MachineLearningComputeArgs

data class MachineLearningComputeArgs(val computeName: Output<String>? = null, val identity: Output<IdentityArgs>? = null, val location: Output<String>? = null, val properties: Output<Any>? = null, val resourceGroupName: Output<String>? = null, val sku: Output<SkuArgs>? = null, val tags: Output<Map<String, String>>? = null, val workspaceName: Output<String>? = null) : ConvertibleToJava<MachineLearningComputeArgs>

Machine Learning compute object wrapped into ARM resource envelope. API Version: 2021-01-01.

Example Usage

Create AKS Compute

using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var machineLearningCompute = new AzureNative.MachineLearningServices.MachineLearningCompute("machineLearningCompute", new()
{
ComputeName = "compute123",
Location = "eastus",
Properties = new AzureNative.MachineLearningServices.Inputs.AKSArgs
{
ComputeType = "AKS",
},
ResourceGroupName = "testrg123",
WorkspaceName = "workspaces123",
});
});
package main
import (
machinelearningservices "github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewMachineLearningCompute(ctx, "machineLearningCompute", &machinelearningservices.MachineLearningComputeArgs{
ComputeName: pulumi.String("compute123"),
Location: pulumi.String("eastus"),
Properties: machinelearningservices.AKS{
ComputeType: "AKS",
},
ResourceGroupName: pulumi.String("testrg123"),
WorkspaceName: pulumi.String("workspaces123"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.MachineLearningCompute;
import com.pulumi.azurenative.machinelearningservices.MachineLearningComputeArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var machineLearningCompute = new MachineLearningCompute("machineLearningCompute", MachineLearningComputeArgs.builder()
.computeName("compute123")
.location("eastus")
.properties(Map.of("computeType", "AKS"))
.resourceGroupName("testrg123")
.workspaceName("workspaces123")
.build());
}
}

Create a AML Compute

using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var machineLearningCompute = new AzureNative.MachineLearningServices.MachineLearningCompute("machineLearningCompute", new()
{
ComputeName = "compute123",
Location = "eastus",
Properties = new AzureNative.MachineLearningServices.Inputs.AmlComputeArgs
{
ComputeType = "AmlCompute",
Properties = new AzureNative.MachineLearningServices.Inputs.AmlComputePropertiesArgs
{
EnableNodePublicIp = true,
IsolatedNetwork = false,
OsType = "Windows",
RemoteLoginPortPublicAccess = "NotSpecified",
ScaleSettings = new AzureNative.MachineLearningServices.Inputs.ScaleSettingsArgs
{
MaxNodeCount = 1,
MinNodeCount = 0,
NodeIdleTimeBeforeScaleDown = "PT5M",
},
VirtualMachineImage = new AzureNative.MachineLearningServices.Inputs.VirtualMachineImageArgs
{
Id = "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/myResourceGroup/providers/Microsoft.Compute/galleries/myImageGallery/images/myImageDefinition/versions/0.0.1",
},
VmPriority = "Dedicated",
VmSize = "STANDARD_NC6",
},
},
ResourceGroupName = "testrg123",
WorkspaceName = "workspaces123",
});
});
package main
import (
machinelearningservices "github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewMachineLearningCompute(ctx, "machineLearningCompute", &machinelearningservices.MachineLearningComputeArgs{
ComputeName: pulumi.String("compute123"),
Location: pulumi.String("eastus"),
Properties: machinelearningservices.AmlCompute{
ComputeType: "AmlCompute",
Properties: machinelearningservices.AmlComputeProperties{
EnableNodePublicIp: true,
IsolatedNetwork: false,
OsType: "Windows",
RemoteLoginPortPublicAccess: "NotSpecified",
ScaleSettings: machinelearningservices.ScaleSettings{
MaxNodeCount: 1,
MinNodeCount: 0,
NodeIdleTimeBeforeScaleDown: "PT5M",
},
VirtualMachineImage: machinelearningservices.VirtualMachineImage{
Id: "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/myResourceGroup/providers/Microsoft.Compute/galleries/myImageGallery/images/myImageDefinition/versions/0.0.1",
},
VmPriority: "Dedicated",
VmSize: "STANDARD_NC6",
},
},
ResourceGroupName: pulumi.String("testrg123"),
WorkspaceName: pulumi.String("workspaces123"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.MachineLearningCompute;
import com.pulumi.azurenative.machinelearningservices.MachineLearningComputeArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var machineLearningCompute = new MachineLearningCompute("machineLearningCompute", MachineLearningComputeArgs.builder()
.computeName("compute123")
.location("eastus")
.properties(Map.ofEntries(
Map.entry("computeType", "AmlCompute"),
Map.entry("properties", Map.ofEntries(
Map.entry("enableNodePublicIp", true),
Map.entry("isolatedNetwork", false),
Map.entry("osType", "Windows"),
Map.entry("remoteLoginPortPublicAccess", "NotSpecified"),
Map.entry("scaleSettings", Map.ofEntries(
Map.entry("maxNodeCount", 1),
Map.entry("minNodeCount", 0),
Map.entry("nodeIdleTimeBeforeScaleDown", "PT5M")
)),
Map.entry("virtualMachineImage", Map.of("id", "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/myResourceGroup/providers/Microsoft.Compute/galleries/myImageGallery/images/myImageDefinition/versions/0.0.1")),
Map.entry("vmPriority", "Dedicated"),
Map.entry("vmSize", "STANDARD_NC6")
))
))
.resourceGroupName("testrg123")
.workspaceName("workspaces123")
.build());
}
}

