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ABSTRACT The chapter of Statistical Methods starts with the basic concepts of data analysis
and then leads into the concepts of probability, important properties of probability, limit theorems,
and inequalities. The chapter also covers the basic tenets of estimation, desirable properties of esti-
mates, before going on to the topic of maximum likelihood estimation, general methods of moments,
Baye’s estimation principle. Under linear and nonlinear regression different concepts of regressions
are discussed. After which we discuss few important multivariate distributions and devote some
time on copula theory also. In the later part of the chapter, emphasis is laid on both the theoretical
content as well as the practical applications of a variety of multivariate techniques like Principle
Component Analysis (PCA), Factor Analysis, Analysis of Variance (ANOVA), Multivariate Analy-
sis of Variance (MANOVA), Conjoint Analysis, Canonical Correlation, Cluster Analysis, Multiple
Discriminant Analysis, Multidimensional Scaling, Structural Equation Modeling, etc. Finally, the
chapter ends with a good repertoire of information related to softwares, data sets, journals, etc.,
related to the topics covered in this chapter.

8.1 Introduction

Many people are familiar with the term statistics. It denotes recording of numerical facts and figures,
for example, the daily prices of selected stocks on a stock exchange, the annual employment and
unemployment of a country, the daily rainfall in the monsoon season, etc. However, statistics deals
with situations in which the occurrence of some events cannot be predicted with certainty. It also
provides methods for organizing and summarizing facts and for using information to draw various
conclusions.

Historically, the word statistics is derived from the Latin word status meaning state. For several
decades, statistics was associated solely with the display of facts and figures pertaining to eco-
nomic, demographic, and political situations prevailing in a country. As a subject, statistics now
encompasses concepts and methods that are of far-reaching importance in all enquires/questions
that involve planning or designing of the experiment, gathering of data by a process of experimen-
tation or observation, and finally making inference or conclusions by analyzing such data, which
eventually helps in making the future decision.

Fact finding through the collection of data is not confined to professional researchers. It is a
part of the everyday life of all people who strive, consciously or unconsciously, to know matters
of interest concerning society, living conditions, the environment, and the world at large. Sources
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of factual information range from individual experience to reports in the news media, government
records, and articles published in professional journals. Weather forecasts, market reports, costs of
living indexes, and the results of public opinion are some other examples. Statistical methods are
employed extensively in the production of such reports. Reports that are based on sound statistical
reasoning and careful interpretation of conclusions are truly informative. However, the deliberate or
inadvertent misuse of statistics leads to erroneous conclusions and distortions of truths.

8.2 Basic Concepts of Data Analysis

In order to clarify the preceding generalities, a few examples are provided:

Socioeconomic surveys: In the interdisciplinary areas of sociology, economics, and political
science, such aspects are taken as the economic well-being of different ethnic groups,
consumer expenditure patterns of different income levels, and attitudes toward pending
legislation. Such studies are typically based on data oriented by interviewing or contacting
a representative sample of person selected by statistical process from a large population
that forms the domain of study. The data are then analyzed and interpretations of the issue
in questions are made. See, for example, a recent monograph by Bandyopadhyay et al.
(2011) on this topic.

Clinical diagnosis: Early detection is of paramount importance for the successful surgical
treatment of many types of fatal diseases, say, for example, cancer or AIDS. Because
frequent in-hospital checkups are expensive or inconvenient, doctors are searching for
effective diagnosis process that patients can administer themselves. To determine the mer-
its of a new process in terms of its rates of success in detecting true cases avoiding false
detection, the process must be field tested on a large number of persons, who must then
undergo in-hospital diagnostic test for comparison. Therefore, proper planning (designing
the experiments) and data collection are required, which then need to be analyzed for final
conclusions. An extensive survey of the different statistical methods used in clinical trial
design can be found in Chen et al. (2015).

Plant breeding: Experiments involving the cross fertilization of different genetic types of
plant species to produce high-yielding hybrids are of considerable interest to agricultural
scientists. As a simple example, suppose that the yield of two hybrid varieties are to be
compared under specific climatic conditions. The only way to learn about the relative
performance of these two varieties is to grow them at a number of sites, collect data on
their yield, and then analyze the data. Interested readers may refer to the edited volume
by Kempton and Fox (2012) for further reading on this particular topic.

In recent years, attempts have been made to treat all these problems within the framework of a uni-
fied theory called decision theory. Whether or not statistical inference is viewed within the broader
framework of decision theory depends heavily on the theory of probability. This is a mathematical
theory, but the question of subjectivity versus objectivity arises in its applications and in its interpre-
tations. We shall approach the subject of statistics as a science, developing each statistical idea as far
as possible from its probabilistic foundation and applying each idea to different real-life problems
as soon as it has been developed.

Statistical data obtained from surveys, experiments, or any series of measurements are often so
numerous that they are virtually useless, unless they are condensed or reduced into a more suitable
form. Sometimes, it may be satisfactory to present data just as they are, and let them speak for
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416 Decision Sciences

themselves; on other occasions, it may be necessary only to group the data and present results in the
form of tables or in a graphical form. The summarization and exposition of the different important
aspects of the data is commonly called descriptive statistics. This idea includes the condensation of
the data in the form of tables, their graphical presentation, and computation of numerical indicators
of the central tendency and variability.

There are mainly two main aspects of describing a data set:

1. Summarization and description of the overall pattern of the data by

a. Presentation of tables and graphs

b. Examination of the overall shape of the graphical data for important features, including
symmetry or departure from it

c. Scanning graphical data for any unusual observations, which seems to stick out from
the major mass of the data

2. Computation of the numerical measures for

a. A typical or representative value that indicates the center of the data

b. The amount of spread or variation present in the data

Summarization and description of the data can be done in different ways. For a univariate data,
the most popular methods are histogram, bar chart, frequency tables, box plot, or the stem and leaf
plots. For bivariate or multivariate data, the useful methods are scatter plots or Chernoff faces. A
wonderful exposition of the different exploratory data analysis techniques can be found in Tukey
(1977), and for some recent development, see Theus and Urbanek (2008).

A typical or representative value that indicates the center of the data is the average value or the
mean of the data. But since the mean is not a very robust estimate and is very much susceptible to
the outliers, often, median can be used to represent the center of the data. In case of a symmetric
distribution, both mean and median are the same, but in general, they are different. Other than mean
or median, trimmed mean or the Windsorized mean can also be used to represent the central value
of a data set. The amount of spread or the variation present in a data set can be measured using the
standard deviation or the interquartile range.

8.3 Probability

The main aim of this section is to introduce the basic concepts of probability theory that are used
quite extensively in developing different statistical inference procedures. We will try to provide
the basic assumptions needed for the axiomatic development of the probability theory and will
present some of the important results that are essential tools for statistical inference. For further
study, the readers may refer to some of the classical books in probability theory such as Doob
(1953) or Billingsley (1995), and for some recent development and treatment, readers are referred
to Athreya and Lahiri (2006).

8.3.1 Sample Space and Events

The concept of probability is relevant to experiments that have somewhat uncertain outcomes. These
are the situations in which, despite every effort to maintain fixed conditions, some variation of the
result in repeated trials of the experiment is unavoidable. In probability, the term “experiment” is
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not restricted to laboratory experiments but includes any activity that results in the collection of
data pertaining to the phenomena that exhibit variation. The domain of probability encompasses all
phenomena for which outcomes cannot be exactly predicted in advance. Therefore, an experiment
is the process of collecting data relevant to phenomena that exhibits variation in its outcomes. Let
us consider the following examples:

Experiment (a). Let each of 10 persons taste a cup of instant coffee and a cup of percolated
coffee. Report how many people prefer the instant coffee.

Experiment (b). Give 10 children a specific dose of multivitamin in addition to their normal
diet. Observe the children’s height and weight after 12 weeks.

Experiment (c). Note the sex of the first 2 new born babies in a particular hospital on a given
day.

In all these examples, the experiment is described in terms of what is to be done and what aspect of
the result is to be recorded. Although each experimental outcome is unpredictable, we can describe
the collection of all possible outcomes.

Definition

The collection of all possible distinct outcomes of an experiment is called the sample space of the
experiment, and each distinct outcome is called a simple event or an element of the sample space.
The sample space is denoted by �.

In a given situation, the sample space is presented either by listing all possible results of the
experiments, using convenient symbols to identify the results or by making a descriptive statement
characterizing the set of possible results. The sample space of the above three experiments can be
described as follows:

Experiment (a). � = {0, 1, . . . , 10}.

Experiment (b). Here, the experimental result consists of the measurements of two character-
istics, height and weight. Both of these are measured on a continuous scale. Denoting the
measurements of gain in height and weight by x and y, respectively, the sample space can
be described as � = {(x , y); x nonnegative, y positive, negative or zero.}

Experiment (c). � = {BB, BG, GB, GG}, where, for example, BG denotes the birth of a boy
first and then followed by a girl. Similarly, the other symbols are also defined.

In our study of probability, we are interested not only in the individual outcomes of � but also in
any collection of outcomes of �.

Definition

An event is any collection of outcomes contained in the sample space �. An event is said to be
simple, if it consists of exactly one outcome, and compound, if it consists of more than one outcome.

Definition

A sample space consisting of either a finite or a countably infinite number of elements is called a
discrete sample space. When the sample space includes all the numbers in some interval (finite or
infinite) of the real line, it is called continuous sample space.
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418 Decision Sciences

8.3.2 Axioms, Interpretations, and Properties of Probability

Given an experiment and a sample space �, the objective of probability is to assign to each event A, a
number P(A), called probability of the event A, which will give a precise measure of the chance that
A will occur. To ensure that the probability assignment will be consistent with our intuitive notion
of probability, all assignments should satisfy the following axioms (basic properties) of probability:

• Axiom 1: For any event A, 0 ≤ P(A) ≤ 1.

• Axiom 2: P(�) = 1.

• Axiom 3: If {A1, A2, . . .} is an infinite collection of mutually exclusive events, then

P(A1 ∪ A2 ∪ A3 . . .) =
∞∑

i=1

P(Ai ).

Axiom 1 reflects the intuitive notion that the chance of A occurring should be at least zero, so
that negative probabilities are not allowed. The sample space is by definition an event that must
occur when the experiment performed (�) contains all possible outcomes. So, Axiom 2 says that
the maximum probability of occurrence is assigned to �. The third axiom formalizes the idea that if
we wish the probability that at least one of a number of events will occur, and no two of the events
can occur simultaneously, then the chance of at least one occurring is the sum of the chances of
individual events.

Consider an experiment in which a single coin is tossed once. The sample space is � = {H , T }.
The axioms specify P(�) = 1, so to complete the probability assignment, it remains only to deter-
mine P(H) and P(T ). Since H and T are disjoint events, and H ∪ T = �, Axiom 3 implies
that 1 = P(�) = P(H)+ P(T ). So, P(T ) = 1− P(H). Thus, the only freedom allowed by the
axioms in this experiment is the probability assigned to H . One possible assignment of probabili-
ties is P(H) = 0.5, P(T ) = 0.5, while another possible assignment is P(H) = 0.75, P(T ) = 0.25.
In fact, letting p represent any fixed number between 0 and 1, P(H) = p, P(T ) = 1− p is an
assignment consistent with the axioms.

8.3.3 Borel σ-Field, Random Variables, and Convergence

The basic idea of probability is to define a set function whose domain is a class of subsets of the
sample space �, whose range is [0, 1], and it satisfies the three axioms mentioned in the previous
subsection. If � is the collection of finite number or countable number of points, then it is quite easy
to define the probability function always, for the class of all subsets of �, so that it satisfies Axioms
1–3. If � is not countable, it is not always possible to define for the class of all subsets of �. For
example, if � = R, the whole real line, then the probability function (from now onward, we call it
as a probability measure) is not possible to define for the class of all subsets of �. Therefore, we
define a particular class of subsets of R, called Borel σ-field (it will be denoted by B); see Billingsley
(1995) for details, on which probability measure can be defined. The triplet (�,B, P) is called the
probability space, while � or (�,B) is called the sample space.

Random variable: A real-valued point function X (·) defined on the space (�,B, P) is called
a random variable of the set {ω : X (ω) ≤ x} ∈ B, for all x ∈ R.

Distribution function: The point function

F(x) = P{ω : X (ω) ≤ x} = P(X−1(−∞, x]),

defined on R, is called the distribution function of X .
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Now, we will define three important concepts of convergence of a sequence of random
variables. Suppose {Xn} is a sequence of random variables, and X is also a random variable,
and all are defined of the same probability space (�,B, P).

Convergence in probability or weakly: The sequence of random variables {Xn} is said to

converge to X in probability (denoted by Xn
p→ X ) if for all ε > 0,

lim
n→∞ P(|Xn − X | ≥ ε) = 0.

Almost sure convergence or strongly: The sequence of random variables {Xn} is said to
converge to X strongly (denoted by Xn

a.e.→ X ), if

P
(

lim
n→∞ Xn = X

)
= 1.

Convergence in distribution: The sequence of random variables {Xn} is said to converge to

X in distribution (denoted by Xn
d→ X ), if

lim
n→∞ Fn(x) = F(x),

for all x , such that F is continuous at x . Here, Fn and F denote the distribution functions
of Xn and X , respectively.

8.3.4 Some Important Results

In this subsection, we present some of the most important results of probability theory that have
direct relevance in statistical sciences. The books by Chung (1974) or Serfling (1980) are referred
for details.

The characteristic function of a random variable X with the distribution function F(x) is defined
as follows:

φX (t) = E
(

eit X
)
=
∞∫

−∞
eitx d F(x), for t ∈ R,

where i = √−1. The characteristic function uniquely defines a distribution function. For example,
if φ1(t) and φ2(t) are the characteristic functions associated with the distribution functions F1(x)

and F2(x), respectively, and φ1(t) = φ2(t), for all t ∈ R, then F1(x) = F2(x), for all x ∈ R.

Chebyshev’s theorem: If {Xn} is a sequence of random variables, such that E(Xi ) = μi ,
V (Xi ) = σ2

i , and they are uncorrelated, then

lim
n→∞

1

n2σ
2
i = 0⇒

[
1

n

n∑
i=1

Xi − 1

n

n∑
i=1

μi

]
p→ 0.

Khinchine’s theorem: If {Xn} is a sequence of independent and identically distributed random
variables, such that E(X1) = μ <∞, then

lim
n→∞

1

n

n∑
i=1

Xi
p→ μ.
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420 Decision Sciences

Kolmogorov theorem 1: If {Xn} is a sequence of independent random variables, such that
E(Xi ) = μi , V (Xi ) = σ2

i , then

∞∑
i=1

σ2
i

i2 <∞⇒
[

1

n

n∑
i=1

Xi − 1

n

n∑
i=1

μi

]
a.s.→ 0.

Kolmogorov theorem 2: If {Xn} is a sequence of independent and identically distributed
random variables, then a necessary and sufficient condition that

1

n

n∑
i=1

Xi
a.s.→ μ

is that E(X1) <∞, and it is equal to μ.

Central limit theorem: If {Xn} is a sequence of independent and identically distributed
random variables, such that E(X1) = μ, and V (X1) = σ2 <∞, then

1

σ
√

n

n∑
i=1

(Xi − μ)
d→ Z .

Here, Z is a standard normal random variable with mean zero and variance 1.

Example 8.1

Suppose X1, X2, . . . is a sequence of i.i.d. exponential random variable with the following
probability density function for x > 0:

f (x) =
{

e−x if x ≥ 0,

0 if x < 0.

In this case, E(X1) = V (X1) = 1. Therefore, by the weak law of large numbers (WLLN) of
Khinchine, it immediately follows that

1

n

n∑
i=1

Xi
p→ 1,

and by Kolmogorov’s strong law of large numbers (SLLN),

1

n

n∑
i=1

Xi
a.e.→ 1.

Further, by the central limit theorem (CLT), we have

1√
n

n∑
i=1

(Xi − 1)
d→ Z ∼ N (0, 1).
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8.4 Estimation

8.4.1 Introduction

The topic of parameter estimation deals with the estimation of some parameters from the data that
characterizes the underlying process or phenomenon. For example, one is posed with the data taken
repeatedly of the same temperature. These data are not equal, although the underlying true temper-
ature was the same. In such a situation, one would like to obtain an estimate of the true temperature
from the given data.

We may also be interested in finding the coefficient of resolution of a steel ball from the data
on successive heights to which the ball rose. One may be interested in obtaining the face flow
speed of vehicles from data on speed and density. All these estimation problems come under the
purview of parameter estimation. The question of estimation arises because one always tries to
obtain knowledge on the parameters of the population from the information available through the
sample. The estimate obtained depends on the sample collected. Further, one could generally obtain
more than one sample from a given population, and therefore the estimates of the same parameter
could be different from one another. Most of the desirable properties of an estimate are defined
keeping in mind the variability of the estimates.

In this discussion on the said topic, we will look into desirable properties of an estimator, and
some methods for obtaining estimates. We will also see some examples that will help to clarify
some of the salient features of parameter estimation. Finally, we will introduce the ideas of interval
estimation, and illustrate its relevance to real-world problems.

8.4.2 Desirable Properties

The desirable properties of an estimator are defined keeping in mind that the estimates obtained are
random. In the following discussion, T will represent an estimate while θ will represent the true
parameter value of a parameter. The properties that will be discussed are the following:

Unbiasedness: The unbiasedness property states that E(T ) = θ. The desirability of this prop-
erty is self-evident. It basically implies that on an average the estimator should be equal to
the parameter value.

Minimum variance: It is also desirable that any realization of T (i.e., any estimate) may not be
far off from the true value. Alternatively stated, it means that the probability of θ being near
to θ should be high, or as high as possible. This is equivalent to saying that the variance
of T should be minimal. An estimator that has the minimum variance in the class of all
unbiased estimators is called an efficient estimator.

Sufficiency: An estimator is sufficient if it uses all the information about the population param-
eter, θ, that is available from the sample. For example, the sample median is not a sufficient
estimator of the population mean, because median only utilizes the ranking of the sample
values and not their relative distance. Sufficiency is important because it is a necessary
condition for the minimum variance property (i.e., efficiency).

Consistency: The property of consistency demands that an estimate be very close to the true
value of the parameter when the estimate is obtained from a large sample. More specifically,
if limn→∞ P(|T − θ| < ε) = 1, for any ε > 0, however small it might be, the estimator T
is said to be a consistent estimator of the parameter θ. It may be noted that if T has a zero
bias, and the variance of T tends to zero, then T is a consistent estimator of θ.
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422 Decision Sciences

Asymptotic properties: The asymptotic properties of estimators relate to the behavior of the
estimators based on a large sample. Consistency is thus an asymptotic property of an
estimator. Other asymptotic properties include asymptotic unbiasedness and asymptotic
efficiency.

As the nomenclature suggests, asymptotic unbiasedness refers to the unbiasedness of an estimator
based on a large sample. Alternatively, it can be stated as follows:

lim
n→∞ E(T ) = θ.

For example, an estimator whose E(T ) = θ− (1/n) is an asymptotically unbiased estimator of θ.
For small samples, however, this estimator has a finite negative bias.

Similarly, asymptotic efficiency suggests that an asymptotically efficient estimator is the minimum
variance unbiased estimator of θ for large samples. Asymptotic efficiency may be thought of as the
large sample equivalent of best unbiasedness, while asymptotic unbiasedness may be thought of as
the large sample equivalent of unbiasedness property.

Minimum mean square error: The minimum mean square error (MSE) property states that
the estimator T should be such that the quantity MSE defined below is minimum:

MSE = E(T − θ)2.

Alternatively written,

MSE = V ar(T )+ (E(T )− θ)2.

Intuitively, it is appealing because it looks for an estimator that has small bias (may be zero)
and small variance. This property is appealing because it does not constrain an estimator
to be unbiased before looking at the variance of the estimator. Thus, the minimum MSE
property does not give higher importance to unbiasedness than to variance. Both the factors
are considered simultaneously.

Robustness: Another desirable property of an estimator is that the estimator should not be
very sensitive to the presence of outliers or obviously erroneous points in the data set.
Such an estimator is called a robust estimator. The robust property is important because,
loosely speaking, it captures the reliability of an estimator. There are different ways in
which robustness is quantified. Influence function and breakdown point are two such meth-
ods. Influence functions describe the effect of one outlier on the estimator. Breakdown point
of an estimator is the proportion of incorrect observations (for example, arbitrarily large
observations) an estimator can handle before giving an incorrect (that is arbitrarily large)
result.

8.4.3 Methods of Estimation

One of the important questions in parameter estimation is, how does one estimate (the method of esti-
mation) the unknown parameters so that the properties of the resulting estimators are in reasonable
agreement with the desirable properties? There are many methods that are available in the literature,
and needless to say that none of these methods provide estimators that satisfy all the desirable prop-
erties. As we will see later, some methods provide good estimators under certain assumptions and
others provide good estimators with minor modifications. Although salient, one important aspect of
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Statistical Methods 423

developing a method for estimation that one should bear in mind the amount and complexity of the
computation requirement associated with the methodology.

We will elaborate on four different methods, namely, (a) the method of maximum likelihood, (b)
the method of least squares, (c) the method of moments, and (d) the method of minimum absolute
deviation.

The method of maximum likelihood: Suppose x = {x1, . . . , xn} is a random sample from a popu-
lation that is characterized by m parameters θ = (θ1, . . . , θm). It is assumed that the population has
the probability density function (PDF) or probability mass function (PMF) as f (x ; θ). The principle
of maximum likelihood estimation consists of choosing as an estimate of θ a θ̂(x) that maximizes
the likelihood function, which is defined as follows:

L(θ; x1, . . . , xn) =
n∏

i=1

f (xi ; θ).

Therefore,

L(θ̂; x1, . . . , xn) = sup
θ

L(θ; x1, . . . , xn),

or in other words

θ̂ = argmax L(θ, x1, . . . , xn).

The notation “argmax” means that L(θ, x1, . . . , xn) achieves the maximum value at θ̂, and θ̂ is
called the maximum likelihood estimator (MLE) of θ.

To motivate the use of the likelihood function, we begin with a simple example, and then provide
with a theoretical justification.

Let X1, . . . , Xn be a random sample from a Bernoulli distribution with parameter θ, which has the
following probability mass function:

p(x) =
{
θx (1− θ)x x = 0, 1
0 otherwise,

where 0 < θ < 1. Then

P(X1 = x1, . . . , Xn = xn) = θ
∑n

i=1 xi (1− θ)n−∑n
i=1 xi ,

where xi can be either 0 or 1. This probability, which is the joint probability mass function of
X1, . . . , Xn , as a function of θ, is the likelihood function L(θ) defined above, that is,

L(θ) = θ
∑n

i=1 xi (1− θ)n−∑n
i=1 xi , 0 < θ < 1.

Now we may ask what should be the value of θ that would maximize the above probability L(θ) to
obtain the specific observed sample x1, . . . , xn . The value of θ that maximizes L(θ) seems to be a
good estimate of θ as it provides the largest probability for this particular sample. Since

θ̂ = argmax L(θ) = argmax ln L(θ),

it is often easier to maximize l(θ) = ln L(θ), rather than L(θ). In this case

l(θ) = ln L(θ) =
(

n∑
i=1

xi

)
ln θ+

(
n −

n∑
i=1

xi

)
ln(1− θ),
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424 Decision Sciences

provided θ is not equal to 0 or 1. So we have

dl(θ)

dθ
=
∑n

i=1 xi

θ
− n −∑n

i=1 xi

1− θ = 0.

Therefore,

θ̂ =
∑n

i=1 xi

n
.

Now we provide the theoretical justification to use the maximum likelihood estimator as a reasonable
estimator of θ. Suppose θ0 denotes the true value of θ, then Theorem 8.1 provides a theoretical
reason for maximizing the likelihood function. It says that the maximum of L(θ) asymptotically
separates the true model at θ0 from models at θ �= θ0. We will state the main result without proof.
For details, interested readers are referred to Lehmann and Casella (1998).

Regularity conditions A1. The PDFs are distinct, that is, for θ �= θ′ ⇒ f (x ; θ) �= f (x ; θ′).
A2. The PDFs have common support for all θ.

A3. The point θ0 is an interior point of the parameter space �.

Note that the first assumption states that the parameters identify the PDFs. The second assumption
implies that the support of the random variables does not depend on the parameter. Now, based on the
above assumptions, we have the following important result regarding the existence and uniqueness
of the maximum likelihood estimator of θ.

Theorem 8.1

Let θ0 be the true parameter value, then under Assumptions A1–A3

lim
n→∞ Pθ0

[L(θ0, X1, . . . , Xn) > L(θ, X1, . . . , Xn)] = 1, for all θ �= θ0.

Theorem 8.1 states that the likelihood function is asymptotically maximized at the true value θ0. The
following theorem provides the consistency property of the maximum likelihood estimator under
some suitable regularity conditions.

Theorem 8.2

Let X1, . . . , Xn be a random sample from the probability density function f (x ; θ), which satisfies
Assumptions A1–A3. Further, it is assumed that f (x ; θ) is differentiable with respect to θ ∈ �. If
θ0 is the true parameter value, then the likelihood equation

∂

∂θ
L(θ) = 0 ⇔ ∂

∂θ
l(θ) = 0

has a solution θ̂n , such that θ̂n converges to θ0 in probability.

Finally, we state the asymptotic normality results based on certain regularity conditions. The
details of the regularity conditions and the proof can be obtained in Lehmann and Casella (1998).
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Statistical Methods 425

Theorem 8.3

Let X1, . . . , Xn be a random sample from the probability density function f (x ; θ), which satisfies
the regularity conditions as stated in Lehmann and Casella (1998). Then

√
n
(
θ̂n − θ0

) D−→ Np(0, I−1).

Here,
D−→ means converges in distribution, and I is the Fisher information matrix.

Theorem 8.3 can be used for the construction of confidence intervals and also for testing purposes.
One point should be mentioned that although the MLE is the most popular estimator, it may not be
in the explicit form always. Let us consider the following example:

Example 8.2

Suppose X1, . . . , Xn are i.i.d. random variables with the following PDF:

f (x ; θ) = e−(x−θ)

(1+ e−(x−θ))2
; −∞ < x <∞, −∞ < θ <∞. (8.1)

It may be mentioned that Equation 8.1 is the PDF of a logistic distribution. The logarithm of the
likelihood function can be written as

l(θ) =
n∑

i=1

ln f (xi ; θ) = nθ−
n∑

i=1

xi − 2
n∑

i=1

ln
(

1+ e−(xi−θ)
)

. (8.2)

The MLE of the unknown parameter θ can be obtained by maximizing Equation 8.2 with respect
to the unknown parameter θ. Setting the first partial derivative of Equation 8.2 equals to zero, we
obtain

d

dθ
l(θ) = n − 2

n∑
i=1

e−(xi−θ)

1+ e−(xi−θ)
= 0. (8.3)

Rearranging Equation 8.3, it becomes

n∑
i=1

e−(xi−θ)

1+ e−(xi−θ)
= n

2
. (8.4)

The MLE of θ, θ̂, can be obtained by solving Equation 8.4. Unfortunately, it cannot be obtained in
explicit form. It can be shown that the solution exists and it is unique. It can be obtained as follows.
The first derivative of the left-hand side of Equation 8.4 is

d

dθ

n∑
i=1

e−(xi−θ)

1+ e−(xi−θ)
=

n∑
i=1

e−(xi−θ)(
1+ e−(xi−θ)

)2 > 0.

Therefore, the left-hand side of Equation 8.4 is a strictly increasing function of θ, and it goes to
zero, as θ goes to∞ or −∞. Hence, Equation 8.4 has a unique solution, and it has to be obtained
numerically. The standard numerical analysis method like bisection or Newton’s method may be
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426 Decision Sciences

used to compute θ̂. It can be easily shown that the PDF of the logistic distribution satisfies all the
regulatory conditions. Hence, we can conclude that as n→∞, θ̂→ θ0; here, θ0 is the true value
of the parameter. Moreover,

√
n(̂θ− θ0)

D→ N (0, 1.0/I (θ0)), (8.5)

where

I (θ0) = −E

[
d2

dθ2 ln f (x ; θ0)

]
=
∞∫

−∞

e−2(x−θ0)

(1+ e−(x−θ0))4
dx = 1

6
.

Therefore, using Equation 8.5, for large sample size, we can obtain an approximate 95% confidence
interval of θ0 as

(̂
θ− 1.96×√6/n, θ̂+ 1.96×√6/n

)
.

Now we will provide some of the numerical methods that can be used to compute the MLEs. In
most of the cases, the MLEs have to be obtained by solving a set of nonlinear equations, or solving
a multidimensional optimization problem. Some of the standard general-purpose algorithms can be
used to compute the MLEs. For example, genetic algorithm of Goldberg (1989), simulated annealing
of Kirkpatrick et al. (1983), downhill simplex method of Nelder and Mead (1965), etc. can be used
to compute the MLEs of the unknown parameters by maximizing the likelihood function.

Another very important method that can be used very successfully to compute the MLEs of the
unknown parameters, particularly if some of the data are missing or censored, is known as the expec-
tation maximization (EM) algorithm introduced by Dempster et al. (1977); see the excellent book
by McLachlan and Krishnan (1997) in this respect. The EM algorithm has two steps: (i) E-Step and
(ii) M-Step. In E-Step, pseudo-likelihood function has been obtained by replacing the missing values
with their corresponding expected values, and M-Step involves maximizing the pseudo-likelihood
function. Although, EM algorithm has been used mainly when the complete data are not available,
but it has been used in many cases in case of complete sample also by treating it as a missing value
problem.

Before describing another very popular estimator, we will mention one very useful property of
the MLE, and that is known as invariance property, which may not be true for most of the other
estimators. It can be stated as follows. If θ̂ is the MLE of θ, and h(θ) is a “nice” function, then h(̂θ)

is the MLE of h(θ). Moreover, similar to Equation 8.5, in this case, we have

√
n(g(̂θ)− g(θ0))

D→ N (0, (g′(θ0))
2/I (θ0)). (8.6)

Hence, similar to θ0, using Equation 8.6, an asymptotic confidence interval of g(θ0) can also be
obtained along the same line.

