimate �dt�h i � 10�22 m3 s�1.

Also, from Equation (8.45), Q ¼ 17:6 MeV. So, finally, nd ¼ 6:8 � 1018 m�3.
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8.8 The mass of a d–t pair is 5:03 u ¼ 4:69 � 109 eV=c2 ¼ 8:36 � 10�24 g. The number

of d–t pairs in a 1 mg pellet is therefore 1:2 � 1020. From Equation (8.45), each d–t

pair releases 17.6 MeV of energy. Thus, allowing for the efficiency of conversion,

each pellet releases 5:3 � 1026 eV. The output power is 750 MW ¼ 4:7 � 1027 eV=s.

Thus the number of pellets required is 8:9 � 9 s�1.

8.9 Assume a typical body mass of 70 kg, half of which is protons. This corresponds to

2:1 � 1028 protons and after 1 year the number that will have decayed is

2:1 � 1028½1 � expð�1=�Þ�, where � is the lifetime of the proton in years. Each

proton will eventually deposit almost all of its rest energy, i.e. approximately 0.938

GeV, in the body. Thus in 1 year the total energy in Joules deposited per kg of body

mass would be 4:5 � 1016½1 � expð�1=�Þ� and this amount will be lethal if greater

than 5 Gy. Expanding the exponential gives the result that the existence of humans

implies � > 0:9 � 1016 years.

8.10 The approximate rate of whole-body radiation absorbed is given by Equation (8.48a).

Substituting the data given, we have

dD

dt
ð	Sv h�1Þ ¼ AðMBqÞ � E
ðMeVÞ

6r2ðm2Þ ¼ ð40 � 10�3Þ � ð1:173 þ 1:333Þ
6

¼ 1:67 � 10�2	Sv h�1

and so in 18 h, the total absorbed dose is 0:30	Sv.

8.11 If the initial intensity is I0, then from Equation (4.18), the intensities after passing

through bone, Ib, and tissue, It, are

Ib � I0 exp½�ð	bb þ 2	ttÞ� and It � I0 exp½�	tðb þ 2tÞ�:

Thus R ¼ exp½�bð	b � 	tÞ� ¼ 0:7 and hence b ¼ �lnð0:7Þ=ð	b � 	tÞ ¼ 2:5 cm.

8.12 From Figure 4.8, the rate of ionization energy losses is only slowly varying for

momenta above about 1 GeV/c and given that living matter is mainly water and

hydrocarbons a reasonable estimate is 3 MeV g�1 cm2. Thus the energy deposited in

1 year is 2:37 � 109 MeV kg�1, which is 3:8� 10�4 Gy.

8.13 In general, the nuclear magnetic resonance frequency is f ¼ lj jB=jh. The numerical

input we use is:

j ¼ 7=2; B ¼ 1 T; 	 ¼ 3:46 	N; 	N ¼ 3:15 � 10�14 MeV T�1

and h ¼ 4:13 � 10�21 MeV s;

giving f ¼ 7:5 MHz.
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Appendix B

B.1 (a) From the definitions of s, t and u, we have

ðs þ t þ uÞc2 ¼ ðp2
A þ 2pApB þ p2

BÞ þ ðp2
A � 2pApC þ p2

CÞ þ ðp2
A � 2pApD þ p2

DÞ

which, using p2
A ¼ m2

Ac2 etc., becomes

ðs þ t þ uÞc2 ¼ 3m2
Ac2 þ m2

Bc2 þ m2
Cc2 þ m2

Dc2 þ 2pAðpB � pC � pDÞ:

However, from four-momentum conservation, pA þ pB ¼ pC þ pD, so that

ðs þ t þ uÞc2 ¼ 3m2
Ac2 þ m2

Bc2 þ m2
Cc2 þ m2

Dc2 � 2p2
A

and hence

ðs þ t þ uÞ ¼
X

j¼A;B;C;D

mj
2:

(b) From the definition of t,

c2t ¼ p2
A þ p2

C � 2pApC ¼ m2
Ac2 þ m2

Cc2 � 2
EAEC

c2
� pA: pC

 �
:

For elastic scattering, A  C. Thus EA ¼ EC and pAj j ¼ pCj j ¼ p, so that

pA � pC ¼ p2 cos �. Then c2t ¼ 2m2
Ac2 � 2 E2

A=c2 � p2 cos �
� �

and using

E2
A ¼ p2 c2 þ m2

Ac4, gives t ¼ �2p2ð1 � cos �Þ=c2.

