Custom Model Args
data class CustomModelArgs(val baseModelIdentifier: Output<String>? = null, val customModelKmsKeyId: Output<String>? = null, val customModelName: Output<String>? = null, val customizationType: Output<String>? = null, val hyperparameters: Output<Map<String, String>>? = null, val jobName: Output<String>? = null, val outputDataConfig: Output<CustomModelOutputDataConfigArgs>? = null, val roleArn: Output<String>? = null, val tags: Output<Map<String, String>>? = null, val timeouts: Output<CustomModelTimeoutsArgs>? = null, val trainingDataConfig: Output<CustomModelTrainingDataConfigArgs>? = null, val validationDataConfig: Output<CustomModelValidationDataConfigArgs>? = null, val vpcConfig: Output<CustomModelVpcConfigArgs>? = null) : ConvertibleToJava<CustomModelArgs>
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as aws from "@pulumi/aws";
const example = aws.bedrockfoundation.getModel({
modelId: "amazon.titan-text-express-v1",
});
const exampleCustomModel = new aws.bedrock.CustomModel("example", {
customModelName: "example-model",
jobName: "example-job-1",
baseModelIdentifier: example.then(example => example.modelArn),
roleArn: exampleAwsIamRole.arn,
hyperparameters: {
epochCount: "1",
batchSize: "1",
learningRate: "0.005",
learningRateWarmupSteps: "0",
},
outputDataConfig: {
s3Uri: `s3://${output.id}/data/`,
},
trainingDataConfig: {
s3Uri: `s3://${training.id}/data/train.jsonl`,
},
});
Content copied to clipboard
import pulumi
import pulumi_aws as aws
example = aws.bedrockfoundation.get_model(model_id="amazon.titan-text-express-v1")
example_custom_model = aws.bedrock.CustomModel("example",
custom_model_name="example-model",
job_name="example-job-1",
base_model_identifier=example.model_arn,
role_arn=example_aws_iam_role["arn"],
hyperparameters={
"epochCount": "1",
"batchSize": "1",
"learningRate": "0.005",
"learningRateWarmupSteps": "0",
},
output_data_config={
"s3_uri": f"s3://{output['id']}/data/",
},
training_data_config={
"s3_uri": f"s3://{training['id']}/data/train.jsonl",
})
Content copied to clipboard
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Aws = Pulumi.Aws;
return await Deployment.RunAsync(() =>
{
var example = Aws.BedrockFoundation.GetModel.Invoke(new()
{
ModelId = "amazon.titan-text-express-v1",
});
var exampleCustomModel = new Aws.Bedrock.CustomModel("example", new()
{
CustomModelName = "example-model",
JobName = "example-job-1",
BaseModelIdentifier = example.Apply(getModelResult => getModelResult.ModelArn),
RoleArn = exampleAwsIamRole.Arn,
Hyperparameters =
{
{ "epochCount", "1" },
{ "batchSize", "1" },
{ "learningRate", "0.005" },
{ "learningRateWarmupSteps", "0" },
},
OutputDataConfig = new Aws.Bedrock.Inputs.CustomModelOutputDataConfigArgs
{
S3Uri = $"s3://{output.Id}/data/",
},
TrainingDataConfig = new Aws.Bedrock.Inputs.CustomModelTrainingDataConfigArgs
{
S3Uri = $"s3://{training.Id}/data/train.jsonl",
},
});
});
Content copied to clipboard
package main
import (
"fmt"
"github.com/pulumi/pulumi-aws/sdk/v6/go/aws/bedrock"
"github.com/pulumi/pulumi-aws/sdk/v6/go/aws/bedrockfoundation"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
example, err := bedrockfoundation.GetModel(ctx, &bedrockfoundation.GetModelArgs{
ModelId: "amazon.titan-text-express-v1",
}, nil)
if err != nil {
return err
}
_, err = bedrock.NewCustomModel(ctx, "example", &bedrock.CustomModelArgs{
CustomModelName: pulumi.String("example-model"),
JobName: pulumi.String("example-job-1"),
BaseModelIdentifier: pulumi.String(example.ModelArn),
RoleArn: pulumi.Any(exampleAwsIamRole.Arn),
Hyperparameters: pulumi.StringMap{
"epochCount": pulumi.String("1"),
"batchSize": pulumi.String("1"),
"learningRate": pulumi.String("0.005"),
"learningRateWarmupSteps": pulumi.String("0"),
},
OutputDataConfig: &bedrock.CustomModelOutputDataConfigArgs{
S3Uri: pulumi.Sprintf("s3://%v/data/", output.Id),
