Job

class Job : KotlinCustomResource

Azure Resource Manager resource envelope. Azure REST API version: 2023-04-01. Prior API version in Azure Native 1.x: 2021-03-01-preview. Other available API versions: 2021-03-01-preview, 2022-02-01-preview, 2023-04-01-preview, 2023-06-01-preview, 2023-08-01-preview, 2023-10-01.

Example Usage

CreateOrUpdate AutoML Job.

using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var job = new AzureNative.MachineLearningServices.Job("job", new()
{
Id = "string",
JobBaseProperties = new AzureNative.MachineLearningServices.Inputs.AutoMLJobArgs
{
ComputeId = "string",
Description = "string",
DisplayName = "string",
EnvironmentId = "string",
EnvironmentVariables =
{
{ "string", "string" },
},
ExperimentName = "string",
Identity = new AzureNative.MachineLearningServices.Inputs.AmlTokenArgs
{
IdentityType = "AMLToken",
},
IsArchived = false,
JobType = "AutoML",
Outputs =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.UriFileJobOutputArgs
{
Description = "string",
JobOutputType = "uri_file",
Mode = "ReadWriteMount",
Uri = "string",
} },
},
Properties =
{
{ "string", "string" },
},
Resources = new AzureNative.MachineLearningServices.Inputs.JobResourceConfigurationArgs
{
InstanceCount = 1,
InstanceType = "string",
Properties =
{
{ "string",
{
{ "9bec0ab0-c62f-4fa9-a97c-7b24bbcc90ad", null },
} },
},
},
Services =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.JobServiceArgs
{
Endpoint = "string",
JobServiceType = "string",
Port = 1,
Properties =
{
{ "string", "string" },
},
} },
},
Tags =
{
{ "string", "string" },
},
TaskDetails = new AzureNative.MachineLearningServices.Inputs.ImageClassificationArgs
{
LimitSettings = new AzureNative.MachineLearningServices.Inputs.ImageLimitSettingsArgs
{
MaxTrials = 2,
},
ModelSettings = new AzureNative.MachineLearningServices.Inputs.ImageModelSettingsClassificationArgs
{
ValidationCropSize = 2,
},
SearchSpace = new[]
{
new AzureNative.MachineLearningServices.Inputs.ImageModelDistributionSettingsClassificationArgs
{
ValidationCropSize = "choice(2, 360)",
},
},
TargetColumnName = "string",
TaskType = "ImageClassification",
TrainingData = new AzureNative.MachineLearningServices.Inputs.MLTableJobInputArgs
{
JobInputType = "mltable",
Uri = "string",
},
},
},
ResourceGroupName = "test-rg",
WorkspaceName = "my-aml-workspace",
});
});
package main
import (
"github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices/v2"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewJob(ctx, "job", &machinelearningservices.JobArgs{
Id: pulumi.String("string"),
JobBaseProperties: machinelearningservices.AutoMLJob{
ComputeId: "string",
Description: "string",
DisplayName: "string",
EnvironmentId: "string",
EnvironmentVariables: map[string]interface{}{
"string": "string",
},
ExperimentName: "string",
Identity: machinelearningservices.AmlToken{
IdentityType: "AMLToken",
},
IsArchived: false,
JobType: "AutoML",
Outputs: interface{}{
String: machinelearningservices.UriFileJobOutput{
Description: "string",
JobOutputType: "uri_file",
Mode: "ReadWriteMount",
Uri: "string",
},
},
Properties: map[string]interface{}{