B.2 Energy conservation gives E� ¼ E	 þ E� , where

E� ¼ 
m�c2; E	 ¼ cðm2
	c2 þ p2

	Þ
1=2; E� ¼ p�c

and hence


m�c2 � p�c
� �2¼ c2 m2

	c2 þ p2
	

� �
: ð1Þ

However, three-momentum conservation gives

p	 cos � ¼ p� ¼ 
m�v; p	 sin � ¼ pv ¼ E�=c: ð2Þ

Eliminating p	 and p� between (1) and (2) and simplifying, gives

tan � ¼
ðm2

� � m2
	Þ

2�
2m2
�

:

APPENDIX B 389



B.3 Conservation of four-momentum is p	 ¼ p� � p� , from which p2
	 ¼ p2

� þ p2
�� 2p�p� .

Now p2
j ¼ m2

j c2 for j ¼ �; 	 and �, and

p�pv ¼
E�E�

c2
� p� � p� ¼ m�E� ¼ m� p�j jc;

because p� ¼ 0 and E� ¼ m�c2 in the rest frame of the pion. However, p�j j ¼ p	
�� ��  p

because the muon and neutrino emerge back-to-back. Thus, p ¼ ðm2
� � m2

	Þ c=2m�;

but p ¼ 
m	v, from which v ¼ pc p2 þ m2
	c2

h i�1
2

. Finally, substituting for p gives

v ¼
m2
� � m2

	

m2
� þ m2

	

 !
c:

B.4 By momentum conservation, the momentum components of X0 are:

px ¼ �0:743 (GeV/c), py ¼ �0:068 (GeV/c), pz ¼ 2:595 (GeV/c) and hence

p2
X ¼ 7:291. Also, p2

A ¼ 4:686 (GeV/c)2 and p2
B ¼ 0:304 (GeV/c)2.

Under hypothesis (a):

EA ¼ ðm2
�c4 þ p2

Ac2Þ1=2 ¼ 2:169 GeV and EB ¼ ðm2
Kc4 þ p2

Bc2Þ1=2 ¼ 0:740 GeV.

Thus EX ¼ 2:909 GeV and MX ¼ ðE2
X � p2

Xc2Þ1=2
c�2 ¼ 1:082 GeV/c2.

Under hypothesis (b):

EA ¼ ðm2
pc4 þ p2

Ac2Þ1=2 ¼ 2:359 GeV and EB ¼ ðm2
�c4 þ p2

Bc2Þ1=2 ¼ 0:569 GeV.

Thus EX ¼ 2:928 GeV and MX ¼ ðE2
X � p2

Xc2Þ1=2
c�2 ¼ 1:132 GeV/c2.

Since MD ¼ 1:86 GeV/c2 and M� ¼ 1:12 GeV/c2, the decay is � ! p þ ��.

B.5 If the four-momenta of the initial and final electrons are p ¼ ðE=c; qÞ and

p0 ¼ ðE0=c; q0Þ, respectively, the squared four-momentum transfer is defined by

Q2  �ðp0 � pÞ2 ¼ �2m2c2 þ 2EE0=c2 � 2q � q0:

However, E ¼ E0 and qj j ¼ q0j j  q, so neglecting the electron mass,

Q2 � 2q2 � ð1 � cos �Þ. The laboratory momentum may be found from Equation

(B.36):

q2 ¼ c2

4m2
p

s � ðmp � meÞ2
h i

s � ðmp þ meÞ2
h i

�
c2ðs � m2

pÞ
2

4m2
p

;

where the invariant mass squared s is defined by s  ðp þ PÞ2=c2 and P is the four-

momentum of the initial proton, i.e. P ¼ ðmpc; 0Þ. Thus,

s ¼ m2
e þ m2

p þ 2mpE=c2 � m2
p þ 2mpE=c2:

Substituting into the expression for Q2 gives Q2 � 2E2ð1 � cos �Þ=c2.