Create a DataFactory Compute

using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var machineLearningCompute = new AzureNative.MachineLearningServices.MachineLearningCompute("machineLearningCompute", new()
{
ComputeName = "compute123",
Location = "eastus",
Properties = new AzureNative.MachineLearningServices.Inputs.DataFactoryArgs
{
ComputeType = "DataFactory",
},
ResourceGroupName = "testrg123",
WorkspaceName = "workspaces123",
});
});
package main
import (
machinelearningservices "github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewMachineLearningCompute(ctx, "machineLearningCompute", &machinelearningservices.MachineLearningComputeArgs{
ComputeName: pulumi.String("compute123"),
Location: pulumi.String("eastus"),
Properties: machinelearningservices.DataFactory{
ComputeType: "DataFactory",
},
ResourceGroupName: pulumi.String("testrg123"),
WorkspaceName: pulumi.String("workspaces123"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.MachineLearningCompute;
import com.pulumi.azurenative.machinelearningservices.MachineLearningComputeArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var machineLearningCompute = new MachineLearningCompute("machineLearningCompute", MachineLearningComputeArgs.builder()
.computeName("compute123")
.location("eastus")
.properties(Map.of("computeType", "DataFactory"))
.resourceGroupName("testrg123")
.workspaceName("workspaces123")
.build());
}
}

Create an ComputeInstance Compute

using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var machineLearningCompute = new AzureNative.MachineLearningServices.MachineLearningCompute("machineLearningCompute", new()
{
ComputeName = "compute123",
Location = "eastus",
Properties = new AzureNative.MachineLearningServices.Inputs.ComputeInstanceArgs
{
ComputeType = "ComputeInstance",
Properties = new AzureNative.MachineLearningServices.Inputs.ComputeInstancePropertiesArgs
{
ApplicationSharingPolicy = "Personal",
ComputeInstanceAuthorizationType = "personal",
PersonalComputeInstanceSettings = new AzureNative.MachineLearningServices.Inputs.PersonalComputeInstanceSettingsArgs
{
AssignedUser = new AzureNative.MachineLearningServices.Inputs.AssignedUserArgs
{
ObjectId = "00000000-0000-0000-0000-000000000000",
TenantId = "00000000-0000-0000-0000-000000000000",
},
},
SshSettings = new AzureNative.MachineLearningServices.Inputs.ComputeInstanceSshSettingsArgs
{
SshPublicAccess = "Disabled",
},
Subnet = "test-subnet-resource-id",
VmSize = "STANDARD_NC6",
},
},
ResourceGroupName = "testrg123",
WorkspaceName = "workspaces123",
});
});
package main
import (
machinelearningservices "github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewMachineLearningCompute(ctx, "machineLearningCompute", &machinelearningservices.MachineLearningComputeArgs{
ComputeName: pulumi.String("compute123"),
Location: pulumi.String("eastus"),
Properties: machinelearningservices.ComputeInstance{
ComputeType: "ComputeInstance",
Properties: machinelearningservices.ComputeInstanceProperties{
ApplicationSharingPolicy: "Personal",
ComputeInstanceAuthorizationType: "personal",
PersonalComputeInstanceSettings: machinelearningservices.PersonalComputeInstanceSettings{
AssignedUser: machinelearningservices.AssignedUser{
ObjectId: "00000000-0000-0000-0000-000000000000",
TenantId: "00000000-0000-0000-0000-000000000000",
},
},
SshSettings: machinelearningservices.ComputeInstanceSshSettings{
SshPublicAccess: "Disabled",
},
Subnet: "test-subnet-resource-id",
VmSize: "STANDARD_NC6",
},
},
ResourceGroupName: pulumi.String("testrg123"),
WorkspaceName: pulumi.String("workspaces123"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.MachineLearningCompute;
import com.pulumi.azurenative.machinelearningservices.MachineLearningComputeArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var machineLearningCompute = new MachineLearningCompute("machineLearningCompute", MachineLearningComputeArgs.builder()
.computeName("compute123")
.location("eastus")
.properties(Map.ofEntries(
Map.entry("computeType", "ComputeInstance"),
Map.entry("properties", Map.ofEntries(
Map.entry("applicationSharingPolicy", "Personal"),
Map.entry("computeInstanceAuthorizationType", "personal"),
Map.entry("personalComputeInstanceSettings", Map.of("assignedUser", Map.ofEntries(
Map.entry("objectId", "00000000-0000-0000-0000-000000000000"),
Map.entry("tenantId", "00000000-0000-0000-0000-000000000000")
))),
Map.entry("sshSettings", Map.of("sshPublicAccess", "Disabled")),
Map.entry("subnet", "test-subnet-resource-id"),
Map.entry("vmSize", "STANDARD_NC6")
))
))
.resourceGroupName("testrg123")
.workspaceName("workspaces123")
.build());
}
}

