Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/scipy/integrate/_ivp/radau.py: 12%
261 statements
« prev ^ index » next coverage.py v7.3.2, created at 2023-12-12 06:31 +0000
« prev ^ index » next coverage.py v7.3.2, created at 2023-12-12 06:31 +0000
1import numpy as np
2from scipy.linalg import lu_factor, lu_solve
3from scipy.sparse import csc_matrix, issparse, eye
4from scipy.sparse.linalg import splu
5from scipy.optimize._numdiff import group_columns
6from .common import (validate_max_step, validate_tol, select_initial_step,
7 norm, num_jac, EPS, warn_extraneous,
8 validate_first_step)
9from .base import OdeSolver, DenseOutput
11S6 = 6 ** 0.5
13# Butcher tableau. A is not used directly, see below.
14C = np.array([(4 - S6) / 10, (4 + S6) / 10, 1])
15E = np.array([-13 - 7 * S6, -13 + 7 * S6, -1]) / 3
17# Eigendecomposition of A is done: A = T L T**-1. There is 1 real eigenvalue
18# and a complex conjugate pair. They are written below.
19MU_REAL = 3 + 3 ** (2 / 3) - 3 ** (1 / 3)
20MU_COMPLEX = (3 + 0.5 * (3 ** (1 / 3) - 3 ** (2 / 3))
21 - 0.5j * (3 ** (5 / 6) + 3 ** (7 / 6)))
23# These are transformation matrices.
24T = np.array([
25 [0.09443876248897524, -0.14125529502095421, 0.03002919410514742],
26 [0.25021312296533332, 0.20412935229379994, -0.38294211275726192],
27 [1, 1, 0]])
28TI = np.array([
29 [4.17871859155190428, 0.32768282076106237, 0.52337644549944951],
30 [-4.17871859155190428, -0.32768282076106237, 0.47662355450055044],
31 [0.50287263494578682, -2.57192694985560522, 0.59603920482822492]])
32# These linear combinations are used in the algorithm.
33TI_REAL = TI[0]
34TI_COMPLEX = TI[1] + 1j * TI[2]
36# Interpolator coefficients.
37P = np.array([
38 [13/3 + 7*S6/3, -23/3 - 22*S6/3, 10/3 + 5 * S6],
39 [13/3 - 7*S6/3, -23/3 + 22*S6/3, 10/3 - 5 * S6],
40 [1/3, -8/3, 10/3]])
43NEWTON_MAXITER = 6 # Maximum number of Newton iterations.
44MIN_FACTOR = 0.2 # Minimum allowed decrease in a step size.
45MAX_FACTOR = 10 # Maximum allowed increase in a step size.
48def solve_collocation_system(fun, t, y, h, Z0, scale, tol,
49 LU_real, LU_complex, solve_lu):
50 """Solve the collocation system.
52 Parameters
53 ----------
54 fun : callable
55 Right-hand side of the system.
56 t : float
57 Current time.
58 y : ndarray, shape (n,)
59 Current state.
60 h : float
61 Step to try.
62 Z0 : ndarray, shape (3, n)
63 Initial guess for the solution. It determines new values of `y` at
64 ``t + h * C`` as ``y + Z0``, where ``C`` is the Radau method constants.
65 scale : ndarray, shape (n)
66 Problem tolerance scale, i.e. ``rtol * abs(y) + atol``.
67 tol : float
68 Tolerance to which solve the system. This value is compared with
69 the normalized by `scale` error.
70 LU_real, LU_complex
71 LU decompositions of the system Jacobians.
72 solve_lu : callable
73 Callable which solves a linear system given a LU decomposition. The
74 signature is ``solve_lu(LU, b)``.