"string": "string",
},
Resources: machinelearningservices.JobResourceConfiguration{
InstanceCount: 1,
InstanceType: "string",
Properties: map[string]interface{}{
"string": map[string]interface{}{
"9bec0ab0-c62f-4fa9-a97c-7b24bbcc90ad": nil,
},
},
},
Services: interface{}{
String: machinelearningservices.JobService{
Endpoint: "string",
JobServiceType: "string",
Port: 1,
Properties: map[string]interface{}{
"string": "string",
},
},
},
Tags: map[string]interface{}{
"string": "string",
},
TaskDetails: machinelearningservices.ImageClassification{
LimitSettings: machinelearningservices.ImageLimitSettings{
MaxTrials: 2,
},
ModelSettings: machinelearningservices.ImageModelSettingsClassification{
ValidationCropSize: 2,
},
SearchSpace: []machinelearningservices.ImageModelDistributionSettingsClassification{
{
ValidationCropSize: "choice(2, 360)",
},
},
TargetColumnName: "string",
TaskType: "ImageClassification",
TrainingData: machinelearningservices.MLTableJobInput{
JobInputType: "mltable",
Uri: "string",
},
},
},
ResourceGroupName: pulumi.String("test-rg"),
WorkspaceName: pulumi.String("my-aml-workspace"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.Job;
import com.pulumi.azurenative.machinelearningservices.JobArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var job = new Job("job", JobArgs.builder()
.id("string")
.jobBaseProperties(Map.ofEntries(
Map.entry("computeId", "string"),
Map.entry("description", "string"),
Map.entry("displayName", "string"),
Map.entry("environmentId", "string"),
Map.entry("environmentVariables", AutoMLJobArgs.builder()
.string("string")
.build()),
Map.entry("experimentName", "string"),
Map.entry("identity", Map.of("identityType", "AMLToken")),
Map.entry("isArchived", false),
Map.entry("jobType", "AutoML"),
Map.entry("outputs", Map.of("string", Map.ofEntries(
Map.entry("description", "string"),
Map.entry("jobOutputType", "uri_file"),
Map.entry("mode", "ReadWriteMount"),
Map.entry("uri", "string")
))),
Map.entry("properties", AutoMLJobArgs.builder()
.string("string")
.build()),
Map.entry("resources", Map.ofEntries(
Map.entry("instanceCount", 1),
Map.entry("instanceType", "string"),
Map.entry("properties", AutoMLJobArgs.builder()
.string(%!v(PANIC=Format method: runtime error: invalid memory address or nil pointer dereference))
.build())
)),
Map.entry("services", Map.of("string", Map.ofEntries(
Map.entry("endpoint", "string"),
Map.entry("jobServiceType", "string"),
Map.entry("port", 1),
Map.entry("properties", AutoMLJobArgs.builder()
.string("string")
.build())
))),
Map.entry("tags", AutoMLJobArgs.builder()
.string("string")
.build()),
Map.entry("taskDetails", Map.ofEntries(
Map.entry("limitSettings", Map.of("maxTrials", 2)),
Map.entry("modelSettings", Map.of("validationCropSize", 2)),
Map.entry("searchSpace", Map.of("validationCropSize", "choice(2, 360)")),
Map.entry("targetColumnName", "string"),
Map.entry("taskType", "ImageClassification"),
Map.entry("trainingData", Map.ofEntries(
Map.entry("jobInputType", "mltable"),
Map.entry("uri", "string")
))
))
))
.resourceGroupName("test-rg")
.workspaceName("my-aml-workspace")
.build());
}
}

