ACIService Args
Machine Learning service object wrapped into ARM resource envelope. API Version: 2021-01-01.
Example Usage
Create Or Update service
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var aciService = new AzureNative.MachineLearningServices.ACIService("aciService", new()
{
AppInsightsEnabled = true,
AuthEnabled = true,
ComputeType = "ACI",
ContainerResourceRequirements = new AzureNative.MachineLearningServices.Inputs.ContainerResourceRequirementsArgs
{
Cpu = 1,
MemoryInGB = 1,
},
EnvironmentImageRequest = new AzureNative.MachineLearningServices.Inputs.CreateServiceRequestEnvironmentImageRequestArgs
{
Assets = new[]
{
new AzureNative.MachineLearningServices.Inputs.ImageAssetArgs
{
MimeType = "application/x-python",
Unpack = false,
Url = "aml://storage/azureml/score.py",
},
},
DriverProgram = "score.py",
Environment = new AzureNative.MachineLearningServices.Inputs.EnvironmentImageRequestEnvironmentArgs
{
Docker = new AzureNative.MachineLearningServices.Inputs.ModelEnvironmentDefinitionDockerArgs
{
BaseImage = "mcr.microsoft.com/azureml/base:openmpi3.1.2-ubuntu16.04",
BaseImageRegistry = null,
},
EnvironmentVariables =
{
{ "EXAMPLE_ENV_VAR", "EXAMPLE_VALUE" },
},
Name = "AzureML-Scikit-learn-0.20.3",
Python = new AzureNative.MachineLearningServices.Inputs.ModelEnvironmentDefinitionPythonArgs
{
CondaDependencies =
{
{ "channels", new[]
{
"conda-forge",
} },
{ "dependencies", new[]
{
"python=3.6.2",
{
{ "pip", new[]
{
"azureml-core==1.0.69",
"azureml-defaults==1.0.69",
"azureml-telemetry==1.0.69",
"azureml-train-restclients-hyperdrive==1.0.69",
"azureml-train-core==1.0.69",
"scikit-learn==0.20.3",
"scipy==1.2.1",
"numpy==1.16.2",
"joblib==0.13.2",
} },
},
} },
{ "name", "azureml_ae1acbe6e1e6aabbad900b53c491a17c" },
},
InterpreterPath = "python",
UserManagedDependencies = false,
},
Spark = new AzureNative.MachineLearningServices.Inputs.ModelEnvironmentDefinitionSparkArgs
{
Packages = new[] {},
PrecachePackages = true,
Repositories = new[] {},
},
Version = "3",
},
Models = new[]
{
new AzureNative.MachineLearningServices.Inputs.ModelArgs
{
MimeType = "application/x-python",
Name = "sklearn_regression_model.pkl",
Url = "aml://storage/azureml/sklearn_regression_model.pkl",
},
},
},
Location = "eastus2",
ResourceGroupName = "testrg123",
ServiceName = "service456",
WorkspaceName = "workspaces123",
});
});
package main
import (
machinelearningservices "github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewACIService(ctx, "aciService", &machinelearningservices.ACIServiceArgs{
AppInsightsEnabled: pulumi.Bool(true),
AuthEnabled: pulumi.Bool(true),
ComputeType: pulumi.String("ACI"),
ContainerResourceRequirements: &machinelearningservices.ContainerResourceRequirementsArgs{
Cpu: pulumi.Float64(1),
MemoryInGB: pulumi.Float64(1),
},
EnvironmentImageRequest: &machinelearningservices.CreateServiceRequestEnvironmentImageRequestArgs{
Assets: machinelearningservices.ImageAssetArray{
&machinelearningservices.ImageAssetArgs{
MimeType: pulumi.String("application/x-python"),
Unpack: pulumi.Bool(false),
Url: pulumi.String("aml://storage/azureml/score.py"),
},
},
DriverProgram: pulumi.String("score.py"),
Environment: &machinelearningservices.EnvironmentImageRequestEnvironmentArgs{
Docker: &machinelearningservices.ModelEnvironmentDefinitionDockerArgs{
BaseImage: pulumi.String("mcr.microsoft.com/azureml/base:openmpi3.1.2-ubuntu16.04"),
BaseImageRegistry: nil,
},
EnvironmentVariables: pulumi.StringMap{
"EXAMPLE_ENV_VAR": pulumi.String("EXAMPLE_VALUE"),
},
Name: pulumi.String("AzureML-Scikit-learn-0.20.3"),
Python: &machinelearningservices.ModelEnvironmentDefinitionPythonArgs{
CondaDependencies: pulumi.Any{
Channels: []string{
"conda-forge",
},
Dependencies: []interface{}{
"python=3.6.2",
map[string]interface{}{
"pip": []string{
"azureml-core==1.0.69",
"azureml-defaults==1.0.69",
"azureml-telemetry==1.0.69",
"azureml-train-restclients-hyperdrive==1.0.69",
"azureml-train-core==1.0.69",
"scikit-learn==0.20.3",
"scipy==1.2.1",
"numpy==1.16.2",
"joblib==0.13.2",
},
},
},