76 Returns
77 -------
78 converged : bool
79 Whether iterations converged.
80 n_iter : int
81 Number of completed iterations.
82 Z : ndarray, shape (3, n)
83 Found solution.
84 rate : float
85 The rate of convergence.
86 """
87 n = y.shape[0]
88 M_real = MU_REAL / h
89 M_complex = MU_COMPLEX / h
91 W = TI.dot(Z0)
92 Z = Z0
94 F = np.empty((3, n))
95 ch = h * C
97 dW_norm_old = None
98 dW = np.empty_like(W)
99 converged = False
100 rate = None
101 for k in range(NEWTON_MAXITER):
102 for i in range(3):
103 F[i] = fun(t + ch[i], y + Z[i])
105 if not np.all(np.isfinite(F)):
106 break
108 f_real = F.T.dot(TI_REAL) - M_real * W[0]
109 f_complex = F.T.dot(TI_COMPLEX) - M_complex * (W[1] + 1j * W[2])
111 dW_real = solve_lu(LU_real, f_real)
112 dW_complex = solve_lu(LU_complex, f_complex)
114 dW[0] = dW_real
115 dW[1] = dW_complex.real
116 dW[2] = dW_complex.imag
118 dW_norm = norm(dW / scale)
119 if dW_norm_old is not None:
120 rate = dW_norm / dW_norm_old
122 if (rate is not None and (rate >= 1 or
123 rate ** (NEWTON_MAXITER - k) / (1 - rate) * dW_norm > tol)):
124 break
126 W += dW
127 Z = T.dot(W)
129 if (dW_norm == 0 or
130 rate is not None and rate / (1 - rate) * dW_norm < tol):
131 converged = True
132 break
134 dW_norm_old = dW_norm
136 return converged, k + 1, Z, rate
139def predict_factor(h_abs, h_abs_old, error_norm, error_norm_old):
140 """Predict by which factor to increase/decrease the step size.
142 The algorithm is described in [1]_.
144 Parameters
145 ----------
146 h_abs, h_abs_old : float
147 Current and previous values of the step size, `h_abs_old` can be None
148 (see Notes).
149 error_norm, error_norm_old : float
150 Current and previous values of the error norm, `error_norm_old` can
151 be None (see Notes).
153 Returns
154 -------
155 factor : float
156 Predicted factor.
158 Notes
159 -----
160 If `h_abs_old` and `error_norm_old` are both not None then a two-step
161 algorithm is used, otherwise a one-step algorithm is used.
163 References
164 ----------
165 .. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
166 Equations II: Stiff and Differential-Algebraic Problems", Sec. IV.8.
167 """
168 if error_norm_old is None or h_abs_old is None or error_norm == 0:
169 multiplier = 1
170 else:
171 multiplier = h_abs / h_abs_old * (error_norm_old / error_norm) ** 0.25
173 with np.errstate(divide='ignore'):
174 factor = min(1, multiplier) * error_norm ** -0.25
176 return factor
179class Radau(OdeSolver):
180 """Implicit Runge-Kutta method of Radau IIA family of order 5.
182 The implementation follows [1]_. The error is controlled with a
183 third-order accurate embedded formula. A cubic polynomial which satisfies
184 the collocation conditions is used for the dense output.
186 Parameters
187 ----------
188 fun : callable
189 Right-hand side of the system. The calling signature is ``fun(t, y)``.
190 Here ``t`` is a scalar, and there are two options for the ndarray ``y``:
191 It can either have shape (n,); then ``fun`` must return array_like with
192 shape (n,). Alternatively it can have shape (n, k); then ``fun``
193 must return an array_like with shape (n, k), i.e., each column
194 corresponds to a single column in ``y``. The choice between the two
195 options is determined by `vectorized` argument (see below). The
196 vectorized implementation allows a faster approximation of the Jacobian
197 by finite differences (required for this solver).
198 t0 : float
199 Initial time.
200 y0 : array_like, shape (n,)
201 Initial state.
202 t_bound : float
203 Boundary time - the integration won't continue beyond it. It also
204 determines the direction of the integration.
205 first_step : float or None, optional
206 Initial step size. Default is ``None`` which means that the algorithm
207 should choose.
