Struct alloy_primitives::Address
source · #[repr(transparent)]pub struct Address(pub FixedBytes<20>);
Expand description
An Ethereum address, 20 bytes in length.
This type is separate from B160
/ FixedBytes<20>
and is declared with the wrap_fixed_bytes!
macro. This allows us
to implement address-specific functionality.
The main difference with the generic FixedBytes
implementation is that
Display
formats the address using its EIP-55 checksum
(to_checksum
).
Use Debug
to display the raw bytes without the checksum.
Examples
Parsing and formatting:
use alloy_primitives::{address, Address};
let checksummed = "0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045";
let expected = address!("d8da6bf26964af9d7eed9e03e53415d37aa96045");
let address = Address::parse_checksummed(checksummed, None).expect("valid checksum");
assert_eq!(address, expected);
// Format the address with the checksum
assert_eq!(address.to_string(), checksummed);
assert_eq!(address.to_checksum(None), checksummed);
// Format the compressed checksummed address
assert_eq!(format!("{address:#}"), "0xd8dA…6045");
// Format the address without the checksum
assert_eq!(format!("{address:?}"), "0xd8da6bf26964af9d7eed9e03e53415d37aa96045");
Tuple Fields§
§0: FixedBytes<20>
Implementations§
source§impl Address
impl Address
sourcepub const fn with_last_byte(x: u8) -> Self
pub const fn with_last_byte(x: u8) -> Self
Creates a new byte array with the last byte set to x
.
sourcepub const fn repeat_byte(byte: u8) -> Self
pub const fn repeat_byte(byte: u8) -> Self
Creates a new byte array where all bytes are set to byte
.
sourcepub fn from_slice(src: &[u8]) -> Self
pub fn from_slice(src: &[u8]) -> Self
sourcepub fn left_padding_from(value: &[u8]) -> Self
pub fn left_padding_from(value: &[u8]) -> Self
sourcepub fn right_padding_from(value: &[u8]) -> Self
pub fn right_padding_from(value: &[u8]) -> Self
sourcepub const fn into_array(self) -> [u8; 20]
pub const fn into_array(self) -> [u8; 20]
Returns the inner bytes array.
source§impl Address
impl Address
sourcepub fn from_word(word: FixedBytes<32>) -> Self
pub fn from_word(word: FixedBytes<32>) -> Self
Creates an Ethereum address from an EVM word’s upper 20 bytes
(word[12..]
).
Examples
let word = b256!("000000000000000000000000d8da6bf26964af9d7eed9e03e53415d37aa96045");
assert_eq!(Address::from_word(word), address!("d8da6bf26964af9d7eed9e03e53415d37aa96045"));
sourcepub fn into_word(&self) -> FixedBytes<32>
pub fn into_word(&self) -> FixedBytes<32>
Left-pads the address to 32 bytes (EVM word size).
Examples
assert_eq!(
address!("d8da6bf26964af9d7eed9e03e53415d37aa96045").into_word(),
b256!("000000000000000000000000d8da6bf26964af9d7eed9e03e53415d37aa96045"),
);
sourcepub fn parse_checksummed<S: AsRef<str>>(
s: S,
chain_id: Option<u64>
) -> Result<Self, AddressError>
pub fn parse_checksummed<S: AsRef<str>>( s: S, chain_id: Option<u64> ) -> Result<Self, AddressError>
Parse an Ethereum address, verifying its EIP-55 checksum.
You can optionally specify an EIP-155 chain ID to check the address using EIP-1191.
Errors
This method returns an error if the provided string does not match the expected checksum.
Examples
let checksummed = "0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045";
let address = Address::parse_checksummed(checksummed, None).unwrap();
let expected = address!("d8da6bf26964af9d7eed9e03e53415d37aa96045");
assert_eq!(address, expected);
sourcepub fn to_checksum_raw<'a>(
&self,
buf: &'a mut [u8],
chain_id: Option<u64>
) -> &'a str
pub fn to_checksum_raw<'a>( &self, buf: &'a mut [u8], chain_id: Option<u64> ) -> &'a str
Encodes an Ethereum address to its EIP-55 checksum.
You can optionally specify an EIP-155 chain ID to encode the address using EIP-1191.
Panics
Panics if buf
is not exactly 42 bytes long.