Create an ComputeInstance Compute with minimal inputs

using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var machineLearningCompute = new AzureNative.MachineLearningServices.MachineLearningCompute("machineLearningCompute", new()
{
ComputeName = "compute123",
Location = "eastus",
Properties = new AzureNative.MachineLearningServices.Inputs.ComputeInstanceArgs
{
ComputeType = "ComputeInstance",
Properties = new AzureNative.MachineLearningServices.Inputs.ComputeInstancePropertiesArgs
{
VmSize = "STANDARD_NC6",
},
},
ResourceGroupName = "testrg123",
WorkspaceName = "workspaces123",
});
});
package main
import (
machinelearningservices "github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewMachineLearningCompute(ctx, "machineLearningCompute", &machinelearningservices.MachineLearningComputeArgs{
ComputeName: pulumi.String("compute123"),
Location: pulumi.String("eastus"),
Properties: machinelearningservices.ComputeInstance{
ComputeType: "ComputeInstance",
Properties: machinelearningservices.ComputeInstanceProperties{
VmSize: "STANDARD_NC6",
},
},
ResourceGroupName: pulumi.String("testrg123"),
WorkspaceName: pulumi.String("workspaces123"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.MachineLearningCompute;
import com.pulumi.azurenative.machinelearningservices.MachineLearningComputeArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var machineLearningCompute = new MachineLearningCompute("machineLearningCompute", MachineLearningComputeArgs.builder()
.computeName("compute123")
.location("eastus")
.properties(Map.ofEntries(
Map.entry("computeType", "ComputeInstance"),
Map.entry("properties", Map.of("vmSize", "STANDARD_NC6"))
))
.resourceGroupName("testrg123")
.workspaceName("workspaces123")
.build());
}
}

Update a AKS Compute

using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var machineLearningCompute = new AzureNative.MachineLearningServices.MachineLearningCompute("machineLearningCompute", new()
{
ComputeName = "compute123",
Location = "eastus",
Properties = new AzureNative.MachineLearningServices.Inputs.AKSArgs
{
ComputeType = "AKS",
Description = "some compute",
Properties = new AzureNative.MachineLearningServices.Inputs.AKSPropertiesArgs
{
AgentCount = 4,
},
ResourceId = "/subscriptions/34adfa4f-cedf-4dc0-ba29-b6d1a69ab345/resourcegroups/testrg123/providers/Microsoft.ContainerService/managedClusters/compute123-56826-c9b00420020b2",
},
ResourceGroupName = "testrg123",
WorkspaceName = "workspaces123",
});
});
package main
import (
machinelearningservices "github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewMachineLearningCompute(ctx, "machineLearningCompute", &machinelearningservices.MachineLearningComputeArgs{
ComputeName: pulumi.String("compute123"),
Location: pulumi.String("eastus"),
Properties: machinelearningservices.AKS{
ComputeType: "AKS",
Description: "some compute",
Properties: machinelearningservices.AKSProperties{
AgentCount: 4,
},
ResourceId: "/subscriptions/34adfa4f-cedf-4dc0-ba29-b6d1a69ab345/resourcegroups/testrg123/providers/Microsoft.ContainerService/managedClusters/compute123-56826-c9b00420020b2",
},
ResourceGroupName: pulumi.String("testrg123"),
WorkspaceName: pulumi.String("workspaces123"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.MachineLearningCompute;
import com.pulumi.azurenative.machinelearningservices.MachineLearningComputeArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var machineLearningCompute = new MachineLearningCompute("machineLearningCompute", MachineLearningComputeArgs.builder()
.computeName("compute123")
.location("eastus")
.properties(Map.ofEntries(
Map.entry("computeType", "AKS"),
Map.entry("description", "some compute"),
Map.entry("properties", Map.of("agentCount", 4)),
Map.entry("resourceId", "/subscriptions/34adfa4f-cedf-4dc0-ba29-b6d1a69ab345/resourcegroups/testrg123/providers/Microsoft.ContainerService/managedClusters/compute123-56826-c9b00420020b2")
))
.resourceGroupName("testrg123")
.workspaceName("workspaces123")
.build());
}
}

