Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/scipy/integrate/_ivp/lsoda.py: 19%

57 statements  

« prev     ^ index     » next       coverage.py v7.3.2, created at 2023-12-12 06:31 +0000

1import numpy as np 

2from scipy.integrate import ode 

3from .common import validate_tol, validate_first_step, warn_extraneous 

4from .base import OdeSolver, DenseOutput 

5 

6 

7class LSODA(OdeSolver): 

8 """Adams/BDF method with automatic stiffness detection and switching. 

9 

10 This is a wrapper to the Fortran solver from ODEPACK [1]_. It switches 

11 automatically between the nonstiff Adams method and the stiff BDF method. 

12 The method was originally detailed in [2]_. 

13 

14 Parameters 

15 ---------- 

16 fun : callable 

17 Right-hand side of the system. The calling signature is ``fun(t, y)``. 

18 Here ``t`` is a scalar, and there are two options for the ndarray ``y``: 

19 It can either have shape (n,); then ``fun`` must return array_like with 

20 shape (n,). Alternatively it can have shape (n, k); then ``fun`` 

21 must return an array_like with shape (n, k), i.e. each column 

22 corresponds to a single column in ``y``. The choice between the two 

23 options is determined by `vectorized` argument (see below). The 

24 vectorized implementation allows a faster approximation of the Jacobian 

25 by finite differences (required for this solver). 

26 t0 : float 

27 Initial time. 

28 y0 : array_like, shape (n,) 

29 Initial state. 

30 t_bound : float 

31 Boundary time - the integration won't continue beyond it. It also 

32 determines the direction of the integration. 

33 first_step : float or None, optional 

34 Initial step size. Default is ``None`` which means that the algorithm 

35 should choose. 

36 min_step : float, optional 

37 Minimum allowed step size. Default is 0.0, i.e., the step size is not 

38 bounded and determined solely by the solver. 

39 max_step : float, optional 

40 Maximum allowed step size. Default is np.inf, i.e., the step size is not 

41 bounded and determined solely by the solver. 

42 rtol, atol : float and array_like, optional 

43 Relative and absolute tolerances. The solver keeps the local error 

44 estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a 

45 relative accuracy (number of correct digits), while `atol` controls 

46 absolute accuracy (number of correct decimal places). To achieve the 

47 desired `rtol`, set `atol` to be smaller than the smallest value that 

48 can be expected from ``rtol * abs(y)`` so that `rtol` dominates the 

49 allowable error. If `atol` is larger than ``rtol * abs(y)`` the 

50 number of correct digits is not guaranteed. Conversely, to achieve the 

51 desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller 

52 than `atol`. If components of y have different scales, it might be 

53 beneficial to set different `atol` values for different components by 

54 passing array_like with shape (n,) for `atol`. Default values are 

55 1e-3 for `rtol` and 1e-6 for `atol`. 

56 jac : None or callable, optional 

57 Jacobian matrix of the right-hand side of the system with respect to 

58 ``y``. The Jacobian matrix has shape (n, n) and its element (i, j) is 

59 equal to ``d f_i / d y_j``. The function will be called as 

60 ``jac(t, y)``. If None (default), the Jacobian will be 

61 approximated by finite differences. It is generally recommended to 

62 provide the Jacobian rather than relying on a finite-difference 

63 approximation. 

64 lband, uband : int or None 

65 Parameters defining the bandwidth of the Jacobian, 

66 i.e., ``jac[i, j] != 0 only for i - lband <= j <= i + uband``. Setting 

67 these requires your jac routine to return the Jacobian in the packed format: 

68 the returned array must have ``n`` columns and ``uband + lband + 1`` 

69 rows in which Jacobian diagonals are written. Specifically 

70 ``jac_packed[uband + i - j , j] = jac[i, j]``. The same format is used 

71 in `scipy.linalg.solve_banded` (check for an illustration). 

72 These parameters can be also used with ``jac=None`` to reduce the 

73 number of Jacobian elements estimated by finite differences. 

74 vectorized : bool, optional 

75 Whether `fun` is implemented in a vectorized fashion. A vectorized 

76 implementation offers no advantages for this solver. Default is False. 