208 max_step : float, optional
209 Maximum allowed step size. Default is np.inf, i.e., the step size is not
210 bounded and determined solely by the solver.
211 rtol, atol : float and array_like, optional
212 Relative and absolute tolerances. The solver keeps the local error
213 estimates less than ``atol + rtol * abs(y)``. HHere `rtol` controls a
214 relative accuracy (number of correct digits), while `atol` controls
215 absolute accuracy (number of correct decimal places). To achieve the
216 desired `rtol`, set `atol` to be smaller than the smallest value that
217 can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
218 allowable error. If `atol` is larger than ``rtol * abs(y)`` the
219 number of correct digits is not guaranteed. Conversely, to achieve the
220 desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
221 than `atol`. If components of y have different scales, it might be
222 beneficial to set different `atol` values for different components by
223 passing array_like with shape (n,) for `atol`. Default values are
224 1e-3 for `rtol` and 1e-6 for `atol`.
225 jac : {None, array_like, sparse_matrix, callable}, optional
226 Jacobian matrix of the right-hand side of the system with respect to
227 y, required by this method. The Jacobian matrix has shape (n, n) and
228 its element (i, j) is equal to ``d f_i / d y_j``.
229 There are three ways to define the Jacobian:
231 * If array_like or sparse_matrix, the Jacobian is assumed to
232 be constant.
233 * If callable, the Jacobian is assumed to depend on both
234 t and y; it will be called as ``jac(t, y)`` as necessary.
235 For the 'Radau' and 'BDF' methods, the return value might be a
236 sparse matrix.
237 * If None (default), the Jacobian will be approximated by
238 finite differences.
240 It is generally recommended to provide the Jacobian rather than
241 relying on a finite-difference approximation.
242 jac_sparsity : {None, array_like, sparse matrix}, optional
243 Defines a sparsity structure of the Jacobian matrix for a
244 finite-difference approximation. Its shape must be (n, n). This argument
245 is ignored if `jac` is not `None`. If the Jacobian has only few non-zero
246 elements in *each* row, providing the sparsity structure will greatly
247 speed up the computations [2]_. A zero entry means that a corresponding
248 element in the Jacobian is always zero. If None (default), the Jacobian
249 is assumed to be dense.
250 vectorized : bool, optional
251 Whether `fun` is implemented in a vectorized fashion. Default is False.
253 Attributes
254 ----------
255 n : int
256 Number of equations.
257 status : string
258 Current status of the solver: 'running', 'finished' or 'failed'.
259 t_bound : float
260 Boundary time.
261 direction : float
262 Integration direction: +1 or -1.
263 t : float
264 Current time.
265 y : ndarray
266 Current state.
267 t_old : float
268 Previous time. None if no steps were made yet.
269 step_size : float
270 Size of the last successful step. None if no steps were made yet.
271 nfev : int
272 Number of evaluations of the right-hand side.
273 njev : int
274 Number of evaluations of the Jacobian.
275 nlu : int
276 Number of LU decompositions.
278 References
279 ----------
280 .. [1] E. Hairer, G. Wanner, "Solving Ordinary Differential Equations II:
281 Stiff and Differential-Algebraic Problems", Sec. IV.8.
282 .. [2] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
283 sparse Jacobian matrices", Journal of the Institute of Mathematics
284 and its Applications, 13, pp. 117-120, 1974.
285 """
286 def __init__(self, fun, t0, y0, t_bound, max_step=np.inf,
287 rtol=1e-3, atol=1e-6, jac=None, jac_sparsity=None,
288 vectorized=False, first_step=None, **extraneous):
289 warn_extraneous(extraneous)
290 super().__init__(fun, t0, y0, t_bound, vectorized)
291 self.y_old = None
292 self.max_step = validate_max_step(max_step)
293 self.rtol, self.atol = validate_tol(rtol, atol, self.n)
294 self.f = self.fun(self.t, self.y)
295 # Select initial step assuming the same order which is used to control
296 # the error.
