Endpoint Configuration
Provides a SageMaker AI endpoint configuration resource.
Example Usage
Basic usage:
import * as pulumi from "@pulumi/pulumi";
import * as aws from "@pulumi/aws";
const ec = new aws.sagemaker.EndpointConfiguration("ec", {
name: "my-endpoint-config",
productionVariants: [{
variantName: "variant-1",
modelName: m.name,
initialInstanceCount: 1,
instanceType: "ml.t2.medium",
}],
tags: {
Name: "foo",
},
});
import pulumi
import pulumi_aws as aws
ec = aws.sagemaker.EndpointConfiguration("ec",
name="my-endpoint-config",
production_variants=[{
"variant_name": "variant-1",
"model_name": m["name"],
"initial_instance_count": 1,
"instance_type": "ml.t2.medium",
}],
tags={
"Name": "foo",
})
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Aws = Pulumi.Aws;
return await Deployment.RunAsync(() =>
{
var ec = new Aws.Sagemaker.EndpointConfiguration("ec", new()
{
Name = "my-endpoint-config",
ProductionVariants = new[]
{
new Aws.Sagemaker.Inputs.EndpointConfigurationProductionVariantArgs
{
VariantName = "variant-1",
ModelName = m.Name,
InitialInstanceCount = 1,
InstanceType = "ml.t2.medium",
},
},
Tags =
{
{ "Name", "foo" },
},
});
});
package main
import (
"github.com/pulumi/pulumi-aws/sdk/v6/go/aws/sagemaker"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := sagemaker.NewEndpointConfiguration(ctx, "ec", &sagemaker.EndpointConfigurationArgs{
Name: pulumi.String("my-endpoint-config"),
ProductionVariants: sagemaker.EndpointConfigurationProductionVariantArray{
&sagemaker.EndpointConfigurationProductionVariantArgs{
VariantName: pulumi.String("variant-1"),
ModelName: pulumi.Any(m.Name),
InitialInstanceCount: pulumi.Int(1),
InstanceType: pulumi.String("ml.t2.medium"),
},
},
Tags: pulumi.StringMap{
"Name": pulumi.String("foo"),
},
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.aws.sagemaker.EndpointConfiguration;
import com.pulumi.aws.sagemaker.EndpointConfigurationArgs;
import com.pulumi.aws.sagemaker.inputs.EndpointConfigurationProductionVariantArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var ec = new EndpointConfiguration("ec", EndpointConfigurationArgs.builder()
.name("my-endpoint-config")
.productionVariants(EndpointConfigurationProductionVariantArgs.builder()
.variantName("variant-1")
.modelName(m.name())
.initialInstanceCount(1)
.instanceType("ml.t2.medium")
.build())
.tags(Map.of("Name", "foo"))
.build());
}
}
resources:
ec:
type: aws:sagemaker:EndpointConfiguration
properties:
name: my-endpoint-config
productionVariants:
- variantName: variant-1
modelName: ${m.name}
initialInstanceCount: 1
instanceType: ml.t2.medium
tags:
Name: foo
Import
Using pulumi import
, import endpoint configurations using the name
. For example:
$ pulumi import aws:sagemaker/endpointConfiguration:EndpointConfiguration test_endpoint_config endpoint-config-foo
Properties
Specifies configuration for how an endpoint performs asynchronous inference.
Specifies the parameters to capture input/output of SageMaker AI models endpoints. Fields are documented below.
Creates a unique endpoint configuration name beginning with the specified prefix. Conflicts with name
.
An list of ProductionVariant objects, one for each model that you want to host at this endpoint. Fields are documented below.
Array of ProductionVariant objects. There is one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants. If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants. Fields are documented below.