8.4.4 Method of Moment Estimators

The method of moment estimators is the oldest method of finding point estimators. Dating goes back
to Karl Pearson in the late 1800. It is very simple to use and most of the time it provides some sort
of estimate. In many cases, it may happen that it can be improved upon; however, it is a good place
to start with when other methods may be very difficult to implement.

Let X1, . . . , Xn be a random sample from a PDF or PMF f (x |θ1, . . . , θk). The method of moment
estimators are found by equating the first k sample moments to the corresponding k population
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Statistical Methods 427

moments. The method of moment estimators are obtained by solving the resulting systems of
equations simultaneously. To be more precise, for j = 1, . . . , k, define

m1 = 1

n

n∑
i=1

X1
i , μ1 = E(X1);

m2 = 1

n

n∑
i=1

X2
i , μ2 = E(X2);

... (8.7)

mk = 1

n

n∑
i=1

Xk
i , μ1 = E(Xk).

Usually, the population moment μ j , will be a function of θ1, . . . , θk , say μ j (θ1, . . . , θk). Hence, the
method of moment estimators θ̃1, . . . , θ̃k of θ1, . . . , θk , respectively, can be obtained by solving the
following k-equations simultaneously:

m1 = μ1(θ1, . . . , θk);

m2 = μ2(θ1, . . . , θk);

... (8.8)

mk = μk(θ1, . . . , θk).

The justification of the method of moment estimators mainly comes from the SLLN, and also from
the CLT. Owing to SLLN, under some very mild conditions, it can be shown that the method
of moment estimators are always consistent estimators of the corresponding parameters. Further,
because of the CLT, asymptotically, the method of moment estimators follow multivariate normal
distribution, whose covariance matrix can be easily obtained. For illustrative purposes, we provide
a simple example where the method of moment estimators can be obtained explicitly. But it may not
be the case always. Most of the times, we need to solve a system of nonlinear equations to compute
the method of moment estimators.

Example 8.3

Suppose X1, . . . , Xn are i.i.d. from a two-parameter exponential distribution with the following PDF
for θ > 0, and μ ∈ R:

f (x ;μ, θ) =
{

1
θe−(1/θ)(x−μ) if x > μ

0 if x ≤ μ.

In this case, using the same notation as above, we obtain

m1 = 1

n
Xi , m2 = 1

n

n∑
i=1

X2
i , μ1 = θ+ μ, μ2 = (μ+ θ)2 + θ2.
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Hence, in this case, the method of moment estimators of θ and μ can be easily obtained as

θ̃ =
√

m2 − m2
1 =

√√√√1

n

n∑
i=1

X2
i −

(
1

n
Xi

)2

and

μ̃ = m1 − θ̃ = 1

n
Xi −

√√√√1

n

n∑
i=1

X2
i −

(
1

n
Xi

)2

.

Note that the method of moment estimators are different from the MLEs. Finally, we will wind up
this section with another estimator, which is becoming extremely popular in recent days.

8.4.5 Bayes Estimators

The Bayesian approach to statistics is philosophically different from the classical approach that we
have just mentioned. First, let us describe the Bayesian approach to statistics. The main difference
between the classical approach and the Bayesian approach is the following. In the classical approach,
the parameter θ is assumed to be unknown but it is assumed to be a fixed quantity. A random sample
is drawn from a population that is characterized by the parameter θ, and based on the random
sample, a knowledge about the parameter θ is obtained. On the other hand, in the Bayesian approach,
the parameter θ is not assumed to be a fixed quantity, and it is considered to be a quantity whose
variation can be described by a probability distribution, known as the prior distribution. This prior
distribution is purely a subjective distribution, and it depends on the choice of the experimenter. The
most important aspect of the prior distribution is that it is formulated before any sample is observed.
A sample is then obtained from the population indexed by the parameter θ, and then the prior
distribution is updated based on the information of the present sample. The updated information
about the parameter θ is known as the posterior distribution.

If we denote the prior distribution by π(θ) and the sampling distribution by f (x|θ), then the
posterior distribution of θ given the sample x becomes

π(θ|x) = f (x|θ)π(θ)/m(x).

Here, m(x) is the marginal distribution of x, and it can be obtained as

m(x) =
∫

f (x|θ)π(θ)dθ.

Note that the posterior distribution of θ provides the complete information regarding the unknown
parameter θ. The posterior distribution of θ can be used to obtain a point estimate of θ or to construct
confidence interval (known as credible interval in the Bayesian terminology) of θ. The most popular
point estimate of θ is the posterior mean. It has some other nice interpretation also. Other point
estimates like median or mode can also be used in this case. Let us consider the following example
to illustrate the Bayesian methodology.

Example 8.4

Let X1, . . . , Xn be a random sample from an exponential distribution with parameter θ, and it has
the following PDF:

f (x |θ) =
{
θe−θx if x > 0
0 if x ≤ 0.
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Statistical Methods 429

Suppose the prior π(θ) on θ has a gamma distribution with the known shape and scale parameters
as a > 0 and b > 0, respectively. Therefore, π(θ) for θ > 0 has the following form:

π(θ|a, b) = ba

�(a)
θa−1 e−bθ,

and zero otherwise. Therefore, for x = (x1, . . . , xn), the posterior distribution of θ can be
obtained as

π(θ|x) = ba

m(x)�(a)
θn+a−1 e−θ(b+∑n

i=1 xi ) (8.9)

for θ > 0, and zero otherwise. Here

m(x) =
∞∫

0

ba

�(a)
θn+a−1 e−θ(b+∑n

i=1 xi )dθ = ba

�(a)
× �(n + a)

(b +∑n
i=1 xi )n+a

.

Therefore,

π(θ|x) = (b +∑n
i=1 xi )

n+a

�(n + a)
θn+a−1e−θ(b+∑n

i=1 xi ).

Hence, the posterior distribution of θ becomes a gamma distribution with the shape and scale
parameters as n + a and (b +∑n

i=1 xi ), respectively. As we have mentioned before, the posterior
distribution of θ provides complete information about the unknown parameter θ. If we want a point
estimate of θ, the posterior mean can be considered as one such estimate and in this case it will be

θ̂Bayes = �(n + a)

b +∑n
i=1 xi

.

Similarly, an associated confidence 100(1− α)% credible interval of θ, say (L , U ), can also be
constructed using posterior distribution as follows. Choose L and U such that

U∫

L

π(θ|x)dθ = 1− α.

It is clear from the above discussions that integration techniques play a significant role in Bayesian
inference. Here, we provide some illustration of some of the Monte Carlo techniques used for
integration in Bayesian inference. We provide it with an example. Suppose (X1, . . . , Xn), a ran-
dom sample, is drawn from an N (θ,σ2), where σ2 is known. Then, Y = X̄ is a sufficient statistic.
Consider the Bayes model:

Y |θ ∼ N (θ,σ2/n)

� ∼ h(θ) ∝ exp{−(θ− a)/b}/(1+ exp{−[(θ− a)/b]2}); −∞ < θ <∞. (8.10)

Here, a and b > 0 are known hyperparameters. The distribution of � is known as the logistic
distribution with parameter a and b. The posterior PDF is

h(θ|y) =
1√

2πσ/n
exp

{
− (y − θ)2

2σ2/n

}
e−(θ−a)/b/(1+ e[−(θ−a)/b]2

)

∞∫
−∞

1√
2πσ/n

exp

{
− (y − θ)2

2σ2/n

}
e−(θ−a)/b/(1+ e[−(θ−a)/b]2

)dθ

.
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Based on the squared error loss function, the Bayes estimate of θ becomes the mean of the posterior
distribution. It involves computing two integrations, which cannot be obtained explicitly. In this
case, Monte Carlo simulation technique can be used quite effectively to compute the Bayes estimate
and the associated credible interval of θ. Consider the following likelihood function as a function
of θ:

w(θ) = 1√
2πσ/n

exp

{
− (y − θ)2

2σ2/n

}
.

Therefore, the Bayes estimate can be written as

δ(y) =

∞∫
−∞

θw(θ)b−1e−(θ−a)/b/(1+ e[−(θ−a)/b]2
)dθ

∞∫
−∞

w(θ)b−1e−(θ−a)/b/(1+ e[−(θ−a)/b]2
)dθ

= E(�w(�))

E(w(�))
,

where the expectation is taken with � having a logistic prior distribution. The computation of
δ(y) can be carried out by the simple Monte Carlo technique as follows: Generate independently
�1, �2, . . . , �M from the logistic distribution with PDF (8.10). This generation is straightforward,
as the inverse function of the logistic distribution can be expressed in explicit form. Then compute

TM = M−1∑M
i=1 �iw(�i )

M−1
∑M

i=1 w(�i )
.

By WLLN (Khinchine’s theorem), it immediately follows that TM
p→ δ(y), as M →∞. By boot-

strapping this sample, the confidence interval of δ(y) can also be obtained, see, for example, Davison
and Hinkley (1997). There are several very good books available on Bayesian theory and method-
ology. The readers are referred to Gilks et al. (1996) or Ghosh et al. (2006) for an easy reading on
different Bayesian methodologies.

8.5 Linear and Nonlinear Regression Analysis

One of the most important problems in statistical analysis is to find the relationships, if any, that
exist in a set of variables when at least one is random. In a regression problem, typically, one of
the variables, usually called the dependent variable, is of particular interest, and it is denoted by y.
The other variables x1, x2, . . . , xk , usually called explanatory variables or independent variables, are
mainly used to predict or explain the behavior of y. If the prior experience or the plots of the data
suggest some relationship between y and xi, then we would like to express this relationship via some
function, f, namely

y ≈ f (x1, x2, . . . , xk). (8.11)

Now, using the functional Equation 8.11, from the given x1, x2, . . . , xk , we might be able to predict y.
For example, y could be the price of a used car of a certain make, x1, the number of previous owners,
x2, the age of the car, and x3 the mileage. As expected, the relationship (8.11) can never be exact, as
data will always contain unexplained fluctuations or noise, and some degree of measurements error
is usually present.
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Statistical Methods 431

Explanatory variables can be random or fixed (i.e., controlled). Consider an experiment conducted
to measure the yield (y) of wheat at different specified levels of density planting (x1), and fertilizer
application (x2). In this case, both x1 and x2 are fixed. If at the time of planting, soil pH (x3) was
also measured on each plot, then x3 would be random.

In both linear and nonlinear regression analysis, it is assumed that the mathematical form of the
relationship (8.11) is known, except for some unknown constants or coefficients, called parameters,
the relationship being determined by a known underlying physical process or governed by some
accepted scientific laws. Therefore, mathematically, Equation 8.11 can be written as

y ≈ f (x1, x2, . . . , xk , θ), (8.12)

where the function f is entirely known, except for the parameter vector θ = (θ1, θ2, . . . , θp),
which is unknown, and based on the observation it needs to be estimated. In both linear and non-
linear regression analysis, it is often assumed that the noise present is additive in nature. Hence,
mathematically, the model can be written in the following form:

y = f (x1, x2, . . . , xk , θ)+ ε, (8.13)

where ε is the noise random variable, and E(ε) = 0.
In case of linear regression model, the function f is assumed to be linear, and the model has the

following form:
y = β0 + β1x1 + · · · + βp−1x p−1 + ε. (8.14)

Here, xi ’s can include squares, cross products, higher powers, and even transformations of the
original measurements. For example

y = β0 + β1x1 + β2x2 + β3x1x3 + β4x2
2 + ε

or
y = β0 + β1ex1 + β2 ln x2 + β3 sin x3 + ε

are both linear models. The important requirement is that the expression should be linear in the
parameters. On the other hand, if the function f is not linear in the parameters, it is called a nonlinear
regression model. For example, the following models:

y = β0 + β1eβ2x1 + β3eβ4x2 + ε
and

y = β0 + β1 sin(β2x1)+ β3 cos(β4x1)+ ε
are nonlinear regression models.

As can be observed from the above examples, linear models are very flexible, and so it is often
used in the absence of a theoretical model f . Nonlinear models tend to be used either when they are
suggested by theoretical consideration to build a known nonlinear behavior into a model. Even when
a linear approximation works well, a nonlinear model may still be used to retain a clear interpretation
of the parameters.

The main aim of this section is to consider both the linear and nonlinear regression models and
discuss different inferential issues associated in both of them. It may be mentioned that the linear
regression models are very well studied in the statistical literature and they are quite well understood
also. On the other hand, the nonlinear regression analysis is much less understood, although it has
a huge scope of applications. There are several unanswered questions, and lots of scope for future
research.
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432 Decision Sciences

8.5.1 Linear Regression Analysis

It is quite convenient to represent the linear regression model in the following matrix notation:

y = Xβ+ ε, (8.15)

here, y = (y1, y2, . . . , yn)T is the vector of n observations, X is the known n × p design matrix,
where p < n and the rank of the matrix X is p. It will be denoted by

X =

⎡⎢⎣ x11 . . . x1p
...

. . .
...

x p1 . . . x pp

⎤⎥⎦ ,

and ε = (ε1, ε2, . . . , εp)
T is the noise random vector. For simplicity, we will assume that εi ’s are

independent identically distributed normal random variables with mean zero and variance σ2. The
problem is to provide the statistical inferences of the unknown parameters β and σ2, based on the
observation vector y and the design matrix X . It is immediate from the above assumptions that y
has n-variate normal distribution with the mean vector Xβ and dispersion matrix σ2 In . Here, In

denotes the n × n identity matrix.
The joint probability density function of y, given β and σ2, is

p( y|β,σ2) = (2πσ2)−n/2 exp

{
− ( y − Xβ)T ( y − Xβ)

2σ2

}
= (2πσ2)−n/2 exp

{
−|| y − Xβ||2

2σ2

}
, (8.16)

here, for the vector a = (a1, a2, . . . , an)T , ||a|| =
√

a2
1 + a2

2 + · · · + a2
n . The likelihood function,

or more simply, the likelihood l(β,σ| y), for β and σ is identical in form to the joint probability
density (8.16), except that l(β,σ| y) is regarded as a function of the parameters conditional of the
observed data, rather than as a function of the responses conditional of the values of the parameters.
Suppressing the constant (2π)−n/2, the likelihood can be written as

l(β,σ| y) ∝ σ−n exp

{
−|| y − Xβ||2

2σ2

}
. (8.17)

Therefore, the MLEs of the unknown parameters can be obtained by maximizing Equation 8.17 with
respect to β and σ. It immediately follows that the likelihood (8.17) is maximized with respect to β,
when the residual sum of squares S(β) = || y − Xβ||2 is minimum. Thus, the MLE β̂ is the value
of β that minimizes S(β) can be obtained as

β̂ =
(

XT X
)−1

XT y. (8.18)

β̂ is the least squares estimate of β also. In deriving Equation 8.18, it is assumed that the matrix X

is of full rank. If the rank of the matrix is less than p, then clearly
(

XT X
)−1

does not exist. In this

case, although β̂ exists, it is not unique. It is not pursued any further here. Moreover, the MLE of σ2

D
ow

nl
oa

de
d 

by
 [

D
eb

as
is

 K
un

du
] 

at
 1

6:
48

 2
5 

Ja
nu

ar
y 

20
17

 



Statistical Methods 433

can be obtained as

σ̂2 = || y − Xβ̂||2
n

. (8.19)

For detailed treatments on linear regression models and for their applications, the readers are referred
to Arnold (1981) and Rao (2008).

Least squares estimates can also be derived using sampling theory, since the least squares esti-
mator is the minimum variance unbiased estimator of β, or by using a Bayesian approach with a
noninformative prior density on β and σ. Interestingly, all three methods of inference, the likeli-
hood approach, the sampling theory approach, and the Bayesian approach, produce the same point
estimate of β.

However, it is important to realize that the MLE of least squares estimates are appropriate when
the model and the error assumptions are correct. Expressed in another way, using the least squares
estimates, we assume

1. The expectation function is correct.

2. The response is expectation function plus noise.

3. The noise is independent of the expectation function.

4. Each error component has a normal distribution.

5. Each error component has mean zero.

6. The errors have equal variances.

7. The errors are independently distributed.

When these assumptions appear reasonable, we can go to make further inferences about the least
squares estimates.

Least squares estimator or the MLE has a number of desirable properties. For
example:

1. The least squares estimator β̂ is normally distributed. This mainly follows as the least
squares estimator is a linear function of y, which in turn is a linear function of ε. Since ε

is assumed to be normally distributed, β̂ is also normally distributed.

2. β̂ is an unbiased estimator of β, that is, E(β̂) = β.

3. Var(β̂) = σ2(XT X)−1; that is, the covariance matrix of the least squares estimator depends
on the error variances and design matrix X .

4. A 100(1− α)% joint confidence set for β is the ellipsoid

(
β− β̂

)T
XT X

(
β− β̂

) ≤ ps2 Fp,n−p,α, (8.20)

where

s2 = S(β̂)

n − p

is the residual mean square or an unbiased estimator of σ2, and Fp,n−p,α is the upper α
quantile for Fisher’s F distribution with p and n − p degrees of freedom.
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434 Decision Sciences

5. A 100(1− α)% marginal confidence interval for the parameter β j , for j = 1, 2, . . . , p, is

β̂ j ± se(β̂) j tn−p,α/2, (8.21)

where tn−p,α/2 is the upper α/2 quantile for Student’s t distribution with n − p degrees of
freedom, and the standard error of the parameter estimator is

se(β̂) j = s

√{(
XT X

)−1
}

j j
,

with

{(
XT X

)−1
}

j j
equal to the j th diagonal term of the matrix

(
XT X

)−1
.

6. A 100(1− α)% confidence interval for the expected response at x0 is

xT
0 β̂± tn−p,α/2

√
xT

0

(
XT X

)−1
x0. (8.22)

The least squares estimators are the most popular method to estimate the unknown parameters of
a linear regression model, and it has several desirable properties. For example, it can be obtained in
explicit form; in case of i.i.d. normal error distributions, the MLEs and the LSEs coincide, but it has
certain disadvantages. For example, LSEs are not robust, that is, even in the presence of a very small
number of outliers, the estimators can change drastically, which may not be desirable. Moreover, in
the presence of heavy tail errors, the LSEs do not behave well. Owing to this reason, least absolute
deviation (LAD) estimator can be used, which is more robust, and behaves very well in the presence
of heavy tail error. The LAD estimator of β can be obtained by minimizing

| y − Xβ|, (8.23)

with respect to β, where for a = (a1, . . . , an)T and b = (b1, . . . , bn)T , |a − b| = |a1 − b1| + · · · +
|an − bn|. The estimator β̃, which minimizes Equation 8.23, cannot be obtained in explicit form. It
has to be obtained numerically. Several numerical methods are available to solve this problem. One
important technique is to convert this problem to a linear programming problem, and then solve
the linear programming problem, by some efficient linear programming problem solvers; see, for
example, an excellent book by Kennedy and Gentle (1980) in this respect. Regarding the theoretical
development of the LAD estimators, see Huber (1981).

Another important aspect in a linear regression problem is to estimate the number of predictors.
It is a fairly difficult problem, and it can be treated as a model selection problem. Classically, the
problem was solved by using stepwise regression method, but recently, different information the-
oretic criteria such as Akaike information criterion (AIC) or Bayesian information criterion (BIC)
have been used to solve this problem. Recently, the least absolute shrinkage and selection operator
(LASSO) method proposed by Tibshirani (1996) has received considerable amount of attention in
the last one decade.

8.5.1.1 Bayesian Inference

Before closing this section, we will briefly discuss the Bayesian inference of the linear regression
model. The Bayesian marginal posterior density for β, assuming a noninformative prior density for
β and σ of the form,

p(β,σ) ∝ σ−1 (8.24)
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Statistical Methods 435

is

p(β|σ) ∝
{

1+
(
β− β̂

)T
XT X

(
β− β̂

)
νs2

}−n/2

. (8.25)

It is in the form of a p-variate Student’s t density with the location parameter β̂, scaling matrix
s2(XT X)−1, and ν = n − p degrees of freedom.

Furthermore, the marginal posterior density for a single parameter β j , say, is a univariate Stu-

dent’s t density with location parameter β̂ j , scale parameter s2
{(

XT X
)−1
}

j j
, and the degrees of

freedom n − p. The marginal posterior density for the mean of y at x0 is a univariate Student’s
t density with the location parameter xT

0 β̂, scale parameter s2xT
0 (XT X)−1x0, and the degrees of

freedom n − p.
A 100(1− α)% highest posterior density (HPD) region of content is defined as a region R in the

parameter space such that P(β ∈ R) = 1− α, and for β1 ∈ R, and β2 /∈ R, P(β1 ∈ R) ≥ P(β2 ∈
R). For linear models with a noninformative prior, an HPD region is therefore given by the ellipsoid
defined in Equation 8.20. Similarly, the marginal HPD regions for β j and xT

0 β are numerically
identical to the sampling theory regions (8.21) and (8.22), respectively.

Example 8.5

We consider the data of the maximum January temperature (in degrees Fahrenheit) for 62 cities in
the United States (from 1931 to 1960) along with their latitude (degrees), longitude (degrees), and
altitude (feet). The data have been taken from Mosteller and Tukey (1977). We want to relate the
maximum January temperature with the other three variables. We write the model in the following
form:

Max Temp = β0 + β1 × Latitude+ β2 × Longitude+ β3 × Altitude+ ε.

The following summary measures are obtained for the design matrix X :

XT X =

⎡⎢⎢⎣
62.0 2365.0 5674.0 56,012.0

2365.0 92,955.0 217,285.0 2,244,586.0
5674.0 217,285.0 538,752.0 5,685,654.0

56,012.0 2,244,586.0 5,685,654.0 1.772× 108

⎤⎥⎥⎦ ,

(
XT X

)−1 =

⎡⎢⎢⎣
94,883.1914 −1342.5011 −485.0209 2.5756
−1342.5011 37.8582 −0.8276 −0.0286
−485.0209 −0.8276 5.8951 −0.0254

2.5756 −0.0286 −0.0254 0.0009

⎤⎥⎥⎦ ,

XT y = (2739.0, 99,168.0, 252,007.0, 2,158,463.0)T .

It gives

β̂ = (100.8260,−1.9315, 0.2033,−0.0017)T and s = 6.05185.

Therefore, based on the normality assumption on the error random variables, and the priors dis-
cussed above, β̂ can be taken as the least squares estimators and Bayes estimators of β. Further, 100
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436 Decision Sciences

(1− α)% credible interval for β can be obtained as{
β : (β− β̂)T XT X(β− β̂) ≤ ps2 Fp,n−p(α)

}
.

8.5.2 Nonlinear Regression Analysis

The basic problem in the nonlinear regression analysis can be expressed as follows. Suppose that
we have n observations {(xi , yi ); i = 1, 2, . . . , n} from a nonlinear model with a known functional
relationship f . Thus

yi = f (xi , θ
∗)+ εi ; i = 1, 2 . . . , n, (8.26)

where εi ’s are assumed to be independent and identically distributed normal random variables with
mean zero, and variance σ2, xi is a k × 1 vector, and the true value θ∗ of θ is known to belong
to �, a subset of Rp. The problem is to estimate the unknown parameter θ∗, based on the above
observations {(xi , yi ); i = 1, 2, . . . , n}.

Among the different methods, the most popular one is the least squares estimator, denoted by θ̂,
and it can be obtained by minimizing the error sum of squares S(θ), where

S(θ) =
n∑

i=1

(yi − f (xi , θ))2 , (8.27)

over θ ∈ �. Unlike least squares estimator, a simple analytical solution of θ̂ does not exist, and
it has to be obtained numerically. Several numerical methods are available, which can be used to
compute θ̂, but all the methods are iterative in nature. Hence, each iterative method requires some
kind of initial guesses to start the process. This is one of the major problems in computing the least
squares estimator θ̂. The least squares surface S(θ) may have several local minima; hence, a very
careful choice of the initial guess is required to compute θ̂.

For completeness purposes, we provide one numerical method that can be used to compute
θ̂, but it should be mentioned that it may not be the best method in all possible cases. We
use the following notation: θ = (θ1, θ2, . . . , θp)

T , fi (θ) = f (xi , θ), for i = 1, . . . , n, f (θ) =
( f1(θ), f2(θ), . . . , fn(θ))T . The main idea of the proposed method is to approximate the nonlin-
ear surface f (θ) near θ̂ by a linear surface as follows. Suppose θ(a) is an approximation to the least
squares estimate θ̂. For θ close to θ̂, by using Taylor series approximation, f (θ) can be written as
follows:

f (θ) ≈ f (θ(a))+ F•(a)(θ− θ(a)), (8.28)

here, F•(a) = F•(θ(a)), and

F•(θ) =

⎡⎢⎢⎢⎢⎢⎣
∂ f1(θ)

∂θ1
. . .

∂ f1(θ)

∂θp

· · · . . . · · ·
∂ fn(θ)

∂θ1
. . .

∂ fn(θ)

∂θp

⎤⎥⎥⎥⎥⎥⎦ .

Applying this to the residual vector

r(θ) = y − f (θ) ≈ r(θ(a))− F•(a)(θ− θ(a)),
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in S(θ) = rT (θ)r(θ), leads to

S(θ) ≈ rT (θ(a))r(θ(a))− 2rT (θ(a))F•(a)(θ− θ(a))+ (θ− θ(a))T F•(a)T F•(a)(θ− θ(a)).
(8.29)

The right-hand side of Equation 8.29 is minimized with respect to θ, when

θ− θ(a) =
(

F•(a)T F•(a)
)−1

F•(a)T r(θ(a)) = δ(a).

This suggests that given a current approximation θ(a), the next approximation can be obtained as

θ(a+1) = θ(a) + δ(a).

This provides an iterative scheme for computing θ̂. This particular iterative scheme is known as
Gauss–Newton method. It forms the basis of a number of least squares algorithm used in the litera-
ture. The Gauss–Newton algorithm is convergent, that is, θ(a) → θ̂, as a →∞, provided that θ(1)

is close to θ∗, and n is large enough.
Finally, we will conclude this section to provide some basic properties of the least squares esti-

mators without any formal proof. Under certain regularity conditions on the function f , if the error
random variables are i.i.d. normal random variables with mean zero and variance σ2, for large n, we
have the following results:

1. (θ̂− θ∗) ∼ Np(0,σ2C), where C = F•T (θ∗)F•(θ∗).
2. S(θ̂)/σ2 ∼ χ2

n−p.

3.
(S(θ∗)− S(θ̂))/p

S(θ̂)/(n − p)
∼ Fp,n−p.

Here, χ2
n−p and Fp,n−p denote the chi square distribution with n − p degrees of freedom, and F

distribution with p and n − p degrees of freedom, respectively. The result (1) provides the consis-
tency and asymptotic normality properties of the least squares estimators; moreover, (2) and (3) can
be used for the construction of the confidence interval or confidence set for σ2 and θ.

Example 8.6

The data set has been obtained from Osborne (1972), and it represents the concentration of a
chemical during the different time point of an experiment. We fit the following nonlinear model:

yt = α0 + α1eβ1t + α2eβ2t + εt .

We start with the initial guesses as α0 = 0.5, α1 = 1.5, α2 = −1.0, β1 = −0.01, and β2 = −0.02.
Using Newton–Raphson method, we finally obtained the least squares estimators as

α̂0 = 0.3754, α̂1 = 1.9358, α̂2 = −1.4647, β̂1 = −0.01287, β̂2 = −0.02212.

8.6 Introduction to Multivariate Analysis

Multivariate analysis (MVA) is the study based on the statistical principle of multivariate statistics,
and involves the observation and analysis of more than one statistical outcome variable at a time. To
motivate our readers, we present three different examples of MVA below.
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Example 8.7

Consider as a dietician in the hospital you are interested to study the physical fea-
tures and find out the relevant parameters, such as body density (BD), body mass index
(BMI), etc., of patients who undergo treatment in the hospital. Your job is to decide on
the right diet plan based on the data/information such as percent body fat, age (years),
weight (kg), height (cm), etc. of the patients. For the study, you use the past data
(http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_ BMI_Regression), which consists of a
sample set of 252 patients, as this enables you to do a detailed study/analysis of the different
characteristics, such as body fat index, height, and weight, using a three-dimensional (3-D) scatter
plot, as illustrated in Figure 8.1.

Example 8.8

As the next example, assume you are the real estate agent in the state of California,
USA, and your job is to forecast the median house value (MHV). To facilitate bet-
ter forecasting, you have with you 20,640 data points consisting of information such as
MHV, median income (MI), housing median age (HMA), total rooms (TR), total bed-
rooms (TB), population (P), households (H), etc. Information about the data set can be
obtained in the paper by Kelley and Barry (1997). If one fits the multiple linear regression
(MLR) model (as used by the authors) to this data, one obtains the ordinary least square
(OLS) regression coefficient vector, β̂ = (β̂0 = 11.4939, β̂1 = 0.4790, β̂2 = −0.0166, β̂3 =
−0.0002, β̂4 = 0.1570, β̂5 = −0.8582, β̂6 = 0.8043, β̂7 = −0.4077, β̂8 = 0.0477), using
which we can forecast the 20,641th MHV as ̂loge(M H V )20,641 = β̂0 + β̂1 × M I20,641 + β̂2 ×
M I 2

20,641 + β̂3 × M I 3
20,641 + β̂4 × loge(M A20,641)+ β̂5 × loge(T R20,641/P20,641) + β̂6 ×

loge(T B20,641/P20,641) + β̂7 × loge(P20,641/H20,641)+ β̂8 × loge(H20,641). For example, if
one wants to forecast the 20,621th reading, which is 11.5129255, then the forecasted value is
12.3302108, which results in an error of 0.8172853.

