RUSSELL S. DRAGO

Physical Methods in Inorganic Chemistry

Contents

ART I ATOMIC AND MOLECULAR STRUCTURE	
CHAPTER 1 ATOMIC STRUCTURE	1
Wave Properties of Electrons	1
Description of the Position and Momentum of an Electron	2
Mathematical Description of Waves	3
The Schrödinger Equation	5
The Solution of the Schrödinger Equation	6
Quantum Numbers	8
The Physical Picture of Atomic Orbitals	12
Extension of the Wave Equation to Atoms Other Than Hydrogen	18
Relative Energies of the Orbitals	20
Term Symbols and the Vector Method	23
Term Symbols for Excited States	26
	30
CHAPTER 2 BONDING	30
The Variation Principle	
Treatments of the Hydrogen Molecule	34
Electron Exchange Interaction	37
Applications of Valence Bond Theory	37
The General Molecule XY – Electronegativity	37
More Complicated Molecules – Resonance	38
The Overlap of Atomic Orbitals	40
Hybrid Orbitals	42
Hybrids Involving d Orbitals	45
Energetics of Hybrid Bond Formation	47
Nonequivalence of Orbitals	49
σ and π Bonds	5

ONIENIS	xv
CHAPTER 5 GENERAL INTRODUCTION TO SPECTROSCOPY	121
Nature of Radiation	121
Energies Corresponding to Various Kinds of Radiation	122
Energies for Atomic and Molecular Transitions	124
Selection Rules	126
General Applications	127
Determination of Concentration	127
"Fingerprinting"	130
Isosbestic Points	131
CHAPTER 6 ELECTRONIC ABSORPTION SPECTROSCOPY	135
Vibrational and Electronic Energy Levels in a Diatomic Molecule	135
Introduction to Electronic Transitions	137
Relationship of Potential Energy Curves to Electronic Spectra	137
Nomenclature	139
Assignment of Transitions	144
Oscillator Strengths	147
Intensity of Electronic Transitions	148
Polarized Absorption Spectra	150
Charge Transfer Transitions	151
Applications	151
Fingerprinting	152
Molecular Addition Compounds of Iodine	155
Effect of Solvent Polarity on Charge Transfer Spectra	158
Spectra of Transition Metal Complexes	161
Selection Rules and Intensities of the Transitions	161
Nature of Electronic Transitions in Complexes	162
d^2 , d^7 , d^3 , d^8 Configurations	164
Use of Orgel Diagrams	167
Calculation of Dq and B for Ni ^{II} Complexes	168
Structural Evidence from Electronic Spectra	175
Miscellaneous Applications of the Principles Related to	101
Electronic Transitions	181
CHAPTER 7 VIBRATION AND ROTATION SPECTROSCOPY:	100
Infrared, Raman, and Microwave	187
Introduction	187
Harmonic and Anharmonic Vibrations	187
Absorption of Radiation by Molecular Vibrations –	100
Selection Rules	189
Force Constant	190

	Vibrations in a Polyatomic Molecule	191
	Egents Civing Rise to Absorption Danus	192
	Normal Coordinate Analyses and Band Assignments	195
	Group Vibrations	196
	Limitations of the Group Vibration Concept	196
	Raman Spectroscopy	199
	Polarized and Depolarized Raman Lines	202
	Significance of the Nomenclature Used To Describe Various	
	Species	202
	Use of Symmetry Considerations To Determine the Number	
	of Active Infrared and Raman Lines	203
	Symmetry Requirements for Coupling Combination Bands and	
	Fermi Resonance	210
	Microwave Spectroscopy	210
	Determination of Bond Angles and Bond Distances	211
	Measurement of the Dipole Moment of a Molecule	212
	Rotational Raman Spectra	213
A	pplications of Infrared and Raman Spectroscopy	213
	Procedures	213
	Fingerprinting	218
	Spectra of Gases	222
	Application of Raman and Infrared Selection Rules to the	
	Determination of Inorganic Structures	226
	Hydrogen Bonding Systems	229
	Changes in the Spectra of Donor Molecules upon Coordination	230
	Change in Spectra Accompanying Change in Symmetry upon	
	Coordination	232
C	HAPTER 8 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY	239
T	heory of NMR Spectroscopy	239
T	he Chemical Shift	244
	Chemical Shifts of Some Systems Studied by NMR	250
	Mechanism of Electron Shielding and Factors Contributing to	
	the Magnitude of the Chemical Shift	253
	Chemical Shifts for Which the Local Diamagnetic Term Does	
	Not Predominate	258
S	pin-Spin Splitting	260
S	pin-Spin Coupling Mechanism for Transmitting Nuclear Spins	265
	Applications of Spin-Spin Coupling to Structure Determination	266
	Applications Involving the Magnitude of Coupling Constants	270
C	complex Spectra Obtained When $J \sim \Delta$	274

