WebServiceArgs

data class WebServiceArgs(val location: Output<String>? = null, val properties: Output<WebServicePropertiesForGraphArgs>? = null, val resourceGroupName: Output<String>? = null, val tags: Output<Map<String, String>>? = null, val webServiceName: Output<String>? = null) : ConvertibleToJava<WebServiceArgs>

Instance of an Azure ML web service resource. Uses Azure REST API version 2017-01-01. In version 1.x of the Azure Native provider, it used API version 2017-01-01. Other available API versions: 2016-05-01-preview.

Example Usage

PUT WebService

using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var webService = new AzureNative.MachineLearning.WebService("webService", new()
{
Location = "West US",
Properties = new AzureNative.MachineLearning.Inputs.WebServicePropertiesForGraphArgs
{
Assets =
{
{ "asset1", new AzureNative.MachineLearning.Inputs.AssetItemArgs
{
LocationInfo = new AzureNative.MachineLearning.Inputs.BlobLocationArgs
{
Credentials = "",
Uri = "aml://module/moduleId-1",
},
Name = "Execute R Script",
Type = AzureNative.MachineLearning.AssetType.Module,
} },
{ "asset2", new AzureNative.MachineLearning.Inputs.AssetItemArgs
{
LocationInfo = new AzureNative.MachineLearning.Inputs.BlobLocationArgs
{
Credentials = "",
Uri = "aml://module/moduleId-2",
},
Name = "Import Data",
Type = AzureNative.MachineLearning.AssetType.Module,
} },
},
CommitmentPlan = new AzureNative.MachineLearning.Inputs.CommitmentPlanArgs
{
Id = "/subscriptions/subscriptionId/resourceGroups/resourceGroupName/providers/Microsoft.MachineLearning/commitmentPlans/commitmentPlanName",
},
Description = "Web Service Description",
Diagnostics = new AzureNative.MachineLearning.Inputs.DiagnosticsConfigurationArgs
{
Level = AzureNative.MachineLearning.DiagnosticsLevel.None,
},
ExampleRequest = new AzureNative.MachineLearning.Inputs.ExampleRequestArgs
{
Inputs =
{
{ "input1", new[]
{
new[]
{
"age",
},
new[]
{
"workclass",
},
new[]
{
"fnlwgt",
},
new[]
{
"education",
},
new[]
{
"education-num",
},
} },
},
},
ExposeSampleData = true,
Input = new AzureNative.MachineLearning.Inputs.ServiceInputOutputSpecificationArgs
{
Description = "",
Properties =
{
{ "input1", new AzureNative.MachineLearning.Inputs.TableSpecificationArgs
{
Description = "",
Properties =
{
{ "column_name", new AzureNative.MachineLearning.Inputs.ColumnSpecificationArgs
{
Type = AzureNative.MachineLearning.ColumnType.String,
XMsIsnullable = false,
} },
},
Title = "",
Type = "object",
} },
},
Title = "",
Type = "object",
},
MachineLearningWorkspace = new AzureNative.MachineLearning.Inputs.MachineLearningWorkspaceArgs
{
Id = "workspaceId",
},
Output = new AzureNative.MachineLearning.Inputs.ServiceInputOutputSpecificationArgs
{
Description = "",
Properties =
{
{ "output1", new AzureNative.MachineLearning.Inputs.TableSpecificationArgs
{
Description = "",
Properties =
{
{ "age", new AzureNative.MachineLearning.Inputs.ColumnSpecificationArgs
{
Format = AzureNative.MachineLearning.ColumnFormat.Int32,
Type = AzureNative.MachineLearning.ColumnType.Integer,
XMsIsnullable = true,
} },
{ "workclass", new AzureNative.MachineLearning.Inputs.ColumnSpecificationArgs
{
Type = AzureNative.MachineLearning.ColumnType.String,
XMsIsnullable = false,
} },
},
Title = "",
Type = "object",
} },
},
Title = "",
Type = "object",
},
Package = new AzureNative.MachineLearning.Inputs.GraphPackageArgs
{
Edges = new[]
{
new AzureNative.MachineLearning.Inputs.GraphEdgeArgs
{
SourceNodeId = "node2",
SourcePortId = "Results dataset",