Example 8.9

As a third example, consider that Professor Manisha Kumari, a faculty member in the Finance
Group at the Indian Institute of Management, Indore, India, is interested to study the change
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FIGURE 8.1
A three-dimensional scatter plot of body fat index, height, and weight of 252 patients, Example 8.7.
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in the prices of seven stocks, namely, Bajaj Auto, Maruti Suzuki Indian Limited, Tata Motors,
Steel Authority of India, Tata Steel, Infosys Limited, and Tata Consultancy Services Limited, for
the time period January 1, 2014 to December 31, 2014. She utilizes the prices of these seven
stocks from National Stock Exchange (NSE), which is available at http://in.finance.yahoo.com
or http://www.nse-india.com. A closer look convinces her that the price for the first three scripts
(Bajaj Auto [#1], Maruti Suzuki Indian Limited [#2], and Tata Motors [#3]), the next two (Steel
Authority of India [#4] and Tata Steel [#5]), and the last two (Infosys Limited [#6] and Tata
Consultancy Services Limited [#7]) moves in tandem as separate groups as they are from the
automobile, steel, and information technology sectors, respectively. Her surmise is valid as the
companies that are in the same sector tend to vary together as economic conditions change and
this fact is also substantiated by the factor analysis (FA) performed by her (Figure 8.2).

In all these three examples, what is important to note is the fact that given a multidimensional
data set, Xn×p, of size (n × p), the users, be it the dietician, the real estate agent, or the fac-
ulty member, are all interested to draw some meaningful conclusions from this data set, Xn×p.
The study of multivariate statistics leads us to analyze multivariate distributions. As is apparent,
such studies are of prime importance in many areas of our practical life. It is interesting to note
that Francis Galton (1822–1911) may be credited as the first person who worked in the area of
multivariate statistical analysis. In his work Natural Inheritance (1889), the author summarized
the ideas of regression considering bivariate normal distribution. Other notable early researchers
whose contributions in the area of multivariate statistics are worth mentioning are Theodore Wilbur
Anderson (1918–), Steven F. Arnold (1944–2014), Debabrata Basu (1924–2001), Morris L. Eaton
(1939–), Ronald Aylmer Fisher (1890–1962), Narayan Chandra Giri (1928–2006), Ramanathan
Gnanadesikan (1932), Harold Hotelling (1895–1973), Norman Lloyd Johnson (1917–2004), Mau-
rice George Kendall (1907–1983), C. G. Khatri (1931–1989), Samuel Kotz (1930–2010), Paruchuri
R. Krishnaiah (1932–1987), Anant M. Kshirsagar (1931), Prasanta Chandra Mahalanobis (1893–
1972), Calyampudi Radhakrishna Rao (1920–), Samarendra Nath Roy (1906–1964), George Arthur
Frederick Seber (1938–), Samuel Stanley Wilks (1906–1964), and many others. Thus, the study of
the body of methodologies to investigate simultaneous measurements on many variables is termed
as MVA.
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FIGURE 8.2
Illustration of factor analysis (FA) method considering seven stocks from NSE, India for the time period January 1, 2014 to
December 31, 2014, Example 8.9.
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While studying multivariate methods, the objectives that are of prime importance are: data reduc-
tion or structural simplification, sorting and grouping, investigation of the dependence among
variables, prediction and hypothesis construction, and subsequent testing of the same.

To start with, let us define Xn×p = (X1, . . . , X p) or (Xi , j ), i = 1, . . . , n and j = 1, . . . , p as an
(n × p)-dimensional matrix of random variables, where n signifies the number of readings and p
signifies the dimension, corresponding to different factors in a random variable that are of interest
to us. A few important definitions that are useful to understand MVA are:

1. Mean value vector: μp×1 = (μ1, . . . ,μp)
′, while the sample counterpart is X̄ p×1 =

(X̄1, . . . , X̄ p)
′.

2. Variance–covariance matrix:

� p×p =

⎛⎜⎝σ1,1 · · · σ1,p
...

. . .
...

σp,1 · · · σp,p

⎞⎟⎠ ,

while the sample counterpart is

S p×p =

⎛⎜⎝s1,1 · · · s1,p
... . .

. ...
sp,1 · · · sp,p

⎞⎟⎠ .

3. Correlation coefficient matrix:

ρp×p =

⎛⎜⎝ 1 · · · ρ1,p
...

. . .
...

ρp,1 · · · 1

⎞⎟⎠ ,

while the sample counterpart is

Rp×p =

⎛⎜⎝ 1 · · · r1,p
...

. . .
...

rp,1 · · · 1

⎞⎟⎠ .

4. Mean: E(X j ) = μ j =
∑
∀x j

x j Pr(X j = x j ), or E(X j ) = μ j = ∫x j ,max
x j ,min x j f (x j )dx j =

∫x j ,max
x j ,min x j d FX j (x j ), while the sample counterpart is X̄ j = (1/n)

∑n
i=1 Xi , j , for j =

1, . . . , p.

5. Covariance: Covar
(
X j1 , X j2

) = E
[{

X j1 − E
(
X j1

)} {
X j2 − E

(
X j2

)}] = σ j1, j2 =∑
∀x j1 ,x j2

{
X j1 − E

(
X j1

)} {
X j2 − E

(
X j2

)}
Pr
(
X j1 = x j1 , X j2 = x j2

)
, or Covar

(
X j1 ,

X j2

) = E
[{

X j1 − E
(
X j1

)} {
X j2 − E

(
X j2

)}] = σ j1, j2 = ∫
x j2,max
x j2,min ∫

x j1,max
x j1,min

{
X j1 − E

(
X j1

)}{
X j2 − E

(
X j2

)}
f
(
x j1 , x j2

)
dx j1 dx j2 = ∫

x j2,max
x j2,min ∫

x j1,max
x j1,min

{
X j1 − E

(
X j1

)} {
X j2 − E

(
X j2

)}
d FX j1 ,X j2

(
x j1 , x j2

)
, while the sample counterpart is s j1, j2 = (1/(n − 1))

∑n
i=1

(
Xi , j1 − X̄ j1

)(
Xi , j2 − X̄ j2

)
, for j1, j2 = 1, . . . , p.
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6. Correlation coefficient: corr
(
X j1 , X j2

) = ρ j1, j2 = Covar
(
X j1 , X j2

)
/

√
V ar

(
X j1

)√
V ar

(
X j2

)
, while the sample counterpart is r j1, j2 =

(
s j1, j2/

√
s j1, j1
√

s j2, j2

)
, for j1,

j2 = 1, . . . , p.

7. Co-skewness:

E
[{

X j1 − E
(
X j1

)} {
X j2 − E

(
X j2

)} {
X j3 − E

(
X j3

)}]
=

∑
∀x j1 ,x j2 ,x j3

{
X j1 − E

(
X j1

)} {
X j2 − E

(
X j2

)} {
X j3 − E

(
X j3

)}
× Pr

(
X j1 = x j1 , X j2 = x j2 , X j3 = x j3

)
or

x j3,max∫

x j3,min

x j2,max∫

x j2,min

x j1,max∫

x j1,min

{
X j1 − E

(
X j1

)} {
X j2 − E

(
X j2

)} {
X j3 − E

(
X j3

)}
× f

(
x j1 , x j2 , x j3

)
dx j1 dx j2 dx j3 ,

for j1, j2, j3 = 1, . . . , p.

Note: Co-skewness is related to skewness as covariance is related to variance.

8. Skew relation:

E
[{

X j1 − E
(
X j1

)} {
X j2 − E

(
X j2

)} {
X j3 − E

(
X j3

)}]√
E
{

X j1 − E
(
X j1

)}2
√

E
{

X j2 − E
(
X j2

)}2
√

E
{

X j3 − E
(
X j3

)}2
,

for j1, j2, j3 = 1, . . . , p.

9. Co-kurtosis:

E
[{

X j1 − E
(
X j1

)} {
X j2 − E

(
X j2

)} {
X j3 − E

(
X j3

)} {
X j4 − E

(
X j4

)}]
=

∑
∀x j1 ,x j2 ,x j3 ,x j4

{
X j1 − E

(
X j1

)} {
X j2 − E

(
X j2

)} {
X j3 − E

(
X j3

)} {
X j4 − E

(
X j4

)}
× Pr

(
X j1 = x j1 , X j2 = x j2 , X j3 = x j3 , X j4 = x j4

)
or

x j4,max∫

x j4,min

x j3,max∫

x j3,min

x j2,max∫

x j2,min

x j1,max∫

x j1,min

{
X j1 − E

(
X j1

)} {
X j2 − E

(
X j2

)} {
X j3 − E

(
X j3

)}
× {X j4 − E

(
X j4

)}
f
(
x j1 , x j2 , x j3 , x j4

)
dx j1 dx j2 dx j3 dx j4 ,

for j1, j2, j3, j4 = 1, . . . , p.

Note: Co-kurtosis is related to kurtosis as covariance is related to variance.
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10. Kurtic relation:

E
[{

X j1 − E
(
X j1

)} {
X j2 − E

(
X j2

)} {
X j3 − E

(
X j3

)} {
X j4 − E

(
X j4

)}]√
E
{

X j1 − E
(
X j1

)}2
√

E
{

X j2 − E
(
X j2

)}2
√

E
{

X j3 − E
(
X j3

)}2
√

E
{

X j4 − E
(
X j4

)}2
,

for j1, j2, j3 j4 = 1, . . . , p.

To represent the multivariate data, different graphical techniques can also be used, some of which
are: scatter diagram/scatter plot/marginal dot diagram, multiple scatter plot, box plot, 3-D scatter
plot, linked scatter plot, rotated plot, growth plot, Chernoff faces, stars, etc. Another important
concept that is used in the study of multivariate statistics is the idea of distance measure. A few
examples are: Euclidean distance, Bhattacharyya distance, Mahalanobis distance, Pitman close-
ness criterion, Bregman divergence, Kullback–Leibler distance, Hellinger distance, Chernoff bound,
Rényi entropy, and Cook’s distance. An interested reader can refer many good references for a bet-
ter understanding of MVA, a few examples of which are: Anderson (2003), Arnold (1981), Bock
(1975), Cooley and Lohnes (1971), Dillon and Goldstein (1984), Eaton (1983), Everitt and Dunn
(2001), Giri (2004), Gnanadesikan (2011), Hair et al. (2005), Härdle and Simar (2007), Jobson
(1991), Johnson and Wichern (2002), Kendall (1980), Kotz et al. (2000), Kshirsagar (1972), Mardia
et al. (1979), Morrison (1990), Muirhead (2005), Press (1982), Rao (2008), Roy (1957), Roy et al.
(1971), Seber (2004), Srivastava and Khatri (1979), Takeuchi et al. (1982), and Tatsuoka (1988).
Sen (1986) gives a good review of textbooks, papers, monographs, and other related materials in the
area of multivariate statistics.

For the interest of the readers, we consider a few multivariate distributions such as multinomial
distribution, multivariate normal distribution (MND), multivariate Student t-distribution, Wishart
distribution, and multivariate extreme value distribution (MEVD) before discussing copula theory.
After that, we cover different multivariate techniques that are widely used. One may note that other
multivariate distributions such as Dirichlet distribution, Hotelling distribution, multivariate gamma
distribution, multivariate beta distribution, multivariate exponential distribution, etc. are not consid-
ered due to paucity of space. Moreover, the distributions discussed here are based on their general
relevance and practicality.

8.7 Joint and Marginal Distribution

The joint distribution of (X1, . . . , X p) may be expressed as FX1,...,X p (x1, . . . , x p) = Pr(X1 ≤
x1, . . . , X p ≤ x p). If one thinks from the marginal distribution point of view, then

FX1,...,X p (x1, . . . , x p) consists of (2p − 2) number of marginal distributions of which

(
p
1

)
are univariate,

(
p
2

)
are bivariate,. . . , and finally

(
p

p − 1

)
are (p − 1) variate. If X1, . . . , X p

are pairwise independent, then the joint distribution function FX1,...,X p (x1, . . . , x p) = FX1(x1)×
· · · × FX p (x p), where FX j (x j ) is the corresponding marginal distribution of X j , j =
1, . . . , p. In case FX1,...,X p (x1, . . . , x p) = FX1,...,X j1

(
x1, . . . , x j1

)× FX j1+1,...,X j2

(
x j1+1, . . . , x j2

)×
FX j2+1,...,X p

(
x j2+1, . . . , x p

)
, then one can similarly add that

(
X1, . . . , X j1

)
,
(
X j1+1, . . . , X j2

)
, and(

X j2+1, . . . , X p
)

are independent and FX1,...,X j1

(
x1, . . . , x j1

)
, FX j1+1,...,X j2

(
x j1+1, . . . , x j2

)
, and

FX j2+1,...,X p

(
x j2+1, . . . , x p

)
are the joint distributions of

(
X1, . . . , X j1

)
,
(
X j1+1, . . . , X j2

)
, and(

X j2+1, . . . , X p
)
, respectively.
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If the distribution is of discrete type, then the total mass of the distribution of (X1, . . . , X p)

is concentrated at the points in a way such that
∑
∀ j1 · · ·

∑
∀ jp

Pr
{

X1 = x1, j1 , . . . , X p =
x p, jp

} = 1, while for the continuous case, we have ∫x p=+∞
x p=−∞ · · · ∫x1=+∞

x1=−∞ f (x1, . . . , x p) dx1 · · ·
dx p = 1. The corresponding joint distribution functions would be given as FX1,...,X p (x1, . . . ,

x p) =
∑

X1≤x1
· · ·∑X p≤x p

Pr{X1 ≤ x1, . . . , X p ≤ x p} or FX1,...,X p (x1, . . . , x p) = ∫x p
x p=−∞ · · ·

∫x1
x1=−∞ f (x1, . . . , x p)dx1 · · · dx p as the case may be.
Considering Xn×p = (X1, . . . , X p), we may be interested to measure the degree to which one

of the variable, say X j , is dependent on the remaining (p − 1) number of variables, that is,
(X1, . . . , X j−1, X j+1, . . . , X p) taken jointly. This is called multiple correlation and the measure
is given by multiple correlation coefficient

ρ j ,(1,..., j−1, j+1,...,p) =
Covar

(
X j , X1,..., j−1, j+1,...,p

)
√

V ar(X j )×
√

V ar
(
X j ,(1,..., j−1, j+1,...,p)

) = (1− R

R j1, j2

)1/2

,

where R j1, j2 is the cofactor of ρ j1, j2 in the determinant R of the correlation matrix

R =

⎛⎜⎝ρ1,1 · · · ρ1,p
...

. . .
...

ρp,1 · · · ρp,p

⎞⎟⎠.

Another way of representing the multiple correlation coefficient is

ρ2
j ,(1,..., j−1, j+1,...,p) = 1−

{
V ar

(
ε j ,(1,..., j−1, j+1,...,p)

)
V ar(X j )

}
,

where ε j ,(1,..., j−1, j+1,...,p) is the residual of X j corresponding to its multiple regression on
X1, . . . , X j−1, X j+1, . . . , X p. This multiple correlation coefficient may be interpreted as the max-
imum correlation between X j and a linear function of X1, . . . , X j−1, X j+1, . . . , X p, say X j =
α+ β1 X1 + · · · + β j−1 X j−1 + β j+1 X j+1 + · · · + βp X p + ε. On the other hand, partial cor-
relation coefficient between X j1 and X j2 is denoted by ρ( j1, j2|1,..., j1−1, j1+1,..., j2−1, j2+1,...,p) =
(−1) j1+ j2

(
R j1, j2/

(
R j1, j1 R j2, j2

)1/2
)

, where R j1, j1 , R j2, j2 , and R j1, j2 have the usual definition as

already mentioned while discussing multiple correlation coefficient, ρ j ,(1,..., j−1, j+1,...,p). Remember
that partial correlation coefficients are related to the partial regression coefficients by the formula

β( j1, j2|1,..., j1−1, j1+1,..., j2−1, j2+1,...,p) = ρ( j1, j2|1,..., j1−1, j1+1,..., j2−1, j2+1,...,p)

× σ( j1|1,..., j1−1, j1+1,..., j2−1, j2+1,...,p)

σ( j2|1,..., j1−1, j1+1,..., j2−1, j2+1,...,p)

.

Example 8.10

Consider the data related to cigarettes given in Mendenhall and Sincich (2006). The data set
contains measurements related to brand, tar content (mg), nicotine content (mg), weight (g), and
carbon monoxide content (mg) for n = 25 brands of cigarettes. The data set can be accessed
at http://www.amstat.org/publications/jse/datasets/cigarettes. dat.txt. Considering the variables,
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444 Decision Sciences

FIGURE 8.3
Pseudo-code used for calculating multiple correlation coefficient vector.

p = 4, that is, X1, X2, X3, and X4 as the tar content (mg), nicotine content (mg), weight (g),
and carbon monoxide content (mg), respectively, one obtains

R =

⎡⎢⎢⎣
1 0.9766 0.4908 0.9575

0.9766 1 0.5002 0.9259
0.4908 0.5002 1 0.4640
0.9575 0.9259 0.4640 1

⎤⎥⎥⎦ .

Furthermore, utilizing R, we get the multiple correlation coefficient vector as⎛⎜⎜⎝
0.9867
0.9774
0.5001
0.9584

⎞⎟⎟⎠,

while the corresponding R2 values are 0.9720, 0.9554, 0.5366, and 0.9174. Simple calculations
would also yield the partial correlation coefficient matrix as⎛⎜⎜⎝

1 −0.8199 −0.0141 −0.6556
−0.8199 1 −0.1092 0.1465
−0.0141 −0.1092 1 0.0072
−0.6556 0.1465 0.0072 1

⎞⎟⎟⎠ .

To double verify the calculation, we may also calculate the partial regression coefficients. The
pseudo-codes for calculating the multiple correlation coefficient vector and the partial correlation
coefficient matrix are given in Figures 8.3 and 8.4, respectively.

FIGURE 8.4
Pseudo-code used for calculating partial correlation coefficient matrix.
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Statistical Methods 445

8.8 Multinomial Distribution

Suppose X1, . . . , X p be p jointly distributed random variables each of which is discrete, nonneg-
ative, and integer valued. Then, the joint probability mass function of X1, . . . , X p is called the
multinomial distribution and is of the form(

n
x1, . . . , x p

)
× px1

1 × · · · × p
x p
p ,

where xi ∈ (0, 1, . . . n − 1, n),
∑p

j=1 x j = n, and
∑p

j=1 p j = 1.
For the multinomial distribution, it can be easily proved that

1. E(X j ) = np j , j = 1, . . . , p.

2. Var(X j ) = np j (1− p j ), j = 1, . . . , p.

3. Covar
(
X j1 , X j2

) = −np j1 p j2 , j1 �= j2 = 1, . . . , p.

4.

corr
(
X j1 , X j2

) = −{ p j1 p j2(
1− p j1

) (
1− p j2

)}1/2

, j1 �= j2 = 1, . . . , p.

5. Moment generating function (MGF) =
{∑p

j=1 p j et j

}n
.

6. Characteristic function (CF) =
{∑p

j=1 p j eit j

}n
, where i2 = −1.

7. Probability generating function (PGF) =
{∑p

j=1 p j z j

}n
for (z1, . . . , z p) ∈ C p.

For a better appreciation of the multinomial distribution, consider the polynomial coefficients of the
expansion of the multinomial expansion, {p1x1 + · · · + ppx p}n . A closer look at this expansion will
make it immediately evident how the polynomial coefficients of the multinomial expansion corre-
spond to the multinomial distribution discussed above. Another interesting analogy for multinomial
distribution can be made from the Pascal pyramid (Figure 8.5).

A
B

C
D

E

F

FIGURE 8.5
Pascal pyramid considered to depict the coefficient of the multinomial distribution.
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Plate A Plate B Plate C Plate D
1 1

1

1 3 3 1

3 6 3

3 3

1

1 2 1

2 2

1

1 4 6 4 1

4 12 12 4

6 6

4 4

1

12

FIGURE 8.6
Depiction of the flat plates of Pascal pyramid to signify the concept of multinomial distribution.

If we view the slices (as represented by A, B, C, D, E, F, and so on) of the Pascal pyramid as flat
triangular plates, then the numbers depicted on them are as shown in Figure 8.6.

When p = 2, we have the binomial distribution, while for p = 3, one obtains the trinomial distri-
bution, and so on. It can be shown that the marginal distribution of X j , j = 1, . . . , p is binomially
distributed with parameters n and p j , and is given by

Pr(X j = x j ) =
(

n
x j

)
p

x j
j (1− p j )

n−x j ,

where (p1 + · · · + p j−1)+ p j + (p j+1 + · · · + pp) = 1 and {(x1 + · · · + x j−1)+ x j + (x j+1 +
· · · + x p)} = n. If one considers the conditional distribution of X j , then given X1 =
x1, . . . , X j−1 = x j−1, X j+1 = x j+1, . . . , X p = x p, the conditional distribution is

Pr(X j = x j |X1 = x1, . . . , X j−1 = x j−1, X j+1 = x j+1, . . . , X p = x p)

=
⎛⎝n/

(
j!{n −

∑
i∈(J− j)

xi }!
)⎞⎠ p

x j
j (1− p j )

n−x j ,

Example 8.11

Consider the use of contraceptive among married women in El Salvador in 1985, and the data for
the same for a sample of 3165 respondents is shown in Table 8.1.

TABLE 8.1

Data Related to Use of Contraceptive among Married
Women in El Salvador, 1985

Contraceptive Method

Age (Years) Sterilization Other Method None All

15–19 3 61 232 296

20–24 80 137 400 617

25–29 216 131 301 648

30–34 268 76 203 547

35–39 197 50 188 435

40–44 150 24 164 338

45–49 91 19 183 284

All 1005 489 1671 3165
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FIGURE 8.7
PMF for the trinomial distribution utilizing the data for the contraceptive use by married women in El Salvadore, 1985,
Example 8.11.

Consider X1, X2, and X3 as the random variable signifying the case of sterilization, other
method, and none. Then, the joint multinomial distribution may be written as

fX1,X2,X3(x1, x2, x3) = Pr(X1 = x1, X2 = x2, X3 = x3)

=
(

n
x1, x2, x3

)
×
(

1005

3165

)x1

×
(

489

3165

)x2

×
(

1671

3165

)x3

,

where (x1 + x2 + x3) = n. If we assume n = 30, then the PMF of the trinomial distribution
and the general pseudo-code used for generating the same are given in Figures 8.7 and 8.8,
respectively.

In case one is interested to generate the multivariate multinomial random variable, then the
MATLAB R© code is mnrnd(n,pp,m), where n is the dimension of the multinomial distribution,
pp = (p1, . . . , pp), and m is the number of observations, that is, the sample size we wish to gen-
erate. Hence, if p = (0.1, 0.2, 0.3, 0.4), n = 100 then E(X) = (μ1,μ2,μ3,μ4) = (10, 20, 30, 40),

FIGURE 8.8
Pseudo-code used for Example 8.11.
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Var(X) = (9, 16, 21, 24). Other values such as Covar
(
Xi1 , Xi2

)
, corr

(
Xi1 , Xi2

)
, PGF, MGF,

and CF can be calculated accordingly.

8.9 Multivariate Normal Distribution

We say X p ∼ Np(μ, �) is a nonsingular MND when its density function is given by

fX1,...,X p (x1, . . . , x p) = 1

(2π)p/2 |�|−1/2e{−(1/2)(X−μ)′�−1(X−μ)},

where −∞ < Xi < +∞, E(X) = μ, Covar(X) = � along with the fact that

� =

⎡⎢⎣σ11 · · · σ1p
...

. . .
...

σp1 · · · σpp

⎤⎥⎦ > 0.

The study of MND is useful as many other multivariate statistics are approximately normal
regardless of the parent distribution because of the CLT effect.

For the MND, it can be easily proved that

1. E(X j ) = μ j , j = 1, . . . , p.

2. Var(X j ) = σ2, j = 1, . . . , p.

3. Covar
(
X j1 , X j2

) = σ j1, j2 , j1, j2 = 1, . . . , p.

4. corr
(
X j1 , X j2

) = ρ j1, j2 , j1, j2 = 1, . . . , p.

5. MGF = e(μ′t+(1/2)t′�t), t ∈ R.

6. CF = e(imμ′t+(1/2)t′�t), where i2
m = −1.

Furthermore, we state a few results without proofs. Given X p ∼ Np(μ, �), we have the follow-
ing:

1. Contours of consistent density for the p-dimensional normal distribution are ellipsoids
defined by X , such that (X − μ)′, �−1(X − μ) = c2, where c is a constant. These ellip-
soids are centered at μ and have axes ±c

√
λ j e j , where �e j = λ j e j , j = 1, . . . , p. Here,

(λ, e) is the eigen value–eigen vector for � corresponding to the pair (1/λ, e) for �−1.
Remember �−1 is positive definite.

2. If � is positive definite, so that �−1 exists, then �e = λe implies �−1e = (1/λ)e.

3. All subsets of the components of X have MNDs.

4. Zero covariance implies that the corresponding components are independently distributed.

5. The conditional distributions of the components are multivariate normal.

6. The q linear combinations of the components of X are also normally distributed. Thus, if X
is distributed as Np(μ, �), then q linear combinations Aq×pX p×1 ∼ Nq(Aμ, A′�A). Also,
X p×1 + d p×1, where d p×1 is a vector of constants, is distributed as Np(μ+ d�).

7. (X p − μ) ∼ Np(0, �).
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Statistical Methods 449

8. X ∼ Np(μ,σ2I), provided X j ∼ N (μ j , σ2), j = 1, . . . , p, are mutually independent
univariate normal distributions.

9. The solid ellipsoid of x values satisfying (x− μ)′�−1(x− μ) ≤ χ2
p(α) has probability

(1− α), that is, Pr
{
(x− μ)′�−1(x− μ) ≤ χ2

p(α)
}
= (1− α).

10. If X is distributed as Np(μ, �), then any linear combination of variables a′X =∑p
j=1a j X j

is distributed as Np(a′μ, a′�a). Conversely, if a′X is distributed as Np(a′μ, a′�a) for every
a, then X must be Np(μ, �).

11. Suppose X ∼ Np(μ, �), and

X p =
⎡⎣ Xk×1

. . .

X (p−k)×1

⎤⎦ , μp =
⎡⎣ μk×1

. . .

μ(p−k)×1

⎤⎦ , � p×p =

⎡⎢⎢⎣�11
... �12

· · · · · · · · ·
�21

... �22

⎤⎥⎥⎦ ,

then Xk ∼ Nk(μk , �11) and X p−k ∼ Np−k(μp−k , �22). The converse of this is also true.

An interesting and important concept in MND is something to do with circles and ellipses.
Consider p = 2, then

fX1,X2(x1, x2) = 1

2π
√
σ11σ22

(
1− ρ2

12

) × exp

[
− 1

2
(
1− ρ2

12

) {( x1 − μ1√
σ11

)2

+
(

x2 − μ2√
σ22

)2

−2ρ12

(
x1 − μ1√
σ11

)(
x2 − μ2√
σ22

)}]
.

If we consider three different values of ρ12, that is, negative, zero, and positive, and consider, σ11 =
σ22, then we obtain the contours as shown in Figure 8.9.

Example 8.12

Let us consider the data presented by Galton (1886), which shows a cross-tabulation of 963 adult
children (486 sons and 476 daughters) born to 205 families, by their height and their midparent’s

(a) (b) (c)
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X 2
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FIGURE 8.9
Contour plots for bivariate normal distribution considering ρ12 as (a) negative, (b) zero, and (c) positive.
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78
Child(a) (b) (c)

72

66

60

54
63 66 69 72 75 63 66 69 72 75 63 66 69 72 75

Midparent

FIGURE 8.10
Ellipsoidal plots for Example 8.12 (refer Hanley, 2004).

height. The author visually smoothed the bivariate frequency distribution and showed that the
contours formed concentric and similar ellipses, thus setting the stage for correlation, regression,
and the bivariate normal distribution. The data is recorded in class intervals of width 1.0′′. Fur-
thermore, he used noninteger values for the center of each class interval because of the strong
bias toward integral inches. All of the heights of female children were multiplied by 1.08 before
tabulation to compensate for sex differences. One can also refer to Hanley (2004), along with the
source materials at http://www.medicine.mcgill.ca/epidemiology/hanley/galton/ to have a better
understanding about this study and the corresponding data analysis. The related ellipsoidal plots
for this problem are shown in Figure 8.10.

The use of the basic concept of ellipsoids may be found in the area of reliability-based design
optimization (RBDO), where this concept is used to depict the most reliable area (search space)
within which the optimization solution is feasible, depending on the level of confidence. Though
not exhaustive, a few good references in the area of RBDO are: Ben-Tal et al. (2009), Ben-Tal
and Nemirovski (1998, 1999, 2002), and Bertsimas and Sim (2003, 2004, 2006).

8.10 Multivariate Student t-Distribution

The joint probability distribution function for the multivariate Student t-distribution (standard
form) is

fY1,...,Yp (y1, . . . , yp) = �{(v + p)/2}
(πv)p/2�(v/2)|R|1/2

{
1+ y′R−1y

v

}−(v+p)/2

,

where Y = (Y1, . . . , Yp), v is the degree of freedom for univariate t-distribution, and Y j =
X j/(S j/

√
v). Remember X1, . . . , X p have a joint standard multinormal distribution with
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Statistical Methods 451

E(X) = 0, Covar(X) = R (the correlation matrix), and S j = (1/(n − 1))
∑n

i=1(Xi j − X̄ j )
2. Given

this, the following results for this distribution can be easily derived:

1. E(Y) = 0.

2. Median(Y) = 0.

3. Mode(Y) = 0.

4. Covar(Y) = (v/(v − 2))R.

In its nonstandard form, it can be expressed as

fX1,...,X p

(
x1, . . . , x p

) = �{(v + p)/2}
(πv)p/2�(v/2)|�|1/2

{
1+ (x− μ)′�−1(x− μ)

v

}−(v+p)/2

,

where E(X) = μ(v > 1)Covar(X) = (v/(v − 2))�(v > 2), mode is μ, and finally median is also
μ. When the p random variables are independent then Y 2

1 + · · · + Y 2
k has a joint multivariate F-

distribution with parameters (k − 1) and (v + k), and for the case when v = 1 one obtains the
multivariate Cauchy distribution. One should remember that as v tends to infinity the joint dis-
tribution of Y1, . . . , Yp tends to the multinormal distribution with E(Y) = 0 and Covar(Y) = R.
Furthermore, the conditional probability distribution for the independent case is given by

fYk+1,...,Yp |Y1,...,Yk (Yk+1, . . . , Yp|Y1, . . . , Yk) =
�

(
v + p

2

)⎧⎨⎩
(

1+ v−1∑k
j=1 y2

j

)
(v + k)

v

⎫⎬⎭
(p−k)/2

{π(v + k)}(p−k)/2�

(
v + k

2

)

×
⎡⎣1+ 1

v
(

1+ v−1
∑k

j=1 y2
j

) p∑
j=k+1

y2
j

⎤⎦−(v+p)/2

.

