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2.10 Examples of type 4 based on Art. 2.9
2.11  Pfaffian differential equation. Definition i1
2.1
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4. Equations of the First Order but Not of the First Degree and
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7.3 Method of vanation of parameters for solving & ywax® + MNdwdx) + Oy = R. where
P, Q and R are functions of x or constants "
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