TargetNodeId = "node1",
TargetPortId = "Dataset2",
},
new AzureNative.MachineLearning.Inputs.GraphEdgeArgs
{
SourceNodeId = "node3",
TargetNodeId = "node1",
TargetPortId = "Dataset1",
},
new AzureNative.MachineLearning.Inputs.GraphEdgeArgs
{
SourceNodeId = "node1",
SourcePortId = "Result Dataset",
TargetNodeId = "node4",
},
},
GraphParameters = null,
Nodes =
{
{ "node1", new AzureNative.MachineLearning.Inputs.GraphNodeArgs
{
AssetId = "asset1",
Parameters =
{
{ "R Script", new AzureNative.MachineLearning.Inputs.WebServiceParameterArgs
{
CertificateThumbprint = "",
Value = "The R Script",
} },
{ "R Version", new AzureNative.MachineLearning.Inputs.WebServiceParameterArgs
{
CertificateThumbprint = "",
Value = "CRAN R 3.1.0",
} },
},
} },
{ "node2", new AzureNative.MachineLearning.Inputs.GraphNodeArgs
{
AssetId = "asset2",
Parameters =
{
{ "Account Key", new AzureNative.MachineLearning.Inputs.WebServiceParameterArgs
{
CertificateThumbprint = "TheThumbprint",
Value = "Encrypted Key",
} },
{ "Account Name", new AzureNative.MachineLearning.Inputs.WebServiceParameterArgs
{
CertificateThumbprint = "",
Value = "accountName",
} },
{ "Please Specify Authentication Type", new AzureNative.MachineLearning.Inputs.WebServiceParameterArgs
{
CertificateThumbprint = "",
Value = "Account",
} },
{ "Please Specify Data Source", new AzureNative.MachineLearning.Inputs.WebServiceParameterArgs
{
CertificateThumbprint = "",
Value = "AzureBlobStorage",
} },
},
} },
{ "node3", new AzureNative.MachineLearning.Inputs.GraphNodeArgs
{
InputId = "input1",
} },
{ "node4", new AzureNative.MachineLearning.Inputs.GraphNodeArgs
{
OutputId = "output1",
} },
},
},
PackageType = "Graph",
Parameters = null,
PayloadsInBlobStorage = false,
ReadOnly = false,
RealtimeConfiguration = new AzureNative.MachineLearning.Inputs.RealtimeConfigurationArgs
{
MaxConcurrentCalls = 4,
},
StorageAccount = new AzureNative.MachineLearning.Inputs.StorageAccountArgs
{
Key = "Storage_Key",
Name = "Storage_Name",
},
Title = "Web Service Title",
},
ResourceGroupName = "OneResourceGroupName",
Tags =
{
{ "tag1", "value1" },
{ "tag2", "value2" },
},
WebServiceName = "TargetWebServiceName",
});
});
package main
import (
machinelearning "github.com/pulumi/pulumi-azure-native-sdk/machinelearning/v2"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearning.NewWebService(ctx, "webService", &machinelearning.WebServiceArgs{
Location: pulumi.String("West US"),
Properties: &machinelearning.WebServicePropertiesForGraphArgs{
Assets: machinelearning.AssetItemMap{
"asset1": &machinelearning.AssetItemArgs{
LocationInfo: &machinelearning.BlobLocationArgs{
Credentials: pulumi.String(""),
Uri: pulumi.String("aml://module/moduleId-1"),
},
Name: pulumi.String("Execute R Script"),
Type: pulumi.String(machinelearning.AssetTypeModule),
},
"asset2": &machinelearning.AssetItemArgs{
LocationInfo: &machinelearning.BlobLocationArgs{
Credentials: pulumi.String(""),
Uri: pulumi.String("aml://module/moduleId-2"),
},
Name: pulumi.String("Import Data"),
Type: pulumi.String(machinelearning.AssetTypeModule),
},
},
CommitmentPlan: &machinelearning.CommitmentPlanTypeArgs{
Id: pulumi.String("/subscriptions/subscriptionId/resourceGroups/resourceGroupName/providers/Microsoft.MachineLearning/commitmentPlans/commitmentPlanName"),
},
Description: pulumi.String("Web Service Description"),
Diagnostics: &machinelearning.DiagnosticsConfigurationArgs{
Level: pulumi.String(machinelearning.DiagnosticsLevelNone),
},
ExampleRequest: &machinelearning.ExampleRequestArgs{