Provided all the marginals have the same degrees of freedom, v, the marginal probability distribution
is of the form

�((v + p)/2)|�−1|1/2

√
v pπp�(v/2)

⎧⎨⎩1+ 1

v

p∑
j1=1

p∑
j2=1

−1∑
j1, j2

y j1, j2

⎫⎬⎭ ,

where

�−1 =

⎡⎢⎢⎣
�−1

1,1 · · · �−1
1,p

...
. . .

...
�−1

p,1 · · · �−1
p,p

⎤⎥⎥⎦ .

In case one is interested to obtain the noncentral multivariate t-distribution of

Y j =
(

U j + δ j

S j/
√

v

)
,
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452 Decision Sciences

where δ j is the noncentrality parameters for t j distribution (univariate t-distribution with parameter
v), U ∼ MVN(0, R) and U = (U1, . . . , Up), then it is given by

fY1,...,Yp (y1, . . . , yp) = e−(1/2)δ′R−1δ

(πv)p/2�(v/2)|R|1/2 (1+ v−1y′R−1y)−(v+p)/2

×
∞∑
j=0

�((v + p + j)/2)

j!

{
2(δ′R−1y)2

v(1+ v−1y′Ry)

}(1/2) j

Here, R is the correlation matrix for the standardized multinormal variables U = (U1, . . . , Up).
The use of multivariate Student t-distribution can be found in areas ranging from constructing
simultaneous confidence intervals for the expected values of a number of normal populations to
the study of stepwise linear multiple regression analysis. The multivariate Behrens–Fisher distribu-
tion may also be created using multivariate Student t-distribution. The use of multivariate Student
t-distribution is nowadays utilized in finance whereby one uses the Student t-copula to find the
dependence structure of p number of financial scripts (Cherubini et al. 2004). Other areas where
multivariate Student t-distribution is used are multiple decision problems, discriminant and clus-
ter analysis, speech recognition, etc. One may refer to the following texts, viz., Johnson and Kotz
(1972) and Kotz and Nadarajah (2004) to get a good idea about multivariate Student t-distribution.

Example 8.13*

A copula, C(u1, . . . , u p), is a multivariate probability distribution for which the marginal prob-
ability distribution of each variable, u j , j = 1, . . . , p is uniform, that is, [0,1]. They are used to
describe the dependence between random variables, X1, . . . , X p . As per the fundamental theorem
of Sklar, every distribution FX1,...,X p (x1, . . . , x p) with marginals FX1(x1), . . . , FX p (x p) may

be written using the copula function as FX1,...,X p

(
x1, . . . , x p

) = C
{

FX1(x1), . . . , FX p (x p)
}

.

Alternatively, C(u1, . . . , u p) = FU1,...,Up

{
F−1

u1 (u1), . . . , F−1
u p (u p)

}
.

To illustrate the application of multivariate t-distribution, let us consider the following two
scripts, namely, TATA STEEL and SBI from NSE, India (http://www.nse-india.com/) for the
time period January 1, 2015 to May 29, 2015. If we draw the two-dimensional (2-D) copula
(Figure 8.11) considering bivariate t-distributions between the returns, r , of the pair of stocks,
then one obtains the PDF graphs. The Pearson correlation coefficient between the two scripts is
found out to be (

1.0000 0.3513
0.3513 1.0000

)
.

One should use the closing price, Pit , of each day, say t , to find

r = loge

(
Pi ,t+1

Pi ,t

)
,

and we use this for our calculations.

* The results of Examples 8.13 and 8.15 are part of different unpublished master’s theses of students in Industrial and
Management Engineering, Indian Institute of Technology, Kanpur, India, who have worked under the guidance of the first
author, Raghu Nandan Sengupta.
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FIGURE 8.11
PDF of C(TATA STEEL,SBI) utilizing the concept of bivariate t-distribution, Example 8.13.

8.11 Wishart Distribution

In statistics, the Wishart distribution is a generalization of the chi-squared distribution in multiple
dimensions. It was first formulated by John Wishart (1898–1956) (Wishart, 1928). Suppose Xk ∼
Np(μk�), k = 1, . . . ,υ be independently distributed, then W =∑υk=1 Xk X ′k ∼ Wp(υ, �), where
the parameters � > 0 is of size (p × p) and is positive definite, while υ > (p − 1) is the degree of
freedom. The Wishart distribution arises as the distribution of the sample covariance matrix for a
sample from an MND. If Xn×p is an (n × p) matrix of random variables, then the PDF is given by

fX1,...,X p (x1, . . . , x p) = 1

2υp/2|�|υ/2�p(υ/2)
|X |(υ−p−1)/2e−(1/2)tr(�−1X).

We now state a few relevant properties of the Wishart distribution:

1. E(W ) = υ� +M ′M , where M ′ = (μ1, . . . ,μυ).

2. Rank of W = min(υ, p).

3. If W k ∼ Wp(k, �), k = 1, . . . ,υ, then
∑υ

k=1W k ∼ Wp
(∑υ

k=1k, �, M
)
, where M ′ =[

M1
... · · · ... Mυ

]
.

4. If W ∼ Wp(υ, �) and C is any (p × q) matrix of constants, then C′WC ∼
Wq(υ, C′�C, MC), where M ′ = (μ1, . . . ,μυ).

5. E(W ) = υ�.

6. Mode(W ) = (υ− p − 1).

7. Var(W i , j ) = υ
(
σ2

i , j + σi ,iσ j , j

)
, where σi , j is the i th row and j th column element of �.

Let us now consider the inverse Wishart distribution, denoted by IWp(.). It is the multivariate exten-
sion of the inverse gamma distribution. If one considers that the Wishart distribution generates
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FIGURE 8.12
PDF for (a) χ2

υ and (b) inverse-χ2
υ considering υ = 1, 3, 6, Example 8.14.

the sum of squares matrices, then the inverse Wishart distribution can be imagined as that which
generates random covariance matrices. Hence, if W ∼ Wp(υ, �), then W−1 ∼ IWp(υ, �−1). The
use of inverse Wishart distribution can be found in Bayesian statistics where it is used as a prior
on the variance/covariance matrix, �, of an MND. If we consider the inverse gamma distribution
as the conjugate prior of the variance parameter, σ2, for the univariate normal distribution, then
the inverse Wishart distribution can be said to extend this conjugacy to the MND case. Another
important point worth mentioning is the fact that using Helmert transformation, the Wishart distri-
bution can be expressed as two distributions, one for the sample means and another for the sample
variances–covariances. These transformations are orthogonal in nature, which makes it intuitive to
understand that the sample means and the sample variances–covariances are independent of each
other. Thus, as in univariate theory, the sample mean vector and the sample variance–covariance are
also independently distributed for the multidimensional case.

A few good references for Wishart distribution are: Anderson (2003), Chatfield and Collins
(1980), Cuadras and Rao (1993), Dempster (1969), and Eaton (1983).

Example 8.14

Let us illustrate the Wishart and inverse Wishart distributions in the simple case where we con-
sider their univariate counterpart, which are χ2

υ and inverse-χ2
υ (Figure 8.12). In Figure 8.12, the

degrees of freedom considered are 1, 3, and 6. Remember that for the multivariate case, one can
make deductions about the Wishart and inverse Wishart distributions in a similar manner as we
can do for χ2

υ and inverse-χ2
υ cases in the univariate setup.

8.12 Multivariate Extreme Value Distribution

Multivariate extreme gives us the picture of the asymptotic behavior of componentwise maxima of
i .i .d. observations. The main problem one faces is how to define MEVD. This problem arises due to
the fact that there does not exist any strict ordering principle for multivariate observations. Though
we use concepts of ordering such as marginal ordering (M-ordering), reduced (aggregate) ordering
(R-ordering), partial ordering (P-ordering), conditional (sequential) ordering (C-ordering), etc. to
accomplish this task, yet the ordering problem does occur in many cases.

Let Y i = (Yi1, . . . , Yip) be i .i .d. such that Mmax, j = max{Y1, j , . . . , Yn, j }, where i = 1, . . . , n and
j = 1, . . . , p. As per definition, n is the number of observations, while p is the dimension. Given
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Statistical Methods 455

this, we are interested to find the normalizing scaling constants an, j and bn, j such that Pr{((Mmax −
bn)/an) ≤ x} → G(x) as n→∞. Here, three important points about G(x) should be mentioned:

1. If G(x) is MEVD, then each of its marginal must be one of the univariate extreme value
distributions (EVDs) and hence can be represented in general extreme value (GEV) form.

2. The form of the limiting distribution is invariant under monotonic transformation for each
of the component.

3. Each marginal distribution can be transformed into specified forms, and one of these trans-
formed specified forms is the Fréchet form given by Pr{X j ≤ x} = e−x−α , x > 0, j =
1, . . . , p and α > 0. When α = 1, we have the unit Fréchet.

In general, we are interested to find the scalar transformations of each, X j , j = 1, . . . , p.
Using the same concept as used in the univariate case, we intend to find Mmax,1, . . . , Mmax,p =
{max1≤i≤n , Xi ,1, . . . , max1≤i≤n Xi ,p} as n→∞. Utilizing simple scalar transformation, one needs
to find

Pr

{
(M n,1 − bn,1)

an,1
≤ x1, . . . ,

(M n,p − bn,p)

an,p
≤ x p

}
= Fn{(an,1x1 + b1), . . . , (an,px p + bp)} → G(x1, . . . , x p),

when n→∞. In case if

Pr

{
(M n,1 − bn,1)

an,1
≤ x1, . . . ,

(M n,p − bn,p)

an,p
≤ x p

}
= Fn{(an,1x1 + b1), . . . , (an,px p + bp)} → G(x1, . . . , x p)

holds, for some suitable choices of an, j and bn, j , j = 1, . . . , p, then we say that G(x1, . . . , x p) is
a MEVD and F is in the domain of attraction of G. A question that automatically arises is what
are the normalizing scaling constants, an, j and bn, j , j = 1, . . . , p, in their general form. For the
convenience of the readers, we state below the scaling constants, an, j and bn, j for the case when
n→∞ and j = 1, . . . , p.

1. For Type I distribution: an, j = F−1
X j

(1− 1/n) and bn, j = F−1
X j

(1− 1/ne)− F−1
X j

(1− 1/n).

2. For Type II distribution: an, j = 0 and bn, j = F−1
X j

(1− 1/n).

3. For Type III distribution: an, j = F−1
X j

(1) and bn, j = F−1
X j

(1)− F−1
X j

(1− 1/n).

The two extreme forms of the limiting multivariate distribution correspond to (i) the case of
the asymptotic total independence between componentwise maxima for which G(x1, . . . , x p) =
G1(x1) · · ·Gp(x p) and (ii) the case of asymptotic total dependence between componentwise
maxima for which G(x1, . . . , x p) = min{G1(x1), . . . , G p(x p)}.

Remember that G(x1, . . . , x p) = G1(x1) · · · Gp(x p) holds true if and only if

1. G(0, . . . , 0) = G1(0) · · ·G p(0) = e−p, provided G ′j s are Gumble type with G j (x j ) =
exp{−exp(−x j )} for j = 1, . . . , p.

2. G(1, . . . , 1) = G1(1) · · ·G p(1) = e−p, provided G ′j s are Fréchet type with G j (x j ) =
exp

{
−x
−α j
j

}
and α j > 0 for j = 1, . . . , p.
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456 Decision Sciences

3. G(−1, . . . ,−1) = G1(−1) · · ·G p(−1) = e−p, provided G ′j s are Weibull type with
G j (x j ) = exp{−(−x j )

α j } and α j > 0 for j = 1, . . . , p.

Before we end the discussion regarding MEVD, we give a few examples of MEVD considering
p = 2.

1. Logistic MEVD:

exp

[
−
(

1−ψ1

x1

)
−
(

1−ψ2

x2

)
−
{(
ψ1

x1

)q

+
(
ψ2

x2

)q}1/q
]

,

where 0 ≤ ψ1,ψ2 ≤ 1, and q > 1 have three usual meanings. In caseψ1 = 1 andψ2 = α,
then we obtain the biextremal distribution of the form

exp

[
−
(

1− α
x2

)
−
{(

1

x1

)q

+
(
α

x2

)q}1/q
]

,

while for ψ1 = ψ2 = α, one obtains the Gumble distribution.

2. Negative logistic MEVD:

exp

[
−
(

1

x1

)
−
(

1

x2

)
− α

{(
1

x1

)q

+
(

1

x2

)q}1/q
]

,

where 0 ≤ ψ1, ψ2 ≤ 1, q < 0, and α have three usual meanings.

3. Bilogistic MEVD:

exp

[
−

1
∫
0

max

{
(q1 − 1)s−1/q1

q1x1
,
(q2 − 1)s−1/q2

q2x2

}
ds

]
,

where q1, q2 > 1.

Note: A general multivariate case can be thought as

exp

[
−

1
∫
0

max

{
(q1 − 1)s−1/q1

q1x1
, . . . ,

(qp − 1)s−1/qp

qpx p

}
ds

]
,

where q j > 1, j = 1, . . . , p.

4. Negative bilogistic MEVD:

exp

⎡⎣− 1∫

0

max

{
(q1 − 1)s−1/q1

q1x1
,
(q2 − 1)s−1/q2

q2x2

}
ds

⎤⎦ ,

where q1, q2 < 1.

5. Gaussian MEVD: If one considers the bivariate extremes for the normal distribution, then
one obtains

exp

[
−
(

1

x1

)
�

{
a − s

(
x1

x1 + x2

)}
−
(

1

x2

)
�

{
s

(
x1

x1 + x12

)}]
,
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Statistical Methods 457

where s(w) = (a2 + 2logew − 2loge(1− w))/2a and a = ((x1 − x2)/σ)2. Here, � and σ
imply the standard normal cumulative deviate and the standard deviation, respectively, for
the normal distribution, based on which the Gaussian MEVD is formulated.

A few good references for MEVD are: Coles (2001), de Haan and Resnick (1977), Kotz and
Nadarajah (2000), Marshall and Olkin (1967, 1983), Pickards (1981), Sibuya (1960), and Tiago de
Oliveira (1958, 1975).

Example 8.15

Figure 8.13 illustrates the EVD (for ease of illustration, we show the univariate EVD case only)
using the positive values of returns, r = loge(Pi ,t+1/Pi ,t ), of the indices of four countries,
namely, Nikkei (Japan), Nifty (India), FTSE (the United Kingdom), and KOSPI (Korea), for a
time period of 10 years from 2003 to 2012. The values of shape (μ), scale (σ), and location (ξ)
parameters for the EVD for the four indices are (i) 0.092, 0.0075, 0.0158; (ii) 0.1745, 0.0084,
0.0169; (iii) 0.1475, 0.0068, 0.0118; and (iv) 0.1571, 0.0074, 0.0163, respectively. Considering
returns as negative„ one can also calculate the values of μ, σ, and ξ and draw similar EVD graphs
for these four indices. We leave that to the readers to work on them so that they get a better
understanding of the concepts about which we have discussed. Finally, considering the overall
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FIGURE 8.13
PDF for (a) Nikkei, (b) Nifty, (c) FTSE, and (d) KOSPI considering positive returns, Example 8.15.
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458 Decision Sciences

returns (both positive and negative), we calculate the mean and standard deviation values for
the four indices, which are: (i) E(X N I K K E I ) = −0.022066, Var(X N I K K E I ) = 0.0153958; (ii)
E(X N I FT Y ) = −0.022211493, Var(X N I FT Y ) = 0.000330646; (iii) E(X FT SE ) = −0.01670
011, Var(X FT SE ) = 0.000155784; and (iv) E(X K O S P I ) = −0.021793, Var(X K O S P I ) =
0.0002269.

8.13 MLE Estimates of Parameters (Related to MND Only)

For

Xn×p =

⎛⎜⎝X1,1 · · · X1,p
...

. . .
...

Xn,1 · · · Xn,p

⎞⎟⎠
if one needs to estimate the parameters, then the total number of estimates required is (1/2)p(p +
1). Let us consider the case of MND, such that its log likelihood equation may be writ-
ten as loge L(μ, �) = −(np/2)loge2π− (n/2)loge|�| − (1/2)

∑n
i=1(X − μ)′�−1(X − μ). Solv-

ing ∂loge L(μ, �)/∂μ j and ∂loge L(μ, �)/∂σ j1, j2 , j1 < j2, where j = 1, . . . , p and j1, j2 =
1, . . . , p we obtain

μ̂ =

⎛⎜⎝μ̂1
...
μ̂p

⎞⎟⎠ = X̄ =

⎛⎜⎝ X̄1
...

X̄ p

⎞⎟⎠ and �̂ =

⎛⎜⎝σ̂1,1 · · · σ̂1,p
...

. . .
...

σ̂p,1 · · · σ̂p,p

⎞⎟⎠ = S =

⎛⎜⎝s1,1 · · · s1,p
...

. . .
...

sp,1 · · · sp,p

⎞⎟⎠,

where x̄ j = (1/n)
∑n

i=1 xi j and s j1, j2 = (1/(n − 1))
∑n

i=1

(
xi , j1 − x̄ j1

) (
xi , j2 − x̄ j2

)
, for i =

1, . . . , n, j = 1, . . . , p and j1, j2 = 1, . . . , p.
Let us now suppose the case of hypothesis testing. A few relevant results without proofs for the

same can be stated as follows:

1. The test statistics for Ho : a′μ = a′μo against HA : a′μ > or �= or < a′μo, given � is
known, is n(X̄ − μo)

′�−1(X̄ − μo). The distribution n(X̄ − μo)
′�−1(X̄ − μo) ∼ χ2

p and
the value of α, that is, the level of confidence, is assumed, based on the problem formulation
and practical requirements.

2. The test statistics for Ho : a′μ = a′μo against HA : a′μ > or �= or < a′μo, given � is
unknown, is n(X̄ − μo)

′S−1(X̄ − μo). The distribution n(X̄ − μo)
′S−1(X − μo) ∼ T 2

p and
the value of α, that is, the level of confidence, is assumed, based on the problem formulation
and practical requirements.

3. The characteristics form of T 2 statistic is T 2 = (X̄ − μo)
′(S/n)−1(X̄ − μo). A few impor-

tant points about the statistics are: (i) S/n is the sample covariance matrix of X̄ , (ii)
X̄ ∼ Np(μ, (1/n)�), (iii) (n − 1)S ∼ W (n − 1, �), and (iv) X̄ and S are independent.

4. One should always have n − 1 > p, otherwise, S is singular and hence T 2 cannot be
calculated.

Using the property of sufficiency and the concept of factorization, we obtain the following results,
which we state, again without any proofs:

1. If x1, . . . , xn are the observations from Np(μ, �), then x̄ and S are sufficient for μ and �.
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Statistical Methods 459

2. The sufficient set of statistics x̄ and S is complete for μ and �, where the sample is drawn
from Np(μ, �).

3. Let the mth component Y1, Y2, ·s be i .i .d., with means E(Y i ) = υ (do not confuse
with the degree of freedom) and covariance matrices E(Y i − υ)(Y i − υ)′ = T , then
(1/
√

n)
∑n

i=1(Yi − υ)→ N (0, T) as n→∞, for i = 1, . . . , n.

Without going into the detailed discussion and proofs, we would like to mention that for different
loss functions (even considering the ubiquitous squared error loss), one should be careful to under-
stand what are the best estimates for the mean and the standard deviation in the multivariate case, as
it may not always be the sample means or the sample variances we all know so well in the univariate
case. Some seminal work in this respect has been done by James and Stein (1961).

8.14 Copula Theory

When we talk about correlation coefficient, ρ(X , Y ), we generally refer to one of the following:
Pearson product–moment correlation coefficient, intraclass correlation, rank correlation, Spearman’s
rank correlation coefficient, Kendall tau rank correlation coefficient, and Goodman and Kruskal’s
gamma. For the above definitions, the idea of linear correlation coefficient between two vectors of
random variables X and Y is always assumed to be true. Furthermore, the following properties for
ρ(X , Y ) are also important:

1. −1 < ρ(X , Y ) < 1, for any range of X and Y .

2. If X and Y are independent, then ρ(X , Y ) = 0.

3. ρ(αX + β,γY + δ) = sgn(αγ)ρ(X , Y ), for any range of X and Y .

But in general, most random variables are not jointly elliptically distributed (normal is a class of
elliptical distributions) and using linear correlation as a measure of dependence in such situations
might prove very misleading. An example to illustrate how linear correlation is misused is as fol-
lows. Let X ∼ N (0,σ2) and let Y = X2. Then it is expected that both X and Y should be correlated,
though on calculation we find that Cov(X , Y ) = 0. Hence, from the discussion, it is obvious that lin-
ear correlation coefficient has some shortcomings and here is where copula comes into play. Before
we define a copula function, we state its few properties which we think will benefit the readers so
that he/she is in a much better position to appreciate the relevance of copula function later on. The
properties are:

1. The variances of X and Y need to be finite.

2. Independence of two random variables implies that they are uncorrelated. The reverse is
true only in case of MND.

3. Linear correlation is not invariant under nonlinear strictly increasing transformations, T :
R→ R, since in general, for two real-valued random variables ρ(T (X), T (Y )) �= ρ(X , Y ).
Also, the value of linear correlation may change due to the presence of outliers.

One should remember that the linear relationship between two random variables breaks down at the
tail. Hence, the concept of tail dependence is very important to understand why ρ(X , Y ) does not
work at the extremes. This is where the concept of copula comes into play.
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1 F(x) 1

f(x)

• f(x) ⇔ •

F(x) F(U)

0 1 0 1

X U

FIGURE 8.14
Copula concept using the mapping idea from X space to U space.

Example 8.13 has already given us the basic definition of copula, so rather than repeat the same,
we proceed further to give an overview of copula theory and its use in general. The readers should
understand that when we use a copula function, we are in a way trying to map from FX (x) to
FU(u), that is, we are mapping from the X space to the unit vector, U , space (which is a hypercube
of unit dimension on all sides). This may be illustrated for the case when p = 2 and is shown
in Figure 8.14.

Thus, in general, a copula C : [0, 1]p → [0, 1] has the following properties:

1. C(U1, . . . , Up) is a nondecreasing distribution function in u j , j = 1, . . . , p.

2. C(1, 1, . . . , u j , 1, . . . , 1) = u j for j = 1, . . . , p and u j ∈ [0, 1] since all marginal distribu-
tions of copula are uniformly distributed.

3. For all (a1, a2), (b1, b2) ∈ [0, 1]2 with a1 ≤ b1 and a2 ≤ b2, we have Pr(0 ≤ x1 ≤ a1,
0 ≤ x2 ≤ a2)− Pr(0 ≤ x1 ≤ a1, 0 ≤ x2 ≤ b2)− Pr(0 ≤ x1 ≤ b1, 0 ≤ x2 ≤ a2)+ Pr(0 ≤
x1 ≤ b1, 0 ≤ x2 ≤ b2) ≥ 0.

One important concept in copula theory is the Sklar’s theorem, which states that if
HX1,...,X p (x1, . . . , x p) be the joint distribution of (X1, . . . , X p), and FX1(x1), . . . , FX p (x p) be
the continuous marginal distributions of (X1, . . . , X p), then there exists a copula function
C
{

FX1(x1), . . . , FX p (x p)
}

such that HX1,...,X p

(
x1, . . . , x p

) = C
{

FX1 (x1) , . . . , FX p

(
x p
)}

. Thus,
the distribution function C(.) is in a way a mapping between the marginals and the joint distributions.
We must remember that if FX1(x1), . . . , FX p (x p) are all continuous, then C

{
FX1(x1), . . . , FX p (x p)

}
is unique, else it may not be so.

Without going into the detailed concepts, we state a few important properties of copula, which
are (i) invariance; (ii) comonotonicity and countermonotonicity; (iii) tail dependence; (iv) upper tail
dependence; and (v) lower tail dependence.

To end this discussion about copula theory, we give a few examples of multivariate copula, which
are the Gaussian and Student t-copula.

Gaussian copula: The copula of the p-variate normal distribution with linear correlation matrix R
is of the following form: CGa

R (U) = φp
R{φ−1(u1), . . . ,φ−1(u p)}, where, φp

R denotes the joint dis-
tribution function of p-variate standard normal distribution function with linear correlation matrix
R, while φ−1 denotes the inverse of the distribution function of the univariate standard normal dis-
tribution. Another way of writing the Gaussian copula is CG(U) = |�|−(1/2) exp(−(1/2)q′�−1q+
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Statistical Methods 461

(1/2)q′q). In the bivariate case, the expression takes the form of

CGa
R (U) =

φ−1(u)∫

−∞

φ−1(v)∫

−∞

1

2π
√

1− R2
12

exp

{
− s2 − 2R12st + t2

2
(
1− R2

12

) }
ds dt .

Here, R12 is a linear correlation coefficient of the corresponding bivariate normal distribution. Since
elliptical distribution is radially symmetric, Gaussian copula does not have either upper or lower tail
dependence.

Student t-copula: A p-dimensional t-copula is generally of the form

Ct (U) =
t−1
υ (u1)∫

−∞
· · ·

t−1
υ (u p)∫

−∞

�((υ+ p)/2)

�(υ/2)
√

(πυ)p|R|
(

1+ x′R−1x̄
υ

)−((υ+p)/2)

dx.

The bivariate t-copula is characterized by univariate Student t-distribution and is given as

Ct
υ,R(u1, u2) =

t−1
υ (u1)∫

−∞

t−1
υ (u2)∫

−∞

1

2π
√

1− R2
12

exp

{
1+ s2 − 2R12st + t2

υ
(
1− R2

12

) }−((υ+2)/2)

ds dt ,

where R12 is a linear correlation coefficient of the corresponding bivariate tυ distribution if υ > 2.
A t-copula has both upper and lower tail dependences. Before we wind up this section, we mention
the names of Cherubini et al. (2004) and Nelsen (2006), which are a few of the good references one
may refer to understand copula theory.

8.15 Principal Component Analysis

Principal component analysis (PCA) is a multivariate ordination technique used to display patterns
in multivariate data. It aims to graphically display the relative positions of data points in fewer
dimensions while retaining as much information as possible, and also explore relationships between
dependent variables. It is a hypothesis-generating technique that is intended to describe patterns in a
data table, rather than test formal statistical hypotheses. PCA assumes linear responses of variables
and has a range of applications other than data display, including multiple regression and variable
reduction.

As mentioned, the main purpose of PCA is to reduce the dimensionality of multivariate data
to make its structure clearer. It does this by looking for the linear combination of the variables,
which accounts for as much as possible of the total variation in the data. It then goes on to look
for a second combination, uncorrelated with the first, which accounts for as much of the remaining
variation as possible and so on. If the greater part of the variation is accounted for by a small number
of components, then they may be used in place of the original variables.
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462 Decision Sciences

The principal idea of PCA is to reduce the dimension of Xn×p = (X1, . . . , X p), in order to find the
best combination of (X1, . . . , X p), which is able to give us the maximum information as required.
This reduction in dimension may be achieved using linear combinations. Thus, in PCA, one looks for
linear combination aimed at creating the so-called largest spread among the variables, X1, . . . , X p.
This concept of largest spread invariably leads us to look into linear combinations, which have the
largest variances. As the reader may be aware that PCA is performed on the covariance matrix, it is
not scale invariant, as the units of measurement of X1 or X2 or, . . . , or X p may be different. Hence,
we generally try to use the normalized version of PCA.

The main objective of PCA as mentioned above is to reduce the dimension of the observations,
and the simplest way to do that would be to retain one of the variable, say X j , and discard the rest,
that is, X1, . . . , X j−1, X j+1, . . . , X p. Though the idea may seem plausible, but it is definitely not
a reasonable approach as the strength or the ability of explanation is definitely not possible using
any arbitrary X j . An alternative plan may be to consider the simple average, that is, (1/p)

∑p
j=1 X j

of all the elements of Xn×p = (X1, . . . , X p), but this again is not without its drawback as all the
elements of Xn×p are considered of equal importance. A more logical intuitive method would be
to consider the weighted average

∑p
j=1 δ j X j , given

∑p
j=1 δ

2
j = 1, where δ = (δ1, . . . , δp) is the

weighting vector, which needs to be optimized.
Thus, the standard linear combination (SLC), that is,

∑p
j=1 δ j X j , so that

∑p
j=1 δ

2
j = 1 should be

chosen to maximize the variance of the projection of
∑p

j=1 δ j X j .
Hence, we consider the following:

max

⎧⎨⎩V ar

⎛⎝ p∑
j=1

δ j X j

⎞⎠⎫⎬⎭
s.t. :

p∑
j=1

δ2
j = 1

−1 ≤ δ j ≤ 1, ∀ j = 1, . . . , p.