CreateOrUpdate Command Job.

using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var job = new AzureNative.MachineLearningServices.Job("job", new()
{
Id = "string",
JobBaseProperties = new AzureNative.MachineLearningServices.Inputs.CommandJobArgs
{
CodeId = "string",
Command = "string",
ComputeId = "string",
Description = "string",
DisplayName = "string",
Distribution = new AzureNative.MachineLearningServices.Inputs.TensorFlowArgs
{
DistributionType = "TensorFlow",
ParameterServerCount = 1,
WorkerCount = 1,
},
EnvironmentId = "string",
EnvironmentVariables =
{
{ "string", "string" },
},
ExperimentName = "string",
Identity = new AzureNative.MachineLearningServices.Inputs.AmlTokenArgs
{
IdentityType = "AMLToken",
},
Inputs =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.LiteralJobInputArgs
{
Description = "string",
JobInputType = "literal",
Value = "string",
} },
},
JobType = "Command",
Limits = new AzureNative.MachineLearningServices.Inputs.CommandJobLimitsArgs
{
JobLimitsType = "Command",
Timeout = "PT5M",
},
Outputs =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.UriFileJobOutputArgs
{
Description = "string",
JobOutputType = "uri_file",
Mode = "ReadWriteMount",
Uri = "string",
} },
},
Properties =
{
{ "string", "string" },
},
Resources = new AzureNative.MachineLearningServices.Inputs.JobResourceConfigurationArgs
{
InstanceCount = 1,
InstanceType = "string",
Properties =
{
{ "string",
{
{ "e6b6493e-7d5e-4db3-be1e-306ec641327e", null },
} },
},
},
Services =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.JobServiceArgs
{
Endpoint = "string",
JobServiceType = "string",
Port = 1,
Properties =
{
{ "string", "string" },
},
} },
},
Tags =
{
{ "string", "string" },
},
},
ResourceGroupName = "test-rg",
WorkspaceName = "my-aml-workspace",
});
});
package main
import (
"github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices/v2"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewJob(ctx, "job", &machinelearningservices.JobArgs{
Id: pulumi.String("string"),
JobBaseProperties: machinelearningservices.CommandJob{
CodeId: "string",
Command: "string",
ComputeId: "string",
Description: "string",
DisplayName: "string",
Distribution: machinelearningservices.TensorFlow{
DistributionType: "TensorFlow",
ParameterServerCount: 1,
WorkerCount: 1,
},
EnvironmentId: "string",
EnvironmentVariables: map[string]interface{}{
"string": "string",
},
ExperimentName: "string",
Identity: machinelearningservices.AmlToken{
IdentityType: "AMLToken",
},
Inputs: interface{}{
String: machinelearningservices.LiteralJobInput{
Description: "string",
JobInputType: "literal",
Value: "string",
},
},
JobType: "Command",
Limits: machinelearningservices.CommandJobLimits{
JobLimitsType: "Command",
Timeout: "PT5M",
},
Outputs: interface{}{
String: machinelearningservices.UriFileJobOutput{
Description: "string",
JobOutputType: "uri_file",
Mode: "ReadWriteMount",
Uri: "string",
},
},
Properties: map[string]interface{}{
"string": "string",
},
Resources: machinelearningservices.JobResourceConfiguration{
InstanceCount: 1,
InstanceType: "string",
Properties: map[string]interface{}{
"string": map[string]interface{}{
"e6b6493e-7d5e-4db3-be1e-306ec641327e": nil,
},
},
},
Services: interface{}{
String: machinelearningservices.JobService{
Endpoint: "string",
JobServiceType: "string",
Port: 1,
Properties: map[string]interface{}{
"string": "string",
},
},
},
Tags: map[string]interface{}{
"string": "string",
},
},
ResourceGroupName: pulumi.String("test-rg"),
WorkspaceName: pulumi.String("my-aml-workspace"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.Job;
import com.pulumi.azurenative.machinelearningservices.JobArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var job = new Job("job", JobArgs.builder()
.id("string")
.jobBaseProperties(Map.ofEntries(
Map.entry("codeId", "string"),
Map.entry("command", "string"),
Map.entry("computeId", "string"),
Map.entry("description", "string"),
Map.entry("displayName", "string"),
Map.entry("distribution", Map.ofEntries(
Map.entry("distributionType", "TensorFlow"),
Map.entry("parameterServerCount", 1),
Map.entry("workerCount", 1)
)),
Map.entry("environmentId", "string"),
Map.entry("environmentVariables", AutoMLJobArgs.builder()
.string("string")
.build()),
Map.entry("experimentName", "string"),
Map.entry("identity", Map.of("identityType", "AMLToken")),
Map.entry("inputs", Map.of("string", Map.ofEntries(
Map.entry("description", "string"),
Map.entry("jobInputType", "literal"),
Map.entry("value", "string")
))),
Map.entry("jobType", "Command"),
Map.entry("limits", Map.ofEntries(
Map.entry("jobLimitsType", "Command"),
Map.entry("timeout", "PT5M")
)),
Map.entry("outputs", Map.of("string", Map.ofEntries(
Map.entry("description", "string"),
Map.entry("jobOutputType", "uri_file"),
Map.entry("mode", "ReadWriteMount"),
Map.entry("uri", "string")
))),
Map.entry("properties", AutoMLJobArgs.builder()
.string("string")
.build()),
Map.entry("resources", Map.ofEntries(
Map.entry("instanceCount", 1),
Map.entry("instanceType", "string"),
Map.entry("properties", AutoMLJobArgs.builder()
.string(%!v(PANIC=Format method: runtime error: invalid memory address or nil pointer dereference))
.build())
)),
Map.entry("services", Map.of("string", Map.ofEntries(
Map.entry("endpoint", "string"),
Map.entry("jobServiceType", "string"),
Map.entry("port", 1),
Map.entry("properties", AutoMLJobArgs.builder()
.string("string")
.build())
))),
Map.entry("tags", AutoMLJobArgs.builder()
.string("string")
.build())
))
.resourceGroupName("test-rg")
.workspaceName("my-aml-workspace")
.build());
}
}