Inputs: pulumi.ArrayArrayMap{
"input1": pulumi.ArrayArray{
pulumi.Array{
pulumi.Any("age"),
},
pulumi.Array{
pulumi.Any("workclass"),
},
pulumi.Array{
pulumi.Any("fnlwgt"),
},
pulumi.Array{
pulumi.Any("education"),
},
pulumi.Array{
pulumi.Any("education-num"),
},
},
},
},
ExposeSampleData: pulumi.Bool(true),
Input: &machinelearning.ServiceInputOutputSpecificationArgs{
Description: pulumi.String(""),
Properties: machinelearning.TableSpecificationMap{
"input1": &machinelearning.TableSpecificationArgs{
Description: pulumi.String(""),
Properties: machinelearning.ColumnSpecificationMap{
"column_name": &machinelearning.ColumnSpecificationArgs{
Type: pulumi.String(machinelearning.ColumnTypeString),
XMsIsnullable: pulumi.Bool(false),
},
},
Title: pulumi.String(""),
Type: pulumi.String("object"),
},
},
Title: pulumi.String(""),
Type: pulumi.String("object"),
},
MachineLearningWorkspace: &machinelearning.MachineLearningWorkspaceArgs{
Id: pulumi.String("workspaceId"),
},
Output: &machinelearning.ServiceInputOutputSpecificationArgs{
Description: pulumi.String(""),
Properties: machinelearning.TableSpecificationMap{
"output1": &machinelearning.TableSpecificationArgs{
Description: pulumi.String(""),
Properties: machinelearning.ColumnSpecificationMap{
"age": &machinelearning.ColumnSpecificationArgs{
Format: pulumi.String(machinelearning.ColumnFormatInt32),
Type: pulumi.String(machinelearning.ColumnTypeInteger),
XMsIsnullable: pulumi.Bool(true),
},
"workclass": &machinelearning.ColumnSpecificationArgs{
Type: pulumi.String(machinelearning.ColumnTypeString),
XMsIsnullable: pulumi.Bool(false),
},
},
Title: pulumi.String(""),
Type: pulumi.String("object"),
},
},
Title: pulumi.String(""),
Type: pulumi.String("object"),
},
Package: &machinelearning.GraphPackageArgs{
Edges: machinelearning.GraphEdgeArray{
&machinelearning.GraphEdgeArgs{
SourceNodeId: pulumi.String("node2"),
SourcePortId: pulumi.String("Results dataset"),
TargetNodeId: pulumi.String("node1"),
TargetPortId: pulumi.String("Dataset2"),
},
&machinelearning.GraphEdgeArgs{
SourceNodeId: pulumi.String("node3"),
TargetNodeId: pulumi.String("node1"),
TargetPortId: pulumi.String("Dataset1"),
},
&machinelearning.GraphEdgeArgs{
SourceNodeId: pulumi.String("node1"),
SourcePortId: pulumi.String("Result Dataset"),
TargetNodeId: pulumi.String("node4"),
},
},
GraphParameters: machinelearning.GraphParameterMap{},
Nodes: machinelearning.GraphNodeMap{
"node1": &machinelearning.GraphNodeArgs{
AssetId: pulumi.String("asset1"),
Parameters: machinelearning.WebServiceParameterMap{
"R Script": &machinelearning.WebServiceParameterArgs{
CertificateThumbprint: pulumi.String(""),
Value: pulumi.Any("The R Script"),
},
"R Version": &machinelearning.WebServiceParameterArgs{
CertificateThumbprint: pulumi.String(""),
Value: pulumi.Any("CRAN R 3.1.0"),
},
},
},
"node2": &machinelearning.GraphNodeArgs{
AssetId: pulumi.String("asset2"),
Parameters: machinelearning.WebServiceParameterMap{
"Account Key": &machinelearning.WebServiceParameterArgs{
CertificateThumbprint: pulumi.String("TheThumbprint"),
Value: pulumi.Any("Encrypted Key"),
},
"Account Name": &machinelearning.WebServiceParameterArgs{
CertificateThumbprint: pulumi.String(""),
Value: pulumi.Any("accountName"),
},
"Please Specify Authentication Type": &machinelearning.WebServiceParameterArgs{
CertificateThumbprint: pulumi.String(""),
Value: pulumi.Any("Account"),
},
"Please Specify Data Source": &machinelearning.WebServiceParameterArgs{
CertificateThumbprint: pulumi.String(""),