Here, one may easily deduce that the required direction of δ may be found using spectral decompo-
sition of the covariance matrix of Xn×p, that is, �. Using basic rules of matrix algebra, we know
that the first direction of δ is given by the eigen vector, γ1, corresponding to the largest eigen vector
value λ1 of the covariance matrix, �. Hence, the first SLC is the one with the highest variance,
obtained from the optimization model and is termed as the first principal component (PC), that is,
Y1 = γ′1X . Once Y1 is found, we proceed to find the second SLC with the second highest variance,
that is, the second PC, which is given by Y2 = γ′2X . Diagrammatically, it may be represented as
shown in Figure 8.15. In Figure 8.15, let us consider three variables, X1, X2, and X3. Thus, if one
uses PCA, then the method would choose the first PCA axis as that line (marked here as PC # 1)
that goes through the centroid, but at the same time it also minimizes the square of the distance of
each point to that line. PC # 1 thus goes through the maximum variation in the data. If now one finds
the second PCA axis (i.e., PC # 2), then this will also pass through the centroid, and would also go
through the maximum variation in the data, but with a certain constraint, that it must be completely
uncorrelated (i.e., at right angles, or orthogonal) to PC # 1. Hence, as shown, the angle between
PC # 1 and PC # 2 is 90◦. In a similar way, one can proceed and obtain PC # 3, such that the angle
between PC # 2 and PC # 3 is also 90◦.
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X2

X3

90° 90°

X1

PC # 2

PC # 1

PC # 3

FIGURE 8.15
A hypothetical example illustrating the concept of PCA using orthogonality.

Example 8.16

Consider the MND X ∼ N (μ, �), where μ = (2.0, 3.0, 2.5) and

� =
⎛⎝ 4.00 −2.00 4.00
−2.00 9.00 3.00
4.00 3.00 16.00

⎞⎠ .

Then the eigen values are λ1 = 1.6793, λ2 = 9.4789, and λ3 = 17.8418, while the corresponding
eigen vectors are γ1 = (0.8719, 0.3697,−0.3210)′, γ2 = (0.4311,−0.8905, 0.1452)′, and γ3 =
(0.2322, 0.2650, 0.9359)′, respectively. Thus, the PC transformation is given by

Y =
⎛⎝Y1

Y2
Y3

⎞⎠ =
⎛⎝0.8719 0.3697 −0.3210

0.4311 −0.8905 0.1452
0.2322 0.2650 0.9359

⎞⎠⎛⎝X1 − 2.0
X2 − 3.0
X3 − 2.5

⎞⎠ .

Hence, the PCA axes are:

Y1 = 0.8719X1 + 0.3697X2 − 0.3210X3 − 2.0× 0.8719− 3.0× 0.3697− 2.5× (−0.3210)

Y2 = 0.4311X1 − 0.8905X2 + 0.1452X3 − 2.0× 0.4311− 3.0× (−0.8905)− 2.5× 0.1452

Y3 = 0.2322X1 + 0.2650X2 + 0.9359X3 − 2.0× 0.2322− 3.0× 0.2650− 2.5× 0.9359

A way of double checking whether the PC transformations are correct is to calculate
∑3

j=1 δ
2
j for

each of the eigen values. It is very intuitive to note that each of these values, that is, {0.87192 +
0.36972 + (−0.3210)2}, {0.43112 + (−0.8905)2 + 0.14522}, and {0.23222 + 0.26502 + 0.93592}
are equal to 1 as the case should be. Another method to double check is to find the variances
of Y .

Thus, we have Var(Y1) = 0.87192 × Var(X1)+ 0.369762 Var(X2)+ (−0.3210)2 Var(X3)+
2 × 0.8719 × 0.36976 × Covar(X1, X2) + 2 × 0.36976 × (−0.3210) × Covar(X2, X3) + 2 ×
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464 Decision Sciences

0.8719× (−0.3210)× Covar(X1, X3) = 1.6792, which is the value of the first eigen vector as
calculated above. Similarly, Var(Y2) = 9.4789 and Var(Y3) = 17.8418.

Though not exhaustive, yet we state a few important results for PCA:

1. For a given X ∼ N (μ, �), let Y = �′(X − μ) be the PC transformation, then

a. E(Y j ) = 0, j = 1, . . . , p.

b. Var(Y j ) = λ j , j = 1, . . . , p.

c. Covar
(
Y j1 , Y j2

) = 0, j1 �= j2 = 1, . . . , p.

d.
∑p

j=1 V ar(Y j ) = tr(�).

e.
∏p

j=1 V ar(Y j ) = |�|.
2. There exists no SLC which has larger variance than λ1 = Var(Y1).

3. For the practical implementation of PCA, we replace μ by x̄ and � by S, and we evaluate
the eigen values and the eigen vectors of S.

4. The components of the eigen vectors are the weights of the original variables in the PC.

5. PCs are not scale invariant.

A few good references for PCA are Hastie et al. (2011), Jackson (2003), and Jolliffe (2002).

8.16 Factor Analysis

The origins of FA may be traced back to the work of Pearson (1901) and Spearman (1904). The
term “FA” as we know today was first introduced by Thurstone (1931). It is a multivariate statistical
method based on a model when the observed vector is partitioned into an unobserved systematic part
and an unobserved error part. The components of the error vector are considered as uncorrelated or
independent, while the systematic part is taken as a linear combination of a relatively smaller num-
ber of unobserved factor variables. Using FA, one can separate the effects of the factors (which are
of primary interest to us) from the errors. Stated explicitly using FA, we intend to partition vari-
ables into particular groups such that within a particular group they are highly correlated among
themselves. Moreover, these variables have relatively small correlations with variables in a different
group. Thus, each group of variables represents a single underlying construct/factor that is respon-
sible to provide information about the observed correlations. Before we go in to the mathematical
discussion of FA and how it is used, we state here a few good references for FA: Anderson (2003),
Basilevsky (1994), Child (2006), Gorsuch (1983), Harman (1976), Johnson and Wichern (2002),
Lawley and Maxwell (1971), Mulaik (2009), Thompson (2004), and Thurstone (1931, 1947).

8.16.1 Mathematical Formulation of Factor Analysis

Suppose X (p×1) be p number of variables, such that E(X) = μ(p×1) and Covar(X) = �(p×p), then
using FA, one can express X (p×1) as being dependent on

F(m×1) =

⎛⎜⎝F1
...

Fm

⎞⎟⎠
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common factors and p additional specific factors denoted by ε(p×1). Mathematically, it can be
expressed as X − μ = LF + ε, that is,⎡⎢⎢⎣

X1 − μ1
.
.

X p − μp

⎤⎥⎥⎦ =
⎡⎢⎢⎣

l1,1 F1 + · · · + l1,mFm + ε1
.
.

l p,1 F1 + · · · + l p,mFm + εp

⎤⎥⎥⎦ ,

where

L(p×m) =

⎛⎜⎝l1,1 · · · l1,m
...

. . .
...

l p,1 · · · l p,m

⎞⎟⎠
is the matrix of factor loading.

A careful look at this mathematical formulation, X − μ = LF + ε, would distinguish this from
MLR due to the fact that in MLR the independent variables can be observed while in FA it is not
so. One also needs to make a distinction between FA and PCA. In the PCA method, the PCs are just
the linear transformation arranged in the sense that the variance corresponding to the PCs decreases
as one goes from the first PC to the second and so on. In doing so, the dimension of the data set is
reduced, and this as we know is the main idea of PCA. On the other hand, in FA, one aims to model
the variations using a linear transformation of a fixed number of variables, called the factor or the
latent variables.

A few important properties/assumptions for FA, (m < p), are as follows:

1.

E(F) = 0(m×1) =

⎡⎢⎢⎢⎢⎣
0
...
...
0

⎤⎥⎥⎥⎥⎦
(m×1)

.

2.

Covar(F) = I(m×m) =

⎡⎢⎣1 · · · 0
...

. . .
...

0 · · · 1

⎤⎥⎦
(m×m)

.

3.

E(ε) = 0(p×1) =

⎡⎢⎢⎢⎢⎣
0
...
...
0

⎤⎥⎥⎥⎥⎦
(p×1)

.

4.

Covar(ε) = �(p×p) =

⎡⎢⎣1 · · · 0
...

. . .
...

0 · · · p

⎤⎥⎦
(p×p)

.
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466 Decision Sciences

5.

Covar(ε, F) = 0(p×m) =

⎡⎢⎣0 · · · 0
...

. . .
...

0 · · · 0

⎤⎥⎦
(p×m)

.

6.

� = L(p×m)L′(m×p) +�(p×p) =

⎡⎢⎢⎢⎣
σ11
σ21

...
σ1p

σ12
σ22

...
σ2p

· · ·
· · ·
. . .
· · ·

σp1
σp2

...
σpp

⎤⎥⎥⎥⎦
(p×p)

,

where σ j j =
(

l2
j ,1 + · · · + l2

j ,m

)
+ j , j = 1, . . . , p. Here,

(
l2

j ,1 + · · · + l2
j ,m

)
is called the

communality, while  j is the specific variance.

7. The eigen value and eigen vector for
∑

are (λ j , e j ), j = 1, . . . , p such that λ1 ≥ · · · ≥
λp ≥ 0.

8.

Covar(X , F) = L(p×m) =

⎛⎜⎝l1,1 · · · l1,m
...

. . .
...

l p,1 · · · l p,m

⎞⎟⎠
(p×m)

.

9. Factor loadings, that is, L(p×m), are determined only up to an orthogonal matrix T(m×m).
Thus, the loadings L∗(p×m) = L(p×m)T(m×m) and L both give the same representations.
Furthermore, the communalities given by the diagonal elements of L(p×m)L′(m×p) and
L∗(p×m)L

∗′
(m×p) are also unaffected by the choice of T(m×m).

The properties/assumptions stated above constitute the orthogonal factor model. When m � p, then
FA as a method is very useful. On the other hand, if the off-diagonal elements of S(R) are small
(zero), then the variables are not related and FA as a multivariate statistical technique is not useful.
If we allow the F(m×1) common factors to be correlated such that Covar(F) �= I(m×m), then we
obtain the oblique factor model.

8.16.2 Estimation in Factor Analysis

In statistical literature, we have two methods for estimating the parameters in FA: (i) principal
component method and (ii) maximum likelihood method.
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Statistical Methods 467

8.16.3 Principal Component Method

1. For the population, we know

� =

⎡⎢⎢⎢⎣
σ11 0 0 0
0 σ22 0 0
...

...
. . .

...
0 0 0 σpp

⎤⎥⎥⎥⎦
(p×p)

= L(p×m)L′(m×p) +�(p×p)

=
[√
λ1e1

√
λ2e2 · · ·

√
λmem

]
(p×m)

⎡⎢⎢⎢⎣
√
λ1e′1√
λ2e′2
...√
λme′m

⎤⎥⎥⎥⎦
(m×p)

+

⎡⎢⎢⎢⎣
1 0 0 0
0 2 0 0
...

...
. . .

...
0 0 0 p

⎤⎥⎥⎥⎦
(p×p)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
λ1 0 · · · 0
0

√
λ2 · · · 0

...
... · · · ...

0 0 · · · √λm
...

... · · · · · ·
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(p×m)

×

⎡⎢⎢⎢⎣
√
λ1 0 · · · 0 · · · 0
0

√
λ2 · · · 0 · · · 0

...
... · · · ...

...
...

0 0 0
√
λm 0 0

⎤⎥⎥⎥⎦
(m×p)

+

⎡⎢⎢⎢⎣
1 0 0 0
0 2 0 0
...

...
. . .

...
0 0 0 p

⎤⎥⎥⎥⎦
(p×p)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(λ1 +1) 0 0 0 0 · · · 0
0 (λ2 +2) 0 0 0 · · · 0
...

...
. . .

...
...

... 0
0 0 0 (λm +m) 0 · · · 0
...

...
...

...
...

...
...

0 0 0 0 0 0 p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(p×p)

,

such that σ j j =
∑m

i=1 l2
j i + j , j = 1, . . . , p. We assume the contribution of (λm+1em+1e′m+1 +

· · · + λp epe′p) is negligible.

2. We can also use

xi − x̄ =

⎡⎢⎣ xi ,1 − x̄1
...

xi ,p − x̄ p

⎤⎥⎦ , or zi =

⎡⎢⎢⎢⎢⎢⎣
(xi ,1 − x̄1)√

s11
...

(xi ,p − x̄ p)√
spp

⎤⎥⎥⎥⎥⎥⎦ ,

for i = 1, . . . , n, the latter being used for the case to avoid problems of having one variable
with large variance unduly affecting the factor loading.
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468 Decision Sciences

3. In case we have a sample, then the eigen vector and eigen pair for S will be (λ̂ j , ê j ), . . . , p

such that λ̂1 ≥ · · · ≥ λ̂p ≥ 0. In case m < p, then

S =

⎡⎢⎢⎢⎣
s11 0 0 0
0 s22 0 0
...

...
. . .

...
0 0 0 spp

⎤⎥⎥⎥⎦
(p×p)

= L̂(p×m)L̂
′
(m×p) + �̂(p×p)

such that s j j =
∑m

i=1 l̂2
j i + ̂ j , j = 1, . . . , p.

4. If the number of common factors is not known beforehand or is not determined
a priori, one can use the knowledge of previous researchers. A thumb rule is

to find the value of the residual matrix, that is, S −
(

L̂(p×m)L̂
′
(m×p) + �̂(p×p)

)
≤

λ̂2
m+1 + · · · + λ̂2

p. A small value of the sum of squares of the neglected eigen values means
a small value for the sum of square errors of approximation.

5. The contribution to the total sample variance, that is, s11 + · · · + spp from the i th common

factor is given by l̂2
i ,1 + · · · + l̂2

i ,p =
(√
λ̂i êi

)′ (√
λ̂i êi

)
= λ̂i . Thus, the proportion of the

total sample variance due to the j th factor is given by λ̂ j/(s11 + · · · + spp) or (
∑i

j=1 λ̂ j )/p
depending on whether it is to do with S or R.

A modified approach called the principal factor method works in a similar method as
stated above.

8.16.4 Maximum Likelihood Method

For the maximum likelihood methodology to work, a few important assumptions should hold:

1. F and ε are normally distributed

2. If the first holds true, then X j − μ = LF j + ε j is also normally distributed

3. The likelihood function is of the form

L(μ, �) = (2π)−((n−1)p)/2|�|−(n−1)/2e−(1/2)tr
[
�−1{∑n

i=1(xi−x̄)(xi−x̄)′}].
8.16.5 General Working Principle for FA

The general plan based on which one can use FA is as follows:

1. Generate a variance–covariance matrix of the observed variables, that is, S, which is an
estimate of �.

2. Select the number of factors, that is, m, by first finding λ̂ and ê, which are the respective
estimates from the sample of size n. In general, find λ̂ j/(s11 + · · · + spp) or (

∑i
j=1 λ̂ j )/p

for those λ̂ j s which are greater than 1.

3. Extract your initial set of factors, that is, find F1, . . . , Fm , ĥ2
i , ̂2

i .

4. Perform factor rotation to a terminal solution.

5. Interpret the factor structure, that is, S − (L̂(p×m)L̂(m×p) + �̂(p×p)).
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Statistical Methods 469

FIGURE 8.16
Pseudo-code to implement FA method.

6. Construct factor scores to use it in further analyses, that is,

⎡⎢⎢⎣
l1,1 F1 + · · · + l1,m Fm + ε1

.

.
l p,1 F1 + · · · + l p,m Fm + εp

⎤⎥⎥⎦ .

For the convenience of the reader, the general pseudo-code based on which one can work on a data
set from the point of view of analyzing its use using FA is given in Figure 8.16.

Example 8.17

As an example, let us consider the data set taken from Holzinger and Swineford (1939). The
brief background of the study is as follows. Twenty-six tests, intended to measure a general
factor and five specific factors, were administered to seventh and eighth grade students in two
schools, namely, Grant-White School (n = 145) and Pasteur School (n = 156). Students from
the Grant-White School came from homes where the parents were American-born, while those
from the Pasteur School were from homes where the parents were foreign-born. Data for the
analysis include 19 tests intended to measure four domains, namely, (i) spatial ability (visual
perception test, cubes, paper form board, lozenges), (ii) verbal ability (general information, para-
graph comprehension, sentence completion, word classification, word meaning), (iii) speed (add,
code, counting groups of dots, straight and curved capitals), and (iv) memory (word recognition,
number recognition, figure recognition, object-number, number-figure, figure-word). For the FA
study, consider 24, that is, p = 24, psychological tests are administered to the first group of stu-
dents, that is, n = 145. Let us start with m = 5, such that we obtain Table 8.2, which has all the
relevant information such as estimated factor loading, communalities, specific variances, etc. The
method used is the principal component method.

Now, S − (L̂(p×m)L̂(m×p) + �̂(p×p)) will give the variability in the sample variance one is not
able to explain using m = 5. In case m = 15, then the cumulative proportion goes up to 0.8879 from
a value of 0.6021. One can also use the maximum likelihood method to get the solution, and we
request the readers to solve this problem on their own to get a good understanding of the maximum
likelihood method used in FA.
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470 Decision Sciences

TABLE 8.2

FA Solution Using Data from Holzinger and Swineford (1939), Considering m = 5, Example 8.17

Estimated Factor Loading l̂ i , j =
√

λ̂i , j ei , j for

Variables F1 F2 F3 F4 F5 ĥ2
i �̂2

i = 1− ĥ2
i

Visual perception 0.616 0.005 0.428 −0.205 0.009 0.6048 0.3952

Cubes 0.400 0.079 0.400 −0.202 −0.348 0.4881 0.5119

Paper form board 0.445 0.191 0.476 −0.106 0.375 0.6129 0.3871

Flags 0.511 0.178 0.335 −0.216 0.010 0.4518 0.5482

General information 0.695 0.321 −0.335 −0.053 −0.079 0.7073 0.2927

Paragraph comprehension 0.690 0.418 −0.265 0.081 0.008 0.7277 0.2723

Sentence completion 0.677 0.425 −0.355 −0.073 0.041 0.7720 0.228

Word classification 0.694 0.243 −0.144 −0.116 0.141 0.5948 0.4052

Word meaning 0.694 0.451 −0.291 0.080 0.005 0.7761 0.2239

Addition 0.474 −0.542 −0.446 −0.202 −0.079 0.7644 0.2356

Code 0.576 −0.434 −0.210 0.034 −0.003 0.5654 0.4346

Counting dots 0.482 −0.549 −0.127 −0.340 −0.099 0.6753 0.3247

Straight curved capitals 0.618 −0.279 0.035 −0.366 0.075 0.6006 0.3994

Word recognition 0.448 −0.093 −0.055 0.555 −0.156 0.5447 0.4553

Number recognition 0.416 −0.142 0.078 0.526 −0.306 0.5696 0.4304

Figure recognition 0.534 −0.091 0.392 0.327 −0.171 0.5833 0.4167

Object-number 0.488 −0.276 −0.052 0.469 0.255 0.6020 0.3980

Number-figure 0.544 −0.386 0.198 0.152 0.104 0.5181 0.4819

Figure-word 0.476 −0.138 0.122 0.193 0.605 0.6638 0.3362

Deduction 0.643 0.186 0.132 0.070 −0.285 0.5516 0.4484

Numerical puzzles 0.622 −0.232 0.100 −0.202 −0.174 0.5218 0.4782

Problem reasoning 0.640 0.146 0.110 0.056 0.023 0.4467 0.5533

Series completion 0.712 0.105 0.150 −0.103 −0.064 0.5552 0.4448

Arithmetic problems 0.673 −0.196 −0.233 −0.062 0.097 0.5589 0.4411

Eigen values 8.1354 2.096 1.6926 1.5018 1.0252

Cumulative proportion of

total sample variance

0.3390 0.4263 0.4968 0.5594 0.6021

Data set # 1 for FA: Consider the data from the stock market, which one can obtain from
http://in.finance.yahoo.com/. The data is related to the daily closing prices of Hang Seng
Index of Hong Kong stock market (http://www.hkex.com.hk/eng/ index.htm). The number
of stocks in Hang Seng is 48 and the time frame of our analysis is 2013–2015 or any
appropriate time frame as appropriate. Our aim is to study the effect of a few fundamental
financial ratios such as current ratio, cash ratio, return of assets, debt ratio, sales to revenue
per employee, dividend payout ratio, price-to-book-value ratio, and price-to-sales ratio on
the performance of the company and hence on the stock market index of that particular
company. If we consider the returns, r = loge(Pt/Pt−1), then one can use the concept of
FA to study the effects of these ratios of a particular company on the stock market index of
that company itself in more details.

Data set # 2 for FA: Let us consider the study performed by Linden (1977), which consists
of the performance of n = 160 athletes. The p = 10 variables are: 100-m run, long jump,
shot put, high jump, 400-m run, 110-m run, discus, pole vault, javelin, and 1500-m run.
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Statistical Methods 471

One can access the data and study the analysis, which can be found in Basilevsky (1994).
We urge the readers to work with this data set to gain a better appreciation of FA, which is
an interesting multivariate statistical method.

Data set # 3 for FA: The information and background for the third data set can be
found in Davis et al. (1997). The study deals with eating disorders and pertains
to n = 191 individuals with respect to p = 7 variables. The data can be found in
http://www.unt.edu/rss/class/mike/data/DavisThin.txt. The reader can study the analysis to
appreciate the use of FA in a variety of fields, be it sociology or finance.

8.17 Multiple Analysis of Variance and Multiple Analysis of Covariance

8.17.1 Introduction to Analysis of Variance

Consider as a doctor you are interested to analyze the effect of both food habits as well as exercise
regime/physical activity on a group of people who are your patients. The weights of these patients
are known before the start of this experiment. Your emphasis is to study the reduction of individual
weights, which is considered as the response variable. Each of the group of patients undergoes a par-
ticular food habit as well as an exercise regime/physical activity. Consider you have I (i = 1, . . . , I )
number of patients in each group, J ( j = 1, . . . , J ) as the number of different food habits such as
vegetarian, nonvegetarian, vegan, etc., and K (k = 1, . . . , K ) as the number of different exercise
regime/physical activities, such as weightlifting, yoga, aerobics, etc. In order to study the effects of
food habit, exercise regime/physical activity on the reduction of individual weights, we may use the
concept of analysis of variance (ANOVA). Formally, this method studies the total variation present
in a set of observations, which is measured by the sum of squares of deviations of the observations
from the mean, that is, SS. This deviation is partitioned into components associated with assignable
effect due to fixed and/or random effects/unassignable effect due to residual random effect. The
technique of ANOVA also provides the means for the systematic study of regression analysis and
correlation coefficients. A few assumptions/properties that are relevant to ANOVA are:

1. The responses are independently and normally distributed, that is, Xi , j ,k ∼ N (μ j ,k , σ2), i =
1, . . . , I , j = 1, . . . , J , k = 1, . . . , K , with constant variances (property of homoscedastic-
ity) so that the only difference between the distributions of observations is the means, which
is denoted by μi j .

2. If the number of observations in each group is equal, then the ANOVA model is termed as
the balanced model, else it is an unbalanced model.

3. If the assignable effects are all fixed, then we have the fixed-effects model; otherwise, it is
the random-effects model where the effects are random except for the additive constants.
Note that a mixed-effects model contains effects of both fixed- and random-effects types.

4. We say we have a two-way crossed ANOVA model if we can categorize the observations
in two ways, that is, categorizing in every possible food habit and exercise regime/physical
activity pair. In case we have only I and J , then it is the one-way ANOVA model.

5. An ANOVA model is additive if one can express μi j = γi + τ j , that is, the effect due to
particular food habit and exercise regime/physical activity is the sum of the effect due to
the food habit and an effect due to exercise regime/physical activity taken separately. In the
additive model, the general hypotheses one is interested to study are that μi j sare neither
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472 Decision Sciences

dependent on i nor j . In a nonadditive model, apart from the two hypotheses, we have a
third one, which is that the model is additive (i.e., μi j = γi + τ j ).

6. When μi j = μ j i , then we have the symmetric model; else it is the asymmetric model.

7. In case any exercise regime/physical activity occurs in only one type of exercise
regime/physical activity, then we have the twofold nested ANOVA model; else it is the
twofold nonnested model, an example of which is the one described above.

To continue with our discussion further, consider the general linear model Y = Xβ+ ε, such that
E(ε) = 0 and Covar(ε) = σ2I , which implies that E(Y) = Xβ and Covar(Y) = σ2I . In case this
is true, then a few relevant results for ANOVA are as stated below:

1. A linear estimator c+ a′Y is unbiased for λ′β iff E(c+ a′Y) = λ′β for all β.

2. When λ′β is estimable, then it is possible to find several estimators that are unbiased for
λ′β and the OLS estimator λ′β̂ is also the best linear unbiased estimator (BLUE).

3. When β̂ is any solution to the normal equations X ′Xβ = XY , then it is unbiased for λ′β.

4. Consider �′β is any d-dimensional estimable vector and c = A′Y is any vector of linear
unbiased estimators of �′β, then if β̂ denotes any solution to the normal equations, then
the matrix Covar(c+ A′Y)− Covar(λ′β̂) is nonnegative definite.

It is generally acknowledged that Fisher (1921) developed the technique of ANOVA. A few relevant
references in this area (along with scope of applications in social sciences and other areas) are:
Hoaglin et al. (1991), Iversen and Norpoth (1987), Krishnaiah (1984), Lewis (1971), Rutherford
(2001), Sahai and Ageel (2000), Scheffé (1999), Searle et al. (2009), Stuart et al. (1999), and Turner
and Thayer (2001).

8.17.2 Multiple Analysis of Variance

With this short background about ANOVA, we come to the area of multianalysis of variance
(MANOVA), which as a technique determines the effects of independent categorical variables on
multiple continuous-dependent variables. It is usually used to compare several groups with respect to
multiple continuous variables, as it tests for differences between centroids, that is, the vectors of the
mean values of the dependent variables. On the other hand, one should remember that ANOVA tests
for intergroup differences between the mean values of dependent variables. Before we discuss the
methodology, we would like to stress the advantages of MANOVA over its univariate counterpart,
which is ANOVA:

1. MANOVA can protect against Type I error that occurs if multiple ANOVAs are carried.

2. By measuring several dependent variables in a single experiment, there is a better chance
of finding out which variables are important.

3. MANOVA is sensitive not only to mean difference but also to the direction and size of
correlations among the dependent variables.

On the other hand, there are also some disadvantages of MANOVA when compared with ANOVA:

1. To do with loss of degrees of freedom, as we know that one degree of freedom is lost for
each dependent variable. Hence, the gain of power obtained from the decrease in the sum
of squares may be offset due to this loss in the degrees of freedom.
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Statistical Methods 473

2. High level of dependence of variables does not give us a good picture of the data, so it may
be prudent to use the ANOVA model instead.

Before we go into the methodology, we state the general assumptions for MANOVA, which though
intuitive is important to understand as it sets the tone about the efficacy of MANOVA as a statistical
method when used as a data analysis tool. The assumptions are:

1. The dependent variable should be normally distributed within groups.

2. There should be linear relationships among all pairs (i) of dependent variables, (ii) of
covariates, and (iii) of dependent variables–covariables in each cell.

3. The dependent variables should exhibit equal levels of variance across the range of
predictor variables. This property is termed as homogeneity.

4. Intercorrelations (covariance) should be homogeneous across the cells of the design.

MANOVA model: Let us consider the two-way MANOVA model of the form⎛⎜⎝Yi j1
...

Yi jp

⎞⎟⎠
p×1

=

⎛⎜⎝v1
...

vp

⎞⎟⎠
p×1

+

⎛⎜⎝αi1
...
αi p

⎞⎟⎠
p×1

+

⎛⎜⎝β j1
...
β j p

⎞⎟⎠
p×1

+

⎛⎜⎝εi j1
...
εi j p

⎞⎟⎠
p×1

.

Here, Yi jk is the observation corresponding to the i th treatment, j th block, and kth variable; vk is
the overall mean for the kth variable; αik is the effect of the i th treatment on the kth variable; β jk is
the effect of the j th block on the kth variable; and finally, εi jk is the experimental error for the i th
treatment, j th block, and kth variable. The relevant assumptions for the MANOVA model are the
ones which one can refer in any good book in multivariate statistics.

Since this model assumes no interaction, we use this error to test the block and treatment effects.
Thus, one can define the mean vector for a treatment i as μi = v+ αi . In case the null hypothesis
states that all of the treatment mean vectors are identical, then we have HO :μ1 = · · · = μg , or equiv-
alently α1 = · · · = αg , where i = 1, . . . , g are the number of treatments. The alternative hypothesis
is HA:μik �= μ jk for at least one i �= j and at least one variable k.

We now define the sample mean vector for treatment i and block j as⎛⎜⎜⎜⎜⎜⎜⎝
Yi ·1 = 1

b

b∑
j=1

Yi j1

...

Yi ·p = 1
b

b∑
j=1

Yi jp

⎞⎟⎟⎟⎟⎟⎟⎠ and

⎛⎜⎜⎜⎜⎜⎝
Y· j1 = 1

a

a∑
i=1

Yi j1

...

Y· j p = 1
a

a∑
i=1

Yi jp

⎞⎟⎟⎟⎟⎟⎠ ,

respectively, while the grand mean vector is⎛⎜⎜⎜⎜⎜⎜⎝
Yi ·1 = 1

a×b

b∑
j=1

a∑
i=1

Yi j1

...

Yi ·p = 1
a×b

b∑
j=1

a∑
i=1

Yi jp

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Furthermore, let us also define the total sum of squares and cross products matrix as T =
b
∑a

i=1(ȳi · − ȳ··)(ȳi · − ȳ··)′ + a
∑b

j=1(ȳ· j − ȳ··)(ȳ· j − ȳ··)′ +
∑a

i=1
∑b

j=1(Yi j − ȳi · − ȳ· j + ȳ··)
(Yi j − ȳi · − ȳ· j + ȳ··)′, where the first, second, and the third terms are the treatment sum of squares
and cross products matrix, block sum of squares and cross products matrix, and finally error sum of
squares and cross products matrix, respectively. The individual element of the treatment/block/error
sum of squares and cross products matrices can be expressed accordingly.