CreateOrUpdate Pipeline Job.

using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var job = new AzureNative.MachineLearningServices.Job("job", new()
{
Id = "string",
JobBaseProperties = new AzureNative.MachineLearningServices.Inputs.PipelineJobArgs
{
ComputeId = "string",
Description = "string",
DisplayName = "string",
ExperimentName = "string",
Inputs =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.LiteralJobInputArgs
{
Description = "string",
JobInputType = "literal",
Value = "string",
} },
},
JobType = "Pipeline",
Outputs =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.UriFileJobOutputArgs
{
Description = "string",
JobOutputType = "uri_file",
Mode = "Upload",
Uri = "string",
} },
},
Properties =
{
{ "string", "string" },
},
Services =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.JobServiceArgs
{
Endpoint = "string",
JobServiceType = "string",
Port = 1,
Properties =
{
{ "string", "string" },
},
} },
},
Settings = null,
Tags =
{
{ "string", "string" },
},
},
ResourceGroupName = "test-rg",
WorkspaceName = "my-aml-workspace",
});
});
package main
import (
"github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices/v2"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewJob(ctx, "job", &machinelearningservices.JobArgs{
Id: pulumi.String("string"),
JobBaseProperties: machinelearningservices.PipelineJob{
ComputeId: "string",
Description: "string",
DisplayName: "string",
ExperimentName: "string",
Inputs: interface{}{
String: machinelearningservices.LiteralJobInput{
Description: "string",
JobInputType: "literal",
Value: "string",
},
},
JobType: "Pipeline",
Outputs: interface{}{
String: machinelearningservices.UriFileJobOutput{
Description: "string",
JobOutputType: "uri_file",
Mode: "Upload",
Uri: "string",
},
},
Properties: map[string]interface{}{
"string": "string",
},
Services: interface{}{
String: machinelearningservices.JobService{
Endpoint: "string",
JobServiceType: "string",
Port: 1,
Properties: map[string]interface{}{
"string": "string",
},
},
},
Settings: nil,
Tags: map[string]interface{}{
"string": "string",
},
},
ResourceGroupName: pulumi.String("test-rg"),
WorkspaceName: pulumi.String("my-aml-workspace"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.Job;
import com.pulumi.azurenative.machinelearningservices.JobArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var job = new Job("job", JobArgs.builder()
.id("string")
.jobBaseProperties(Map.ofEntries(
Map.entry("computeId", "string"),
Map.entry("description", "string"),
Map.entry("displayName", "string"),
Map.entry("experimentName", "string"),
Map.entry("inputs", Map.of("string", Map.ofEntries(
Map.entry("description", "string"),
Map.entry("jobInputType", "literal"),
Map.entry("value", "string")
))),
Map.entry("jobType", "Pipeline"),
Map.entry("outputs", Map.of("string", Map.ofEntries(
Map.entry("description", "string"),
Map.entry("jobOutputType", "uri_file"),
Map.entry("mode", "Upload"),
Map.entry("uri", "string")
))),
Map.entry("properties", AutoMLJobArgs.builder()
.string("string")
.build()),
Map.entry("services", Map.of("string", Map.ofEntries(
Map.entry("endpoint", "string"),
Map.entry("jobServiceType", "string"),
Map.entry("port", 1),
Map.entry("properties", AutoMLJobArgs.builder()
.string("string")
.build())
))),
Map.entry("settings", ),
Map.entry("tags", AutoMLJobArgs.builder()
.string("string")
.build())
))
.resourceGroupName("test-rg")
.workspaceName("my-aml-workspace")
.build());
}
}