ONTENTS	xvii
Chemical Exchange and Other Factors Affecting Line Width. Effect of Chemical Exchange on Spectra and the Evalua-	279
tion of Reaction Rates for Fast Reactions	281
Consequences of Nuclei with Quadrupole Moments in NMR	290
The Double-Resonance Technique	291
NMR Studies of Exchange Reactions Between Ligands and Metal	
	294
Ions NIMP of December 1: Complete Contact Shifts	298
NMR of Paramagnetic Complexes – Contact Shifts Missellane and Applications of NIMP to Inorganic Problems	303
Miscellaneous Applications of NMR to Inorganic Problems	
CHAPTER 9 NUCLEAR QUADRUPOLE RESONANCE SPECTROSCOPY	315
	315
Introduction Effect of a Magnetic Field on the Spectra	319
Effect of a Magnetic Field on the Spectra Relationship Between the Electric Field Gradient, q, and	
Molecular Structure	320
	321
Applications The Interpretation of eQq Data	321
The Effects of Crystal Lattice on the Magnitude of eQq	323
Structural Information from NQR Spectra	323
Structural Information in Que operation	
CHAPTER 10 ELECTRON PARAMAGNETIC RESONANCE	
SPECTROSCOPY	328
Introduction	328
Presentation of the Spectrum	330
Hyperfine Splitting in Some Simple Systems	331
Hyperfine Splittings in Various Structures	332
Factors Affecting the Magnitude of the g Values	338
Interactions Affecting the Energies of Unpaired Electrons in	
Transition Metal Ion Complexes	341
Zero-Field Splitting and Kramers' Degeneracy	342
Anisotropy in the Hyperfine Coupling Constant	346
Nuclear Quadrupole Interaction	348
The Spin Hamiltonian	349
Line Widths in Solid State EPR	350
Electron Delocalization	351
Applications	352
Rate of Electron Exchange Reactions by EPR	355
Miscellaneous Applications	356
	25
CHAPTER 11 MÖSSBAUER SPECTROSCOPY	362
Introduction	362

wiii CONT	EN-
Resonance Line Shifts From Change In Electron Environment	1
Pasonance Line Shifts From Change	366
Quadrupole Interaction	366
Magnetic Interactions	367
Applications	368
	70
CHAPTER 12 MASS SPECTROMETRY	374
Introduction . Depresentation of Spectra	374
Operation and Representation of Spectra Operation and Representation of Spectra Molecule and a High Energy	374
Process That Can Occur When the	
Electron Combine	378
	380
Application and the little pretation of mass specific	380
Effect of Isotopes on the Appearance of a Mass Spectfull	382
Molecular Weight Determinations	385
Evaluation of Heats of Sublimation and Species in the vapor	
over High Melting Solids	385
Appearance Potentials and Ionization Potentials	386
Appendix A. Magnetism	389
Contributions to Magnetic Properties	389
Effect of the Ligand Field on Spin-Orbit Coupling	391
Measurement of Magnetic Properties	393
Some Applications of Magnetic Data	394
Temperature Dependence of Magnetism	396
Appendix B. Character Tables for Selected Point Groups	398
Appendix C. Tanabe and Sugano Diagrams for O _h Fields	403
Appendix D. Calculation of $Dq(\Delta)$ and β for O_hNi^{II} and T_dCo^{II} Complexes	410
Calculation of Δ And β For T_d Co ²⁺ Complexes	411
Appendix E. Normal Vibration Modes for Common Structures	414
Appendix F. Conversion of Chemical Shift Data	421
ndex	423