Finally, to close this section, we give a few of the statistics that are used in the study of MANOVA,
but before that, let us define A = SSH ypothesis/SSError , where SS means the sum of square. Now,
based on A, and the fact that λi denotes the i th eigen value of the matrix A, the relevant statistics for
MANOVA are as follows:

1. Wilk’s lambda:
∏q

i=1 1/(1+ λi ), where q denotes the dependent variables in MANOVA
study.

2. Pillai’s trace:
∑q

i=1 λi/(1+ λi ), where q denotes the dependent variables in MANOVA
study.

3. Lawley–Hotelling trace:
∑q

i=1 λi , where q denotes the dependent variables in MANOVA
study.

4. Roy’s largest root: maxi=1, . . . , qλi , where q denotes the dependent variables in MANOVA
study.

Example 8.18

A researcher randomly assigns 33 subjects to one of three groups. The first group receives
technical dietary information interactively from an online website. Group 2 receives the same
information from a nurse practitioner, while group 3 receives the information from a video tape
made by the same nurse practitioner. The researcher looks at three different ratings of the pre-
sentation, which are to do with difficulty, usefulness, and importance, to determine if there is a
difference in the modes of presentation. In particular, the researcher is interested to know whether
the interactive website is superior because that is the most cost-effective way of delivering the
information. Furthermore, the reader should note that (i) level 1 of the group variable is the
treatment group; (ii) level 2 is control group 1, and finally (iii) level 3 is control group 2. The infor-
mation about the data can be accessed at http://www.ats.ucla.edu/stat/stata/ado/analysis/. Without
going through each and every step of the MANOVA calculation, we give the MANOVA test cri-
teria and exact F statistics for the hypothesis of no overall group effect and the results are shown
in Table 8.3.

Note: Multivariate analysis of covariance (MANCOVA) is an extension of analysis of covariance
(ANCOVA) methods to cover cases where there is more than one dependent variable and where the

TABLE 8.3

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall
Group Effect, Example 8.18

Statistic Value F Value Num dof Den dof P r > F

Wilks’ lambda 0.53598494 12.99 2 30 <0.0001

Pillai’s trace 0.46401506 12.99 2 30 <0.0001

Hotelling–Lawley trace 0.86572405 12.99 2 30 <0.0001

Roy’s greatest root 0.86572405 12.99 2 30 <0.0001
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Statistical Methods 475

control of concomitant continuous independent variables—covariates—is required. The significant
benefit of MANCOVA over MANOVA is the factoring out of noise or error that has been introduced
by the covariant. The analysis one uses to solve problem using ANOVA versus MANOVA can be
extended to the case when one is solving ANCOVA versus MANCOVA. We leave this for the reader
to study and close this section with a few good references in this area such as Cooley and Lohnes
(1971), Huberty and Olejnik (2006), and Morrison (1990).

8.18 Conjoint Analysis

When confronted with any decision process with different alternatives, human beings accept alter-
native(s) or reject alternative(s) or are ambivalent/indifferent (to different levels of degree) to
alternative(s). Their choices are influenced by their likings, experiences, habits, role of advertise-
ments, peer pressures, environmental effects, societal or family constraints, etc. Here is where
conjoint analysis (CA) and discrete choice experimentation (DCE) may be used as tools for under-
standing how individuals develop preferences for alternatives. To study CA, discrete choice models,
multiattribute utility theory (MAUT) and random utility theory (RUT) are used, but for the sake of
brevity, we skip these discussions and concentrate on the general formulation, models, and applica-
tions of CA. Before we start our discussion, we state a few good texts in the area of CA, such as
Louviere (1988), Orme and King (2006), Raghavarao et al. (2011), etc.

As a method, CA simultaneously finds a monotonic scoring of the dependent variable and numer-
ical value for each level of each independent variable. This method is based on the main effects of
ANOVA model. We state here the conjoint model in its simplest form for the ease of understand-
ing of the readers. Consider yi1···i p = μ+ β1i1 + · · · + βpi p + εi1···i p , such that

∑
β1i1 = · · · =∑

βpi p = 0. Consider an example where you are an executive for a marketing firm and you are
analyzing the factors that affect the decision of your target customer to buy a car. You want to inves-
tigate the preferences for the cars based on p attributes say, for example, mileage, price, safety,
resale value, style, passenger space, luggage space, etc. Thus, yi1···i p denotes the a buyer’s stated
preference for a car with respect to i th

1 level of mileage, i th
2 level of price, and so on. The nonmetric

CA model for the above model can be expressed as �
(
yi1···i p

) = μ+ β1i1 + · · · + βpi p + εi1···i p ,
where �(·) implies a monotonic transformation of the variable y. CA can be solved by the method
of ANOVA. An important assumption is that the distance between any two adjacent preference
ordering corresponds to the same difference in utility. Thus, we treat the ranking, which is a cardinal
variable as if it were metric variable.

Example 8.19: (Härdle and Simar, 2007)

A manufacturer of food items intends to make a new margarine and varies the product charac-
teristics as well as its packaging. The four different products made by the food manufacturer are
ordered as shown in Table 8.4. The information about the data set can be found in Härdle and
Simar (2007).

Let us consider the part worth X1 as usage, and suppose a person ranks the six different products
as shown in Table 8.5.

Solving, one obtains β11 = −2,β12 = 0, and β13 = 2, while on the other hand, we
get β21 = 0.16 and β22 = −0.16, and μ = 3.5. Using these values, we can easily
obtain Ŷ1 = β11 + β21 + μ = 1.66, Ŷ2 = β11 + β22 + μ = 1.34, Ŷ3 = β12 + β21 + μ = 3.66,
Ŷ4 = β12 + β22 + μ = 3.34, Ŷ5 = β13 + β21 + μ = 5.66, and Ŷ6 = β13 + β22 + μ = 5.34.
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476 Decision Sciences

TABLE 8.4

Ranking of the Four Products, Example 8.19

Product Type Product Characteristics Packaging Ranking

1 Low calories Plastic pack 3

2 Low calories Paper pack 4

3 High calories Plastic pack 1

4 High calories Paper pack 2

TABLE 8.5

Ranked Products, Example 8.19

X2 Calories

Low High

X1 Usage 1 2

Bread 1 2 1

Cooking 2 3 4

Universal 3 6 5

8.19 Canonical Correlation Analysis

Hotelling (1935, 1936) may be credited for developing the technique of canonical correlation anal-
ysis (CCA), where the author studied how arithmetic speed and arithmetic power are related to
reading speed and reading power. Mathematically, CCA may be stated as follows. Suppose we are
given X ∈ Rp and Y ∈ Rq , (p ≤ q), then the idea is to find an index describing a possible link
between X and Y . Using CCA, we are interested to find vectors a of size (p × 1) and b of size
(q × 1), such that the correlation coefficient between U = a′X and V = b′Y , given by ρ(U , V ) =
ρ(a, b), is maximized. Remember, CCA is based on linear indices or linear combination as both
U = a′X and V = bT Y are linear combinations and may be expressed as a1 X1 + · · · + ap X p and
b1Y1 + · · · + bqYq , respectively.

The idea of CCA is to go stepwise, where in the first step we determine the first pair of linear
combinations, (U1, V1), which results in the largest value of correlation, ρ∗21 . In the next step, one
then determines the second pair of linear combinations, (U2, V2), which has the largest correlation,
given by ρ∗22 , among all the pairs such that they are uncorrelated with the initially selected pairs. We

continue doing this till p stages, so that we obtain (U1, V1), . . . , (Up, Vp) and
(
ρ∗21 , ρ∗22 , . . . , ρ∗2p

)
.

In case the condition (p ≤ q) does not hold true, then we continue doing this till min(p, q). CCA is
a simple and useful method to describe the correlation structure between two sets of variables. It is
a generalization of the concept of multiple correlation and successively maximizes the correlation
between appropriate pairs of linear combinations of the variables of the two sets. The method can
be viewed as a dimension reduction technique in that it represents the correlation structure between
two sets of variables in terms of a smaller number of canonical correlations. The pairs of linear
combinations {(U1, V1), (U2, V2), . . . , (Up, Vp)} thus obtained are termed as the canonical variables,

while the corresponding correlations
(
ρ∗21 , ρ∗22 , . . . ., ρ∗2p

)
are known as the canonical correlations

values.
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Statistical Methods 477

Some interesting application areas of CCA are:

1. Study of how government policy variables such as interest rates, expenditures in various
economic sectors, etc. are related to other economic goal variables such as foreign currency
rates, inflation rates, etc.

2. Study of college performance variables of students with respect to their scholastic
achievements before joining the college.

8.19.1 Formulation of Canonical Correlation Analysis

Suppose X is distributed with E(X) = μX , Covar(X)= �X X , while Y is distributed with E(Y) =
μY , Covar(Y) = �Y Y . Moreover, Covar(X , Y ) = �XY = �′Y X . Then one can easily verify that

ρ(U , V ) = ρ(a, b) =
{

a′�XY b
(a′�X X a)1/2(b′�Y Y b)1/2

}
.

One may also note that ρ(ca, b) = ρ(a, b) = ρ(a, cb), where c ∈ R+.
From the optimization point of view, CCA can be stated simply as follows:

max
(
a′�XY b

)
s.t. : a′�X X a = 1

b′�Y Y b = 1

A closer look at the above optimization makes it obvious that in maximizing the ratio, which
is the correlation coefficient, ρ(U , V ), we maximize the numerate, that is, Covar(X , Y ) with the
restrictions that both Covar(a′X) and Covar(b′Y ) are equal to 1. Standard nonlinear optimization
algorithms are available, which solves this problem. For a better explanation of how we go about in
achieving this, one can refer to the algorithm described as a pseudo-code in Figure 8.17.

Before discussing the standardized form of CCA, we state a few important results relevant to
CCA:

FIGURE 8.17
Pseudo-code to implement CCA method.
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478 Decision Sciences

1. For any given r , 1 ≤ j ≤ p, the maximum value of a′�XY b subject to (i) a′�X X a = 1,
(ii) b′�Y Y b = 1, and (iii) a′j �X X a = 0 for j = 1, . . . , r − 1 is given by ρ j =

√
λ j , where

e j is the j th eigen value of
(
�
−1/2
XX �XY�

−1/2
YY

) (
�
−1/2
XX �XY�

−1/2
YY

)′
, and the maximum

value is obtained when a = a j and b = b j .

2. Let U j = a′j X and Vj = b′ j Y be the j th canonical correlation variables, j = 1, . . . , p.
Then

V ar

(
U
V

)
=
(

I p 



 I p

)
,

where U = (U1, . . . , Up), V = (V1, . . . , Vp) and 
 = diag
(√
λ1, . . . ,

√
λp
)
.

Note: Thus, the canonical correlation coefficients, ρ j =
√
λ j , are the covariances between U j and

Vj , where j = 1, . . . , p. Moreover, a′1X and b′1Y have the maximum covariance of value ρ1 =
√
λ1.

One should also remember a few important things (considering, p ≤ q):

1. For the matrix
(
�
−1/2
X X �XY �

−1/2
Y Y

) (
�
−1/2
X X �XY �

−1/2
Y Y

)′
which is of size (p × p), we have

ρ2
1 ≥ · · · ≥ ρ2

p as the eigen values for which the associated eigen vectors are e1, . . . , ep.

2. For the matrix
(
�
−1/2
Y Y �Y X�

−1/2
X X

) (
�
−1/2
Y Y �Y X�

−1/2
X X

)′
, which is of size (q × q), we have

ρ2
1 ≥ · · · ≥ ρ2

p as the largest p eigen values for which the associated eigen vectors are
f 1, . . . , f p.

3. f j ∝
(
�
−1/2
Y Y �Y X�

−1/2
X X

)
ei , j = 1, . . . , p.

4.
(

U1 = a′1X = e′1�
−1/2
X X X , V1 = b′1Y = f ′1�

−1/2
Y Y Y

)
, . . . ,(

Up = b′pX = e′p�
−1/2
X X X , Vp = b′pY = f ′p�

−1/2
Y Y Y

)
.

5. Var(U j ) = Var(Vj ) = 1, j = 1, . . . , p.

6. Covar
(
U j1 , U j2

) = corr
(
U j1 , U j2

) = 0, j1 �= j2 = 1, . . . , p.

7. Covar
(
Vj1 , Vj2

) = corr
(
Vj1 , Vj2

) = 0, j1 �= j2 = 1, . . . , p.

8. Covar
(
U j1 , Vj2

) = corr
(
U j1 , Vj2

) = 0, j1 �= j2 = 1, . . . , p.

8.19.2 Standardized Form of CCA

In case

ZX i =
Xi − μYi√
σXi Xi

,

where

ρX X =

⎛⎜⎝ρX1 X1 · · · ρX p X1
...

. . .
...

ρX1 X p · · · ρX p X p

⎞⎟⎠ , �X X =

⎛⎜⎝σX1 X1 · · · σX p X1
...

. . .
...

σX1 X p · · · σX p X p

⎞⎟⎠ and ZY j =
Y j − μY j√
σY j Y j

,
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Statistical Methods 479

where

ρY Y =

⎛⎜⎝ρY1Y1 · · · ρYq Y1
...

. . .
...

ρY1Yq · · · ρYq Yq

⎞⎟⎠ , �Y Y =

⎛⎜⎝σY1Y1 · · · σYq Y1
...

. . .
...

σY1Yq · · · σYq Yq

⎞⎟⎠ ,

then Uk = a′kZX = e′kρ
−1/2
X X ZX and Vk = b′kZY = f ′kρ

−1/2
Y Y ZY , k = 1, . . . , p.

One should also remember the following:

1. Covar(ZX ) = ρX X .

2. Covar(ZY ) = ρY Y .

3. Covar(Z X , ZY ) = ρXY = ρ′Y X .

4. ρ∗21 ≥ · · · ≥ ρ∗2p are the nonzero eigen values of ρ
−1/2
X X ρXY ρ−1

Y Y ρY Xρ
−1/2
X X for which

(e1, . . . , ep) is the set of corresponding eigen vectors.

5. ρ∗21 ≥ · · · ≥ ρ∗2p are the nonzero largest p set of eigen values, from among q of them, of

ρ
−1/2
Y Y ρY Xρ−1

X XρXY ρ
−1/2
Y Y for which (f 1, . . . , f p) is the set of corresponding eigen vectors.

8.19.3 Correlation between Canonical Variates and Their Component Variables

In case one is interested to find the correlation between the original variables and their respec-
tive transformed variables, then a few interesting results can be stated. But before that, consider
Ap×p =[a1, . . . , ap]′, Bq×q = [b1, . . . , bq ]′, so that U p × 1 = Ap×pX p×1 and Vq×1 = Bq×qYq×1
and p ≤ q. With these, the following results stated below hold:

1. Covar(U , X) = A′�X X .

2. Covar(V , Y) = B′�Y Y .

3.

ρU ,X p×p
= A′p×p�X X p×p

⎡⎢⎣
√

V ar(X1) · · · 0
...

. . .
...

0 · · · √
V ar(X p)

⎤⎥⎦
p×p

.

4.

ρU ,Y p×q
= A′ p×p�XY p×q

⎡⎢⎣
√

V ar(Y1) · · · 0
...

. . .
...

0 · · · √
V ar(Yq)

⎤⎥⎦
q×q

.

5.

ρV ,Xq×p
= Bq×q�Y X q×p

⎡⎢⎣
√

V ar(X1) · · · 0
...

. . .
...

0 · · · √
V ar(X p)

⎤⎥⎦
p×p

.

6.

ρV ,Yq×q
= Bq×q�Y Y q×q

⎡⎢⎣
√

V ar(Y1) · · · 0
...

. . .
...

0 · · · √
V ar(Yq)

⎤⎥⎦
q×q

.
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While in the standardized variable case, we have

1. Covar(U , Z X ) = AρX X .

2. Covar(V , ZY ) = BρY Y .

3.

ρU ,Z X p×p
= AZ X p×p

ρX X p×p

⎡⎢⎢⎢⎣
√

V ar
(
Z X1

) · · · 0
...

. . .
...

0 · · ·
√

V ar
(
Z X p

)
⎤⎥⎥⎥⎦

p×p

.

4.

ρU ,ZYp×q
= AZ X p×p

ρXY p×q

⎡⎢⎢⎢⎣
√

V ar
(
ZY1

) · · · 0
...

. . .
...

0 · · ·
√

V ar
(
ZYq

)
⎤⎥⎥⎥⎦

q×q

.

5.

ρV ,Z Xq×p
= BZY q×q

ρY Xq×p

⎡⎢⎢⎢⎣
√

V ar
(
Z X1

) · · · 0
...

. . .
...

0 · · ·
√

V ar
(
Z X p

)
⎤⎥⎥⎥⎦

p×p

.

6.

ρV ,ZY q×q
= BZY q×q

ρY Y q×q

⎡⎢⎢⎢⎣
√

V ar
(
ZY1

) · · · 0
...

. . .
...

0 · · ·
√

V ar
(
ZYq

)
⎤⎥⎥⎥⎦

q×q

.

Note: A different perspective when analyzing CCA from the optimization point of view is stated
here, with the idea that it acts as a good motivation for the interested readers. Let us consider the
optimization problem stated before. In its Lagrangian form, considering the Lagrangian multipliers
as λ1 and λ2, the expression to be differentiated is g(λ1, λ2) = a′�XY b− λ1a′�X X a− λ2b′�Y Y b.
Now, putting ∂g(λ1, λ2)/∂λ1 = ∂g(λ1, λ2)/∂λ2 = 0, one obtains λ1 = a′�X X a. With a few relevant
mathematical changes, we obtain λ2 (here, λ1 = λ1 = λ) and b as the eigen root and eigen vector
corresponding to the determinantal equation |�Y X�−1

X X�XY − λ2�Y Y | = 0. On a similar line, one
can also solve and get the other set of eigen root and eigen vector.

8.19.4 Testing the Test Statistics in CCA

A main concern in CCA is to find whether there is some significant relationship or dependence
between the variables X and Y . Gittins (1985) suggested the following test to verify the dependence
between the variables X and Y using Wilk’s likelihood ratio statistics, which is given by T 2/n =
|I − S−1

Y Y SY X S−1
X X SXY | =

∏k
i=1(1− li ). As this statistic has a complicated distribution, hence it is

denoted by −{n − (p + q + 3)/2}log
∏k

i=1(1− li ) ∼ χ2
p×q , provided n→∞ (Barlett, 1954). In

case one is interested to find if only s of the total number of canonical correlations are nonzero, then
the statistic is of the form−{n − (p + q + 3)/2}log

∏k
i=s+1(1− li ) ∼ χ2

(p−s)×(q−s), and this holds
true in the approximate sense as n→∞.
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Statistical Methods 481

Example 8.20

Consider we have a theoretical set of data where the following is given: X = (X1, X2,
X3), that is, p = 3, Y = (Y1, Y2, Y3, Y4, Y5), that is, q = 5, such that E(X) = (2, 3, 6),
E(Y) = (45, 44, 34, 32, 40),

Covar(X) = �X X =
⎛⎝ 0.4 0.2449 0.45

0.2449 0.6 0.1837
0.45 0.1837 0.9

⎞⎠ ,

Covar(Y) = �Y Y =

⎛⎜⎜⎜⎜⎝
4 1.3416 1.4697 0 2.2627

1.3416 5 2.1909 5.3666 0.6325
1.4697 2.1909 6 0.7348 4.1569

0 5.3666 0.7348 9 5.9397
2.2627 0.6325 4.1569 5.9397 8

⎞⎟⎟⎟⎟⎠ ,

and

Covar(X , Y) = �XY =
⎛⎝0.1265 0.4243 1.3943 1.8974 0.7155

1.2394 0 0.3795 2.3238 0.6573
0.3795 0.8485 1.1619 1.7076 2.1466

⎞⎠ .

Given this set of information, let us calculate the following, the values of which are given along-
side the formulae. We urge the reader to recalculate the values to get a good idea about the steps
involved in CCA calculations:

1.

�
−1/2
X X �XY �−1

Y Y �Y X �
−1/2
X X =

⎛⎝−5.3437 13.4544 −7.6743
13.4544 −32.9776 19.9303
−7.6743 19.9303 −13.6489

⎞⎠ .

2.

e =
⎛⎝−50.7400 0 0

0 0.2008 0
0 0 −1.4311

⎞⎠ .

3.

ρ∗ =
⎛⎝ 0.3227 −0.8657 −0.3827
−0.8043 −0.4640 0.3713
0.4990 −0.1880 0.8460

⎞⎠ .

4.

�
−1/2
Y Y �Y X �−1

X X �XY �
−1/2
Y Y

=

⎛⎜⎜⎜⎜⎜⎝
−0.2219− 0.1508i
0.9157− 2.1750i
−0.7086+ 0.4421i
0.9504− 2.1756i
0.4862+ 1.8497i

0.9157− 2.1750i
−22.7845+ 1.1740i

2.2736− 0.9611i
−22.2198− 2.8159i
12.9425− 4.9868i

−0.7086+ 0.4421i
2.2736− 0.9611i
−0.3291+ 0.8951i
1.8779− 0.3799i
−0.2866+ 0.6717i

0.9504− 2.1756i
−22.2198− 2.8159i

1.8779− 0.3799i
−21.2278− 6.7355i
13.8364− 2.2843i

0.4862+ 1.8497i
12.9425− 4.9868i
−0.2866+ 0.6717i
13.8364− 2.2843i
−7.4071+ 4.8171i

⎞⎟⎟⎟⎟⎟⎠ .

5.

f =
⎛⎝−50.7400 0 0

0 0.2008 0
0 0 −1.4311

⎞⎠ .
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482 Decision Sciences

6.

ρ∗ =
⎛⎝ 0.3227 −0.8657 −0.3827
−0.8043 −0.4640 0.3713
0.4990 −0.1880 0.8460

⎞⎠ .

Example 8.21

As the next example, consider the data given in http://www.ats.ucla.edu/stat/r/dae/
canonical.htm, which consists of 600 observations on eight variables. The psychological vari-
ables are (i) locus of control, X1, (ii) self-concept, X2, and (iii) motivation, X3, such that X600×3
is the first set of variable, while the academic variables are standardized tests in (i) reading, Y1 (ii)
writing, Y2, (iii) mathematics, Y3, and (iv) science, Y4 are such that Y600×4 is the second set of
variables. Additionally, the variable female is a zero-one indicator variable with one indicating a
female student, while a zero denotes a male student.

Solving the CCA problems yields

A = (a1a2a3) =
⎛⎝−1.2501 0.7660 −0.4967

0.2367 0.8421 1.2051
−1.2491 −2.6360 1.0935

⎞⎠ ,

B = (b1b2b3b4) =

⎛⎜⎜⎝
−0.0440 −0.0016 0.0883
−0.0551 −0.0904 −0.0961
−0.0194 −0.0030 0.0878
0.0038 0.1242 −0.0885

⎞⎟⎟⎠ ,

ρ∗2 = (0.4464 0.1534 0.0225).

This means that the set of linear combinations of the variables are:

1.

U1 = a′1X = (−1.2501 0.2367 − 1.2491)

⎛⎝X1
X2
X3

⎞⎠ = −1.2501X1 + 0.2367X2 − 1.2491X3,

V1 = b′1Y = (−0.0440 − 0.0551 − 0.0194 0.0038)

⎛⎜⎜⎝
Y1
Y2
Y3
Y4

⎞⎟⎟⎠ = −0.0440Y1 − 0.0551Y2

− 0.0194Y3 + 0.0038Y4,

2.

U2 = a′2X = (0.7660 0.8421− 2.6360)

⎛⎝X1
X2
X3

⎞⎠ = 0.7660X1 + 0.8421X2 − 2.6360X3,

V2 = b′2Y = (−0.0016− 0.0904− 0.0030 0.1242)

⎛⎜⎜⎝
Y1
Y2
Y3
Y4

⎞⎟⎟⎠ = −0.0016Y1 − 0.0904Y2

− 0.0030Y3 + 0.1242Y4,
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Statistical Methods 483

3.

U3 = a′3X = (−0.4967 1.2051 1.0935)

⎛⎝X1
X2
X3

⎞⎠ = −0.4967X1 + 1.2051X2 + 1.0935X3,

V3 = b′3Y = (0.0883 − 0.0961 − 0.0878 0.0885)

⎛⎜⎜⎝
Y1
Y2
Y3
Y4

⎞⎟⎟⎠ = 0.0883Y1 − 0.0961Y2

− 0.0878Y3 − 0.0885Y4,

respectively. The corresponding linear combination graphs for (U1, V1), (U2, V2) and
(U3, V3) are shown in Figure 8.18. Though not apparent but one can easily discern that
the value of correlation coefficient or the slope of the set of (U1, V1) are the maximum,
followed by (U2, V2), and then (U3, V3). This fact is also corroborated by the values of

ρ∗2

1 = 0.4464, ρ∗2

2 = 0.1534, and ρ∗2

3 = 0.0225. Another way of verifying the values of

ρ∗2

1 , ρ∗2

2 , ρ∗2

3 is to have a look at

Covar(U , V) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0.4464 0 0 0 0
0.4464 1 0 0 0 0

0 0 1 0.1543 0 0
0 0 0.1534 1 0 0
0 0 0 0 1 0.0225
0 0 0 0 0.0225 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

–5 –4 –3 –2 –1 0 1 2 3 4
–10

–5

0

5

U values

V 
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FIGURE 8.18
Graphs showing linear relationship between the set of variables using CCA method, Example 8.20.
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484 Decision Sciences

For this problem, let us also find the following detailed calculations, which are shown for ease of
understanding:

•

Covar(U , X) = A′�X X =
⎛⎝−0.6128 −0.0705 −0.2006

0.2639 0.2972 −0.2077
−0.0640 0.6359 0.1846

⎞⎠
•

Covar(V , Y) = B′�Y Y =
⎛⎝−8.8950 −8.8523 −7.5317 −6.7371

2.4743 −2.1492 1.7693 6.5603
2.7587 −3.3050 2.6697 −2.3069

⎞⎠
•

ρU ,X p×p
= A′p×p�X X p×p

⎡⎢⎣
√

V ar(X1) · · · 0
...

. . .
...

0 · · · √
V ar(X p)

⎤⎥⎦
p×p

=
⎛⎝0.6703 0 0

0 0.7055 0
0 0 0.3427

⎞⎠ .

•

ρU ,Y p×q
= A′p×p�XY p×q

⎡⎢⎣
√

V ar(Y1) · · · 0
...

. . .
...

0 · · · √
V ar(Yq)

⎤⎥⎦
q×q

=
⎛⎝−5.6368 −5.4272 −5.2782 −5.4888

4.3703 4.2584 4.0730 4.2295
5.0434 4.9145 4.7151 4.8921

⎞⎠ .

Furthermore, the value of

1.

ρV ,Xq×p
= B′q×qBq×q�Y Xq×p

⎡⎢⎣
√

V ar(X1) · · · 0
...

. . .
...

0 · · · √
V ar(X p)

⎤⎥⎦
p×p

and

2.

ρV ,Yq×q
= Bq×q�Y Y q×q

⎡⎢⎣
√

V ar(Y1) · · · 0
...

. . .
...

0 · · · √
V ar(Yq)

⎤⎥⎦
q×q
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Statistical Methods 485

are left for the readers to calculate, which we are sure will give them a certain level of confidence
to appreciate this multivariate statistical method in a better manner. Similarly, one can also find the
standardized variables:

1. Covar(U , Z X ) = AρX X ,

2. Covar(V , ZY ) = BρY Y ,

3.

ρU ,Z X p×p
= AZ X p×p

ρX X p×p

⎡⎢⎢⎢⎣
√

V ar
(
Z X1

) · · · 0
...

. . .
...

0 · · ·
√

V ar
(
Z X p

)
⎤⎥⎥⎥⎦

p×p

,

4.

ρU ,ZY p×q
= AZ X p×p

ρXY p×q

⎡⎢⎢⎢⎣
√

V ar
(
ZY1

) · · · 0
...

. . .
...

0 · · ·
√

V ar
(
ZYq

)
⎤⎥⎥⎥⎦

q×q

,

5.

ρV ,Z Xq×p
= BZY q×q ρY Xq×p

⎡⎢⎢⎢⎣
√

V ar
(
Z X1

) · · · 0
...

. . .
...

0 · · ·
√

V ar
(
Z X p

)
⎤⎥⎥⎥⎦

p×p

,

6.

ρV ,ZY q×q
= BZY q×q

ρY Y q×q

⎡⎢⎢⎢⎣
√

V ar
(
ZY1

) · · · 0
...

. . .
...

0 · · ·
√

V ar
(
ZYq

)
⎤⎥⎥⎥⎦

q×q

.

A few other sources for CCA are those provided by Karamouz et al. (2010) and Szakács et al.
(2004). The interested readers can definitely have a look at the data sets in these references and
work on them to hone their skills and understanding in CCA.

8.19.5 Geometric and Graphical Interpretation of CCA

It would not be out of context to say that a better appreciation of the CCA method can be obtained if
one looks at the geometrical as well as graphical interpretation of CCA. A relevant reference for this
is González et al. (2008). It is interesting to note that neural network (Hsieh, 2000) and kernel-based
methods (Bach and Jordan, 2002, Lai and Fyfe, 2000, Melzer et al., 2001) have been used in the
area of nonlinear CCA.

8.19.6 Conclusions about CCA

Before we wind up this topic, there are a few important points that should be remembered:

1. The classical CCA method may be used only for the condition when n ≥ (p + q + 1)

(Eaton and Perlman, 1973).
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486 Decision Sciences

2. In case X and Y are highly correlated, then the matrices �X X and �X X are ill conditioned
and their respective inverses are unreliable.

3. In case n < (p + q), then CCA cannot be utilized and for such cases, that is, n < (p + q),
partial least square (PLS) regression may be used. The advantage of PLS over CCA is the
fact that in the former the asymmetry relationship between the predictors and dependent
variables is preserved, while CCA treats them symmetrically.

