Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/ops/gen_set_ops.py: 15%

193 statements  

« prev     ^ index     » next       coverage.py v7.4.0, created at 2024-01-03 07:57 +0000

1"""Python wrappers around TensorFlow ops. 

2 

3This file is MACHINE GENERATED! Do not edit. 

4""" 

5 

6import collections 

7 

8from tensorflow.python import pywrap_tfe as pywrap_tfe 

9from tensorflow.python.eager import context as _context 

10from tensorflow.python.eager import core as _core 

11from tensorflow.python.eager import execute as _execute 

12from tensorflow.python.framework import dtypes as _dtypes 

13from tensorflow.security.fuzzing.py import annotation_types as _atypes 

14 

15from tensorflow.python.framework import op_def_registry as _op_def_registry 

16from tensorflow.python.framework import ops as _ops 

17from tensorflow.python.framework import op_def_library as _op_def_library 

18from tensorflow.python.util.deprecation import deprecated_endpoints 

19from tensorflow.python.util import dispatch as _dispatch 

20from tensorflow.python.util.tf_export import tf_export 

21 

22from typing import TypeVar 

23_DenseToDenseSetOperationOutput = collections.namedtuple( 

24 "DenseToDenseSetOperation", 

25 ["result_indices", "result_values", "result_shape"]) 

26 

27 

28def dense_to_dense_set_operation(set1, set2, set_operation, validate_indices=True, name=None): 

29 r"""Applies set operation along last dimension of 2 `Tensor` inputs. 

30 

31 See SetOperationOp::SetOperationFromContext for values of `set_operation`. 

32 

33 Output `result` is a `SparseTensor` represented by `result_indices`, 

34 `result_values`, and `result_shape`. For `set1` and `set2` ranked `n`, this 

35 has rank `n` and the same 1st `n-1` dimensions as `set1` and `set2`. The `nth` 

36 dimension contains the result of `set_operation` applied to the corresponding 

37 `[0...n-1]` dimension of `set`. 

38 

39 Args: 

40 set1: A `Tensor`. Must be one of the following types: `int8`, `int16`, `int32`, `int64`, `uint8`, `uint16`, `string`. 

41 `Tensor` with rank `n`. 1st `n-1` dimensions must be the same as `set2`. 

42 Dimension `n` contains values in a set, duplicates are allowed but ignored. 

43 set2: A `Tensor`. Must have the same type as `set1`. 

44 `Tensor` with rank `n`. 1st `n-1` dimensions must be the same as `set1`. 

45 Dimension `n` contains values in a set, duplicates are allowed but ignored. 

46 set_operation: A `string`. 

47 validate_indices: An optional `bool`. Defaults to `True`. 

48 name: A name for the operation (optional). 

49 

50 Returns: 

51 A tuple of `Tensor` objects (result_indices, result_values, result_shape). 

52 

53 result_indices: A `Tensor` of type `int64`. 

54 result_values: A `Tensor`. Has the same type as `set1`. 

55 result_shape: A `Tensor` of type `int64`. 

56 """ 

57 _ctx = _context._context or _context.context() 

58 tld = _ctx._thread_local_data 

59 if tld.is_eager: 

60 try: 

61 _result = pywrap_tfe.TFE_Py_FastPathExecute( 

62 _ctx, "DenseToDenseSetOperation", name, set1, set2, "set_operation", 

63 set_operation, "validate_indices", validate_indices) 

64 _result = _DenseToDenseSetOperationOutput._make(_result) 

65 return _result 

66 except _core._NotOkStatusException as e: 

67 _ops.raise_from_not_ok_status(e, name) 

68 except _core._FallbackException: 

69 pass 

70 try: 

71 return dense_to_dense_set_operation_eager_fallback( 

72 set1, set2, set_operation=set_operation, 

73 validate_indices=validate_indices, name=name, ctx=_ctx) 

74 except _core._SymbolicException: 

75 pass # Add nodes to the TensorFlow graph. 

76 # Add nodes to the TensorFlow graph. 