297 if first_step is None:
298 self.h_abs = select_initial_step(
299 self.fun, self.t, self.y, self.f, self.direction,
300 3, self.rtol, self.atol)
301 else:
302 self.h_abs = validate_first_step(first_step, t0, t_bound)
303 self.h_abs_old = None
304 self.error_norm_old = None
306 self.newton_tol = max(10 * EPS / rtol, min(0.03, rtol ** 0.5))
307 self.sol = None
309 self.jac_factor = None
310 self.jac, self.J = self._validate_jac(jac, jac_sparsity)
311 if issparse(self.J):
312 def lu(A):
313 self.nlu += 1
314 return splu(A)
316 def solve_lu(LU, b):
317 return LU.solve(b)
319 I = eye(self.n, format='csc')
320 else:
321 def lu(A):
322 self.nlu += 1
323 return lu_factor(A, overwrite_a=True)
325 def solve_lu(LU, b):
326 return lu_solve(LU, b, overwrite_b=True)
328 I = np.identity(self.n)
330 self.lu = lu
331 self.solve_lu = solve_lu
332 self.I = I
334 self.current_jac = True
335 self.LU_real = None
336 self.LU_complex = None
337 self.Z = None
339 def _validate_jac(self, jac, sparsity):
340 t0 = self.t
341 y0 = self.y
343 if jac is None:
344 if sparsity is not None:
345 if issparse(sparsity):
346 sparsity = csc_matrix(sparsity)
347 groups = group_columns(sparsity)
348 sparsity = (sparsity, groups)
350 def jac_wrapped(t, y, f):
351 self.njev += 1
352 J, self.jac_factor = num_jac(self.fun_vectorized, t, y, f,
353 self.atol, self.jac_factor,
354 sparsity)
355 return J
356 J = jac_wrapped(t0, y0, self.f)
357 elif callable(jac):
358 J = jac(t0, y0)
359 self.njev = 1
360 if issparse(J):
361 J = csc_matrix(J)
363 def jac_wrapped(t, y, _=None):
364 self.njev += 1
365 return csc_matrix(jac(t, y), dtype=float)
367 else:
368 J = np.asarray(J, dtype=float)
370 def jac_wrapped(t, y, _=None):
371 self.njev += 1
372 return np.asarray(jac(t, y), dtype=float)
374 if J.shape != (self.n, self.n):
375 raise ValueError("`jac` is expected to have shape {}, but "
376 "actually has {}."
377 .format((self.n, self.n), J.shape))
378 else:
379 if issparse(jac):
380 J = csc_matrix(jac)
381 else:
382 J = np.asarray(jac, dtype=float)
384 if J.shape != (self.n, self.n):
385 raise ValueError("`jac` is expected to have shape {}, but "
386 "actually has {}."
387 .format((self.n, self.n), J.shape))
388 jac_wrapped = None
390 return jac_wrapped, J
392 def _step_impl(self):
393 t = self.t
394 y = self.y
395 f = self.f
397 max_step = self.max_step
398 atol = self.atol
399 rtol = self.rtol
401 min_step = 10 * np.abs(np.nextafter(t, self.direction * np.inf) - t)
402 if self.h_abs > max_step:
403 h_abs = max_step
404 h_abs_old = None
405 error_norm_old = None
406 elif self.h_abs < min_step:
407 h_abs = min_step
408 h_abs_old = None
409 error_norm_old = None
410 else:
411 h_abs = self.h_abs
412 h_abs_old = self.h_abs_old
413 error_norm_old = self.error_norm_old
415 J = self.J
416 LU_real = self.LU_real
417 LU_complex = self.LU_complex
419 current_jac = self.current_jac
420 jac = self.jac
422 rejected = False
423 step_accepted = False
424 message = None
425 while not step_accepted:
426 if h_abs < min_step:
427 return False, self.TOO_SMALL_STEP
429 h = h_abs * self.direction
430 t_new = t + h