Examples
let address = address!("d8da6bf26964af9d7eed9e03e53415d37aa96045");
let mut buf = [0; 42];
let checksummed: &str = address.to_checksum_raw(&mut buf, None);
assert_eq!(checksummed, "0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045");
let checksummed: &str = address.to_checksum_raw(&mut buf, Some(1));
assert_eq!(checksummed, "0xD8Da6bf26964Af9d7EEd9e03e53415d37AA96045");
sourcepub fn to_checksum(&self, chain_id: Option<u64>) -> String
pub fn to_checksum(&self, chain_id: Option<u64>) -> String
Encodes an Ethereum address to its EIP-55 checksum.
You can optionally specify an EIP-155 chain ID to encode the address using EIP-1191.
Examples
let address = address!("d8da6bf26964af9d7eed9e03e53415d37aa96045");
let checksummed: String = address.to_checksum(None);
assert_eq!(checksummed, "0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045");
let checksummed: String = address.to_checksum(Some(1));
assert_eq!(checksummed, "0xD8Da6bf26964Af9d7EEd9e03e53415d37AA96045");
sourcepub fn create2_from_code<S, C>(&self, salt: S, init_code: C) -> Selfwhere
S: Borrow<[u8; 32]>,
C: AsRef<[u8]>,
pub fn create2_from_code<S, C>(&self, salt: S, init_code: C) -> Selfwhere S: Borrow<[u8; 32]>, C: AsRef<[u8]>,
Computes the CREATE2
address of a smart contract as specified in
EIP-1014:
keccak256(0xff ++ address ++ salt ++ keccak256(init_code))[12:]
The init_code
is the code that, when executed, produces the runtime
bytecode that will be placed into the state, and which typically is used
by high level languages to implement a ‘constructor’.
Examples
let address = address!("8ba1f109551bD432803012645Ac136ddd64DBA72");
let salt = b256!("7c5ea36004851c764c44143b1dcb59679b11c9a68e5f41497f6cf3d480715331");
let init_code = bytes!("6394198df16000526103ff60206004601c335afa6040516060f3");
let expected = address!("533ae9d683B10C02EbDb05471642F85230071FC3");
assert_eq!(address.create2_from_code(salt, init_code), expected);
sourcepub fn create2<S, H>(&self, salt: S, init_code_hash: H) -> Selfwhere
S: Borrow<[u8; 32]>,
H: Borrow<[u8; 32]>,
pub fn create2<S, H>(&self, salt: S, init_code_hash: H) -> Selfwhere S: Borrow<[u8; 32]>, H: Borrow<[u8; 32]>,
Computes the CREATE2
address of a smart contract as specified in
EIP-1014, taking the pre-computed hash of the init code as input:
keccak256(0xff ++ address ++ salt ++ init_code_hash)[12:]
The init_code
is the code that, when executed, produces the runtime
bytecode that will be placed into the state, and which typically is used
by high level languages to implement a ‘constructor’.
Examples
let address = address!("5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f");
let salt = b256!("2b2f5776e38002e0c013d0d89828fdb06fee595ea2d5ed4b194e3883e823e350");
let init_code_hash = b256!("96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f");
let expected = address!("0d4a11d5EEaaC28EC3F61d100daF4d40471f1852");
assert_eq!(address.create2(salt, init_code_hash), expected);
sourcepub fn from_raw_public_key(pubkey: &[u8]) -> Self
pub fn from_raw_public_key(pubkey: &[u8]) -> Self
Methods from Deref<Target = FixedBytes<20>>§
pub const ZERO: Self = _
sourcepub fn as_slice(&self) -> &[u8] ⓘ
pub fn as_slice(&self) -> &[u8] ⓘ
Returns a slice containing the entire array. Equivalent to &s[..]
.
sourcepub fn as_mut_slice(&mut self) -> &mut [u8] ⓘ
pub fn as_mut_slice(&mut self) -> &mut [u8] ⓘ
Returns a mutable slice containing the entire array. Equivalent to
&mut s[..]
.
sourcepub fn covers(&self, other: &Self) -> bool
pub fn covers(&self, other: &Self) -> bool
Returns true
if all bits set in self
are also set in b
.
sourcepub fn const_eq(&self, other: &Self) -> bool
pub fn const_eq(&self, other: &Self) -> bool
Compile-time equality. NOT constant-time equality.
sourcepub fn const_is_zero(&self) -> bool
pub fn const_is_zero(&self) -> bool
Returns true
if no bits are set.