77 set_operation = _execute.make_str(set_operation, "set_operation") 

78 if validate_indices is None: 

79 validate_indices = True 

80 validate_indices = _execute.make_bool(validate_indices, "validate_indices") 

81 _, _, _op, _outputs = _op_def_library._apply_op_helper( 

82 "DenseToDenseSetOperation", set1=set1, set2=set2, 

83 set_operation=set_operation, 

84 validate_indices=validate_indices, 

85 name=name) 

86 _result = _outputs[:] 

87 if _execute.must_record_gradient(): 

88 _attrs = ("set_operation", _op.get_attr("set_operation"), 

89 "validate_indices", _op._get_attr_bool("validate_indices"), "T", 

90 _op._get_attr_type("T")) 

91 _inputs_flat = _op.inputs 

92 _execute.record_gradient( 

93 "DenseToDenseSetOperation", _inputs_flat, _attrs, _result) 

94 _result = _DenseToDenseSetOperationOutput._make(_result) 

95 return _result 

96 

97DenseToDenseSetOperation = tf_export("raw_ops.DenseToDenseSetOperation")(_ops.to_raw_op(dense_to_dense_set_operation)) 

98 

99 

100def dense_to_dense_set_operation_eager_fallback(set1, set2, set_operation, validate_indices, name, ctx): 

101 set_operation = _execute.make_str(set_operation, "set_operation") 

102 if validate_indices is None: 

103 validate_indices = True 

104 validate_indices = _execute.make_bool(validate_indices, "validate_indices") 

105 _attr_T, _inputs_T = _execute.args_to_matching_eager([set1, set2], ctx, [_dtypes.int8, _dtypes.int16, _dtypes.int32, _dtypes.int64, _dtypes.uint8, _dtypes.uint16, _dtypes.string, ]) 

106 (set1, set2) = _inputs_T 

107 _inputs_flat = [set1, set2] 

108 _attrs = ("set_operation", set_operation, "validate_indices", 

109 validate_indices, "T", _attr_T) 

110 _result = _execute.execute(b"DenseToDenseSetOperation", 3, 

111 inputs=_inputs_flat, attrs=_attrs, ctx=ctx, 

112 name=name) 

113 if _execute.must_record_gradient(): 

114 _execute.record_gradient( 

115 "DenseToDenseSetOperation", _inputs_flat, _attrs, _result) 

116 _result = _DenseToDenseSetOperationOutput._make(_result) 

117 return _result 

118 

119_DenseToSparseSetOperationOutput = collections.namedtuple( 

120 "DenseToSparseSetOperation", 

121 ["result_indices", "result_values", "result_shape"]) 

122 

123 

124def dense_to_sparse_set_operation(set1, set2_indices, set2_values, set2_shape, set_operation, validate_indices=True, name=None): 

125 r"""Applies set operation along last dimension of `Tensor` and `SparseTensor`. 

126 

127 See SetOperationOp::SetOperationFromContext for values of `set_operation`. 

128 

129 Input `set2` is a `SparseTensor` represented by `set2_indices`, `set2_values`, 

130 and `set2_shape`. For `set2` ranked `n`, 1st `n-1` dimensions must be the same 

131 as `set1`. Dimension `n` contains values in a set, duplicates are allowed but 

132 ignored. 

133 

134 If `validate_indices` is `True`, this op validates the order and range of `set2` 

135 indices. 

136 

137 Output `result` is a `SparseTensor` represented by `result_indices`, 

138 `result_values`, and `result_shape`. For `set1` and `set2` ranked `n`, this 

139 has rank `n` and the same 1st `n-1` dimensions as `set1` and `set2`. The `nth` 

140 dimension contains the result of `set_operation` applied to the corresponding 

141 `[0...n-1]` dimension of `set`. 

142 

143 Args: 

144 set1: A `Tensor`. Must be one of the following types: `int8`, `int16`, `int32`, `int64`, `uint8`, `uint16`, `string`. 

145 `Tensor` with rank `n`. 1st `n-1` dimensions must be the same as `set2`. 

146 Dimension `n` contains values in a set, duplicates are allowed but ignored. 

147 set2_indices: A `Tensor` of type `int64`. 

148 2D `Tensor`, indices of a `SparseTensor`. Must be in row-major 

149 order. 

150 set2_values: A `Tensor`. Must have the same type as `set1`. 

151 1D `Tensor`, values of a `SparseTensor`. Must be in row-major 

152 order. 

