FunctionArgs

data class FunctionArgs(val functionName: Output<String>? = null, val jobName: Output<String>? = null, val name: Output<String>? = null, val properties: Output<ScalarFunctionPropertiesArgs>? = null, val resourceGroupName: Output<String>? = null) : ConvertibleToJava<FunctionArgs>

A function object, containing all information associated with the named function. All functions are contained under a streaming job. API Version: 2016-03-01.

Example Usage

Create a JavaScript function

using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var function = new AzureNative.StreamAnalytics.Function("function", new()
{
FunctionName = "function8197",
JobName = "sj8653",
Properties = new AzureNative.StreamAnalytics.Inputs.ScalarFunctionPropertiesArgs
{
Binding = new AzureNative.StreamAnalytics.Inputs.JavaScriptFunctionBindingArgs
{
Script = "function (x, y) { return x + y; }",
Type = "Microsoft.StreamAnalytics/JavascriptUdf",
},
Inputs = new[]
{
new AzureNative.StreamAnalytics.Inputs.FunctionInputArgs
{
DataType = "Any",
},
},
Output = new AzureNative.StreamAnalytics.Inputs.FunctionOutputArgs
{
DataType = "Any",
},
Type = "Scalar",
},
ResourceGroupName = "sjrg1637",
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.streamanalytics.Function;
import com.pulumi.azurenative.streamanalytics.FunctionArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var function = new Function("function", FunctionArgs.builder()
.functionName("function8197")
.jobName("sj8653")
.properties(Map.ofEntries(
Map.entry("binding", Map.ofEntries(
Map.entry("script", "function (x, y) { return x + y; }"),
Map.entry("type", "Microsoft.StreamAnalytics/JavascriptUdf")
)),
Map.entry("inputs", Map.of("dataType", "Any")),
Map.entry("output", Map.of("dataType", "Any")),
Map.entry("type", "Scalar")
))
.resourceGroupName("sjrg1637")
.build());
}
}

Create an Azure ML function

using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var function = new AzureNative.StreamAnalytics.Function("function", new()
{
FunctionName = "function588",
JobName = "sj9093",
Properties = new AzureNative.StreamAnalytics.Inputs.ScalarFunctionPropertiesArgs
{
Binding = new AzureNative.StreamAnalytics.Inputs.AzureMachineLearningWebServiceFunctionBindingArgs
{
ApiKey = "someApiKey==",
BatchSize = 1000,
Endpoint = "someAzureMLEndpointURL",
Inputs = new AzureNative.StreamAnalytics.Inputs.AzureMachineLearningWebServiceInputsArgs
{
ColumnNames = new[]
{
new AzureNative.StreamAnalytics.Inputs.AzureMachineLearningWebServiceInputColumnArgs
{
DataType = "string",
MapTo = 0,
Name = "tweet",
},
},
Name = "input1",
},
Outputs = new[]
{
new AzureNative.StreamAnalytics.Inputs.AzureMachineLearningWebServiceOutputColumnArgs
{
DataType = "string",
Name = "Sentiment",
},
},
Type = "Microsoft.MachineLearning/WebService",
},
Inputs = new[]
{
new AzureNative.StreamAnalytics.Inputs.FunctionInputArgs
{
DataType = "nvarchar(max)",
},
},
Output = new AzureNative.StreamAnalytics.Inputs.FunctionOutputArgs
{
DataType = "nvarchar(max)",
},
Type = "Scalar",
},
ResourceGroupName = "sjrg7",
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.streamanalytics.Function;
import com.pulumi.azurenative.streamanalytics.FunctionArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var function = new Function("function", FunctionArgs.builder()
.functionName("function588")
.jobName("sj9093")
.properties(Map.ofEntries(
Map.entry("binding", Map.ofEntries(
Map.entry("apiKey", "someApiKey=="),
Map.entry("batchSize", 1000),
Map.entry("endpoint", "someAzureMLEndpointURL"),
Map.entry("inputs", Map.ofEntries(
Map.entry("columnNames", Map.ofEntries(
Map.entry("dataType", "string"),
Map.entry("mapTo", 0),
Map.entry("name", "tweet")
)),
Map.entry("name", "input1")
)),
Map.entry("outputs", Map.ofEntries(
Map.entry("dataType", "string"),
Map.entry("name", "Sentiment")
)),
Map.entry("type", "Microsoft.MachineLearning/WebService")
)),
Map.entry("inputs", Map.of("dataType", "nvarchar(max)")),
Map.entry("output", Map.of("dataType", "nvarchar(max)")),
Map.entry("type", "Scalar")
))
.resourceGroupName("sjrg7")
.build());
}
}

Import

An existing resource can be imported using its type token, name, and identifier, e.g.

$ pulumi import azure-native:streamanalytics:Function function588 /subscriptions/56b5e0a9-b645-407d-99b0-c64f86013e3d/resourceGroups/sjrg7/providers/Microsoft.StreamAnalytics/streamingjobs/sj9093/functions/function588

Constructors

Link copied to clipboard
constructor(functionName: Output<String>? = null, jobName: Output<String>? = null, name: Output<String>? = null, properties: Output<ScalarFunctionPropertiesArgs>? = null, resourceGroupName: Output<String>? = null)

Properties

Link copied to clipboard
val functionName: Output<String>? = null

The name of the function.

Link copied to clipboard
val jobName: Output<String>? = null

The name of the streaming job.

Link copied to clipboard
val name: Output<String>? = null

Resource name

Link copied to clipboard

The properties that are associated with a function.

Link copied to clipboard
val resourceGroupName: Output<String>? = null

The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal.

Functions

Link copied to clipboard
open override fun toJava(): FunctionArgs