Methods from Deref<Target = [u8; N]>§
1.57.0 · sourcepub fn as_slice(&self) -> &[T]
pub fn as_slice(&self) -> &[T]
Returns a slice containing the entire array. Equivalent to &s[..]
.
1.57.0 · sourcepub fn as_mut_slice(&mut self) -> &mut [T]
pub fn as_mut_slice(&mut self) -> &mut [T]
Returns a mutable slice containing the entire array. Equivalent to
&mut s[..]
.
sourcepub fn each_ref(&self) -> [&T; N]
🔬This is a nightly-only experimental API. (array_methods
)
pub fn each_ref(&self) -> [&T; N]
array_methods
)Borrows each element and returns an array of references with the same
size as self
.
Example
#![feature(array_methods)]
let floats = [3.1, 2.7, -1.0];
let float_refs: [&f64; 3] = floats.each_ref();
assert_eq!(float_refs, [&3.1, &2.7, &-1.0]);
This method is particularly useful if combined with other methods, like
map
. This way, you can avoid moving the original
array if its elements are not Copy
.
#![feature(array_methods)]
let strings = ["Ferris".to_string(), "♥".to_string(), "Rust".to_string()];
let is_ascii = strings.each_ref().map(|s| s.is_ascii());
assert_eq!(is_ascii, [true, false, true]);
// We can still access the original array: it has not been moved.
assert_eq!(strings.len(), 3);
sourcepub fn each_mut(&mut self) -> [&mut T; N]
🔬This is a nightly-only experimental API. (array_methods
)
pub fn each_mut(&mut self) -> [&mut T; N]
array_methods
)Borrows each element mutably and returns an array of mutable references
with the same size as self
.
Example
#![feature(array_methods)]
let mut floats = [3.1, 2.7, -1.0];
let float_refs: [&mut f64; 3] = floats.each_mut();
*float_refs[0] = 0.0;
assert_eq!(float_refs, [&mut 0.0, &mut 2.7, &mut -1.0]);
assert_eq!(floats, [0.0, 2.7, -1.0]);
sourcepub fn split_array_ref<const M: usize>(&self) -> (&[T; M], &[T])
🔬This is a nightly-only experimental API. (split_array
)
pub fn split_array_ref<const M: usize>(&self) -> (&[T; M], &[T])
split_array
)Divides one array reference into two at an index.
The first will contain all indices from [0, M)
(excluding
the index M
itself) and the second will contain all
indices from [M, N)
(excluding the index N
itself).
Panics
Panics if M > N
.
Examples
#![feature(split_array)]
let v = [1, 2, 3, 4, 5, 6];
{
let (left, right) = v.split_array_ref::<0>();
assert_eq!(left, &[]);
assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
}
{
let (left, right) = v.split_array_ref::<2>();
assert_eq!(left, &[1, 2]);
assert_eq!(right, &[3, 4, 5, 6]);
}
{
let (left, right) = v.split_array_ref::<6>();
assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
assert_eq!(right, &[]);
}
sourcepub fn split_array_mut<const M: usize>(&mut self) -> (&mut [T; M], &mut [T])
🔬This is a nightly-only experimental API. (split_array
)
pub fn split_array_mut<const M: usize>(&mut self) -> (&mut [T; M], &mut [T])
split_array
)Divides one mutable array reference into two at an index.
The first will contain all indices from [0, M)
(excluding
the index M
itself) and the second will contain all
indices from [M, N)
(excluding the index N
itself).
Panics
Panics if M > N
.
Examples
#![feature(split_array)]
let mut v = [1, 0, 3, 0, 5, 6];
let (left, right) = v.split_array_mut::<2>();
assert_eq!(left, &mut [1, 0][..]);
assert_eq!(right, &mut [3, 0, 5, 6]);
left[1] = 2;
right[1] = 4;
assert_eq!(v, [1, 2, 3, 4, 5, 6]);
sourcepub fn rsplit_array_ref<const M: usize>(&self) -> (&[T], &[T; M])
🔬This is a nightly-only experimental API. (split_array
)
pub fn rsplit_array_ref<const M: usize>(&self) -> (&[T], &[T; M])
split_array
)Divides one array reference into two at an index from the end.
The first will contain all indices from [0, N - M)
(excluding
the index N - M
itself) and the second will contain all
indices from [N - M, N)
(excluding the index N
itself).