153 set2_shape: A `Tensor` of type `int64`. 

154 1D `Tensor`, shape of a `SparseTensor`. `set2_shape[0...n-1]` must 

155 be the same as the 1st `n-1` dimensions of `set1`, `result_shape[n]` is the 

156 max set size across `n-1` dimensions. 

157 set_operation: A `string`. 

158 validate_indices: An optional `bool`. Defaults to `True`. 

159 name: A name for the operation (optional). 

160 

161 Returns: 

162 A tuple of `Tensor` objects (result_indices, result_values, result_shape). 

163 

164 result_indices: A `Tensor` of type `int64`. 

165 result_values: A `Tensor`. Has the same type as `set1`. 

166 result_shape: A `Tensor` of type `int64`. 

167 """ 

168 _ctx = _context._context or _context.context() 

169 tld = _ctx._thread_local_data 

170 if tld.is_eager: 

171 try: 

172 _result = pywrap_tfe.TFE_Py_FastPathExecute( 

173 _ctx, "DenseToSparseSetOperation", name, set1, set2_indices, 

174 set2_values, set2_shape, "set_operation", set_operation, 

175 "validate_indices", validate_indices) 

176 _result = _DenseToSparseSetOperationOutput._make(_result) 

177 return _result 

178 except _core._NotOkStatusException as e: 

179 _ops.raise_from_not_ok_status(e, name) 

180 except _core._FallbackException: 

181 pass 

182 try: 

183 return dense_to_sparse_set_operation_eager_fallback( 

184 set1, set2_indices, set2_values, set2_shape, 

185 set_operation=set_operation, validate_indices=validate_indices, 

186 name=name, ctx=_ctx) 

187 except _core._SymbolicException: 

188 pass # Add nodes to the TensorFlow graph. 

189 # Add nodes to the TensorFlow graph. 

190 set_operation = _execute.make_str(set_operation, "set_operation") 

191 if validate_indices is None: 

192 validate_indices = True 

193 validate_indices = _execute.make_bool(validate_indices, "validate_indices") 

194 _, _, _op, _outputs = _op_def_library._apply_op_helper( 

195 "DenseToSparseSetOperation", set1=set1, set2_indices=set2_indices, 

196 set2_values=set2_values, 

197 set2_shape=set2_shape, 

198 set_operation=set_operation, 

199 validate_indices=validate_indices, 

200 name=name) 

201 _result = _outputs[:] 

202 if _execute.must_record_gradient(): 

203 _attrs = ("set_operation", _op.get_attr("set_operation"), 

204 "validate_indices", _op._get_attr_bool("validate_indices"), "T", 

205 _op._get_attr_type("T")) 

206 _inputs_flat = _op.inputs 

207 _execute.record_gradient( 

208 "DenseToSparseSetOperation", _inputs_flat, _attrs, _result) 

209 _result = _DenseToSparseSetOperationOutput._make(_result) 

210 return _result 

211 

212DenseToSparseSetOperation = tf_export("raw_ops.DenseToSparseSetOperation")(_ops.to_raw_op(dense_to_sparse_set_operation)) 

213 

214 

215def dense_to_sparse_set_operation_eager_fallback(set1, set2_indices, set2_values, set2_shape, set_operation, validate_indices, name, ctx): 

216 set_operation = _execute.make_str(set_operation, "set_operation") 

217 if validate_indices is None: 

218 validate_indices = True 

219 validate_indices = _execute.make_bool(validate_indices, "validate_indices") 

220 _attr_T, _inputs_T = _execute.args_to_matching_eager([set1, set2_values], ctx, [_dtypes.int8, _dtypes.int16, _dtypes.int32, _dtypes.int64, _dtypes.uint8, _dtypes.uint16, _dtypes.string, ]) 

221 (set1, set2_values) = _inputs_T 

222 set2_indices = _ops.convert_to_tensor(set2_indices, _dtypes.int64) 

223 set2_shape = _ops.convert_to_tensor(set2_shape, _dtypes.int64) 

224 _inputs_flat = [set1, set2_indices, set2_values, set2_shape] 

225 _attrs = ("set_operation", set_operation, "validate_indices", 

226 validate_indices, "T", _attr_T) 

