Job

Azure Resource Manager resource envelope. API Version: 2021-03-01-preview.

Example Usage

CreateOrUpdate Command Job.

using System.Collections.Generic;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var job = new AzureNative.MachineLearningServices.Job("job", new()
{
Id = "testJob",
Properties = new AzureNative.MachineLearningServices.Inputs.CommandJobArgs
{
CodeId = "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/codes/mycode/versions/1",
Command = "python file.py test",
Compute = new AzureNative.MachineLearningServices.Inputs.ComputeConfigurationArgs
{
InstanceCount = 1,
Target = "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/computes/mycompute",
},
Description = "string",
Distribution = new AzureNative.MachineLearningServices.Inputs.PyTorchArgs
{
DistributionType = "PyTorch",
ProcessCount = 2,
},
EnvironmentId = "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/environments/AzureML-Tutorial/versions/1",
EnvironmentVariables =
{
{ "MY_ENV_VAR1", "string" },
{ "MY_ENV_VAR2", "string" },
},
ExperimentName = "myExperiment",
Identity = new AzureNative.MachineLearningServices.Inputs.AmlTokenArgs
{
IdentityType = "AMLToken",
},
InputDataBindings =
{
{ "test", new AzureNative.MachineLearningServices.Inputs.InputDataBindingArgs
{
DataId = "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/data/mydataset/versions/1",
PathOnCompute = "path/on/compute",
} },
},
JobType = "Command",
OutputDataBindings =
{
{ "test", new AzureNative.MachineLearningServices.Inputs.OutputDataBindingArgs
{
DatastoreId = "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/datastore/mydatastore",
PathOnCompute = "path/on/compute",
} },
},
Properties =
{
{ "additionalProp1", "string" },
{ "additionalProp2", "string" },
{ "additionalProp3", "string" },
},
Tags =
{
{ "additionalProp1", "string" },
{ "additionalProp2", "string" },
{ "additionalProp3", "string" },
},
Timeout = "PT1M",
},
ResourceGroupName = "testrg123",
WorkspaceName = "testworkspace",
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.Job;
import com.pulumi.azurenative.machinelearningservices.JobArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var job = new Job("job", JobArgs.builder()
.id("testJob")
.properties(Map.ofEntries(
Map.entry("codeId", "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/codes/mycode/versions/1"),
Map.entry("command", "python file.py test"),
Map.entry("compute", Map.ofEntries(
Map.entry("instanceCount", 1),
Map.entry("target", "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/computes/mycompute")
)),
Map.entry("description", "string"),
Map.entry("distribution", Map.ofEntries(
Map.entry("distributionType", "PyTorch"),
Map.entry("processCount", 2)
)),
Map.entry("environmentId", "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/environments/AzureML-Tutorial/versions/1"),
Map.entry("environmentVariables", CommandJobArgs.builder()
.mY_ENV_VAR1("string")
.mY_ENV_VAR2("string")
.build()),
Map.entry("experimentName", "myExperiment"),
Map.entry("identity", Map.of("identityType", "AMLToken")),
Map.entry("inputDataBindings", Map.of("test", Map.ofEntries(
Map.entry("dataId", "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/data/mydataset/versions/1"),
Map.entry("pathOnCompute", "path/on/compute")
))),
Map.entry("jobType", "Command"),
Map.entry("outputDataBindings", Map.of("test", Map.ofEntries(
Map.entry("datastoreId", "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/datastore/mydatastore"),
Map.entry("pathOnCompute", "path/on/compute")
))),
Map.entry("properties", CommandJobArgs.builder()
.additionalProp1("string")
.additionalProp2("string")
.additionalProp3("string")
.build()),
Map.entry("tags", CommandJobArgs.builder()
.additionalProp1("string")
.additionalProp2("string")
.additionalProp3("string")
.build()),
Map.entry("timeout", "PT1M")
))
.resourceGroupName("testrg123")
.workspaceName("testworkspace")
.build());
}
}

CreateOrUpdate Sweep Job.

