Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow_addons/callbacks/average_model_checkpoint.py: 31%
29 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# =============================================================================
16import tensorflow as tf
17from typeguard import typechecked
18from tensorflow_addons.optimizers.average_wrapper import AveragedOptimizerWrapper
21class AverageModelCheckpoint(tf.keras.callbacks.ModelCheckpoint):
22 r"""The callback that saves average model weights.
24 The callback that should be used with optimizers that extend
25 `tfa.optimizers.AveragedOptimizerWrapper`, i.e.,
26 `tfa.optimizers.MovingAverage` and
27 `tfa.optimizers.StochasticAverage` optimizers.
28 It saves and, optionally, assigns the averaged weights.
30 Args:
31 update_weights: If `True`, assign the moving average weights
32 to the model, and save them. If False, keep the old
33 non-averaged weights, but the saved model uses the
34 average weights.
36 See `tf.keras.callbacks.ModelCheckpoint` for the other args.
37 """
39 @typechecked
40 def __init__(
41 self,
42 update_weights: bool,
43 filepath: str,
44 monitor: str = "val_loss",
45 verbose: int = 0,
46 save_best_only: bool = False,
47 save_weights_only: bool = False,
48 mode: str = "auto",
49 save_freq: str = "epoch",
50 **kwargs,
51 ):
52 self.update_weights = update_weights
53 super().__init__(
54 filepath,
55 monitor,
56 verbose,
57 save_best_only,
58 save_weights_only,
59 mode,
60 save_freq,
61 **kwargs,
62 )
64 def _get_optimizer(self):
65 optimizer = self.model.optimizer
66 if type(optimizer).__name__ in ["LossScaleOptimizer", "LossScaleOptimizerV1"]:
67 optimizer = optimizer.inner_optimizer
69 return optimizer
71 def set_model(self, model):
72 super().set_model(model)
73 optimizer = self._get_optimizer()
74 if not isinstance(optimizer, AveragedOptimizerWrapper):
75 raise TypeError(
76 "AverageModelCheckpoint is only used when training"
77 "with MovingAverage or StochasticAverage"
78 )
80 def _save_model(self, *args, **kwargs):
81 optimizer = self._get_optimizer()
82 assert isinstance(optimizer, AveragedOptimizerWrapper)
84 if self.update_weights:
85 optimizer.assign_average_vars(self.model.trainable_weights)
86 return super()._save_model(*args, **kwargs)
87 else:
88 # Note: `model.get_weights()` gives us the weights (non-ref)
89 # whereas `model.variables` returns references to the variables.
90 non_avg_weights = self.model.get_weights()
91 optimizer.assign_average_vars(self.model.trainable_weights)
92 # result is currently None, since `super._save_model` doesn't
93 # return anything, but this may change in the future.
94 result = super()._save_model(*args, **kwargs)
95 self.model.set_weights(non_avg_weights)
96 return result