Gut Retest + 100 New Bacteria Launch
September 2023



Our science team have been busy working hard on a new,
Backgrou nd groundbreaking way of identifying gut bacteria.

Thanks to more ZOE members (and more microbiome samples)
we’ve discovered more bacteria linked to health.

This new science has discovered thousands of microbes that
have never been identified before, hundreds of which are linked
with food and with health outcomes like heart disease.

This has allowed us to increase the top bacteria reported in the
ZOE Test from 30 to 100.

This means we’ll be able to provide the most comprehensive
and precise microbiome score together up-to-date food scores
based on gut composition.




Key messages

. Discovery of new bacteria (new science)
Our latest scientific breakthrough reveals more about your microbiome. A
world-first discovery of novel gut bacteria.

« ZOE launches gut health retesting
Retest your microbiome to discover how eating the ZOE way has improved your
gut health.

. Recalculated microbiome scores for retesters*
We’ve updated your microbiome score to reflect our new discoveries - from 30
bacteria to a groundbreaking 100. All based on our new science with a much bigger
dataset thanks to our members.

. Proof that the ZOE program works (efficacy)
Already, retesting has shown that 82% of our members have improved their gut

health by following the ZOE program.

*this is coming soon for non-retesters and will not have launched in September



The science



Microbiome species associated with cardio-metabolic risk
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Improving associations considering unknown species
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Expanding to S PREDICT cohorts
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Cardiometabolic ranks across geography

and BMI
Consistent associations between SGB ranked w.r.t. cardiometabolic markers
UK and US ranks vs. their partial correlations against BMI
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Cardiometabolic ranks across geography

and BMI
Consistent associations between SGB ranked w.r.t. cardiometabolic markers
UK and US ranks vs. their partial correlations against BMI
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