using System.Collections.Generic;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var job = new AzureNative.MachineLearningServices.Job("job", new()
{
Id = "testJob",
Properties = new AzureNative.MachineLearningServices.Inputs.SweepJobArgs
{
Algorithm = "Grid",
Compute = new AzureNative.MachineLearningServices.Inputs.ComputeConfigurationArgs
{
InstanceCount = 1,
Target = "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/computes/mycompute",
},
Description = "string",
Identity = new AzureNative.MachineLearningServices.Inputs.AmlTokenArgs
{
IdentityType = "AMLToken",
},
JobType = "Sweep",
MaxConcurrentTrials = 1,
MaxTotalTrials = 1,
Objective = new AzureNative.MachineLearningServices.Inputs.ObjectiveArgs
{
Goal = "Minimize",
PrimaryMetric = "string",
},
Properties =
{
{ "additionalProp1", "string" },
{ "additionalProp2", "string" },
{ "additionalProp3", "string" },
},
SearchSpace =
{
{ "name", null },
},
Tags =
{
{ "additionalProp1", "string" },
{ "additionalProp2", "string" },
{ "additionalProp3", "string" },
},
Timeout = "PT1M",
Trial = new AzureNative.MachineLearningServices.Inputs.TrialComponentArgs
{
CodeId = "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/codes/mycode/versions/1",
Command = "python file.py test",
Distribution = new AzureNative.MachineLearningServices.Inputs.PyTorchArgs
{
DistributionType = "PyTorch",
ProcessCount = 2,
},
EnvironmentId = "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/environments/AzureML-Tutorial/versions/1",
EnvironmentVariables =
{
{ "MY_ENV_VAR1", "string" },
{ "MY_ENV_VAR2", "string" },
},
InputDataBindings =
{
{ "test", new AzureNative.MachineLearningServices.Inputs.InputDataBindingArgs
{
DataId = "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/data/mydataset/versions/1",
PathOnCompute = "path/on/compute",
} },
},
OutputDataBindings =
{
{ "test", new AzureNative.MachineLearningServices.Inputs.OutputDataBindingArgs
{
DatastoreId = "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/datastore/mydatastore",
PathOnCompute = "path/on/compute",
} },
},
Timeout = "PT1M",
},
},
ResourceGroupName = "testrg123",
WorkspaceName = "testworkspace",
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.Job;
import com.pulumi.azurenative.machinelearningservices.JobArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var job = new Job("job", JobArgs.builder()
.id("testJob")
.properties(Map.ofEntries(
Map.entry("algorithm", "Grid"),
Map.entry("compute", Map.ofEntries(
Map.entry("instanceCount", 1),
Map.entry("target", "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/computes/mycompute")
)),
Map.entry("description", "string"),
Map.entry("identity", Map.of("identityType", "AMLToken")),
Map.entry("jobType", "Sweep"),
Map.entry("maxConcurrentTrials", 1),
Map.entry("maxTotalTrials", 1),
Map.entry("objective", Map.ofEntries(
Map.entry("goal", "Minimize"),
Map.entry("primaryMetric", "string")
)),
Map.entry("properties", CommandJobArgs.builder()
.additionalProp1("string")
.additionalProp2("string")
.additionalProp3("string")
.build()),
Map.entry("searchSpace", CommandJobArgs.builder()
.name()
.build()),
Map.entry("tags", CommandJobArgs.builder()
.additionalProp1("string")
.additionalProp2("string")
.additionalProp3("string")
.build()),
Map.entry("timeout", "PT1M"),
Map.entry("trial", Map.ofEntries(
Map.entry("codeId", "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/codes/mycode/versions/1"),
Map.entry("command", "python file.py test"),
Map.entry("distribution", Map.ofEntries(
Map.entry("distributionType", "PyTorch"),
Map.entry("processCount", 2)
)),
Map.entry("environmentId", "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/environments/AzureML-Tutorial/versions/1"),
Map.entry("environmentVariables", CommandJobArgs.builder()
.mY_ENV_VAR1("string")
.mY_ENV_VAR2("string")
.build()),
Map.entry("inputDataBindings", Map.of("test", Map.ofEntries(
Map.entry("dataId", "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/data/mydataset/versions/1"),
Map.entry("pathOnCompute", "path/on/compute")
))),
Map.entry("outputDataBindings", Map.of("test", Map.ofEntries(
Map.entry("datastoreId", "/subscriptions/00000000-1111-2222-3333-444444444444/resourceGroups/resourceGroup-1234/providers/Microsoft.MachineLearningServices/workspaces/testworkspace/datastore/mydatastore"),
Map.entry("pathOnCompute", "path/on/compute")
))),
Map.entry("timeout", "PT1M")
))
))
.resourceGroupName("testrg123")
.workspaceName("testworkspace")
.build());
}
}

Import

An existing resource can be imported using its type token, name, and identifier, e.g.

$ pulumi import azure-native:machinelearningservices:Job string string

Properties

Link copied to clipboard
val id: Output<String>
Link copied to clipboard
val name: Output<String>

The name of the resource

Link copied to clipboard

Required Additional attributes of the entity.

Link copied to clipboard
Link copied to clipboard
Link copied to clipboard

System data associated with resource provider

Link copied to clipboard
val type: Output<String>

The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts"

Link copied to clipboard
val urn: Output<String>