4. Vinod (1976) and Leurgans et al. (1993) have shown the extension of ridge regression in
the area of CCA.

8.20 Cluster Analysis

Cluster analysis (CA) is a statistical technique whereby we form clusters/groups of similar individ-
uals/objects using data/information from individuals/objects. This statistical method develops tools
and methods, where given a data matrix, X (n×p), consisting of n number of individuals/objects
where each of these n individuals/objectives are of dimension p, our aim is to build some natu-
ral subgroups or clusters of these individuals/objects. Using CA, we try to find some similarity or
patterns in the data, for example, classification of plants/animals using taxonomy, diseases using
epidemiology, etc. From a historical perspective, the origin of CA may be traced back to the work
of Driver and Kroeber (1932) in anthropology. Later on, it was used in psychology (Cattell, 1943,
Tryon, 1939, Zubin, 1938). Cluster analysis has been used in a variety of fields ranging from anthro-
pology, agriculture, economics, psychology, geophysics, psychiatry, sociology, marketing, finance,
behavioral sciences, different fields of engineering, etc. Even though old, good references with
interesting applications can be found in Gordon (1981) and Hartigan (1975). Other good refer-
ences from a theoretical points of view are Anderberg (1973), Duda et al. (2001), Duran and Odell
(1974), Everitt and Dunn (2001), Gordon (1981), Hartigan (1975), Jain and Dubes (1988), Kauf-
man and Rousseeuw (2005), Späth (1980), etc. Another good book in the area of CA is by Xu and
Wunsch (2008). Some other mathematical technique methods similar to cluster analysis are pattern
recognition, numerical taxonomy, morphometrics, etc.

For a better understanding of clustering analysis as a technique, one should understand the basic
four steps involved in cluster analysis:

• Feature selection or extraction: In the feature selection, step/stage one chooses the distin-
guishing features from a set of candidates, while on the other hand, in feature extraction
step/stage, we utilize some transformations to generate useful and novel features from the
original ones.

• Clustering algorithm design and selection: Depending on the proximity measure d(P , Q),
one constructs clustering criterion function so that the clustering algorithms may be devel-
oped. The main focus of the clustering algorithms is to cluster the objectives in groups
based on some predefined criterion.

• Cluster validation: Effective validation standards and criteria are important to provide the
degree of confidence for the clustering results derived from the used algorithms. This is
what is done in the third stage step, which is the clustering validation step/stage.

• Result interpretation: The ultimate goal of clustering analysis step/stage is to provide
the user with meaningful insights from the original data, so that they can effectively
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Statistical Methods 487

solve the problems encountered, and this is what the result interpretation step/stage
does.

The two fundamental steps in CA, which would be discussed by us here are: (i) choice of proximity
(closeness) measure and (ii) choice of group-building algorithm.

Consider

Xn×p =

⎛⎜⎝x1,1 · · · x1,p
...

. . .
...

xn,1 · · · xn,p

⎞⎟⎠
n×p

,

such that the proximity/distance matrix is given by

Dn×n =

⎛⎜⎝d1,1 · · · d1,n
...

. . .
...

dn,1 · · · dn,n

⎞⎟⎠
n×n

,

where di , j gives the measure of proximity/distance and is denoted by ‖xi − x j‖2 or {maxi , j (di , j )−
di , j } as the case may be. In case, we have a binary structure pertaining to X , that is, xi ,k ∈ {0,
1}, i = 1, . . . , n and k = 1, . . . , p, then di , j = (a1 + δa4)/(a1 + δa4 + λ(a2 + a3)), where δ and
λ are the weighting factors. Here, a1 =

∑p
k=1 I (xi ,k = x j ,k = 1), a2 =

∑p
k=1 I (xi ,k = 0, x j ,k = 1),

a3 =
∑p

k=1 I (xi ,k = 1, x j ,k = 0), and a4 =
∑p

k=1 I (xi ,k = x j ,k = 0). A few examples of weighting
factors are (δ = 0, λ = 1) (Jaccard, 1901), (δ = 1, λ = 2) (Tanimoto, 1957), and (δ = 0, λ = 0.5)
(Dice,* 1945). On the other hand, when we have the continuous variable, then di , j = ‖xi − x j‖r ={∑p

k=1 |xi ,k − x j ,k |r
}1/r

(Minkowski metric), when expressed in the nonstandardized form, while
d2

i , j =
∑p

k=1((xi ,k − x j ,k)
2/sXk ,Xk ) is the standardized version of this distance measure. A few other

distance measures that have found use in CA are: Hamming distance, Euclidean distance: d2
i , j =∑p

k=1(xi ,k − x j ,k)
2, Soergel distance: di , j =

∑p
k=1 |xi ,k − x j ,k |/

∑p
k=1 max(xi ,k , x j ,k), Canberra

metric: di , j =
∑p

k=1{|xi ,k − x j ,k |/(|xi ,k | + |x j ,k |)}, Czekanowski metric:

di , j =
{

1− 2
∑p

k=1 min(xi ,k , x j ,k)∑p
k=1(xi ,k + x j ,k)

}
,

etc. One should remember that both Canberra and Czekanowski measures are defined for nonneg-
ative variables only. Even without the precise notion of a natural grouping, one is often able to
cluster/group individuals/objects in 2-D or 3-D plots using eye, stars, and Chernoff faces.

When items (units or cases) are clustered, proximity is usually indicated by some sort of distance.
For variables, the grouping is on the basis of correlation coefficients or such similar measure. Central
to the goal of cluster analysis is the idea of the degree of similarity (S(.,.)) (or dissimilarity, d(.,.))
between the individual objects that are being clustered. It is important that the following properties
are satisfied for the distance or dissimilarity function being used in CA.

1. d(xi ,k , x j ,k) = d(x j ,k , xi ,k), which is the property of symmetry.

2. d(xi ,k , x j ,k) > 0, if xi ,k �= x j ,k , which is the property of positivity.

* Also independently developed by Sørensen, T. A method of establishing groups of equal amplitude in plant sociology
based on similarity of species and its application to analyses of the vegetation on Danish commons, Kongelige Danske
Videnskabernes Selskab, 5, 1–34, 1957.
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488 Decision Sciences

3. d(xi ,k , x j ,k) = 0, if xi ,k = x j ,k , which is the property of reflexivity.

4. d(xi ,k , x j ,k) ≤ d(xi ,k , xl,k)+ d(xl,k , x j ,k), which is generally called the triangle law.

Where xi ,k , x j ,k , and xl,k are some points in space. If along with the first two, the third and fourth
property also holds for d(.,.), then d(.,.) is a metric. In line with distance or dissimilarity function,
a similarity function, S(.,.), can also be defined with the following properties, which are on similar
lines as mentioned for d(., .):

1. S(xi ,k , x j ,k) = S(x j ,k , xi ,k), which is the property of symmetry.

2. 0 ≤ S(xi ,k , x j ,k) ≤ 1, which is the property of positivity.

3. S(xi ,k , x j ,k)S(x j ,k , xl,k) ≤ {S(xi ,k , x j ,k)+ S(x j ,k , xl,k)}S(xi ,k , xl,k), which is the property
of reflexivity.

4. S(xi ,k , x j ,k) = 1, iff xi ,k = x j ,k .

Remember, S(.,.) is called similarity metric if all the above four properties hold. If the original data
was collected as similarities, then a suitable monotone decreasing function may be used to convert
them to dissimilarities.

Typically, distance/dissimilarity functions are used to measure continuous features, whereas sim-
ilarity functions are more appropriate for qualitative variables. Table 8.6 gives the similarity as well
as dissimilarity measure for quantitative features/characteristics.

8.20.1 Clustering Algorithms

A widely agreed framework is to classify clustering as hierarchical clustering and partitioning clus-
tering, based on the properties of the clusters generated. While generating the clusters, the concept
of distance as a measure which groups objects into clusters with certain properties with respect to
the idea of distance and its functional form comes in play. Most of the algorithms assume symmet-
ric dissimilarity matrices. In case the original matrix Dn×n is not symmetric, then one can replace
the matrix by (1/2)

(
Dn×n + DT

n×n

)
. The reader should remember that clustering algorithms may

be classified as (i) exclusive clustering, (ii) overlapping clustering, (iii) hierarchical clustering, and
(iv) probabilistic clustering. Without going into detailed analysis, we give here the pseudo-codes
of a few of the clustering algorithms, so that it motivates the reader to understand them and do a
thorough search of such algorithms which may be found in good references, a few of which have
already been stated in due course of our discussion of CA.

Basic K-mean algorithm: The K -mean clustering algorithm works on the premise that cen-
troids of a group of objects best depict the characteristics of that group/cluster. The
pseudo-code for the K -mean clustering algorithm is as follows and is shown in Figure 8.19.

Bisecting K-mean algorithm: The bisecting K -mean algorithm is a simple extension of the
basis K -mean algorithm. The pseudo-code for this algorithm is illustrated in Figure 8.20.
The idea is to obtain K clusters and split the set of points into two clusters and then select
one of them to split it again. We continue doing this until K clusters are obtained.

Basic agglomerative hierarchical clustering algorithm: It is a hierarchical clustering algo-
rithm, whereby we start with points as individual clusters and at each step merge the
closet pairs of clusters. Hence, a cluster proximity function is important, which needs to be
defined before one ventures to use this clustering algorithm. For the benefit of the reader,
the pseudo-code for this third algorithm is given in Figure 8.21.
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FIGURE 8.19
Pseudo-code for K -mean algorithm.

FIGURE 8.20
Pseudo-code for bisecting K -mean algorithm.

FIGURE 8.21
Pseudo-code for basic agglomerative hierarchical clustering algorithm.

This chapter is neither an exclusive discussion about clustering algorithms, nor about cluster
analysis; hence, we desist ourselves from analyzing other algorithms along with their merits and
demerits. We request the readers to check any good book in the area of clustering algorithm, a few
examples of which are: Abonyi and Feil (2007), Everitt et al. (2011), and Höppner et al. (1999), to
name a few.

Data set # 1: One can consider the data set given in Chapter 13 of Hartigan (1975), which
relates to 13 different Indo-European languages equivalent of the names associated with
certain common words. The data set has 13 rows and 17 columns (16 different words, e.g.,
black, eat, drink, fish, five, etc.). The interested reader can use any clustering technique to
find the groups accordingly to which the languages can be clustered depending on these 16
different words, their pronunciation, diction, speech, etc.).

Data set # 2: Another interesting application can be the study of mutation sequence of amino
acids in different species such as man, monkey, chicken, duck, kangaroo, and rattlesnake.
Again, the data for the same can be referred to in Hartigan (1975). For this problem, we
would try to group the species depending on the different characteristics one thinks are
important and are found in the gene sequences related to amino acid.
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Thus, in a nutshell, CA is ideally suited for defining groups of individuals/objects with maximal
homogeneity within the groups, while also having maximum heterogeneity between groups, that is,
determining the most similar groups that are also most different from each other. One difference
between discriminant analysis and logistic regression and classification tree analysis is the fact that
discriminant analysis and logistic regression make a number of assumptions about the underlying
data, whereas classification tree analysis is a nonparametric technique. Another difference is that
discriminant analysis and logistic regression can be used to derive probabilities of group member-
ship for individuals, whereas classification tree analysis only produces average probabilities for the
different groups.

8.21 Multiple Discriminant and Classification Analysis

Before discussing what multiple discriminant and classification analysis (MDCA) is all about, let us
consider a few relevant examples to aid a better understanding of this multivariate statistical method,
which consists of (i) a separation/discrimination rule along with (ii) an allocation/classification rule.

For a good motivation, let us consider a few practical applications of the MCDA technique. First,
consider a pediatrician has with her the data of height, age, sex, and age of children (in the age
group of 2–5 years) from the past. Based on this information, a child is categorized as being obese,
normal, or malnourished. When a new patient (in this case, a child) visits the pediatrician, then she,
that is, the pediatrician, has to categorize the child as being in any one of the above-mentioned three
categories, such that she can suggest medical care for the child as deemed appropriate. As a second
example of application, take into account a musicologist who is studying the composition written by
composers between 1750 and 1820 AD (which is termed as the classical period of Western music).
The musicologist is aware that a classification of the composer in that period may be made depending
on the melody, rhythm, dynamics, mood, timbre, etc. When the musicologist is given a new piece or
an unknown piece, then, depending on the characteristics of the musical piece, he/she may classify
the musical piece as that belonging to Joseph Hayden, Wolfgang Amadeus Mozart, Ludwing van
Beethoven, etc. Continuing our discussion further, next, think of a geologist who classifies rock as
igneous, sedimentary, or metamorphic, depending on its chemical composition, physical properties,
texture of its constituent particles, and permeability. Suppose the geologist is given a new sample
of rock, and is told to classify the given sample, then he/she may do so as desired using MDCA.
Finally, let us illustrate a fourth application where you as a credit risk analyst are first interested to
discriminate a company as good, average, or bankrupt, depending on price to earning ration

( P
E

)
,

amount of liability, and price of stock. After having done that, you study the credentials of different
new companies and classify them as belonging to any one of the categories as already decided.

In all these four application areas of MCDA, the essence of what one intends to achieve may
be summarized as follows. Given observations/objects, as a first step, we separate/discriminate
the observations/objects into clusters/groups, which are known a priori. Afterward, when a new
set of observations/objects arrive, we intend to classify them into these known groups. Hence, the
immediate goal of MCDA is as follows:

Step # 1: Separation/discrimination rule: In this step/rule, describe an algebraic or graphical
rule such that one is able to differentiate observations/objects into different classes, depend-
ing on different characteristics/features, which are inherent in the observations/objects.

Step # 2: Allocation/classification rule: Once the first step is over, our next job is to sort out
the new observations/objects into one of these classes depending on some logic/rule.
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Thus, in MDCA, we first define � j , j = 1, . . . , J , number of clusters/classes each with proba-
bility density function f j (x) such that all the observations a priori may be classified in any one
of the J cluster/classes. Later, when a new set of observation/object arrive, we categorize that
observations/objects, say x , into any one of the cluster/group. One should remember that the alloca-
tion/classification rules are developed based on the fact that the measured characteristics/features of
randomly selected observations/objects are such that the possible sample space (� = Rp) is divided
into R j disjoint sets/regions, such that ∪J

j=1 R j = Rp holds (Figure 8.22).
Now, if the new observation/object falls in R j , then it is characterized as belonging to popu-

lation, � j . For the classification/allocation rule, there are several situations that make it difficult
to complete Step # 2 with minimum error: (i) incomplete information or knowledge of future
performance; (ii) perfect information, and (iii) unavailable or expensive information. However
one may try, there are always some misclassification/misallocation errors, and hence our main
job is to have a good classification/allocation rule that results in a few of these errors. Apart
from that, an optimal classification/allocation rule should also take into account both (i) prior
probabilities of occurrence as well as (ii) cost of classification/allocation. Thus, the conditional
probability of allocating/classifying an object/observation as �i when in fact it belongs to � j is
pi , j = Pr(X ∈ Ri |� j ) = ∫ Ix∈Ri f j (x)dx, i �= j = 1, . . . , J. Moreover, if the prior distributions are
π j (x), then we have different cases which would dictate how the probability values would be calcu-
lated. One should remember that the concept of prior is practical and also logical as it gives the most
likelihood case, that when a new observation is chosen, what is the probability that it will belong
to a particular cluster/group? Considering there are J number of clusters/groups, classifying x in
cluster/group i , although it is from cluster/group population � j , may be given by the conditional
distribution pi , j = Pr(X ∈ Ri |� j ) = ∫ Ix∈Ri f j (x)dx, i �= j = 1, . . . , J . Now, these R j correspond
to the � j population and one is interested to categorize an observation, say x , into any one of the
group. In doing so, we entail a cost that is written as C(i | j), i , j = 1, . . . , J such that it signifies
the cost of assigning the observation in the i th population, that is, �i , when actually it should
belong to the j th, that is, � j population. Hence, the cost structure matrix may be given as shown in
Figure 8.23, where C( j | j) = 0,∀ j = 1, . . . , J .

Hence, the total gain/benefit given that the observation chosen belongs to popu-
lation � j may be expressed as T G(R j ) = −C( j |1)π1 ∫ Ix∈R j f1(x)dx − · · · − C( j | j − 1)

π j−1 ∫ Ix∈R j f j−1(x)dx − C( j | j + 1)π j+1 ∫ Ix∈R j f j+1(x)dx − · · · − C( j |J )πJ ∫ Ix∈R j f J (x)dx .
Let us further define the � j population

(
x j1, . . . , x jn j

) ∼ f j (x), where f j (x) is the probability
density function of the j th cluster/group. Then, the maximum likelihood discriminate rule would
intuitively assign x to � j such that the likelihood function L j (x) = f j (x) is maximized. Mathe-
matically, the sets/regions, R j , would be given by R j = {x : L j (x) > Li (x), i = 1, . . . , J , i �= j}.
Obviously, there is a misclassification penalty for assigning an observation in the wrong clus-
ter/group, and hence in the same spirit there would be a nonnegative penalty for right classification of

• R2(Π2)R1(Π1)x

RJ(Π2) ....

...RJ–1(ΠJ–1)

RJ(ΠJ)

FIGURE 8.22
Pictorial illustration of the concept of MDCA.
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True
population

Classified population

C(2|1)

C(2|2)

C(2|J–1)

C(2|J)

...

C(1|1)

C(1|2)

C(1|J–1)

C(1|J)

...

C(J–1|1)

C(J–1|2)

C(J–1|J–1)

C(J–1|J)

...

C(J|1)

C(J|2)

C(J|J–1)

C(J|J)

...

...

...

...

...

...

FIGURE 8.23
Cost structure matrix for MDCA.

the same. To design a rule, let us assume γ j and δ j as the gain or loss in correct or erroneous classifi-
cation of the observation, x , into the j th cluster/group. Furthermore, let the cost function be denoted
as C(i | j), i , j = 1, . . . , J. Intuitively one can easily comment that C( j | j) = 0 as we classify the
observation in its right cluster/group and hence there is no error. Thus, the total gain/loss is given
by the following equation: T C(R j ) = −C( j |1)π1 ∫ Ix∈R j × f1(x)dx . If one wants to diagrammat-
ically represent the classification/misclassification probabilities, then one can refer to Figure 8.24
(refer Johnson and Wichern, 2002).

Before we discuss an example, let us highlight a few important points for the MCDA method,
which may be useful for the readers to appreciate this multivariate statistical method in a much
better way:

1. The MDCA method is appropriate when the dependent variable is categorical, while the
independent variables are metric.

2. MDCA derives the variate that best distinguishes between a priori groups.

3. MDCA sets variate’s weights to maximize between-group variance relative to within-group
variance.

Pr(1|2) = ∫R1  f2 (x) dx Pr(2|1) = ∫R2  f1 (x) dx

R1
Classify as π1

R2
Classify as π2

f2 (x)f1 (x)

FIGURE 8.24
Misclassification probability for two regions marked as π1 and π2. (Adapted from Johnson, R.A. and Wichern, D.W. 2002.
Applied Multivariate Statistical Analysis, Pearson Education, ISBN: 8178086867.)
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Without being repetitive, we would like to mention the following important points for the MDCA
method. It should be remembered that for each observation, we can obtain a discriminant Z -
score, such that the average Z -score for a group gives the centroid for the group. Furthermore,
the classification done using cutting scores which are derived from group centroids and finally the
statistical significance of discriminant function is accomplished using distance between group cen-
troids. Finally, to conclude this section, before discussing an example, we state the general steps one
should remember for the MDCA method:

1. Step # 1: Research problem/objectives: In the research problem and objective formula-
tion stage, one needs to do the following: (i) evaluate the differences between average
scores for a priori groups on a set of variables; (ii) determine which set of independent
variables account for most of the differences between groups; and finally (iii) classify the
observations into groups.

2. Step # 2: Research design: The second stage is the research design stage in which the
important things to remember are (i) there should be a proper selection of dependent as well
as independent variables; (ii) the sample size considerations should be done appropriately,
and finally (iii) the division of sample into analysis and holdout sample should be done
rightly.

3. Step # 3: Assumptions of MDCA: As for any statistical method, MCDA also has some inher-
ent assumptions, which are (i) multivariate normality for the independent variables; (ii)
equal covariance matrices for the groups; (iii) low correlation among independent variables;
and finally (iv) linear nature of the discriminant function.

4. Step # 4: Estimation of MDCA and assessing fit: In the fourth stage, that is, the estima-
tion stage, one should remember that the estimation process can be either simultaneous or
stepwise and to test the statistical significance of the discriminant function, one should
use existing statistics such as Wilk’s lambda, Hotelling’s trace, Pillai’s criterion, Roy’s
greatest root, and Mahalanobis distance function to test the efficacy of the data set as
well as the MCDA method. It is important to note that the test statistic signifies the over-
all discrimination between groups and of each discriminant function. Moreover, to assess
the overall fit, one should calculate the discriminant Z -score for each observation and
then evaluate the group differences on Z -scores and predict the group membership accu-
rately. To do this, we need to address the following rationale for classification matrices:
(i) cutting score determination; (ii) considering costs of misclassification; (iii) construct-
ing classification matrices; (iv) assessing classification accuracy; and (v) proper casewise
diagnosis.

5. Step # 5: Interpretation of results: For this penultimate stage, remember the following
and they are related to the interpretation of results, which can be further broken into
those related to (i) methods for single discriminant function; (ii) discriminant weights; (iii)
discriminant loadings; and (iv) partial F-values. Additional methods for more than two
functions may be required to be used, and they are: (i) rotation of discriminant functions;
(ii) potency index; and (iii) stretched attribute vectors.

6. Step # 6: Validation of results: Finally, for the validation stage, one needs to analyze results
with what is practical/feasible, and then based on the feedback, conduct further tests if
required.

A few relevant references are: Duda et al. (2001), Härdle and Simar (2007), and Lachenbruch (1975).
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FIGURE 8.25
Crude oil sample in the discriminant space, Example 8.22. (Adapted from Johnson, R.A. and Wichern, D.W. 2002. Applied
Multivariate Statistical Analysis, Pearson Education, ISBN: 8178086867.)

Example 8.22: (Johnson and Wichern, 2002)

As an example for the MDCA, let us consider the data set related to crude oil samples study by
Gerrild and Lantz (1969). The crude obtained may be assigned to any one of the three populations,
namely, π1, π2, and π3, which are Wilhelm stone, sub-Mulinia sandstone, and upper sandstone,
respectively. We are interested to study the characteristics, namely, vanadium, iron, beryllium,
saturated hydrocarbon, and aromatic hydrocarbon, which may be denoted by X1, X2, X3, X4,
and X5. One can calculate the eigen values as 4.354 and 0.559. Finally, the Fisher linear dis-
criminants are given by (i) ŷ1 = 0.312(x1 − 6.180)− 0.710(x2 − 5.081)+ 2.764(x3 − 0.511)+
11.809(x4 − 0.201)− 0.235(x5− 6.434) and (ii) ŷ2= 0.169(x1− 6.180)− 0.245(x2− 5.081)−
2.046(x3 − 0.511)− 24.453(x4 − 0.201)− 0.378(x5 − 6.434). The crude oil sample in the dis-
criminant space is illustrated in Figure 8.25. One can also find the Fisher values of discriminants
which we omit and request the readers to study and do the necessary calculation as required.

8.22 Multidimensional Scaling

Like PCA, multidimensional scaling (MDS) is also a dimension reduction technique. Classic Torg-
erson metric MDS is actually done by transforming distances into similarities and performing PCA.
Thus, PCA might be called the algorithm of the simplest MDS. MDS and PCA are not at the same
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level to be in line or opposite to each other. PCA is just a method while MDS is a class of analysis.
As mapping, PCA is a particular case of MDS. On the other hand, PCA is a particular case of FA,
which, being a data reduction, is more than only mapping, while MDS is only a mapping. Further-
more, PCA as a technique projects a multidimensional space onto direction of maximum variability,
whereas, in MDS, the multidimensional space is projected while at the same time maintaining the
interpoint distances.

In PCA, we use the concept of covariance matrix to study the correlation between design variables,
and this is summarized using dot products, while, in MDS, one uses distance and loss function in
order to study the similarity/dissimilarity, which is summarized using cross product.

Consider Xn×p = (Xi , j ), with i = 1, 2, . . . , n and j = 1, 2, . . . , p such that Xn×p signify a matrix
corresponding to n number of readings where each of the readings are of dimension p. Our aim
using MDS is to calculate interpoint distances δ(X)i1,i2 = ‖X i1 − X i2‖, i1, i2 = 1, 2, . . . , n and
then try to find k(k ≤ p)-dimensional vector Y i , i = 1, 2, . . . , n with δ(Y )i1,i2 = ‖Y i1 − Y i2‖, such
that δ(X)i1,i2 ≈ δ(Y )i1,i2 for all i1, i2 = 1, 2, . . . , n. The proximity measure, δ(X)i1,i2 , need not be
Euclidean or any distance measure as such. It can also be an error and in the general sense, the
proximity measure is described as similarity or dissimilarity.

Before we solve a simple problem, one should be aware that the classical scaling concepts used
in the literature are either ordinal or metrical. Furthermore, there can be many dimensions based on
which distance measure has to be calculated and here is where the weighting function can be utilized
to scale the distances and also to draw them in a 2-D scale.

Example 8.23: (Johnson and Wichern, 2002)

As an example for MDS, consider the distance matrix between 10 cities, namely, London, Berlin,
Oslo, Moscow, Paris, Rome, Beijing, Istanbul, Gibraltar, and Reykjavik. The 2-D plot of the cities
based on the distances is shown in Figure 8.26. There are a few important points that one needs to
mention here related to multidimensional scaling: (i) the points can be reflected without changing
the interpoint distances; (ii) the interpoint distances are not affected if one changes the origin by
adding/subtracting a constant from the rows/columns; and (iii) the set of points can be rotated
without affecting the interpoint distances.

8.23 Structural Equation Modeling

Many of the multivariate statistical methods such as multiple regression, FA, MANOVA, etc. suffer
from one common limitation, which is to do with the fact that they can examine only a single rela-
tionship at a time. One method that is able to overcome this lacuna is structural equation modeling
(SEM). SEM is an extension of several multivariate techniques notably multiple regression and FA,
and is distinguished by two characteristics:

1. Estimation of multiple and interrelated dependence relationship.

2. Ability to represent unobserved concepts in these relationships and also the amount of
measurement error in the estimation process.

Another interesting fact is that this topic under multivariate statistical analysis is the only one to have
an exclusive peer-reviewed journal by the same name, which is Structural Equation Modeling: A
Multidisciplinary Journal, Taylor & Francis, ISSN: 1070-5511 (Print) and 1532-8007 (Online). The
origins of modern SEM is usually traced to biologist Sewall Wright’s development of path analysis
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FIGURE 8.26
2-D plot of distances for the 10 cities, Example 8.23. (Adapted from Johnson, R.A. and Wichern, D.W. 2002. Applied
Multivariate Statistical Analysis, Pearson Education, ISBN: 8178086867.)

(e.g., Wright, 1921, 1934). Another precursor of SEM is the path model (Duncan, 1966). If one
follows the history of SEM, then a few good references that may be cited to trace the development
of this statistical method are Bentler and Chou (1987), Bielby and Hauser (1977), Bollen (1989),
and Bollen and Long (1993).

SEM as a statistical technique refers to the body of a comprehensive statistical methodology used
to test and estimate the causal relations. The method uses a combination of cross-sectional statistical
data and qualitative causal assumptions. It is different from another statistical technique, namely,
multivariate linear regression model in the sense that the response variable in one regression equa-
tion in SEM may appear as a predictor in another equation. The variables in SEM may influence
another reciprocally, either directly or through other variables. The proliferation of the use of SEM
in social sciences, psychology, and related areas is due to the fact that implementation and the think-
ing process needed to actually theorize and practically apply this technique is akin to the informal
thinking about causal relation that is common in the areas just mentioned.

The common aspects/concepts in SEM are: (i) model specification, (ii) estimation of free param-
eters, (iii) assessment of model and model fit, (iv) model modification, (v) sample size and power,
and (vi) interpretation and communication.

We state a simple algorithm used for SEM, whereby we assume that latent variables are not
present. First, let us consider xi , i = 1, . . . , n points. Also assume the dependent variables are x j ,
j ∈ D, while the predictor variables are xk , k ∈ P and D ∩ P �= ∅. Furthermore, consider there is
a set T such that p = P − T are the actual predictor variables that are used. Our task is to find the
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FIGURE 8.27
Pseudo-code for structural equation modeling.

set of variables in p and T for xi , i ∈ D. The algorithms (Figure 8.27) use covariance information,
in the form of estimated standardized regression coefficients, to direct the construction of SEMs and
to estimate the parameters of the models. Latent variables can result in biased estimates; hence, the
algorithm might give erroneous results when latent variables are considered.

In the literature, one finds differing approaches to assess the best fit. Traditional approaches
to modeling start from a null hypothesis, rewarding more parsimonious models, to others such
as AIC that focus on how little the fitted values deviate from a comparison model, taking into
account the number of free parameters used. Because different measures of fit capture different
elements of the fit of the model, it is appropriate to report a selection of different fit measures.
A few commonly used measures of fit are: (i) chi-squared, (ii) AIC; (iii) root mean square error
(RMSE); (iv) standardized root mean residual (SRMR); and (v) comparative fit index. Though
not exhaustive, but a few useful references for SEM are: Bagozzi (1982), Grace (2006), Hancock
and Mueller (2006), Kaplan (2000), Kline (1998), Muthén (1983), Rabe-Hesketh et al. (2004),
Raykov and Marcoulides (2006), McDonald and Ho (2002), and Skrondal and Rabe-Hesketh
(2004).

