Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow_addons/callbacks/time_stopping.py: 48%

29 statements  

« prev     ^ index     » next       coverage.py v7.4.0, created at 2024-01-03 07:57 +0000

1# Copyright 2019 The TensorFlow Authors. All Rights Reserved. 

2# 

3# Licensed under the Apache License, Version 2.0 (the "License"); 

4# you may not use this file except in compliance with the License. 

5# You may obtain a copy of the License at 

6# 

7# http://www.apache.org/licenses/LICENSE-2.0 

8# 

9# Unless required by applicable law or agreed to in writing, software 

10# distributed under the License is distributed on an "AS IS" BASIS, 

11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

12# See the License for the specific language governing permissions and 

13# limitations under the License. 

14# ============================================================================== 

15"""Callback that stops training when a specified amount of time has passed.""" 

16 

17import datetime 

18import time 

19from typeguard import typechecked 

20 

21import tensorflow as tf 

22from tensorflow.keras.callbacks import Callback 

23 

24 

25@tf.keras.utils.register_keras_serializable(package="Addons") 

26class TimeStopping(Callback): 

27 """Stop training when a specified amount of time has passed. 

28 

29 Args: 

30 seconds: maximum amount of time before stopping. 

31 Defaults to 86400 (1 day). 

32 verbose: verbosity mode. Defaults to 0. 

33 """ 

34 

35 @typechecked 

36 def __init__(self, seconds: int = 86400, verbose: int = 0): 

37 super().__init__() 

38 

39 self.seconds = seconds 

40 self.verbose = verbose 

41 self.stopped_epoch = None 

42 

43 def on_train_begin(self, logs=None): 

44 self.stopping_time = time.time() + self.seconds 

45 

46 def on_epoch_end(self, epoch, logs={}): 

47 if time.time() >= self.stopping_time: 

48 self.model.stop_training = True 

49 self.stopped_epoch = epoch 

50 

51 def on_train_end(self, logs=None): 

52 if self.stopped_epoch is not None and self.verbose > 0: 

53 formatted_time = datetime.timedelta(seconds=self.seconds) 

54 msg = "Timed stopping at epoch {} after training for {}".format( 

55 self.stopped_epoch + 1, formatted_time 

56 ) 

57 print(msg) 

58 

59 def get_config(self): 

60 config = { 

61 "seconds": self.seconds, 

62 "verbose": self.verbose, 

63 } 

64 

65 base_config = super().get_config() 

66 return {**base_config, **config}