Panics
Panics if M > N
.
Examples
#![feature(split_array)]
let v = [1, 2, 3, 4, 5, 6];
{
let (left, right) = v.rsplit_array_ref::<0>();
assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
assert_eq!(right, &[]);
}
{
let (left, right) = v.rsplit_array_ref::<2>();
assert_eq!(left, &[1, 2, 3, 4]);
assert_eq!(right, &[5, 6]);
}
{
let (left, right) = v.rsplit_array_ref::<6>();
assert_eq!(left, &[]);
assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
}
sourcepub fn rsplit_array_mut<const M: usize>(&mut self) -> (&mut [T], &mut [T; M])
🔬This is a nightly-only experimental API. (split_array
)
pub fn rsplit_array_mut<const M: usize>(&mut self) -> (&mut [T], &mut [T; M])
split_array
)Divides one mutable array reference into two at an index from the end.
The first will contain all indices from [0, N - M)
(excluding
the index N - M
itself) and the second will contain all
indices from [N - M, N)
(excluding the index N
itself).
Panics
Panics if M > N
.
Examples
#![feature(split_array)]
let mut v = [1, 0, 3, 0, 5, 6];
let (left, right) = v.rsplit_array_mut::<4>();
assert_eq!(left, &mut [1, 0]);
assert_eq!(right, &mut [3, 0, 5, 6][..]);
left[1] = 2;
right[1] = 4;
assert_eq!(v, [1, 2, 3, 4, 5, 6]);
sourcepub fn as_ascii(&self) -> Option<&[AsciiChar; N]>
🔬This is a nightly-only experimental API. (ascii_char
)
pub fn as_ascii(&self) -> Option<&[AsciiChar; N]>
ascii_char
)Converts this array of bytes into a array of ASCII characters,
or returns None
if any of the characters is non-ASCII.
Examples
#![feature(ascii_char)]
#![feature(const_option)]
const HEX_DIGITS: [std::ascii::Char; 16] =
*b"0123456789abcdef".as_ascii().unwrap();
assert_eq!(HEX_DIGITS[1].as_str(), "1");
assert_eq!(HEX_DIGITS[10].as_str(), "a");
sourcepub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar; N]
🔬This is a nightly-only experimental API. (ascii_char
)
pub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar; N]
ascii_char
)Converts this array of bytes into a array of ASCII characters, without checking whether they’re valid.
Safety
Every byte in the array must be in 0..=127
, or else this is UB.
Trait Implementations§
source§impl AsMut<FixedBytes<20>> for Address
impl AsMut<FixedBytes<20>> for Address
source§fn as_mut(&mut self) -> &mut FixedBytes<20>
fn as_mut(&mut self) -> &mut FixedBytes<20>
source§impl AsRef<FixedBytes<20>> for Address
impl AsRef<FixedBytes<20>> for Address
source§fn as_ref(&self) -> &FixedBytes<20>
fn as_ref(&self) -> &FixedBytes<20>
source§impl BitAndAssign<Address> for Address
impl BitAndAssign<Address> for Address
source§fn bitand_assign(&mut self, rhs: Address)
fn bitand_assign(&mut self, rhs: Address)
&=
operation. Read moresource§impl BitOrAssign<Address> for Address
impl BitOrAssign<Address> for Address
source§fn bitor_assign(&mut self, rhs: Address)
fn bitor_assign(&mut self, rhs: Address)
|=
operation. Read moresource§impl BitXorAssign<Address> for Address
impl BitXorAssign<Address> for Address
source§fn bitxor_assign(&mut self, rhs: Address)
fn bitxor_assign(&mut self, rhs: Address)
^=
operation. Read moresource§impl From<Address> for FixedBytes<20>
impl From<Address> for FixedBytes<20>
source§impl From<FixedBytes<20>> for Address
impl From<FixedBytes<20>> for Address
source§fn from(original: FixedBytes<20>) -> Address
fn from(original: FixedBytes<20>) -> Address
source§impl<'__deriveMoreLifetime> IntoIterator for &'__deriveMoreLifetime Address
impl<'__deriveMoreLifetime> IntoIterator for &'__deriveMoreLifetime Address
§type Item = <&'__deriveMoreLifetime FixedBytes<20> as IntoIterator>::Item
type Item = <&'__deriveMoreLifetime FixedBytes<20> as IntoIterator>::Item
§type IntoIter = <&'__deriveMoreLifetime FixedBytes<20> as IntoIterator>::IntoIter