Value: pulumi.Any("AzureBlobStorage"),
},
},
},
"node3": &machinelearning.GraphNodeArgs{
InputId: pulumi.String("input1"),
},
"node4": &machinelearning.GraphNodeArgs{
OutputId: pulumi.String("output1"),
},
},
},
PackageType: pulumi.String("Graph"),
Parameters: machinelearning.WebServiceParameterMap{},
PayloadsInBlobStorage: pulumi.Bool(false),
ReadOnly: pulumi.Bool(false),
RealtimeConfiguration: &machinelearning.RealtimeConfigurationArgs{
MaxConcurrentCalls: pulumi.Int(4),
},
StorageAccount: &machinelearning.StorageAccountArgs{
Key: pulumi.String("Storage_Key"),
Name: pulumi.String("Storage_Name"),
},
Title: pulumi.String("Web Service Title"),
},
ResourceGroupName: pulumi.String("OneResourceGroupName"),
Tags: pulumi.StringMap{
"tag1": pulumi.String("value1"),
"tag2": pulumi.String("value2"),
},
WebServiceName: pulumi.String("TargetWebServiceName"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearning.WebService;
import com.pulumi.azurenative.machinelearning.WebServiceArgs;
import com.pulumi.azurenative.machinelearning.inputs.WebServicePropertiesForGraphArgs;
import com.pulumi.azurenative.machinelearning.inputs.CommitmentPlanArgs;
import com.pulumi.azurenative.machinelearning.inputs.DiagnosticsConfigurationArgs;
import com.pulumi.azurenative.machinelearning.inputs.ExampleRequestArgs;
import com.pulumi.azurenative.machinelearning.inputs.ServiceInputOutputSpecificationArgs;
import com.pulumi.azurenative.machinelearning.inputs.MachineLearningWorkspaceArgs;
import com.pulumi.azurenative.machinelearning.inputs.GraphPackageArgs;
import com.pulumi.azurenative.machinelearning.inputs.RealtimeConfigurationArgs;
import com.pulumi.azurenative.machinelearning.inputs.StorageAccountArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var webService = new WebService("webService", WebServiceArgs.builder()
.location("West US")
.properties(WebServicePropertiesForGraphArgs.builder()
.assets(Map.ofEntries(
Map.entry("asset1", Map.ofEntries(
Map.entry("locationInfo", Map.ofEntries(
Map.entry("credentials", ""),
Map.entry("uri", "aml://module/moduleId-1")
)),
Map.entry("name", "Execute R Script"),
Map.entry("type", "Module")
)),
Map.entry("asset2", Map.ofEntries(
Map.entry("locationInfo", Map.ofEntries(
Map.entry("credentials", ""),
Map.entry("uri", "aml://module/moduleId-2")
)),
Map.entry("name", "Import Data"),
Map.entry("type", "Module")
))
))
.commitmentPlan(CommitmentPlanArgs.builder()
.id("/subscriptions/subscriptionId/resourceGroups/resourceGroupName/providers/Microsoft.MachineLearning/commitmentPlans/commitmentPlanName")
.build())
.description("Web Service Description")
.diagnostics(DiagnosticsConfigurationArgs.builder()
.level("None")
.build())
.exampleRequest(ExampleRequestArgs.builder()
.inputs(Map.of("input1",
"age",
"workclass",
"fnlwgt",
"education",
"education-num"))
.build())
.exposeSampleData(true)
.input(ServiceInputOutputSpecificationArgs.builder()
.description("")
.properties(Map.of("input1", Map.ofEntries(
Map.entry("description", ""),
Map.entry("properties", Map.of("column_name", Map.ofEntries(
Map.entry("type", "String"),
Map.entry("xMsIsnullable", false)
))),
Map.entry("title", ""),
Map.entry("type", "object")
)))
.title("")
.type("object")
.build())
.machineLearningWorkspace(MachineLearningWorkspaceArgs.builder()
.id("workspaceId")
.build())
.output(ServiceInputOutputSpecificationArgs.builder()
.description("")
.properties(Map.of("output1", Map.ofEntries(
Map.entry("description", ""),
Map.entry("properties", Map.ofEntries(
Map.entry("age", Map.ofEntries(