B.6 The total four-momentum of the initial state is ptot ¼ E þ mpc2
� �

=c; pL

� �
. Hence the

invariant mass W is given by ðWc2Þ2 ¼ ðEL þ mpc2Þ2 � p2
Lc2, where pL  pLj j. The
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invariant mass squared in the final state evaluated in the centre-of-mass frame has a

minimum value ð4mpcÞ2
when all four particles are stationary. Thus, Emin is given by

ðEmin þ mpc2Þ2 � p2
Lc2 ¼ ð4mpc2Þ2

which expanding and using E2
min � p2

Lc2 ¼ m2
pc4, gives Emin ¼ 7mpc2 ¼ 6:6 GeV.

For a bound proton, the initial four-momentum of the projectile is ðE0
L=c; p0

LÞ and

that of the target is ðE=c;�pÞ, where p is the internal momentum of the nucleons,

which we have taken to be in the opposite direction to the beam because this gives

the maximum invariant mass for a given E0
L. The invariant mass W 0 is now given by

ðW 0c2Þ2 ¼ ðE0
L þ EÞ2 � ðp0

L � pÞ2
c2 ¼ 2m2

pc4 þ 2EE0
L þ 2pp0

Lc2:

Since the thresholds Emin and E0
min correspond to the same invariant mass 4mp, we

have 2mpc2Emin ¼ 2EE0
min þ 2pp0

minc2. Finally, since the internal momentum of the

nucleons is �250 MeV=c (see Chapter 7), E � mpc2, while for the relativistic

incident protons pmin � Emin=c, so using these gives

E0
min � 1 � p=mpc

� �
Emin ¼ 4:8 GeV:

B.7 The initial total energy is Ei ¼ EA ¼ mAc2 and the final total energy is Ef ¼ EB þ EC,

where EB ¼ ðm2
Bc4 þ p2

Bc2Þ
1
2, and EC ¼ ðm2

Cc4 þ p2
Cc2Þ

1
2, with pB ¼ pBj j and

pC ¼ pCj j. However, by momentum conservation, pB ¼ �pC  p and so

mAc2 � ðm2
Bc4 þ p2c2Þ

1
2

h i2

¼ m2
Cc4 þ p2c2

� �
;

which on expanding gives EB ¼ m2
A þ m2

B � m2
C

� �
c2=2mA.

B.8 If the four-momenta of the photons are pi ¼ ðEi=c; piÞði ¼ 1; 2Þ, then the invariant

mass of M is given by M2c4 ¼ ðE1 þ E2Þ2 � ðp1 þ p2Þc2 ¼ 2E1E2ð1 � cos �Þ, since

p1 � p2 ¼ E1E2ð1 � cos �Þ=c2 for zero-mass photons. Thus, cos � ¼1 � M2c4=2E1E2.

B.9 A particle with velocity v will take time t ¼ L=v to pass between the two

counters. Relativistically, p ¼ mv
 with 
 ¼ ð1 � v2=c2Þ�
1
2. Solving, gives

v ¼ cð1 þ m2c2=p2Þ�
1
2 and hence the difference in times-of-flight (assuming

m1 > m2) is

�t ¼ L

c
1 þ m2

1c2

p2

 �1
2

� 1 þ m2
2c2

p2

 �1
2

" #
:

Using m1c2 ¼ mpc2 ¼ 0:983 GeV, m2c2 ¼ m�c2 ¼ 0:140 GeV and pc ¼ 2 GeV

gives �t ¼ 1:114 � 1:002½ �ðL=cÞ and Lmin ¼ 0:54 m.