Name: "azureml_ae1acbe6e1e6aabbad900b53c491a17c",
},
InterpreterPath: pulumi.String("python"),
UserManagedDependencies: pulumi.Bool(false),
},
Spark: &machinelearningservices.ModelEnvironmentDefinitionSparkArgs{
Packages: machinelearningservices.SparkMavenPackageArray{},
PrecachePackages: pulumi.Bool(true),
Repositories: pulumi.StringArray{},
},
Version: pulumi.String("3"),
},
Models: machinelearningservices.ModelArray{
&machinelearningservices.ModelArgs{
MimeType: pulumi.String("application/x-python"),
Name: pulumi.String("sklearn_regression_model.pkl"),
Url: pulumi.String("aml://storage/azureml/sklearn_regression_model.pkl"),
},
},
},
Location: pulumi.String("eastus2"),
ResourceGroupName: pulumi.String("testrg123"),
ServiceName: pulumi.String("service456"),
WorkspaceName: pulumi.String("workspaces123"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.ACIService;
import com.pulumi.azurenative.machinelearningservices.ACIServiceArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var aciService = new ACIService("aciService", ACIServiceArgs.builder()
.appInsightsEnabled(true)
.authEnabled(true)
.computeType("ACI")
.containerResourceRequirements(Map.ofEntries(
Map.entry("cpu", 1),
Map.entry("memoryInGB", 1)
))
.environmentImageRequest(Map.ofEntries(
Map.entry("assets", Map.ofEntries(
Map.entry("mimeType", "application/x-python"),
Map.entry("unpack", false),
Map.entry("url", "aml://storage/azureml/score.py")
)),
Map.entry("driverProgram", "score.py"),
Map.entry("environment", Map.ofEntries(
Map.entry("docker", Map.ofEntries(
Map.entry("baseImage", "mcr.microsoft.com/azureml/base:openmpi3.1.2-ubuntu16.04"),
Map.entry("baseImageRegistry", )
)),
Map.entry("environmentVariables", Map.of("EXAMPLE_ENV_VAR", "EXAMPLE_VALUE")),
Map.entry("name", "AzureML-Scikit-learn-0.20.3"),
Map.entry("python", Map.ofEntries(
Map.entry("condaDependencies", Map.ofEntries(
Map.entry("channels", "conda-forge"),
Map.entry("dependencies",
"python=3.6.2",
CreateServiceRequestEnvironmentImageRequestArgs.builder()
.pip(
"azureml-core==1.0.69",
"azureml-defaults==1.0.69",
"azureml-telemetry==1.0.69",
"azureml-train-restclients-hyperdrive==1.0.69",
"azureml-train-core==1.0.69",
"scikit-learn==0.20.3",
"scipy==1.2.1",
"numpy==1.16.2",
"joblib==0.13.2")
.build()),
Map.entry("name", "azureml_ae1acbe6e1e6aabbad900b53c491a17c")
)),
Map.entry("interpreterPath", "python"),
Map.entry("userManagedDependencies", false)
)),
Map.entry("spark", Map.ofEntries(
Map.entry("packages", ),
Map.entry("precachePackages", true),
Map.entry("repositories", )
)),
Map.entry("version", "3")
)),
Map.entry("models", Map.ofEntries(
Map.entry("mimeType", "application/x-python"),
Map.entry("name", "sklearn_regression_model.pkl"),
Map.entry("url", "aml://storage/azureml/sklearn_regression_model.pkl")
))
))
.location("eastus2")
.resourceGroupName("testrg123")
.serviceName("service456")
.workspaceName("workspaces123")
.build());
}
}
Import
An existing resource can be imported using its type token, name, and identifier, e.g.
$ pulumi import azure-native:machinelearningservices:ACIService service456 subscriptions/34adfa4f-cedf-4dc0-ba29-b6d1a69ab345/resourceGroups/testrg123/providers/Microsoft.MachineLearningServices/workspaces/workspaces123/services/service456
Constructors
Properties
Whether or not Application Insights is enabled.
Whether or not authentication is enabled on the service.
The compute environment type for the service. Expected value is 'ACI'.
The container resource requirements.
Details of the data collection options specified.
The description of the service.
The Dns label for the service.
The encryption properties.
The Environment, models and assets needed for inferencing.
The authentication keys.
The service properties dictionary. Properties are immutable.
Name of the resource group in which workspace is located.
Name of the Azure Machine Learning service.
The public SSL certificate in PEM format to use if SSL is enabled.
Whether or not SSL is enabled.
The virtual network configuration.
Name of Azure Machine Learning workspace.