Model
Provides a SageMaker model resource.
Example Usage
Basic usage:
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.aws.iam.IamFunctions;
import com.pulumi.aws.iam.inputs.GetPolicyDocumentArgs;
import com.pulumi.aws.iam.Role;
import com.pulumi.aws.iam.RoleArgs;
import com.pulumi.aws.sagemaker.SagemakerFunctions;
import com.pulumi.aws.sagemaker.inputs.GetPrebuiltEcrImageArgs;
import com.pulumi.aws.sagemaker.Model;
import com.pulumi.aws.sagemaker.ModelArgs;
import com.pulumi.aws.sagemaker.inputs.ModelPrimaryContainerArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
final var assumeRole = IamFunctions.getPolicyDocument(GetPolicyDocumentArgs.builder()
.statements(GetPolicyDocumentStatementArgs.builder()
.actions("sts:AssumeRole")
.principals(GetPolicyDocumentStatementPrincipalArgs.builder()
.type("Service")
.identifiers("sagemaker.amazonaws.com")
.build())
.build())
.build());
var exampleRole = new Role("exampleRole", RoleArgs.builder()
.assumeRolePolicy(assumeRole.applyValue(getPolicyDocumentResult -> getPolicyDocumentResult.json()))
.build());
final var test = SagemakerFunctions.getPrebuiltEcrImage(GetPrebuiltEcrImageArgs.builder()
.repositoryName("kmeans")
.build());
var exampleModel = new Model("exampleModel", ModelArgs.builder()
.executionRoleArn(exampleRole.arn())
.primaryContainer(ModelPrimaryContainerArgs.builder()
.image(test.applyValue(getPrebuiltEcrImageResult -> getPrebuiltEcrImageResult.registryPath()))
.build())
.build());
}
}
Inference Execution Config
mode
- (Required) How containers in a multi-container are run. The following values are validSerial
andDirect
.
Import
Models can be imported using the name
, e.g.,
$ pulumi import aws:sagemaker/model:Model test_model model-foo
Properties
Specifies containers in the inference pipeline. If not specified, the primary_container
argument is required. Fields are documented below.
Isolates the model container. No inbound or outbound network calls can be made to or from the model container.
A role that SageMaker can assume to access model artifacts and docker images for deployment.
Specifies details of how containers in a multi-container endpoint are called. see Inference Execution Config.
The primary docker image containing inference code that is used when the model is deployed for predictions. If not specified, the container
argument is required. Fields are documented below.
Specifies the VPC that you want your model to connect to. VpcConfig is used in hosting services and in batch transform.