Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/ops/gen_sendrecv_ops.py: 20%
101 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1"""Python wrappers around TensorFlow ops.
3This file is MACHINE GENERATED! Do not edit.
4"""
6import collections
8from tensorflow.python import pywrap_tfe as pywrap_tfe
9from tensorflow.python.eager import context as _context
10from tensorflow.python.eager import core as _core
11from tensorflow.python.eager import execute as _execute
12from tensorflow.python.framework import dtypes as _dtypes
13from tensorflow.security.fuzzing.py import annotation_types as _atypes
15from tensorflow.python.framework import op_def_registry as _op_def_registry
16from tensorflow.python.framework import ops as _ops
17from tensorflow.python.framework import op_def_library as _op_def_library
18from tensorflow.python.util.deprecation import deprecated_endpoints
19from tensorflow.python.util import dispatch as _dispatch
20from tensorflow.python.util.tf_export import tf_export
22from typing import TypeVar
24def recv(tensor_type, tensor_name, send_device, send_device_incarnation, recv_device, client_terminated=False, name=None):
25 r"""Receives the named tensor from send_device on recv_device.
27 Args:
28 tensor_type: A `tf.DType`.
29 tensor_name: A `string`. The name of the tensor to receive.
30 send_device: A `string`. The name of the device sending the tensor.
31 send_device_incarnation: An `int`. The current incarnation of send_device.
32 recv_device: A `string`. The name of the device receiving the tensor.
33 client_terminated: An optional `bool`. Defaults to `False`.
34 If set to true, this indicates that the node was added
35 to the graph as a result of a client-side feed or fetch of Tensor data,
36 in which case the corresponding send or recv is expected to be managed
37 locally by the caller.
38 name: A name for the operation (optional).
40 Returns:
41 A `Tensor` of type `tensor_type`.
42 """
43 _ctx = _context._context or _context.context()
44 tld = _ctx._thread_local_data
45 if tld.is_eager:
46 try:
47 _result = pywrap_tfe.TFE_Py_FastPathExecute(
48 _ctx, "Recv", name, "tensor_type", tensor_type, "tensor_name",
49 tensor_name, "send_device", send_device, "send_device_incarnation",
50 send_device_incarnation, "recv_device", recv_device,
51 "client_terminated", client_terminated)
52 return _result
53 except _core._NotOkStatusException as e:
54 _ops.raise_from_not_ok_status(e, name)
55 except _core._FallbackException:
56 pass
57 try:
58 return recv_eager_fallback(
59 tensor_type=tensor_type, tensor_name=tensor_name,
60 send_device=send_device,
61 send_device_incarnation=send_device_incarnation,
62 recv_device=recv_device, client_terminated=client_terminated,
63 name=name, ctx=_ctx)
64 except _core._SymbolicException:
65 pass # Add nodes to the TensorFlow graph.
66 # Add nodes to the TensorFlow graph.
67 tensor_type = _execute.make_type(tensor_type, "tensor_type")
68 tensor_name = _execute.make_str(tensor_name, "tensor_name")
69 send_device = _execute.make_str(send_device, "send_device")
70 send_device_incarnation = _execute.make_int(send_device_incarnation, "send_device_incarnation")
71 recv_device = _execute.make_str(recv_device, "recv_device")
72 if client_terminated is None:
73 client_terminated = False
74 client_terminated = _execute.make_bool(client_terminated, "client_terminated")
75 _, _, _op, _outputs = _op_def_library._apply_op_helper(
76 "Recv", tensor_type=tensor_type, tensor_name=tensor_name,
77 send_device=send_device,
78 send_device_incarnation=send_device_incarnation,
79 recv_device=recv_device, client_terminated=client_terminated,
80 name=name)
81 _result = _outputs[:]
82 if _execute.must_record_gradient():
83 _attrs = ("tensor_type", _op._get_attr_type("tensor_type"), "tensor_name",
84 _op.get_attr("tensor_name"), "send_device",
85 _op.get_attr("send_device"), "send_device_incarnation",
86 _op._get_attr_int("send_device_incarnation"), "recv_device",
87 _op.get_attr("recv_device"), "client_terminated",
88 _op._get_attr_bool("client_terminated"))
89 _inputs_flat = _op.inputs
90 _execute.record_gradient(
91 "Recv", _inputs_flat, _attrs, _result)
92 _result, = _result
93 return _result
95Recv = tf_export("raw_ops.Recv")(_ops.to_raw_op(recv))
98def recv_eager_fallback(tensor_type, tensor_name, send_device, send_device_incarnation, recv_device, client_terminated, name, ctx):
99 tensor_type = _execute.make_type(tensor_type, "tensor_type")
100 tensor_name = _execute.make_str(tensor_name, "tensor_name")
101 send_device = _execute.make_str(send_device, "send_device")
102 send_device_incarnation = _execute.make_int(send_device_incarnation, "send_device_incarnation")
103 recv_device = _execute.make_str(recv_device, "recv_device")
104 if client_terminated is None:
105 client_terminated = False
106 client_terminated = _execute.make_bool(client_terminated, "client_terminated")
107 _inputs_flat = []
108 _attrs = ("tensor_type", tensor_type, "tensor_name", tensor_name,
109 "send_device", send_device, "send_device_incarnation",
110 send_device_incarnation, "recv_device", recv_device, "client_terminated",
111 client_terminated)
112 _result = _execute.execute(b"Recv", 1, inputs=_inputs_flat, attrs=_attrs,
113 ctx=ctx, name=name)
114 if _execute.must_record_gradient():
115 _execute.record_gradient(
116 "Recv", _inputs_flat, _attrs, _result)
117 _result, = _result
118 return _result
121def send(tensor, tensor_name, send_device, send_device_incarnation, recv_device, client_terminated=False, name=None):
122 r"""Sends the named tensor from send_device to recv_device.