227 _result = _execute.execute(b"DenseToSparseSetOperation", 3, 

228 inputs=_inputs_flat, attrs=_attrs, ctx=ctx, 

229 name=name) 

230 if _execute.must_record_gradient(): 

231 _execute.record_gradient( 

232 "DenseToSparseSetOperation", _inputs_flat, _attrs, _result) 

233 _result = _DenseToSparseSetOperationOutput._make(_result) 

234 return _result 

235 

236 

237def set_size(set_indices, set_values, set_shape, validate_indices=True, name=None): 

238 r"""Number of unique elements along last dimension of input `set`. 

239 

240 Input `set` is a `SparseTensor` represented by `set_indices`, `set_values`, 

241 and `set_shape`. The last dimension contains values in a set, duplicates are 

242 allowed but ignored. 

243 

244 If `validate_indices` is `True`, this op validates the order and range of `set` 

245 indices. Setting is to `False` while passing invalid arguments results in 

246 undefined behavior. 

247 

248 Args: 

249 set_indices: A `Tensor` of type `int64`. 

250 2D `Tensor`, indices of a `SparseTensor`. 

251 set_values: A `Tensor`. Must be one of the following types: `int8`, `int16`, `int32`, `int64`, `uint8`, `uint16`, `string`. 

252 1D `Tensor`, values of a `SparseTensor`. 

253 set_shape: A `Tensor` of type `int64`. 

254 1D `Tensor`, shape of a `SparseTensor`. 

255 validate_indices: An optional `bool`. Defaults to `True`. 

256 name: A name for the operation (optional). 

257 

258 Returns: 

259 A `Tensor` of type `int32`. 

260 """ 

261 _ctx = _context._context or _context.context() 

262 tld = _ctx._thread_local_data 

263 if tld.is_eager: 

264 try: 

265 _result = pywrap_tfe.TFE_Py_FastPathExecute( 

266 _ctx, "SetSize", name, set_indices, set_values, set_shape, 

267 "validate_indices", validate_indices) 

268 return _result 

269 except _core._NotOkStatusException as e: 

270 _ops.raise_from_not_ok_status(e, name) 

271 except _core._FallbackException: 

272 pass 

273 try: 

274 return set_size_eager_fallback( 

275 set_indices, set_values, set_shape, 

276 validate_indices=validate_indices, name=name, ctx=_ctx) 

277 except _core._SymbolicException: 

278 pass # Add nodes to the TensorFlow graph. 

279 # Add nodes to the TensorFlow graph. 

280 if validate_indices is None: 

281 validate_indices = True 

282 validate_indices = _execute.make_bool(validate_indices, "validate_indices") 

283 _, _, _op, _outputs = _op_def_library._apply_op_helper( 

284 "SetSize", set_indices=set_indices, set_values=set_values, 

285 set_shape=set_shape, validate_indices=validate_indices, 

286 name=name) 

287 _result = _outputs[:] 

288 if _execute.must_record_gradient(): 

289 _attrs = ("validate_indices", _op._get_attr_bool("validate_indices"), "T", 

290 _op._get_attr_type("T")) 

291 _inputs_flat = _op.inputs 

292 _execute.record_gradient( 

293 "SetSize", _inputs_flat, _attrs, _result) 

294 _result, = _result 

295 return _result 

296 

297SetSize = tf_export("raw_ops.SetSize")(_ops.to_raw_op(set_size)) 

298 

299 

300def set_size_eager_fallback(set_indices, set_values, set_shape, validate_indices, name, ctx): 

301 if validate_indices is None: 

302 validate_indices = True 

303 validate_indices = _execute.make_bool(validate_indices, "validate_indices") 

304 _attr_T, (set_values,) = _execute.args_to_matching_eager([set_values], ctx, [_dtypes.int8, _dtypes.int16, _dtypes.int32, _dtypes.int64, _dtypes.uint8, _dtypes.uint16, _dtypes.string, ]) 

305 set_indices = _ops.convert_to_tensor(set_indices, _dtypes.int64) 

306 set_shape = _ops.convert_to_tensor(set_shape, _dtypes.int64) 

307 _inputs_flat = [set_indices, set_values, set_shape] 