Update a AML Compute

using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var machineLearningCompute = new AzureNative.MachineLearningServices.MachineLearningCompute("machineLearningCompute", new()
{
ComputeName = "compute123",
Location = "eastus",
Properties = new AzureNative.MachineLearningServices.Inputs.AmlComputeArgs
{
ComputeType = "AmlCompute",
Description = "some compute",
Properties = new AzureNative.MachineLearningServices.Inputs.AmlComputePropertiesArgs
{
ScaleSettings = new AzureNative.MachineLearningServices.Inputs.ScaleSettingsArgs
{
MaxNodeCount = 4,
MinNodeCount = 4,
NodeIdleTimeBeforeScaleDown = "PT5M",
},
},
},
ResourceGroupName = "testrg123",
WorkspaceName = "workspaces123",
});
});
package main
import (
machinelearningservices "github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewMachineLearningCompute(ctx, "machineLearningCompute", &machinelearningservices.MachineLearningComputeArgs{
ComputeName: pulumi.String("compute123"),
Location: pulumi.String("eastus"),
Properties: machinelearningservices.AmlCompute{
ComputeType: "AmlCompute",
Description: "some compute",
Properties: machinelearningservices.AmlComputeProperties{
ScaleSettings: machinelearningservices.ScaleSettings{
MaxNodeCount: 4,
MinNodeCount: 4,
NodeIdleTimeBeforeScaleDown: "PT5M",
},
},
},
ResourceGroupName: pulumi.String("testrg123"),
WorkspaceName: pulumi.String("workspaces123"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.MachineLearningCompute;
import com.pulumi.azurenative.machinelearningservices.MachineLearningComputeArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var machineLearningCompute = new MachineLearningCompute("machineLearningCompute", MachineLearningComputeArgs.builder()
.computeName("compute123")
.location("eastus")
.properties(Map.ofEntries(
Map.entry("computeType", "AmlCompute"),
Map.entry("description", "some compute"),
Map.entry("properties", Map.of("scaleSettings", Map.ofEntries(
Map.entry("maxNodeCount", 4),
Map.entry("minNodeCount", 4),
Map.entry("nodeIdleTimeBeforeScaleDown", "PT5M")
)))
))
.resourceGroupName("testrg123")
.workspaceName("workspaces123")
.build());
}
}

Import

An existing resource can be imported using its type token, name, and identifier, e.g.

$ pulumi import azure-native:machinelearningservices:MachineLearningCompute compute123 /subscriptions/34adfa4f-cedf-4dc0-ba29-b6d1a69ab345/resourceGroups/testrg123/providers/Microsoft.MachineLearningServices/workspaces/workspaces123/computes/compute123

Constructors

Link copied to clipboard
constructor(computeName: Output<String>? = null, identity: Output<IdentityArgs>? = null, location: Output<String>? = null, properties: Output<Any>? = null, resourceGroupName: Output<String>? = null, sku: Output<SkuArgs>? = null, tags: Output<Map<String, String>>? = null, workspaceName: Output<String>? = null)

Properties

Link copied to clipboard
val computeName: Output<String>? = null

Name of the Azure Machine Learning compute.

Link copied to clipboard
val identity: Output<IdentityArgs>? = null

The identity of the resource.

Link copied to clipboard
val location: Output<String>? = null

Specifies the location of the resource.

Link copied to clipboard
val properties: Output<Any>? = null

Compute properties

Link copied to clipboard
val resourceGroupName: Output<String>? = null

Name of the resource group in which workspace is located.

Link copied to clipboard
val sku: Output<SkuArgs>? = null

The sku of the workspace.

Link copied to clipboard
val tags: Output<Map<String, String>>? = null

Contains resource tags defined as key/value pairs.

Link copied to clipboard
val workspaceName: Output<String>? = null

Name of Azure Machine Learning workspace.

Functions

Link copied to clipboard
open override fun toJava(): MachineLearningComputeArgs