77 

78 Attributes 

79 ---------- 

80 n : int 

81 Number of equations. 

82 status : string 

83 Current status of the solver: 'running', 'finished' or 'failed'. 

84 t_bound : float 

85 Boundary time. 

86 direction : float 

87 Integration direction: +1 or -1. 

88 t : float 

89 Current time. 

90 y : ndarray 

91 Current state. 

92 t_old : float 

93 Previous time. None if no steps were made yet. 

94 nfev : int 

95 Number of evaluations of the right-hand side. 

96 njev : int 

97 Number of evaluations of the Jacobian. 

98 

99 References 

100 ---------- 

101 .. [1] A. C. Hindmarsh, "ODEPACK, A Systematized Collection of ODE 

102 Solvers," IMACS Transactions on Scientific Computation, Vol 1., 

103 pp. 55-64, 1983. 

104 .. [2] L. Petzold, "Automatic selection of methods for solving stiff and 

105 nonstiff systems of ordinary differential equations", SIAM Journal 

106 on Scientific and Statistical Computing, Vol. 4, No. 1, pp. 136-148, 

107 1983. 

108 """ 

109 def __init__(self, fun, t0, y0, t_bound, first_step=None, min_step=0.0, 

110 max_step=np.inf, rtol=1e-3, atol=1e-6, jac=None, lband=None, 

111 uband=None, vectorized=False, **extraneous): 

112 warn_extraneous(extraneous) 

113 super().__init__(fun, t0, y0, t_bound, vectorized) 

114 

115 if first_step is None: 

116 first_step = 0 # LSODA value for automatic selection. 

117 else: 

118 first_step = validate_first_step(first_step, t0, t_bound) 

119 

120 first_step *= self.direction 

121 

122 if max_step == np.inf: 

123 max_step = 0 # LSODA value for infinity. 

124 elif max_step <= 0: 

125 raise ValueError("`max_step` must be positive.") 

126 

127 if min_step < 0: 

128 raise ValueError("`min_step` must be nonnegative.") 

129 

130 rtol, atol = validate_tol(rtol, atol, self.n) 

131 

132 solver = ode(self.fun, jac) 

133 solver.set_integrator('lsoda', rtol=rtol, atol=atol, max_step=max_step, 

134 min_step=min_step, first_step=first_step, 

135 lband=lband, uband=uband) 

136 solver.set_initial_value(y0, t0) 

137 

138 # Inject t_bound into rwork array as needed for itask=5. 

139 solver._integrator.rwork[0] = self.t_bound 

140 solver._integrator.call_args[4] = solver._integrator.rwork 

141 

142 self._lsoda_solver = solver 

143 

144 def _step_impl(self): 

145 solver = self._lsoda_solver 

146 integrator = solver._integrator 

147 

148 # From lsoda.step and lsoda.integrate itask=5 means take a single 

149 # step and do not go past t_bound. 

150 itask = integrator.call_args[2] 

151 integrator.call_args[2] = 5 

152 solver._y, solver.t = integrator.run( 

153 solver.f, solver.jac or (lambda: None), solver._y, solver.t, 

154 self.t_bound, solver.f_params, solver.jac_params) 

155 integrator.call_args[2] = itask 

156 

157 if solver.successful(): 

158 self.t = solver.t 

159 self.y = solver._y 

160 # From LSODA Fortran source njev is equal to nlu. 

161 self.njev = integrator.iwork[12] 

162 self.nlu = integrator.iwork[12] 

163 return True, None 

164 else: 

165 return False, 'Unexpected istate in LSODA.' 

166 

167 def _dense_output_impl(self): 

168 iwork = self._lsoda_solver._integrator.iwork 

169 rwork = self._lsoda_solver._integrator.rwork 

170 

171 order = iwork[14] 

172 h = rwork[11] 

173 yh = np.reshape(rwork[20:20 + (order + 1) * self.n], 

174 (self.n, order + 1), order='F').copy() 

175 

176 return LsodaDenseOutput(self.t_old, self.t, h, order, yh) 

177 

178 

179class LsodaDenseOutput(DenseOutput): 

180 def __init__(self, t_old, t, h, order, yh): 

181 super().__init__(t_old, t) 

182 self.h = h 

183 self.yh = yh 

184 self.p = np.arange(order + 1) 

185 

186 def _call_impl(self, t): 

187 if t.ndim == 0: 

188 x = ((t - self.t) / self.h) ** self.p 

189 else: 

190 x = ((t - self.t) / self.h) ** self.p[:, None] 

191 

192 return np.dot(self.yh, x)