

PART I ELEMENTARY DIFFERENTIAL EQUATIONS

1. Don	erential Equations: Their Formation and Solutions	1.3-1.30
1.1	Differential equation. Definition	
1.2	Ordinary differential equation. Definition	1.3
1.3	Purtial differential equation. Definition	1.3
1.4	Order of a differential equation. Definition	1.3
1.5	Degree of a differential equation. Definition	1.3
1.6	Linear and non-linear differential equations. Definition	1,4
1.7	Solution of a differential equation. Definition	1.4
1.8	Family of curves. Definition	1.4
1.9	Complete primitive (or general solution). Particular solution and singular solutions. Definition	1.5
1.10	Formation of differential equations	1.5
1.11	Solved examples based on Art. 1.10	1.6
1.12	The Wronskian Definition	1.9
1.13	Linearly dependent and independent set of functions. Definitions	1.9
1.14	Existence and uniqueness theorem	1.10
1.144	Some theorems related to Art. 1.14	1.11
1.15	Solved examples based on Art. 1.14 and 1.14A	1.12
1.16	Some important theorems	1.13
1.16A	Fundamental set of solutions. Definition	1.21
1.17	Solved examples based on Art. 1.16 and Art. 1.16A	1.21
1.18	Linear differential equation and its general solution	1.24
2. Equal	tions of First Order and First Degree	2.1-2.54
2.1	Introduction	2.1
2.2	Separation of variables	2.1
2.3	Examples of type 1 based on Art. 2.2	2.1
2.4	Transformation of some equations in the form in which variables are separable	2.3
2.5	Examples of type 2 based on Art. 2.4	2.4
2.6	Homogeneous equation. Definition	2.6
2.7	Working rule for solving homogeneous equations	2.6
2.8	Examples of type 3 based on Art. 2.7	2.6
2.9	Equations reducible to homogeneous form	2.8
		2.0

	2.1	0 Examples of type 4 based on Art. 2.9		
	2.1	1 Pfaffian differential equation. Definition		24
	2.1	2 Exact differential equation. Definition		2.19
	2.1.	Theorem. To determine the necessary and sufficient condition for a differential equation of first order and first degree to be exact		219
	2.14	Working rule for solving an exact differential equation		211
	2.15			2.12
	2.16	Integrating factor. Definition		2.12
	2.17	Solved examples of type 6 based on rule I of Art. 2.16		2.15
	2.18	Solved example of type 7 based on rule II		2.18
	2.19	Solved examples of type 8 based on rule III		2.19
	2.20	Solved examples of type 9 based on rule IV		2.20
	2.21	Solved example of type 10 based on rule V		2.21
	2.22	Solved examples of type 11 based on rule VI		2.22
	2.23	Linear differential equation. Definition		2.23
	2.24	Examples of type 12 based on Art. 2.23		2.24
	2.25	Equations reducible to linear form		2.27
	2.25A	Bernoulli's equation a particular case of Art. 2.25		2.28
	2.26	Example of type 13 based on Art. 2.25		2.28
	2.27	Examples of type 14 based on Art. 2.25A		2.30
	2.28	Geometrical meaning of a differential equation of the first order and first degree		2.32
	2.29	Applications of equation of first order and first degree		2.32
	2.30	List of important results for direct applications		2.32
	2.31	Solved examples of type 15 based on Art. 2.30		2.34
	2.32	Some typical solved examples		2.41
3.	Trajec	tories	3.1	-3.12
	3.1			3.1
	3.2			3.1
	3.3	Self-orthogonal family of curves. Definition		3.2
	3.4	Working rule for finding the orthogonal trajectories of the given family of curves in cartesian coordinates		3.2
	3.5	Solved examples of type I based on Art. 3.4		3.2
	3.6	Determination of orthogonal trajectories in polar coordinates		3.8
	3.7	Working rule for getting orthogonal trajectories in polar coordinates		3.8
	3.8	Solved examples of type 2 based on Art. 3.7		3.9
	3.9	Determination of oblique trajectories in cartesian coordinates		3.11
	3.10	Working rule for finding the oblique trajectories which cut every member of the give	en	
	3.10	family of curves at a constant angle α		3.11
	3.11	Solved example of type 3 based on Art. 3.10		3.11