308 _attrs = ("validate_indices", validate_indices, "T", _attr_T) 

309 _result = _execute.execute(b"SetSize", 1, inputs=_inputs_flat, attrs=_attrs, 

310 ctx=ctx, name=name) 

311 if _execute.must_record_gradient(): 

312 _execute.record_gradient( 

313 "SetSize", _inputs_flat, _attrs, _result) 

314 _result, = _result 

315 return _result 

316 

317_SparseToSparseSetOperationOutput = collections.namedtuple( 

318 "SparseToSparseSetOperation", 

319 ["result_indices", "result_values", "result_shape"]) 

320 

321 

322def sparse_to_sparse_set_operation(set1_indices, set1_values, set1_shape, set2_indices, set2_values, set2_shape, set_operation, validate_indices=True, name=None): 

323 r"""Applies set operation along last dimension of 2 `SparseTensor` inputs. 

324 

325 See SetOperationOp::SetOperationFromContext for values of `set_operation`. 

326 

327 If `validate_indices` is `True`, `SparseToSparseSetOperation` validates the 

328 order and range of `set1` and `set2` indices. 

329 

330 Input `set1` is a `SparseTensor` represented by `set1_indices`, `set1_values`, 

331 and `set1_shape`. For `set1` ranked `n`, 1st `n-1` dimensions must be the same 

332 as `set2`. Dimension `n` contains values in a set, duplicates are allowed but 

333 ignored. 

334 

335 Input `set2` is a `SparseTensor` represented by `set2_indices`, `set2_values`, 

336 and `set2_shape`. For `set2` ranked `n`, 1st `n-1` dimensions must be the same 

337 as `set1`. Dimension `n` contains values in a set, duplicates are allowed but 

338 ignored. 

339 

340 If `validate_indices` is `True`, this op validates the order and range of `set1` 

341 and `set2` indices. 

342 

343 Output `result` is a `SparseTensor` represented by `result_indices`, 

344 `result_values`, and `result_shape`. For `set1` and `set2` ranked `n`, this 

345 has rank `n` and the same 1st `n-1` dimensions as `set1` and `set2`. The `nth` 

346 dimension contains the result of `set_operation` applied to the corresponding 

347 `[0...n-1]` dimension of `set`. 

348 

349 Args: 

350 set1_indices: A `Tensor` of type `int64`. 

351 2D `Tensor`, indices of a `SparseTensor`. Must be in row-major 

352 order. 

353 set1_values: A `Tensor`. Must be one of the following types: `int8`, `int16`, `int32`, `int64`, `uint8`, `uint16`, `string`. 

354 1D `Tensor`, values of a `SparseTensor`. Must be in row-major 

355 order. 

356 set1_shape: A `Tensor` of type `int64`. 

357 1D `Tensor`, shape of a `SparseTensor`. `set1_shape[0...n-1]` must 

358 be the same as `set2_shape[0...n-1]`, `set1_shape[n]` is the 

359 max set size across `0...n-1` dimensions. 

360 set2_indices: A `Tensor` of type `int64`. 

361 2D `Tensor`, indices of a `SparseTensor`. Must be in row-major 

362 order. 

363 set2_values: A `Tensor`. Must have the same type as `set1_values`. 

364 1D `Tensor`, values of a `SparseTensor`. Must be in row-major 

365 order. 

366 set2_shape: A `Tensor` of type `int64`. 

367 1D `Tensor`, shape of a `SparseTensor`. `set2_shape[0...n-1]` must 

368 be the same as `set1_shape[0...n-1]`, `set2_shape[n]` is the 

369 max set size across `0...n-1` dimensions. 

370 set_operation: A `string`. 

371 validate_indices: An optional `bool`. Defaults to `True`. 

372 name: A name for the operation (optional). 

373 

374 Returns: 

375 A tuple of `Tensor` objects (result_indices, result_values, result_shape). 

376 

377 result_indices: A `Tensor` of type `int64`. 

378 result_values: A `Tensor`. Has the same type as `set1_values`. 

379 result_shape: A `Tensor` of type `int64`. 