B.10 In an obvious notation, the kinematics in the lab frame are:


ðE
; p
Þ þ e�ðmc2; 0Þ ! 
ðE0

; p0


Þ þ e�ðE; pÞ:
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Energy conservation gives E
 þ mc2 ¼ E0

 þ E and momentum conservation

gives p
 ¼ p0

 þ p. From the latter we have E2 � m2c4 ¼ c2ðp2


 þ p0



2 � 2p
 � p0

Þ.

But p
c ¼ E
; p0

c ¼ E0


 and the scattering angle is �, so we have

E2 � m2c4 ¼ E2

 þ E2


 � 2E
E0

 cos �. Eliminating E between this equation and the

equation for energy conservation gives E0

 ¼ E
½1 þ E
ð1 � cos �Þ=mc2��1

. Finally,

using E
 ¼ E0

=2 and � ¼ 600, gives E
 ¼ 2mc2 ¼ 1:02 MeV.

Appendix C

C.1 The assumptions are: ignore the recoil of the target nucleus because its mass is

much greater than the total energy of the projectile �-particle; use non-relativistic

kinematics because the kinetic energy of the �-particle is very much less that its rest

mass; assume the Rutherford formula (i.e. the Born approximation) is valid for

small-angle scattering. The relevant formula is then Equation (C.13) and it may

be evaluated using z ¼ 2; Z ¼ 83, Ekin ¼ 20 MeV and � ¼ 20�. The result is

d�=d	 ¼ 98:3 b=sr.

C.2 From Figure C.2, the distance of closest approach d is when x ¼ 0. For x < 0, the

sum of the kinetic and potential energies is Etot ¼ 1
2
mv2 and the angular momentum

is mvb. At x ¼ 0, the total mechanical energy is 1
2
mu2 þ Zze2=4�"0d and the

angular momentum is mud, where u is the instantaneous velocity. From angular

momentum conservation, u ¼ vb=d and using this in the conservation of total

mechanical energy gives d2 � Kd � b2 ¼ 0 where, using Equation (C.9),

K  2b=cotð�=2Þ. The solution for d � 0 is d ¼ b 1 þ cosecð�=2Þ½ �=cotð�=2Þ.

C.3 The result for small-angle scattering follows directly from Equation (C.9) in the

limit �! 0. Evaluating b, we have, using the data given,

b ¼ zZe2

2�"0mv2�
¼ 2zZ

e2

4�"0�hc

 �
�hc

mc2

1

ðv=cÞ2�
¼ 1:55 � 10�13 m:

The cross-section for scattering through an angle greater than 5� is thus

� ¼ �b2 ¼ 7:55 � 10�26 m2 and the probability that the proton scatters through

an angle greater than 5� is P ¼ 1 � exp½�n�t�, where n is the number density of

the target. Using n ¼ 6:022 � 1026=194
� �

� 21450 ¼ 6:658 � 1028 m�3, gives

P ¼ 4:91� 10�2. Since P is very small but the number of scattering centres is

very large, the scattering is governed by the Poisson distribution and the probability

for a single scatter is P1ðmÞ ¼ me�m ¼ 4:91 � 10�2, giving m � 0:052. Finally, the

probability for two scattering is P2 ¼ m2 expð�mÞ=2! � 1:3 � 10�3.
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Below are brief notes on a few books on nuclear and particle physics at the

appropriate level which I have found particularly useful. Other, more specialized,

texts are listed in the References section which follows.

1 Nuclear Physics

Two very readable concise texts at about the level of the present book although

covering more topics are: W. N. Cottingham and D. A. Greenwood, An Introduc-

tion to Nuclear Physics 2nd edn., Cambridge University Press, 2001, and N. A.