	Equations of the First Order but Not of the First Degree and Singular Solutions and Extraneous Loci	4.1-4.24
	Section 1: Different methods of finding general solutions	4.1-4.15
	4.1 Equations of the first order but not of the first degree. Definition	4.1
	1.2 Method I. Equations solvable for p	4.1
	Solved examples based on method I of Art. 4.2	4.2
4	Method II. Equations solvable for x	4.4
4	Solved examples based on method II of Art. 4.4	4.5
4	.6 Method III. Equations solvable for y	4.7
4	.7 Solved examples based on method III of Art. 4.6	4.8
4	.8 Method IV: Equations in Clairaut's form	4.11
4	.9 Solved examples based on Art. 4.8	4.11
4	10 Method V: Equations reducible to Clairaut's form	4.13
	11 Solved examples based on Art. 4.10	4.13
S	ection 2: Singular solutions	4.15-4.22
4.	12 Introduction	4.15
4.	Relation between the singular solution of a differential equation and the envelope of family of curves represented by that differential equation	4.16
4.	14 c-discriminant and p-discriminant relations. Definitions	4.16
4.		4.17
4.	and the for initialing the singular solution	4.17
4.1	of the pies based on singular solutions (See Art. 4 16)	4.18
Se	ction 3: Extraneous loci	4.22-4.24
4.1	8 Extraneous loci <i>i.e.</i> relations, not solutions; that may appear in p- and c-discriminant relations	4.22
4.1	9 Tac-locus	AL CORP.
4.2	0 Node-locus	4.22
4.2		4.22
4.22		4.23
4.23		4.23
E IIm		4.23
	ear Differential Equations with Constant Coefficients	5.1-5.44
Sect	ion 1: Usual methods of solving linear differential equations with constant coefficients	
5.1	Some useful results	5.1-5.32
5.2		5.1
	Linear differential equations with constant coefficients	5.1
5.3	To find complementary function (C.F.) of the given equation	5.2
5.4	Working rule for finding C.F. of the given equation	5.4
5.5	Solved examples based on Art. 5.4	5.5
5.6	The symbolic function $1/f(D)$. Definition	5.7
5.7	Determination of the particular integral (P.I.) of	5.8
5.8	General method of getting particular integral	5.8
		2.0

		$\frac{1}{e^{ax}} = \frac{x^n}{e^{ax}}$	
	5.9	a li If a is a positive integer, then	5,4
	5.1/	Working rule of finding the particular integral (P.I.)	54
	5.10	Solved examples based on Art. 5.10	5,4
	5.12	de for finding the particular integral of given equation	
	6 12	when $X = e^{ax}$, where 'a' is constant	5.12
	5.13	$v = X$ when $X = e^{ax}$	5,13
	5.15	Solved examples based on working rule 5.14	5.13
	5.16	Short method of finding P.I. when $X = \sin ax$ or $X = \cos ax$	5.16
	5.17	Solved examples based on Art. 5.16	5.18
	5.18	Short method of finding P.I. when $X = x^m$, m being a positive integer	5.21
	5.19	Solved examples based on Art. 5.18	5.21
	5.20	Short method of finding P.I. when $X = e^{ax} V$, where V is any function of x	5.23
	5.21	Solved examples based on Art. 5.20	5.24
	5.22	Short method of finding P.I. when $X = xV$, where V is any function of x	5.26
	5.23	Solved examples based an Art. 5.22	5.27
	5.24	More about particular integral of $f(D) y = X$	5.30
	5.25	Solved examples based on Art. 5.24 and miscellaneous examples	5.30
		n 2: Method of undetermined coefficients	5.32-5.44
	5.26	Method of undetermined coefficients for solving linear differential equation,	
	3.20	with constant coefficients $f(D) y = X$	5.32
	5.27	Solved examples based on Art. 5.26	5.33
6.	Homo	ogeneous Linear Equations or Cauchy-Euler Equations	6.1-6.18
	6.1	Homogeneous linear equations (or Cauchy-Euler equations)	6.1
	6.2	Method of solution of homogeneous linear differential equation	6.1
	6.3	Working rule for solving linear homogeneous differential equation	6.2
	6.4	Solved examples based on Art. 6.3	6.2
		Definition of $\{1/f(D_1)\}$ X, where $D_1 = d/dz$, $x = e^z$ and X is a function of x	6.8
	6.5 6.6A	An alternative method of getting P.I. of homogeneous equation $f(D_1) y = X$, where $x = e^z$, $D_1 \equiv d/dz$ and X is any function of x	6.9
	6.6B	Particular cases	6.9
	6.7	Solved examples based an Art. 6.5 and Art. 6.6A	6.10
		Solved examples based on Art. 6.5 and Art. 6.6B	6.11
	6.8	Equations reducible to homogeneous linear form.	6.12
	6.9	Working rule for solving Legendre's linear equation, i.e.	6.13
	6.10	。 第一章:"我是我们的是我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们,我们就是我们的	6.14
	6.11	Solved examples based on Art. 6.10	
7.	Metho	d of Variation of Parameters	7.1-7.14
	7.1	Method of variation of parameters for solving $dy/dx + P(x) y = Q(x)$	7.1
	7.2	Working rule for solving $y_1 + Py = Q$ by variation of parameters, where P and Q are functions of x or constants	7.1
		(xiv)	