432 if self.direction * (t_new - self.t_bound) > 0:
433 t_new = self.t_bound
435 h = t_new - t
436 h_abs = np.abs(h)
438 if self.sol is None:
439 Z0 = np.zeros((3, y.shape[0]))
440 else:
441 Z0 = self.sol(t + h * C).T - y
443 scale = atol + np.abs(y) * rtol
445 converged = False
446 while not converged:
447 if LU_real is None or LU_complex is None:
448 LU_real = self.lu(MU_REAL / h * self.I - J)
449 LU_complex = self.lu(MU_COMPLEX / h * self.I - J)
451 converged, n_iter, Z, rate = solve_collocation_system(
452 self.fun, t, y, h, Z0, scale, self.newton_tol,
453 LU_real, LU_complex, self.solve_lu)
455 if not converged:
456 if current_jac:
457 break
459 J = self.jac(t, y, f)
460 current_jac = True
461 LU_real = None
462 LU_complex = None
464 if not converged:
465 h_abs *= 0.5
466 LU_real = None
467 LU_complex = None
468 continue
470 y_new = y + Z[-1]
471 ZE = Z.T.dot(E) / h
472 error = self.solve_lu(LU_real, f + ZE)
473 scale = atol + np.maximum(np.abs(y), np.abs(y_new)) * rtol
474 error_norm = norm(error / scale)
475 safety = 0.9 * (2 * NEWTON_MAXITER + 1) / (2 * NEWTON_MAXITER
476 + n_iter)
478 if rejected and error_norm > 1:
479 error = self.solve_lu(LU_real, self.fun(t, y + error) + ZE)
480 error_norm = norm(error / scale)
482 if error_norm > 1:
483 factor = predict_factor(h_abs, h_abs_old,
484 error_norm, error_norm_old)
485 h_abs *= max(MIN_FACTOR, safety * factor)
487 LU_real = None
488 LU_complex = None
489 rejected = True
490 else:
491 step_accepted = True
493 recompute_jac = jac is not None and n_iter > 2 and rate > 1e-3
495 factor = predict_factor(h_abs, h_abs_old, error_norm, error_norm_old)
496 factor = min(MAX_FACTOR, safety * factor)
498 if not recompute_jac and factor < 1.2:
499 factor = 1
500 else:
501 LU_real = None
502 LU_complex = None
504 f_new = self.fun(t_new, y_new)
505 if recompute_jac:
506 J = jac(t_new, y_new, f_new)
507 current_jac = True
508 elif jac is not None:
509 current_jac = False
511 self.h_abs_old = self.h_abs
512 self.error_norm_old = error_norm
514 self.h_abs = h_abs * factor
516 self.y_old = y
518 self.t = t_new
519 self.y = y_new
520 self.f = f_new
522 self.Z = Z
524 self.LU_real = LU_real
525 self.LU_complex = LU_complex
526 self.current_jac = current_jac
527 self.J = J
529 self.t_old = t
530 self.sol = self._compute_dense_output()
532 return step_accepted, message
534 def _compute_dense_output(self):
535 Q = np.dot(self.Z.T, P)
536 return RadauDenseOutput(self.t_old, self.t, self.y_old, Q)
538 def _dense_output_impl(self):
539 return self.sol
542class RadauDenseOutput(DenseOutput):
543 def __init__(self, t_old, t, y_old, Q):
544 super().__init__(t_old, t)
545 self.h = t - t_old
546 self.Q = Q
547 self.order = Q.shape[1] - 1
548 self.y_old = y_old
550 def _call_impl(self, t):
551 x = (t - self.t_old) / self.h
552 if t.ndim == 0:
553 p = np.tile(x, self.order + 1)
554 p = np.cumprod(p)
555 else:
556 p = np.tile(x, (self.order + 1, 1))
557 p = np.cumprod(p, axis=0)
558 # Here we don't multiply by h, not a mistake.
559 y = np.dot(self.Q, p)
560 if y.ndim == 2:
561 y += self.y_old[:, None]
562 else:
563 y += self.y_old
565 return y