type IntoIter = <&'__deriveMoreLifetime FixedBytes<20> as IntoIterator>::IntoIter
source§impl<'__deriveMoreLifetime> IntoIterator for &'__deriveMoreLifetime mut Address
impl<'__deriveMoreLifetime> IntoIterator for &'__deriveMoreLifetime mut Address
§type Item = <&'__deriveMoreLifetime mut FixedBytes<20> as IntoIterator>::Item
type Item = <&'__deriveMoreLifetime mut FixedBytes<20> as IntoIterator>::Item
§type IntoIter = <&'__deriveMoreLifetime mut FixedBytes<20> as IntoIterator>::IntoIter
type IntoIter = <&'__deriveMoreLifetime mut FixedBytes<20> as IntoIterator>::IntoIter
source§impl IntoIterator for Address
impl IntoIterator for Address
§type Item = <FixedBytes<20> as IntoIterator>::Item
type Item = <FixedBytes<20> as IntoIterator>::Item
§type IntoIter = <FixedBytes<20> as IntoIterator>::IntoIter
type IntoIter = <FixedBytes<20> as IntoIterator>::IntoIter
source§impl Ord for Address
impl Ord for Address
source§impl PartialEq<&[u8]> for Address
impl PartialEq<&[u8]> for Address
source§impl PartialEq<&[u8; 20]> for Address
impl PartialEq<&[u8; 20]> for Address
source§impl PartialEq<&Address> for [u8]
impl PartialEq<&Address> for [u8]
source§impl PartialEq<&Address> for [u8; 20]
impl PartialEq<&Address> for [u8; 20]
source§impl PartialEq<[u8]> for &Address
impl PartialEq<[u8]> for &Address
source§impl PartialEq<[u8]> for Address
impl PartialEq<[u8]> for Address
source§impl PartialEq<[u8; 20]> for &Address
impl PartialEq<[u8; 20]> for &Address
source§impl PartialEq<[u8; 20]> for Address
impl PartialEq<[u8; 20]> for Address
source§impl PartialEq<Address> for &[u8]
impl PartialEq<Address> for &[u8]
source§impl PartialEq<Address> for &[u8; 20]
impl PartialEq<Address> for &[u8; 20]
source§impl PartialEq<Address> for [u8]
impl PartialEq<Address> for [u8]
source§impl PartialEq<Address> for [u8; 20]
impl PartialEq<Address> for [u8; 20]
source§impl PartialEq<Address> for Address
impl PartialEq<Address> for Address
source§impl PartialOrd<&[u8]> for Address
impl PartialOrd<&[u8]> for Address
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moresource§impl PartialOrd<&Address> for [u8]
impl PartialOrd<&Address> for [u8]
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moresource§impl PartialOrd<[u8]> for &Address
impl PartialOrd<[u8]> for &Address
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moresource§impl PartialOrd<[u8]> for Address
impl PartialOrd<[u8]> for Address
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moresource§impl PartialOrd<Address> for &[u8]
impl PartialOrd<Address> for &[u8]
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moresource§impl PartialOrd<Address> for [u8]
impl PartialOrd<Address> for [u8]
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moresource§impl PartialOrd<Address> for Address
impl PartialOrd<Address> for Address
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moreimpl Copy for Address
impl Eq for Address
impl StructuralEq for Address
impl StructuralPartialEq for Address
Auto Trait Implementations§
impl RefUnwindSafe for Address
impl Send for Address
impl Sync for Address
impl Unpin for Address
impl UnwindSafe for Address
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> ToHex for Twhere
T: AsRef<[u8]>,
impl<T> ToHex for Twhere T: AsRef<[u8]>,
source§fn encode_hex<U>(&self) -> Uwhere
U: FromIterator<char>,
fn encode_hex<U>(&self) -> Uwhere U: FromIterator<char>,
encode
or other specialized functions insteadself
into the result. Lower case
letters are used (e.g. f9b4ca
)source§fn encode_hex_upper<U>(&self) -> Uwhere
U: FromIterator<char>,
fn encode_hex_upper<U>(&self) -> Uwhere U: FromIterator<char>,
encode
or other specialized functions insteadself
into the result. Upper case
letters are used (e.g. F9B4CA
)