CreateOrUpdate Sweep Job.

using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var job = new AzureNative.MachineLearningServices.Job("job", new()
{
Id = "string",
JobBaseProperties = new AzureNative.MachineLearningServices.Inputs.SweepJobArgs
{
ComputeId = "string",
Description = "string",
DisplayName = "string",
EarlyTermination = new AzureNative.MachineLearningServices.Inputs.MedianStoppingPolicyArgs
{
DelayEvaluation = 1,
EvaluationInterval = 1,
PolicyType = "MedianStopping",
},
ExperimentName = "string",
JobType = "Sweep",
Limits = new AzureNative.MachineLearningServices.Inputs.SweepJobLimitsArgs
{
JobLimitsType = "Sweep",
MaxConcurrentTrials = 1,
MaxTotalTrials = 1,
TrialTimeout = "PT1S",
},
Objective = new AzureNative.MachineLearningServices.Inputs.ObjectiveArgs
{
Goal = "Minimize",
PrimaryMetric = "string",
},
Properties =
{
{ "string", "string" },
},
SamplingAlgorithm = new AzureNative.MachineLearningServices.Inputs.GridSamplingAlgorithmArgs
{
SamplingAlgorithmType = "Grid",
},
SearchSpace =
{
{ "string", null },
},
Services =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.JobServiceArgs
{
Endpoint = "string",
JobServiceType = "string",
Port = 1,
Properties =
{
{ "string", "string" },
},
} },
},
Tags =
{
{ "string", "string" },
},
Trial = new AzureNative.MachineLearningServices.Inputs.TrialComponentArgs
{
CodeId = "string",
Command = "string",
Distribution = new AzureNative.MachineLearningServices.Inputs.MpiArgs
{
DistributionType = "Mpi",
ProcessCountPerInstance = 1,
},
EnvironmentId = "string",
EnvironmentVariables =
{
{ "string", "string" },
},
Resources = new AzureNative.MachineLearningServices.Inputs.JobResourceConfigurationArgs
{
InstanceCount = 1,
InstanceType = "string",
Properties =
{
{ "string",
{
{ "e6b6493e-7d5e-4db3-be1e-306ec641327e", null },
} },
},
},
},
},
ResourceGroupName = "test-rg",
WorkspaceName = "my-aml-workspace",
});
});
package main
import (
"github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices/v2"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewJob(ctx, "job", &machinelearningservices.JobArgs{
Id: pulumi.String("string"),
JobBaseProperties: machinelearningservices.SweepJob{
ComputeId: "string",
Description: "string",
DisplayName: "string",
EarlyTermination: machinelearningservices.MedianStoppingPolicy{
DelayEvaluation: 1,
EvaluationInterval: 1,
PolicyType: "MedianStopping",
},
ExperimentName: "string",
JobType: "Sweep",
Limits: machinelearningservices.SweepJobLimits{
JobLimitsType: "Sweep",
MaxConcurrentTrials: 1,
MaxTotalTrials: 1,
TrialTimeout: "PT1S",
},
Objective: machinelearningservices.Objective{
Goal: "Minimize",
PrimaryMetric: "string",
},
Properties: map[string]interface{}{
"string": "string",
},
SamplingAlgorithm: machinelearningservices.GridSamplingAlgorithm{
SamplingAlgorithmType: "Grid",
},
SearchSpace: map[string]interface{}{
"string": nil,
},
Services: interface{}{
String: machinelearningservices.JobService{
Endpoint: "string",
JobServiceType: "string",
Port: 1,
Properties: map[string]interface{}{
"string": "string",
},
},
},
Tags: map[string]interface{}{
"string": "string",
},
Trial: machinelearningservices.TrialComponent{
CodeId: "string",
Command: "string",
Distribution: machinelearningservices.Mpi{
DistributionType: "Mpi",
ProcessCountPerInstance: 1,
},
EnvironmentId: "string",