380 """ 

381 _ctx = _context._context or _context.context() 

382 tld = _ctx._thread_local_data 

383 if tld.is_eager: 

384 try: 

385 _result = pywrap_tfe.TFE_Py_FastPathExecute( 

386 _ctx, "SparseToSparseSetOperation", name, set1_indices, set1_values, 

387 set1_shape, set2_indices, set2_values, set2_shape, "set_operation", 

388 set_operation, "validate_indices", validate_indices) 

389 _result = _SparseToSparseSetOperationOutput._make(_result) 

390 return _result 

391 except _core._NotOkStatusException as e: 

392 _ops.raise_from_not_ok_status(e, name) 

393 except _core._FallbackException: 

394 pass 

395 try: 

396 return sparse_to_sparse_set_operation_eager_fallback( 

397 set1_indices, set1_values, set1_shape, set2_indices, set2_values, 

398 set2_shape, set_operation=set_operation, 

399 validate_indices=validate_indices, name=name, ctx=_ctx) 

400 except _core._SymbolicException: 

401 pass # Add nodes to the TensorFlow graph. 

402 # Add nodes to the TensorFlow graph. 

403 set_operation = _execute.make_str(set_operation, "set_operation") 

404 if validate_indices is None: 

405 validate_indices = True 

406 validate_indices = _execute.make_bool(validate_indices, "validate_indices") 

407 _, _, _op, _outputs = _op_def_library._apply_op_helper( 

408 "SparseToSparseSetOperation", set1_indices=set1_indices, 

409 set1_values=set1_values, 

410 set1_shape=set1_shape, 

411 set2_indices=set2_indices, 

412 set2_values=set2_values, 

413 set2_shape=set2_shape, 

414 set_operation=set_operation, 

415 validate_indices=validate_indices, 

416 name=name) 

417 _result = _outputs[:] 

418 if _execute.must_record_gradient(): 

419 _attrs = ("set_operation", _op.get_attr("set_operation"), 

420 "validate_indices", _op._get_attr_bool("validate_indices"), "T", 

421 _op._get_attr_type("T")) 

422 _inputs_flat = _op.inputs 

423 _execute.record_gradient( 

424 "SparseToSparseSetOperation", _inputs_flat, _attrs, _result) 

425 _result = _SparseToSparseSetOperationOutput._make(_result) 

426 return _result 

427 

428SparseToSparseSetOperation = tf_export("raw_ops.SparseToSparseSetOperation")(_ops.to_raw_op(sparse_to_sparse_set_operation)) 

429 

430 

431def sparse_to_sparse_set_operation_eager_fallback(set1_indices, set1_values, set1_shape, set2_indices, set2_values, set2_shape, set_operation, validate_indices, name, ctx): 

432 set_operation = _execute.make_str(set_operation, "set_operation") 

433 if validate_indices is None: 

434 validate_indices = True 

435 validate_indices = _execute.make_bool(validate_indices, "validate_indices") 

436 _attr_T, _inputs_T = _execute.args_to_matching_eager([set1_values, set2_values], ctx, [_dtypes.int8, _dtypes.int16, _dtypes.int32, _dtypes.int64, _dtypes.uint8, _dtypes.uint16, _dtypes.string, ]) 

437 (set1_values, set2_values) = _inputs_T 

438 set1_indices = _ops.convert_to_tensor(set1_indices, _dtypes.int64) 

439 set1_shape = _ops.convert_to_tensor(set1_shape, _dtypes.int64) 

440 set2_indices = _ops.convert_to_tensor(set2_indices, _dtypes.int64) 

441 set2_shape = _ops.convert_to_tensor(set2_shape, _dtypes.int64) 

442 _inputs_flat = [set1_indices, set1_values, set1_shape, set2_indices, set2_values, set2_shape] 

443 _attrs = ("set_operation", set_operation, "validate_indices", 

444 validate_indices, "T", _attr_T) 

445 _result = _execute.execute(b"SparseToSparseSetOperation", 3, 

446 inputs=_inputs_flat, attrs=_attrs, ctx=ctx, 

447 name=name) 

448 if _execute.must_record_gradient(): 

449 _execute.record_gradient( 

450 "SparseToSparseSetOperation", _inputs_flat, _attrs, _result) 

451 _result = _SparseToSparseSetOperationOutput._make(_result) 

452 return _result 

453