Jelley, Fundamentals of Nuclear Physics, Cambridge University Press, 1990. Both

deal with theoretical aspects only – there is nothing about experimental methods.

Both provide some problems for each chapter with either answers or brief hints on

solutions. Another good book at this level is: J. Lilley, Nuclear Physics –

Principles and Applications, John Wiley and Sons, 2001. This is in two parts.

The first covers the principles of nuclear physics, including experimental techni-

ques, and the second discusses an unusually wide range of applications, including

industrial and biomedical uses. An extensive range of problems is provided, with

detailed notes on their solutions.

Two good examples of comprehensive texts covering both theory and experi-

ment are: K. S. Krane, Introductory Nuclear Physics, John Wiley and Sons, 1988,

and P. E. Hodgson, E. Gadioli and E. Gadioli Erba, Introductory Nuclear Physics,

Oxford University Press, 1997. Both provide problems, but without solutions.

Finally there is the unique set of (hand written!) lecture notes by Fermi: E.

Fermi, Nuclear Physics, University of Chicago Press, 1950. Although old, these

are still well worth reading.

2 Particle Physics

There are several books covering particle physics at the appropriate level, For

obvious reasons, the one closest to the present book is: B. R. Martin and G. Shaw,
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Particle Physics, 2nd edn., John Wiley and Sons, 1997, and some of the material

on particle physics in the present book has been developed from this previous

book. It covers both theory and experimental methods. Problems with full

solutions are provided for each chapter.

Some of the other texts available are now rather dated, but one that is not is: D.

H. Perkins, Introduction to High Energy Physics, 4th edn., Cambridge University

Press, 2000. This book is well-established and has changed substantially over the

years. It goes further than the present book in its use of relativistic calculations.

The latest edition (the fourth) has far less discussion of experimental methods

than earlier editions, but an expanded chapter on astroparticle physics. It is

therefore worth looking at the third edition also. Problems are provided, some

with answers.

Another older book, but still relevant, is: D. Griffiths, Introduction to Elemen-

tary Particle Physics, John Wiley and Sons, 1987. Griffiths’ book is written in an

unconventional conversational style, with interesting footnotes (and extensive

notes at the end of most chapters), giving further details and background. It is

exclusively theoretical – there is nothing on experimental techniques. It goes well

beyond the present text, as at least half of the book involves the detailed evaluation

of Feynman diagrams. A wealth of interesting problems is provided at the end of

each chapter, but no solutions are given.

3 Nuclear and Particle Physics

There are not many books that treat nuclear and particle physics together and some

of those are out-of-date. Five that are appropriate are:

R. A. Dunlap, The Physics of Nuclei and Particles, Thomson Learning – Brooks/

Cole, 2004;

A. Das and T. Ferbel, Introduction to Nuclear and Particle Physics, John Wiley

and Sons, 1994;

W. S. C. Williams, Nuclear and Particle Physics, Oxford University Press, 1991;

W. E. Burcham and M. Jobes, Nuclear and Particle Physics, Longman Scientific

and Technical, 1995;

B. Povh, K. Rih, C. Scholz and F. Zetsche, Particles and Nucle, 2nd edn., Springer,

1995.

The first two books are concise readable introductions, although in Dunlap’s case

the particle physics part is very short – just 50 pages. This book is exclusively

about theory, whereas the book of Das and Ferbel also discusses experimental
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methods. Both books provide problems, but neither supplies solutions. The book

by Williams is fairly comprehensive, although now a little old. The style is rather

discursive. There is a wealth of illustrations and many problems are given, with

answers to some of them supplied. (A full solutions manual is available as a

separate volume.) The book by Burcham and Jobes is also comprehensive and goes

further than the present text. There are many problems, all with solutions. Both of

the latter two books treat nuclear and particle physics as almost independent

subjects. The book by Povh et al. is closest in its coverage to the present book and

at a similar level, although experimental methods are only discussed in a brief

appendix. Some problems with solutions are provided for all chapters.
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