7.	Method of variation of parameters for solving $d^2y/dx^2 + P(dy/dx) + Qy = R$, where P, Q and R are functions of x or constants	
7.	Working rule for solving $y_2 + Py_1 + Qy = R$ by variation of parameters, where	7.2
	r, Q and R are functions of x or constants	7.3
	4B Solved examples based on Art. 7.4A	7.3
	Alternative working rule for solving $y_2 + Py_1 + Qy = R$, where P , Q and R are functions of x or constants by variation of parameters, where $y_1 = dy/dx$ and $y_2 = d^2y/dx^2$	7.10
7.5	SB Solved examples based on working rule 7.5A	7.11
7.6	Working rule for solving a third order differential equation $y_3 = Py_2 + Qy_1 + Ry = S$, where P , Q , R and S are functions of x or constants by variation of parameters	7.12
7.7	Example based on Art 7.6	7.12
8. Or	dinary Simultaneous Differential Equations 8.	1 0 10
8.1		1-8.12 8.1
8.2	Methods for solving ordinary simultaneous differential equations with constant coefficients	8.1
8.3	Solved examples based on Art 8.2	8.3
8.4		8.9
8.5	Solved examples based on Art. 8.4	8.9
9. Exa	act Differential Equations and Equations	
9.1	Exact differential equation. Definition	.1-9.12
9.2	Condition of exactness of a linear differential equation of order n	9.1
9.3	Working rule for solving exact equations	9.1
9.4	Examples (Type 1) based on working rule of Art. 9.3	9.2
9.5	Integrating factor	9.2
9.6	Examples (Type 2) based on Art. 9.5	9.5
9.7	Exactness of non-linear equations-solution by trial	
9.8	Examples (Type 3) based on Art. 9.7	9.6
9.9	Equations of form $(d^n y/dx^n) = f(x)$	9.6
9.10	Examples (Type 4) based on Art. 9.9	9.8
9.11	Equations of the form $(d^2y/dx^2) = f(y)$	9.8
9.12	Examples (Type 5) based on Art. 9.11	9.9
9.13	Reduction of order. Equations that do not contains y directly i.e., equations of the for	9.9
9.14	Examples (Type 6) based on Art. 9.13	
9.15	Equations that do not contain x directly i.e., equations of the form	9.10
9.16	Examples (Type 7) based on Art. 9.15	9.11
Linea	r Equations of Second Order	
10.1		0.1-10.32
	The general (standard) form of the linear equations of the second order	10.1
10.2	Complete solution of $y'' + Py' + Qy = R$ in terms of one known integral belonging to the complementary function. Solution of $y'' + Py' + Qy = R$ by reduction of its order	10.1
10.3	Rules for getting an integral belonging to complementary function (C.F.) i.e. solution of $y'' + Py' + Qy = 0$.	
		10.2

toward of C.F. is	
10.4 Working rule for finding complete primitive solution when an integral of C.F. is known or can be obtained by rules of Art. 10.3	10.2
of can be obtained by rules of Art. 10.5	10.3
10.4A Theorem	10.4
10.4B Solved examples based on Art. 10.4A	10.14
10.5 Solved examples based on Art. 10.4	10.15
10.5A Some typical solved examples. Important note.	10.16
10.6 Removal of the first derivative. Reduction to normal form	10.17
10.7 Working rule for solving problems by using normal form	10.21
10.8 Solved examples based on working rule 10.7	10.22
10.8 Solved examples based on working rule 10.7 10.9 Transformation of the equation by changing the independent variable 10.10 Working rule for solving equation by changing the independent variable	10.22
10.10 Working rule for solving equation of	10.28
10.11 Solved examples based on Art. 10.10.	10.28
10.12 An important theorem	10.28
10.13 Method of variation of parameters	10.30
10.14 Solved examples based on Art. 10.13	10.31
10.15 Solutions by operators	11.1-11.18
10.15 Solutions of 1 10.16 Solved examples based on Art. 10.15	11.1-11.4
Faulations	11.1
11. Applications of Differential Equations Section 1: Applications of first order differential equations	11.1
11.1 Introduction	11.2
ar: to problems	11.4-11.18
11.2 Mixture problems 11.2 Solved examples based on Art. 11.2 11.3 Solved examples based on Art. 11.2	11.4
11.3 Solved examples based on Art. 11.2 Section 2: Applications of second order linear differential equations	11.4
r - duction	
TATE AND FIRM	11.5
The differential equation of the vibrations	11.6
n undamped motion	11.8
Tree damped motion	11.9
a 1 -d avamples based on Art. 11.0	11.12
_ t_otion	11.15
n phenomena	
11.11 Resonance phenomena	101 1214
11.11 Resonance phenomenant of First Order Initial Value Problems 12. Miscellaneous Methods and Existence and Uniqueness Theorem for	12.1-12.14
Colutions of First Order	12.1
12.1 Miscellaneous problems and their solutions 12.1 Miscellaneous problem and their solutions	12.5
12.1 Miscenancous process 12.2 Initial value problem (IVP) and boundary value problem (BVP)	12.6
- : 1 + of solutions	olems 12.6
12.4 The existence and uniqueness theorem for solution of first order initial value pro-	M.1-M.34
Miscellaneous problems based on Part I of the book	1/1.1 1/1.5