Data set # 1: SEM process can be thought of as a four-stage process, namely, (i) model specifi-
cation, (ii) model estimation, (iii) model evaluation, and finally (iv) model modification. One can
use the data from Stein et al. (2003). The main idea of the study is to model two separate paths for
alcohol and drugs and then test them in which psychosocial, environmental, and sociodemographic
variables is the prediction the best. The behavioral and substance abuse-related factors as well as
the key outcome of positive attitudes about quitting drugs (N = 620) or alcohol (N = 526) in a
sample of 709 homeless women are used. A positive attitude about quitting alcohol was predicted
by more addiction symptoms, fewer positive effects from using alcohol, and not having a partner
who uses alcohol. A positive attitude about quitting drugs was predicted by more drug problems,
greater drug use in the past 6 months, more active coping, more education, less emotional distress,
not having a partner who uses drugs, and fewer addiction symptoms. As one understands that the
primary goal of the study is to determine if a set of items that query both alcohol and drug problems
are adequate indicators for the two underlying constructs, namely, alcohol use problem and drug
use problem. The reader is urged to study the data set and utilize the concepts of SEM to solve
this problem.

To end the discussion of MVA, we give a few of the necessary information related to journals,
data sets, etc., which we think would make this chapter more interesting both from the point of view
of theory as well as application. Finally, a few references that we definitely think are important with
respect to this chapter and related topics are: Agresti (2007), Aitchison (1986), Atchley and Bryant
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(1975), Bishop et al. (1975), Carroll and Green (1997), Cheung (2015), Gifi (1990), Harris (1975),
Kachigan (1991), Karson (1982), Krzanowski (1988, 1995), McCullagh and Nelder (1989), Van de
Geer (1993), Whittaker (1990), and others. This section has been an honest attempt to look into
MVA and multivariate statistics from a fresh perspective and try to deal with the theoretical as well
as practical aspects of different methods from the point of view of decision analysis. To end this
chapter, we discuss very briefly the future trends in statistics and big data analysis, which we think
would be an ever-burgeoning field considering the ever-increasing applications of statistics and its
tools in our everyday life.

8.24 Future Areas of Research

Today, science is passing through an era of transformation. Any decision-making process today
is based on the efficient analysis of data available at hand. Science is driven by the data and it
is being termed as data science. In the coming few decades, the most important areas of research
will be on the analysis of big data. Big data usually indicate data sets whose sizes are beyond
the ability of commonly used software tools to manage and analyze within a tolerable time limit.
The term “big data” is a constantly moving target. As of today, the size of “big data set” ranges
from few dozen terabytes to many petabytes of data. Interestingly, big data are available today in
every sphere of life. Starting from industry, environment, health care, and government security, big
data are being collected and stored everyday. This large complex, structured or unstructured, and
heterogeneous data in the form of big data has gained significant attention. The velocity of the
expansion of the amount of data gives rise to a complete paradigm shift in how new-age data are
processed.

The age of data science is in its infancy and is experiencing a tactical evolution by leaps and
bounds in all dimensions of science. Even though over the past few years a few robust big data
models have come into existence, there is still a need for the pool to expand at a faster pace to
meet the challenges of data proliferation. The concept of big data is relatively new and needs fur-
ther research. Big data sets cannot be practically analyzed on a single commodity computer because
their sizes are too large to fit in memory or it is too time consuming to process when the current
statistical methods are used. To circumvent this obstacle, one may have to resort to parallel and dis-
tributed architectures, with multicore and cloud computing platforms providing access to hundreds
or thousands of processors. While the parallel and distributed architectures present new capabilities
for storage and manipulation of data, from an inferential point of view, it is unclear how the current
statistical methodologies can be transported to the paradigm of big data. Big data have put a great
challenge on the current statistical methodology.

There are several algorithms that are recently developed and feasible for statistical inference of
big data and workable on parallel machines, including the bag of little bootstraps by Kleiner et al.
(2014), aggregated estimating equation of Xi et al. (2009), split and conquer algorithms of Chen
and Xie (2014), and the subsampling-based stochastic approximation algorithm by Liang et al.
(2013). On the other hand, iterative algorithms have been widely used in current society of scien-
tific computing, and it mainly includes Markov chain Monte Carlo (MCMC) algorithms and the EM
algorithm, which typically requires a large number of iterations and a complete scan of the full data
set for each iterations. Given the success of the iterative algorithms in modern scientific computing,
it would be of great interest to develop some innovative iterative algorithms that are feasible for
big data.
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There have been significant advances made by the statistical community on big data research in the
past few years. One of the open problems is how to generalize and scale up such proposed techniques
to the true big data setting. One of the key features of big data is that the statistical methods, which
work well on small-scale data set, usually perform poorly in big data setting. Some of the other open
problems include (i) to have better understanding of big data and associated statistical issues, (ii) to
think more carefully about how to solve big data issues, and (iii) to have a more concrete focus on
big data problems. There are lots of challenges in this exciting field of research. More people need
to come and join this active area of research for further development.
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products/modeler/

44 STATA Data Analysis and Statistical Software http://www.stata.com/

45 Stuttgart Neural Network Simulator http://www.ra.cs.uni-tuebingen.de/SNNS/

46 Statistica http://www.statsoft.com/#

47 Systat http://www.systat.com/

Few Relevant Societies/Department/Schools/Institutes, etc.

Details of Societies/Department/

S. No. Schools/Institutes, etc. URL

1 American Statistical Association http://www.amstat.org/

2 The Royal Statistical Society http://www.rss.org.uk/

3 Royal Economic Society http://www.res.org.uk/

4 Institute of Operations Research and Management Science

(INFORMS)

http://www.informs.org/

5 Society for Industrial and Applied Mathematics (SIAM) http://www.siam.org/

6 Mathematical Optimization Society http://www.mathopt.org/

7 The Association of European Operational Research

Societies (EURO)

http://www.euro-online.org/web/pages/ 1/home

8 Canadian Operations Research Society http://www.cors.ca/

9 French Society for Operations Research and Decisions http://www.roadef.org/content/index.htm

10 The Operational Research Society http://www.theorsociety.com/

11 Operational Research Society, Turkey http://www.yad.org.tr/

12 Operations Research Society of China http://www.orsc.org.cn/ and

http://www.orsc.org.cn/engindex.html

13 The Operations Research Society of Japan http://www.orsj.or.jp/

14 Operational Research Society of India http://www.orsi.in/

15 Brazilian Society of Operations Research http://www.sobrapo.org.br/

16 Stochastic Programming Community Home Page http://www.stoprog.org/

17 International Society on Multiple Criteria Decision Making http://www.mcdmsociety.org/

18 Society for Judgment and Decision Making http://www.sjdm.org/

19 International Institute for Applied Systems Analysis http://www.iiasa.ac.at/

20 The European Association for Decision Making http://www.eadm.eu/

21 ESIGMA (European Summer Institute Group on

Multicriteria Analysis):

http://www.cs.put.poznan.pl/ewgmcda/

European Working Group on Multiple Criteria Decision

Aiding

22 European Mathematical Information Service http://www.emis.de/

23 Algorithms, Combinatorics, and Optimization http://www.aco.gatech.edu/
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512 Decision Sciences

Details of Societies/Department/

S. No. Schools/Institutes, etc. URL

24 University of Waterloo (Combinatorics &

Optimization)

http://www.math.uwaterloo.ca/co/

25 Mathematical Science Research Institute http://www.msri.org/web/msri

26 Institute of Quantum Information http://www.iqi.caltech.edu/

27 Perimeter Institute of Theoretical Physics http://www.perimeterinstitute.ca/

28 Centre for Discrete Mathematics & Theoretical

Computer Science

http://www.dimacs.rutgers.edu/

29 Canadian Institute for Advanced Research (CIFAR) http://www.cifar.ca/

30 QuantumWorks http://www.quantumworks.ca/section/view

31 Center for the Mathematics of Information (CMI) http://www.cmi.caltech.edu/index.shtml

32 Optimization Online http://www.optimization-online.org/

33 The Fields Institute for Research in Mathematical

Sciences

http://www.fields.utoronto.ca/

34 American Mathematical Society http://www.ams.org/home/page

35 Canadian Mathematical Society http://cms.math.ca/

36 Good e-books http://sites.stat.psu.edu/~zuz13/resources.html

37 European Centre for Advanced Research in

Economics and Statistics

http://www.ecares.org/

38 Cornell University Library http://arxiv.org/

39 DEA Data Repository http://www.etm.pdx.edu/dea/dataset/default.htm

40 Virtual Library For Economics and Business Studies http://www.econbiz.de/en/

41 Data Envelopment Analysis: Applications for

Measuring Efficiency

http://www.dea-analysis.com/

42 Decision Sciences Institute http://www.decisionsciences.org/

43 DSpace MIT, USA http://dspace.mit.edu/

44 Mathematical Programming Glossary http://glossary.computing.society.informs.org/

45 Indian Statistical Institute http://www.isical.ac.in/

46 Department of Statistics, Stanford University, USA https://statistics.stanford.edu/

47 Department of Statistical Sciences (DSS), Cornell

University, USA

http://stat.cornell.edu/

48 Department of Statistics, Harvard University, USA http://statistics.fas.harvard.edu/

49 Department of Statistics, LSE, UK http://www.lse.ac.uk/statistics/home.aspx

50 Department of Statistical Sciences, Duke

University, USA

https://stat.duke.edu/

51 Department of Statistics, Oxford University, UK https://www.stats.ox.ac.uk/

52 Department of Statistics, University of Washington,

USA

https://www.stat.washington.edu/

53 Department of Statistics, University of California

Berkeley, USA

http://statistics.berkeley.edu/

54 Department of Statistics, Columbia University, USA http://stat.columbia.edu/

55 Department of Statistics, North Carolina State

University, USA

http://www.stat.ncsu.edu/

56 Statistics Department, Wharton, University of

Pennsylvania, USA

https://statistics.wharton.upenn.edu/
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Statistical Methods 513

Details of Societies/Department/

S. No. Schools/Institutes, etc. URL

57 Department of Statistics, Yale University, USA http://statistics.yale.edu/

58 Department of Statistics, University of Michigan Ann

Arbor, USA

http://lsa.umich.edu/stats/

59 Department of Statistics, University of California Los

Angeles, USA

http://statistics.ucla.edu/

60 Department of Statistics, Carnegie Mellon University,

USA

http://www.stat.cmu.edu/

61 Department of Statistics, University of Wisconsin

Madison, USA

https://www.stat.wisc.edu/

62 Department of Statistics, University of Florida, USA http://www.stat.ufl.edu/

63 Department of Mathematics and Statistics, Indian

Institute of Technology Kanpur, India

http://www.iitk.ac.in/math/

64 Department of Mathematics, Indian Institute of

Technology Bombay, India

http://www.math.iitb.ac.in/

65 Department of Mathematics, Indian Institute of

Technology Kharagpur, India

http://www.iitkgp.ac.in/academics/?page=
acadunits&&dept=MM

66 Department of Mathematics, Indian Institute of

Technology Madras, India

https://mat.iitm.ac.in/

67 Department of Statistics, Pune University, India http://stats.unipune.ernet.in/

68 Faculty of Mathematics, Informatics and Mechanics,

University of Warsaw, Poland

http://www.mimuw.edu.pl/

69 Department of Statistics and Applied Probability,

National University of Singapore, Singapore

http://www.stat.nus.edu.sg/opencms/

70 Department of Mathematics, Hong Kong University of

Science and Technology, China

http://www.math.ust.hk/welcome.php

71 List of Department in Statistics and Mathematics,

Academia Sinica, Taiwan

http://www.math.sinica.edu.tw/addbook/

default_e.jsp

72 Department of Mathematics, ETH Zurich, Switzerland https://www.math.ethz.ch/

73 Institute for Operations Research, Department of

Mathematics ETH Zurich, Switzerland

http://www.ifor.math.ethz.ch/

74 Graduate School of Mathematical Sciences, University

of Tokyo, Japan

http://www.ms.u-tokyo.ac.jp/

75 Department of Mathematical Sciences, Tsinghua

University, China

http://www.tsinghua.edu.cn/publish/mathen/ 2780/

76 Department of Mathematics, Katholieke Universiteit

Leuven, Belgium

https://wis.kuleuven.be/english

77 Doctoral Program in Mathematics, École Normale

Superieure, Paris (ENS Paris), France

http://www.math.u-psud.fr/~ecdoct/ecdoct/

index.php?l=ANG

78 Department of Pure Mathematics, École Polytechnique

(ParisTech), France

https://www.polytechnique.edu/en/department-of-

pure-mathematics

79 Master de Sciences et Technologies, Université Pierre et

Marie Curie (UPMC), France

http://www.master.ufrmath.upmc.fr/

80 Department of Statistics, Purdue University, USA http://www.stat.purdue.edu/

81 Department of Statistics and Operations Research,

University of North Carolina, USA

http://stat-or.unc.edu/
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514 Decision Sciences

Details of Societies/Department/

S. No. Schools/Institutes, etc. URL

82 Department of Statistics, University of Chicago,

USA

https://galton.uchicago.edu/

83 Department of Probability and Statistics, Peking

University, China

http://www.stat.pku.edu.cn/en/

84 Institute of Mathematics and Statistics, University

of Sao Paulo, Brazil

https://www.ime.usp.br/en

85 Leuven Statistics Research Centre, UCL Leuven https://lstat.kuleuven.be/

86 Department of Statistics, Seoul National University,

South Korea

http://gsis.snu.ac.kr/career/statistics

87 Institute of Operations Research and Statistics,

National Tsing Hua University, China

http://www.ie.tsinghua.edu.cn/eng/content.php?

pid=171&ty=173#

88 Department of Statistics and Operations Research,

University of Vienna, Switzerland

https://isor.univie.ac.at/

89 Institute of Stochastics, University of Ulm,

Germany

http://www.uni-ulm.de/index.php?id=3835&L=1

90 Department of Statistics,

Ludwig-Maximilians-University Munich,

Germany

http://www.statistik.lmu.de/index_e.html

91 Department of Mathematics, Humboldt-Universität

zu Berlin, Germany

https://www.mathematik.hu-berlin.de/en

92 Department of Mathematics, Karlsruhe Institute of

Technology, Germany

http://www.math.kit.edu/en

93 Department of Mathematics, RWTH Aachen

University, Germany

http://www.mathematik.rwth-aachen.de/

cms/~mxy/Mathematik/?lidx=1

94 Department of Mathematics, Technische Universität

Dresden, Germany

http://tu-dresden.de/die_tu_dresden fakultaeten/fakultaet_

mathematik_und_ naturwissenschaften/fachrichtung_

mathematik

95 National Institute of Statistical Sciences http://www.niss.org/

96 Statistical and Applied Mathematical Sciences

Institute

http://www.samsi.info

97 List of Statistics Departments http://www.stat.ufl.edu/vlib/statistics.html

Few Relevant Publication House/Publishers/Book and Journal Providers

Details of Publication House/

S. No. Publishers/Book and Journal Providers URL

1 ACM Publications http://www.acm.org/publications

2 Addison-Wesley http://www.pearsoned.co.uk/imprints/addison-wesley/

3 American Mathematical Society (AMS) http://www.ams.org/home/page

4 Association of American University

Presses (AAUP)

http://www.aaupnet.org/

5 Baltzer Science Publishers http://www.baltzersciencepublishers.com/en/

6 Birkhäuser Basel http://www.springer.com/birkhauser?SGWID=0-40290-0-0-0

7 Blackwell http://as.wiley.com/WileyCDA/Section/ index.html
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Statistical Methods 515

Details of Publication House/

S. No. Publishers/Book and Journal Providers URL

8 Cambridge University Press http://www.cambridge.org

9 Centre de Recherches Mathématiques

(University of Montréal, PQ)

http://www.crm.umontreal.ca/en/index.shtml

10 CRC Press http://www.crcpress.com/

11 Dover Publications, Inc. http://store.doverpublications.com/

12 Duke University Press https://www.dukeupress.edu/

13 Elsevier https://www.elsevier.com/

14 Gale Research, Cengage http://www.cengage.com/search/showresults.do?N=197

15 Hindawi Publishing Corporation http://www.hindawi.com/

16 IEEE https://www.ieee.org/index.html

17 Institute of Mathematical Statistics

Publications

http://imstat.org/publications/

18 Indian Institute of Science (IISc) Press http://www.iiscpress.iisc.in/

19 Indiana University Press http://www.iupress.indiana.edu/

20 JSTOR http://www.jstor.org/

21 Mathematical Association of America http://www.maa.org/

22 McGraw-Hill http://www.mheducation.com/

23 Marcel Dekker, Inc. http://www.dekker.com

24 MIT Press https://mitpress.mit.edu/

25 Oxford University Press http://global.oup.com

26 Pearson http://www.pearsoned.co.uk/

27 Prentice-Hall http://www.prenticehall.com/

28 Princeton University Press http://press.princeton.edu/

29 Scientific & Academic Publishing http://www.sapub.org/journal/index.aspx

30 SIAM http://www.siam.org/

31 Springer http://www.springer.com/gp/

32 Taylor & Francis http://www.taylorandfrancis.com/

33 University of Chicago Press http://www.press.uchicago.edu/index.html

34 Walter de Gruyter, Inc. http://www.degruyter.com/

35 Wiley http://www.wiley.com

36 Wolters Kluwer Group http://wolterskluwer.com/

List of Few Relevant Journals

S. No. Details of Relevant List of Few Journals URL

1 American Review of Mathematics and Statistics http://armsnet.info/

2 Applied Econometrics and International

Development

http://www.usc.es/economet/eaa.htm

3 The Annals of Probability http://www.imstat.org/aop/

4 The Annals of Applied Probability http://www.imstat.org/aap/

5 The Annals of Statistics http://www.imstat.org/aos/

6 The Annals of Applied Statistics http://imstat.org/aoas/
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516 Decision Sciences

S. No. Details of Relevant List of Few Journals URL

7 Applied Stochastic Models in Business and Industry http://onlinelibrary.wiley.com/journal/10.1002/

%28ISSN%291526-4025

8 Australian & New Zealand Journal of Statistics http://onlinelibrary.wiley.com/journal/10.1111/

%28ISSN%291467-842X

9 Bayesian Analysis http://projecteuclid.org/euclid.ba

10 Biometrika http://biomet.oxfordjournals.org/

11 Biometrical Journal http://onlinelibrary.wiley.com/journal/10.1002/

%28ISSN%291521-4036

12 Biometrics http://onlinelibrary.wiley.com/journal/10.1111/

%28ISSN%291541-0420

13 Biostatistics http://biostatistics.oxfordjournals.org/

14 Canadian Journal of Statistics http://onlinelibrary.wiley.com/journal/10.1002/

%28ISSN%291708-945X

15 Communications in Statistics—Simulation and

Computation

http://www.tandfonline.com/loi/lssp20#. VipG_iv2Qnk

16 Communications in Statistics—Theory and Methods http://www.tandfonline.com/loi/lsta20#. VipG2yv2Qnk

17 Computational Statistics http://link.springer.com/journal/180

18 Computational Statistics and Data Analysis http://www.journals.elsevier.com/computational-statistics-

and-data-analysis/

19 Econometrica http://onlinelibrary.wiley.com/journal/10.1111/

%28ISSN%291468-0262

20 Econometrics http://onlinelibrary.wiley.com/journal/10.1111/

%28ISSN%291368-423X

21 Econometric Reviews http://www.tandfonline.com/action/

journalInformation?journalCode=lecr20#. Vi3_Yyus0nk

22 Environmetrics http://onlinelibrary.wiley.com/journal/10.1002/

%28ISSN%291099-095X

23 International Journal of Forecasting http://www.journals.elsevier.com/international-journal-of-

forecasting/

24 International Statistical Review http://onlinelibrary.wiley.com/journal/10.1111/

%28ISSN%291751-5823

25 Journal of Agricultural, Biological, and

Environmental Statistics

http://link.springer.com/journal/13253

26 Journal of the American Statistical Association http://www.tandfonline.com/loi/uasa20#. Vii_Qiv2Qnk

27 Journal of Applied Econometrics http://onlinelibrary.wiley.com/journal/10.1002/

%28ISSN%291099-1255

28 Journal of Applied Statistics http://www.tandfonline.com/action/

journalInformation?journalCode=cjas20#. Vi4CQCus0nk

29 Journal of Business & Economic Statistics http://amstat.tandfonline.com/action/

journalInformation?journalCode=ubes20#.Vi4CbCus0nk

30 Journal of Chemometrics http://onlinelibrary.wiley.com/journal/10.1002/

%28ISSN%291099-128X/issues

31 Journal of Computational and Graphical Statistics http://amstat.tandfonline.com/action/

journalInformation?journalCode=ucgs20#.Vi4Coyus0nk

32 Journal of Econometrics http://www.journals.elsevier.com/journal-of-econometrics/
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Statistical Methods 517

S. No. Details of Relevant List of Few Journals URL

33 Journal of Economic and Social

Measurement

http://www.iospress.nl/journal/journal-of-economic-and-social-

measurement/

34 Journal of Environmental Statistics http://www.jenvstat.org/

35 Journal of Japanese Society of

Computational Statistics

http://jscs.jp/oubun/

36 Journal of the Japanese Statistical

Association

http://www.jss.gr.jp/en/journal/index.html

37 Journal of Machine Learning Research http://www.jmlr.org/

38 Journal of Modern Applied Statistical

Methods

http://www.jmasm.com/

39 Journal of Multivariate Analysis http://www.journals.elsevier.com/journal-of-multivariate-

analysis

40 Journal of the Royal Statistical

Society—Series A: Statistics in Society

http://onlinelibrary.wiley.com/journal/10.1111/

%28ISSN%291467-985X/

41 Journal of the Royal Statistical

Society—Series B: Statistical

Methodology

http://onlinelibrary.wiley.com/journal/10.1111/

%28ISSN%291467-9868/

42 Journal of the Royal Statistical

Society—Series C: Applied Statistics

http://onlinelibrary.wiley.com/journal/10.1111/

%28ISSN%291467-9876

43 Journal of Statistical Computation and

Simulation

http://www.tandfonline.com/action/

journalInformation?journalCode=gscs20#.Vi4EICus0nk

44 Journal of Statistics Education https://www.amstat.org/publications/jse/

45 Journal of Statistical Physics http://www.springer.com/physics/complexity/ journal/10955

46 Journal of Statistical Software http://www.jstatsoft.org/index

47 Journal of Time Series Analysis http://onlinelibrary.wiley.com/journal/10.1111/

%28ISSN%291467-9892

48 Pharmaceutical Statistics http://onlinelibrary.wiley.com/journal/10.1002/

%28ISSN%291539-1612

49 Physica A: Statistical Mechanics and Its

Applications

http://www.journals.elsevier.com/physica-a-statistical-

mechanics-and-its-applications/

50 Psychometrika http://www.springer.com/psychology/journal/11336

51 Quality and Reliability Engineering

International

http://onlinelibrary.wiley.com/journal/10.1002/

%28ISSN%291099-1638/

52 Sankhyā A: The Indian Journal of

Statistics

http://www.springer.com/statistics/journal/13171

53 Sankhyā B: The Indian Journal of

Statistics

http://www.springer.com/statistics/journal/13571

54 Scandinavian Journal of Statistics http://onlinelibrary.wiley.com/journal/10.1111/

%28ISSN%291467-9469

55 Statistics and Computing http://www.springer.com/statistics/computational

+statistics/journal/11222

56 Statistical Methods in Medical Research http://smm.sagepub.com/

57 Statistics in Biopharmaceutical Research http://www.tandfonline.com/action/

journalInformation?journalCode=usbr20#. Vi4G4Cus0nk

58 Statistics in Medicine http://onlinelibrary.wiley.com/journal/10.1002/

%28ISSN%291097-0258
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518 Decision Sciences

S. No. Details of Relevant List of Few Journals URL

59 Statistics and Probability Letters http://www.journals.elsevier.com/statistics-and-probability-

letters/

60 Statistical Analysis and Data Mining http://onlinelibrary.wiley.com/journal/10.1002/

%28ISSN%291932-1872/

61 Statistical Applications in Genetics and

Molecular Biology

http://www.degruyter.com/view/j/sagmb

62 Statistical Modelling http://smj.sagepub.com/

63 Statistica Neerlandica http://onlinelibrary.wiley.com/journal/10.1111/

%28ISSN%291467-9574

64 Statistica Sinica http://www3.stat.sinica.edu.tw/statistica/

65 Statistical Science http://www.imstat.org/sts/

66 Statistics and Risk Modeling http://www.degruyter.com/view/j/strm

67 Statistics Surveys http://imstat.org/ss/

68 Stochastic Environmental Research and

Risk Assessment

http://www.springer.com/environment/journal/477

69 Stochastic Processes and Their

Applications

http://www.journals.elsevier.com/stochastic-processes-and-

their-applications/

70 Statistics and Probability Letters http://www.journals.elsevier.com/statistics-and-probability-

letters/

71 Structural Equation Modeling: A

Multidisciplinary Journal

http://www.tandfonline.com/toc/hsem20/current

72 Technometrics http://amstat.tandfonline.com/action/

journalInformation?show=aimsScope&journalCode=
utch20#.Vi4I3yus0nk

73 The Review of Economics and Statistics http://www.mitpressjournals.org/loi/rest

Few Relevant Data Sets

S. No. Details of Data Sets URL

1 Amazon Public Data http://aws.amazon.com/public-data-sets/

2 Bernoulli Society http://www.bernoulli-society.org/

3 Biologic Specimen and Data Repository

Information Coordinating Center

https://biolincc.nhlbi.nih.gov/home/

4 Biostatistics Data, Vandebilt University,

USA

http://biostat.mc.vanderbilt.edu/twiki/bin/view/

Main/DataSets

5 Chemical Informatics http://www.cheminformatics.org/datasets/index.shtml

6 Critical Assessment of Microarray Data

Analysis

http://www.camda.duke.edu/camda03/datasets/

7 DataCite http://www.datacite.org/

8 Data Sets http://www.grappa.univ-lille3.fr/~torre/Recherche/

Experiments/Datasets/

9 Data Sets for “The Elements of

Statistical Learning”

http://statweb.stanford.edu/~tibs/ElemStatLearn/ data.html

10 Earthquake Data http://earthquake.usgs.gov/data/
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Statistical Methods 519

S. No. Details of Data Sets URL

11 European Cities 1M Data Sets http://image.ntua.gr/iva/datasets/ec1 m/

12 Geo Data Centre, Arizona State

University, USA

http://geodacenter.asu.edu/sdata

13 Hubble Space Data http://hla.stsci.edu/

14 International Statistical Institute http://isi-web.org/

15 MIT Airline Data Project http://web.mit.edu/airlinedata/www/Revenue&

Related.html

16 NCBI GenBank http://www.ncbi.nlm.nih.gov/genbank/

17 NHLBI Data Repository and

Biospecimen Repository Information

Coordination Center

https://biolincc.nhlbi.nih.gov/redirect/

18 National Flight Data Center (NFDC) https://nfdc.faa.gov/xwiki/bin/view/NFDC/WebHome

19 Network Data http://www-personal.umich.edu/~mejn/netdata/

20 NOAA Data http://www.ncdc.noaa.gov/

21 Open Sports Data/API http://www.openligadb.de/

22 Online Glossary of Research Economics http://www.econterms.com/

23 Online for Time Series Data http://datamarket.com/

24 Online Statistical Software for

Astronomy and Related Physical

Sciences

http://astrostatistics.psu.edu/statcodes/

25 Precipitation Measurement Data http://pmm.nasa.gov/data-access/google-earth

26 Public Data, University of Utah, USA http://www.utah.gov/data/

27 Public Government Data Sets http://catalog.data.gov/dataset

28 Quandl—Intelligent Search for

Numerical Data

http://www.quandl.com/

29 Real-Time Space Weather Data Sources http://space.rice.edu/ISTP/#RT

30 Stat Lib, Statistical Library, Carnegie

Mellon University, USA

http://lib.stat.cmu.edu/

31 Statistical Data Set, University of

Massachusetts Amherst, USA

http://www.umass.edu/statdata/statdata/

32 Statistical Data Set, University of

Vienna, Switzerland

http://www.mat.univie.ac.at/~neum/statdat.html

33 Statistical Reference Data Set http://www.itl.nist.gov/div898/strd/

34 Statistical Science Web (Data Sets) http://www.statsci.org/datasets.html

35 Survival Analysis, Including Penalised

Likelihood

http://sites.stat.psu.edu/~dhunter/R/html/survival/

html/00Index.html

36 The Center for Innovation in

Engineering and Science Education

Real-Time Data Sites

http://www.k12science.org/materials/resources/

realtimedata/

37 The Data and Story Library, Carnegie

Mellon University, USA

http://lib.stat.cmu.edu/DASL/

38 The World Wide Web Virtual Library:

Statistics

http://www.stat.ufl.edu/vlib/statistics.html

39 U.S. Department of Homeland Security

Data

http://www.dhs.gov/topic/data
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S. No. Details of Data Sets URL

40 University of Edinburgh School of Informatics

Data Sets for Data Mining

http://www.inf.ed.ac.uk/teaching/courses/dme/

html/datasets0405.html

41 Weibull.com, Reliability Engineering Resource

Website

http://www.weibull.com/

42 U.S. Government Data https://www.usa.gov/statistics

43 U.S. Web Traffic https://analytics.usa.gov/

44 Ministry of Statistics and Programme

Implementation (GoI)

http://mospi.nic.in/

45 U.K. Government Data https://www.data.gov.uk/

46 German Government data https://www.govdata.de/

47 National Institute of Statistics and Economic

Studies (France)

http://www.insee.fr/en/

48 National Bureau of Statistics of China http://chinadatacenter.org/AboutCDC/

PartnersContent.aspx?id=23

49 Canadian Government Data http://open.canada.ca/en

50 Brazilian Government Data http://www.ibge.gov.br/english/

51 Statistics Bureau of Japan http://www.stat.go.jp/english/

52 Statistics Sweden http://www.scb.se/

53 Statistics Korea http://kostat.go.kr/portal/english/index.action

54 World Bank Data http://data.worldbank.org/
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