},
TrainingDataConfig: &bedrock.CustomModelTrainingDataConfigArgs{
S3Uri: pulumi.Sprintf("s3://%v/data/train.jsonl", training.Id),
},
})
if err != nil {
return err
}
return nil
})
}
Content copied to clipboard
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.aws.bedrockfoundation.BedrockfoundationFunctions;
import com.pulumi.aws.bedrockfoundation.inputs.GetModelArgs;
import com.pulumi.aws.bedrock.CustomModel;
import com.pulumi.aws.bedrock.CustomModelArgs;
import com.pulumi.aws.bedrock.inputs.CustomModelOutputDataConfigArgs;
import com.pulumi.aws.bedrock.inputs.CustomModelTrainingDataConfigArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
final var example = BedrockfoundationFunctions.getModel(GetModelArgs.builder()
.modelId("amazon.titan-text-express-v1")
.build());
var exampleCustomModel = new CustomModel("exampleCustomModel", CustomModelArgs.builder()
.customModelName("example-model")
.jobName("example-job-1")
.baseModelIdentifier(example.modelArn())
.roleArn(exampleAwsIamRole.arn())
.hyperparameters(Map.ofEntries(
Map.entry("epochCount", "1"),
Map.entry("batchSize", "1"),
Map.entry("learningRate", "0.005"),
Map.entry("learningRateWarmupSteps", "0")
))
.outputDataConfig(CustomModelOutputDataConfigArgs.builder()
.s3Uri(String.format("s3://%s/data/", output.id()))
.build())
.trainingDataConfig(CustomModelTrainingDataConfigArgs.builder()
.s3Uri(String.format("s3://%s/data/train.jsonl", training.id()))
.build())
.build());
}
}
Content copied to clipboard
resources:
exampleCustomModel:
type: aws:bedrock:CustomModel
name: example
properties:
customModelName: example-model
jobName: example-job-1
baseModelIdentifier: ${example.modelArn}
roleArn: ${exampleAwsIamRole.arn}
hyperparameters:
epochCount: '1'
batchSize: '1'
learningRate: '0.005'
learningRateWarmupSteps: '0'
outputDataConfig:
s3Uri: s3://${output.id}/data/
trainingDataConfig:
s3Uri: s3://${training.id}/data/train.jsonl
variables:
example:
fn::invoke:
function: aws:bedrockfoundation:getModel
arguments:
modelId: amazon.titan-text-express-v1
Content copied to clipboard
Import
Using pulumi import
, import Bedrock custom model using the job_arn
. For example:
$ pulumi import aws:bedrock/customModel:CustomModel example arn:aws:bedrock:us-west-2:123456789012:model-customization-job/amazon.titan-text-express-v1:0:8k/1y5n57gh5y2e
Content copied to clipboard
Constructors
Link copied to clipboard
constructor(baseModelIdentifier: Output<String>? = null, customModelKmsKeyId: Output<String>? = null, customModelName: Output<String>? = null, customizationType: Output<String>? = null, hyperparameters: Output<Map<String, String>>? = null, jobName: Output<String>? = null, outputDataConfig: Output<CustomModelOutputDataConfigArgs>? = null, roleArn: Output<String>? = null, tags: Output<Map<String, String>>? = null, timeouts: Output<CustomModelTimeoutsArgs>? = null, trainingDataConfig: Output<CustomModelTrainingDataConfigArgs>? = null, validationDataConfig: Output<CustomModelValidationDataConfigArgs>? = null, vpcConfig: Output<CustomModelVpcConfigArgs>? = null)
Properties
Link copied to clipboard
The Amazon Resource Name (ARN) of the base model.
Link copied to clipboard
The customization type. Valid values: FINE_TUNING
, CONTINUED_PRE_TRAINING
.
Link copied to clipboard
The custom model is encrypted at rest using this key. Specify the key ARN.
Link copied to clipboard
Name for the custom model.
Link copied to clipboard
Parameters related to tuning the model.
Link copied to clipboard
S3 location for the output data.
Link copied to clipboard
Link copied to clipboard
Information about the training dataset.
Link copied to clipboard
Information about the validation dataset.
Link copied to clipboard
Configuration parameters for the private Virtual Private Cloud (VPC) that contains the resources you are using for this job.