EnvironmentVariables: map[string]interface{}{
"string": "string",
},
Resources: machinelearningservices.JobResourceConfiguration{
InstanceCount: 1,
InstanceType: "string",
Properties: map[string]interface{}{
"string": map[string]interface{}{
"e6b6493e-7d5e-4db3-be1e-306ec641327e": nil,
},
},
},
},
},
ResourceGroupName: pulumi.String("test-rg"),
WorkspaceName: pulumi.String("my-aml-workspace"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.Job;
import com.pulumi.azurenative.machinelearningservices.JobArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var job = new Job("job", JobArgs.builder()
.id("string")
.jobBaseProperties(Map.ofEntries(
Map.entry("computeId", "string"),
Map.entry("description", "string"),
Map.entry("displayName", "string"),
Map.entry("earlyTermination", Map.ofEntries(
Map.entry("delayEvaluation", 1),
Map.entry("evaluationInterval", 1),
Map.entry("policyType", "MedianStopping")
)),
Map.entry("experimentName", "string"),
Map.entry("jobType", "Sweep"),
Map.entry("limits", Map.ofEntries(
Map.entry("jobLimitsType", "Sweep"),
Map.entry("maxConcurrentTrials", 1),
Map.entry("maxTotalTrials", 1),
Map.entry("trialTimeout", "PT1S")
)),
Map.entry("objective", Map.ofEntries(
Map.entry("goal", "Minimize"),
Map.entry("primaryMetric", "string")
)),
Map.entry("properties", AutoMLJobArgs.builder()
.string("string")
.build()),
Map.entry("samplingAlgorithm", Map.of("samplingAlgorithmType", "Grid")),
Map.entry("searchSpace", AutoMLJobArgs.builder()
.string()
.build()),
Map.entry("services", Map.of("string", Map.ofEntries(
Map.entry("endpoint", "string"),
Map.entry("jobServiceType", "string"),
Map.entry("port", 1),
Map.entry("properties", AutoMLJobArgs.builder()
.string("string")
.build())
))),
Map.entry("tags", AutoMLJobArgs.builder()
.string("string")
.build()),
Map.entry("trial", Map.ofEntries(
Map.entry("codeId", "string"),
Map.entry("command", "string"),
Map.entry("distribution", Map.ofEntries(
Map.entry("distributionType", "Mpi"),
Map.entry("processCountPerInstance", 1)
)),
Map.entry("environmentId", "string"),
Map.entry("environmentVariables", AutoMLJobArgs.builder()
.string("string")
.build()),
Map.entry("resources", Map.ofEntries(
Map.entry("instanceCount", 1),
Map.entry("instanceType", "string"),
Map.entry("properties", AutoMLJobArgs.builder()
.string(%!v(PANIC=Format method: runtime error: invalid memory address or nil pointer dereference))
.build())
))
))
))
.resourceGroupName("test-rg")
.workspaceName("my-aml-workspace")
.build());
}
}

Import

An existing resource can be imported using its type token, name, and identifier, e.g.

$ pulumi import azure-native:machinelearningservices:Job string /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/jobs/{id}

Properties

Link copied to clipboard
val id: Output<String>
Link copied to clipboard
val jobBaseProperties: Output<Any>

Required Additional attributes of the entity.

Link copied to clipboard
val name: Output<String>

The name of the resource

Link copied to clipboard
val pulumiChildResources: Set<KotlinResource>
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard

Azure Resource Manager metadata containing createdBy and modifiedBy information.

Link copied to clipboard
val type: Output<String>

The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts"

Link copied to clipboard
val urn: Output<String>