

	Introd	uction: assumptions and notations	1
	Sets a	nd functions	2
			3
		Sets and elements	3
		Operations on sets	4
	1.3.	Punctions	7
and the same	1.4.	Real-valued functions	11
	1.5.	Equivalence. Countability	14
	1.6.	Real mambers	18
	1.7.	Least upper bounds	21
		Sent terr and no mich a te return and and the	
2.	Seque	nces of real numbers	24
311	2.1.	Definition of sequence and subsequence	24
	2.2.	Limit of a sequence	26
	2.3.	Convergent sequences	30
	2.4.	Divergent sequences	32
	2.5.	Bounded sequences	34
	2.6.	Monotone sequences	35
	2.7.	Operations on convergent sequences	38
	2.8.	Operations on divergent sequences	44
	2.9.	Limit superior and limit inferior	45
	2.10.	Cauchy sequences	52
	2.11.	Summability of sequences	52
	2.12.	Limit superior and limit inferior for sequences of s	5

3. Series of real numbers	-
3.1. Convergence and divergence	1
3.2. Series with nonnegative terms	67
3.3. Alternating series	67
3.4. Conditional convergence and absolute convergence	69 71
3.5. Rearrangements of series	73
3.6. Tests for absolute convergence	76
3.7. Series whose terms form a nonincreasing sequence	80
3.8. Summation by parts	85
3.9. (C, 1) summability of series	88
3.10. The class 1 ²	90
3.11. Real numbers and decimal expansions	93
4 Limits 1	96
4. Limits and metric spaces	98
4.1. Limit of a function on the real line	98
4.2. Metric spaces	105
4.3. Limits in metric spaces	105 10f
5. Continuous functions .	
5. Continuous functions on metric spaces 5.1 Functions continuous et a paint de la	113
5.1. Functions continuous at a point on the real line 5.2. Reformulation	113
	116
5.3. Functions continuous on a metric space	118
5.4. Open sets 5.5. Closed sets	121
5.5. Closed sets 5.6. Discontinuo C Dl	124
5.6. Discontinuous functions on R ¹	128
Commontada	1
Connectedness, completeness, and compactness	133
6.1. More about open sets	133 0
6.2. Connected sets	134
6.3. Bounded sets and totally bounded sets	138
6.4. Complete metric spaces	141
6.5. Compact metric spaces	145
6.6. Continuous functions on compact metric spaces	148
6.7. Continuity of the inverse function	150
6.8. Uniform continuity	152
·	

7.	Calcu	lus	156
	7.1.	Sets of measure zero	156
	7.2.	Definition of the Riemann integral	157
	7.3.	Existence of the Riemann integral	163
	7.4.	Properties of the Riemann integral	165
	7.5.	Derivatives	170
	7.6.	Rolle's theorem	177
	7.7.	The law of the mean	181
	7.8.	Fundamental theorems of calculus	183
	7.9.	Improper integrals	189
	7.10.	Improper integrals (continued)	196
٥.	The e	elementary functions. Taylor series	202
	8.1.	Hyperbolic functions	202
	8.2.	The exponential function	204
	8.3.	The logarithmic function. Definition of xa	206
	8.4.	The trigonometric functions	203
	8.5.	Tayor's theorem	214
	8.6.	The binomial theorem	221
	8.7.	L'Hospital rule	222
9.	Seque	ences and series of functions	231
476	9.1.	Pointwise convergence of sequences of functions	231
	9.2.	Uniform convergence of sequences of functions	234
	9.3.	Consequences of uniform convergence	238
della	9.4.	Convergence and uniform convergence of series of functions	243
	9.5.	Integration and differentiation of series of functions	247
	9.6.	Abel summability	250
	9.7.	A continuous, nowhere-differentiable function	256
10.	Three	e famous theorems	259
	10.1.	The metric space $C[a, b]$	259
	10.2.	The Weierstrass approximation theorem	261
	10.3	Picard exisatence theorem for differential equations	260
	10.4.	The Arzela theorem on equicontinuous families	268

	The Lebesgue integral	
11.	a of open sets are	1
	11.1. Length of open measure. Measurable sets	7
	11.2. Inner and odder 11.3. Properties of measurable sets	2
	11.3. Properties of incrions	2
	11.4. Measurable functions 11.5. Definition and existence of the Lebesgue integral for bounded	8
	f crions	
	11.6. Properties of the Lebesgue integral for bounded measurable	49
	functions	234
	11.7. The Lebesgue integral for unbounded functions	300
	11.8. Some fundamental theorems	304
	110 The metrix space $L^2[a, b]$.	315
	11.9. The integral on (- ¥, ¥) and in the plane	320
12.	Fourier series	324
	12.1. Definition of Fourier series	328
	12.2 Formulation of convergence problems	331
	12.3 The (C, 1) summability of Fourier series	335
	12.4. The \mathcal{L}^2 theory of Fourier series	337
	12.5 Convergence of Fourier series	342
	12.5. Orthonormal expansions in L ² [a, b]	347
	INDEX OF SPECIAL SYMBOLS	355
		357
	INDEX	

Alexander for a year tending of the first time to be the second