124 Args:
125 tensor: A `Tensor`. The tensor to send.
126 tensor_name: A `string`. The name of the tensor to send.
127 send_device: A `string`. The name of the device sending the tensor.
128 send_device_incarnation: An `int`. The current incarnation of send_device.
129 recv_device: A `string`. The name of the device receiving the tensor.
130 client_terminated: An optional `bool`. Defaults to `False`.
131 If set to true, this indicates that the node was added
132 to the graph as a result of a client-side feed or fetch of Tensor data,
133 in which case the corresponding send or recv is expected to be managed
134 locally by the caller.
135 name: A name for the operation (optional).
137 Returns:
138 The created Operation.
139 """
140 _ctx = _context._context or _context.context()
141 tld = _ctx._thread_local_data
142 if tld.is_eager:
143 try:
144 _result = pywrap_tfe.TFE_Py_FastPathExecute(
145 _ctx, "Send", name, tensor, "tensor_name", tensor_name, "send_device",
146 send_device, "send_device_incarnation", send_device_incarnation,
147 "recv_device", recv_device, "client_terminated", client_terminated)
148 return _result
149 except _core._NotOkStatusException as e:
150 _ops.raise_from_not_ok_status(e, name)
151 except _core._FallbackException:
152 pass
153 try:
154 return send_eager_fallback(
155 tensor, tensor_name=tensor_name, send_device=send_device,
156 send_device_incarnation=send_device_incarnation,
157 recv_device=recv_device, client_terminated=client_terminated,
158 name=name, ctx=_ctx)
159 except _core._SymbolicException:
160 pass # Add nodes to the TensorFlow graph.
161 # Add nodes to the TensorFlow graph.
162 tensor_name = _execute.make_str(tensor_name, "tensor_name")
163 send_device = _execute.make_str(send_device, "send_device")
164 send_device_incarnation = _execute.make_int(send_device_incarnation, "send_device_incarnation")
165 recv_device = _execute.make_str(recv_device, "recv_device")
166 if client_terminated is None:
167 client_terminated = False
168 client_terminated = _execute.make_bool(client_terminated, "client_terminated")
169 _, _, _op, _outputs = _op_def_library._apply_op_helper(
170 "Send", tensor=tensor, tensor_name=tensor_name,
171 send_device=send_device,
172 send_device_incarnation=send_device_incarnation,
173 recv_device=recv_device, client_terminated=client_terminated,
174 name=name)
175 return _op
176Send = tf_export("raw_ops.Send")(_ops.to_raw_op(send))
179def send_eager_fallback(tensor, tensor_name, send_device, send_device_incarnation, recv_device, client_terminated, name, ctx):
180 tensor_name = _execute.make_str(tensor_name, "tensor_name")
181 send_device = _execute.make_str(send_device, "send_device")
182 send_device_incarnation = _execute.make_int(send_device_incarnation, "send_device_incarnation")
183 recv_device = _execute.make_str(recv_device, "recv_device")
184 if client_terminated is None:
185 client_terminated = False
186 client_terminated = _execute.make_bool(client_terminated, "client_terminated")
187 _attr_T, (tensor,) = _execute.args_to_matching_eager([tensor], ctx, [])
188 _inputs_flat = [tensor]
189 _attrs = ("T", _attr_T, "tensor_name", tensor_name, "send_device",
190 send_device, "send_device_incarnation", send_device_incarnation,
191 "recv_device", recv_device, "client_terminated", client_terminated)
192 _result = _execute.execute(b"Send", 0, inputs=_inputs_flat, attrs=_attrs,
193 ctx=ctx, name=name)
194 _result = None
195 return _result