Map.entry("format", "Int32"),
Map.entry("type", "Integer"),
Map.entry("xMsIsnullable", true)
)),
Map.entry("workclass", Map.ofEntries(
Map.entry("type", "String"),
Map.entry("xMsIsnullable", false)
))
)),
Map.entry("title", ""),
Map.entry("type", "object")
)))
.title("")
.type("object")
.build())
.package_(GraphPackageArgs.builder()
.edges(
GraphEdgeArgs.builder()
.sourceNodeId("node2")
.sourcePortId("Results dataset")
.targetNodeId("node1")
.targetPortId("Dataset2")
.build(),
GraphEdgeArgs.builder()
.sourceNodeId("node3")
.targetNodeId("node1")
.targetPortId("Dataset1")
.build(),
GraphEdgeArgs.builder()
.sourceNodeId("node1")
.sourcePortId("Result Dataset")
.targetNodeId("node4")
.build())
.graphParameters()
.nodes(Map.ofEntries(
Map.entry("node1", Map.ofEntries(
Map.entry("assetId", "asset1"),
Map.entry("parameters", Map.ofEntries(
Map.entry("R Script", Map.ofEntries(
Map.entry("certificateThumbprint", ""),
Map.entry("value", "The R Script")
)),
Map.entry("R Version", Map.ofEntries(
Map.entry("certificateThumbprint", ""),
Map.entry("value", "CRAN R 3.1.0")
))
))
)),
Map.entry("node2", Map.ofEntries(
Map.entry("assetId", "asset2"),
Map.entry("parameters", Map.ofEntries(
Map.entry("Account Key", Map.ofEntries(
Map.entry("certificateThumbprint", "TheThumbprint"),
Map.entry("value", "Encrypted Key")
)),
Map.entry("Account Name", Map.ofEntries(
Map.entry("certificateThumbprint", ""),
Map.entry("value", "accountName")
)),
Map.entry("Please Specify Authentication Type", Map.ofEntries(
Map.entry("certificateThumbprint", ""),
Map.entry("value", "Account")
)),
Map.entry("Please Specify Data Source", Map.ofEntries(
Map.entry("certificateThumbprint", ""),
Map.entry("value", "AzureBlobStorage")
))
))
)),
Map.entry("node3", Map.of("inputId", "input1")),
Map.entry("node4", Map.of("outputId", "output1"))
))
.build())
.packageType("Graph")
.parameters()
.payloadsInBlobStorage(false)
.readOnly(false)
.realtimeConfiguration(RealtimeConfigurationArgs.builder()
.maxConcurrentCalls(4)
.build())
.storageAccount(StorageAccountArgs.builder()
.key("Storage_Key")
.name("Storage_Name")
.build())
.title("Web Service Title")
.build())
.resourceGroupName("OneResourceGroupName")
.tags(Map.ofEntries(
Map.entry("tag1", "value1"),
Map.entry("tag2", "value2")
))
.webServiceName("TargetWebServiceName")
.build());
}
}

Import

An existing resource can be imported using its type token, name, and identifier, e.g.

$ pulumi import azure-native:machinelearning:WebService myresource1 /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearning/webServices/{webServiceName}

Constructors

Link copied to clipboard
constructor(location: Output<String>? = null, properties: Output<WebServicePropertiesForGraphArgs>? = null, resourceGroupName: Output<String>? = null, tags: Output<Map<String, String>>? = null, webServiceName: Output<String>? = null)

Properties

Link copied to clipboard
val location: Output<String>? = null

Specifies the location of the resource.

Link copied to clipboard

Contains the property payload that describes the web service.

Link copied to clipboard
val resourceGroupName: Output<String>? = null

Name of the resource group in which the web service is located.

Link copied to clipboard
val tags: Output<Map<String, String>>? = null

Contains resource tags defined as key/value pairs.

Link copied to clipboard
val webServiceName: Output<String>? = null

The name of the web service.

Functions

Link copied to clipboard
open override fun toJava(): WebServiceArgs