JobArgs

data class JobArgs(val id: Output<String>? = null, val jobBaseProperties: Output<Any>? = null, val resourceGroupName: Output<String>? = null, val workspaceName: Output<String>? = null) : ConvertibleToJava<JobArgs>

Azure Resource Manager resource envelope. Uses Azure REST API version 2023-04-01. In version 1.x of the Azure Native provider, it used API version 2021-03-01-preview. Other available API versions: 2021-03-01-preview, 2022-02-01-preview, 2023-04-01-preview, 2023-06-01-preview, 2023-08-01-preview, 2023-10-01, 2024-01-01-preview, 2024-04-01, 2024-04-01-preview, 2024-07-01-preview, 2024-10-01, 2024-10-01-preview, 2025-01-01-preview.

Example Usage

CreateOrUpdate AutoML Job.

using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var job = new AzureNative.MachineLearningServices.Job("job", new()
{
Id = "string",
JobBaseProperties = new AzureNative.MachineLearningServices.Inputs.AutoMLJobArgs
{
ComputeId = "string",
Description = "string",
DisplayName = "string",
EnvironmentId = "string",
EnvironmentVariables =
{
{ "string", "string" },
},
ExperimentName = "string",
Identity = new AzureNative.MachineLearningServices.Inputs.AmlTokenArgs
{
IdentityType = "AMLToken",
},
IsArchived = false,
JobType = "AutoML",
Outputs =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.UriFileJobOutputArgs
{
Description = "string",
JobOutputType = "uri_file",
Mode = AzureNative.MachineLearningServices.OutputDeliveryMode.ReadWriteMount,
Uri = "string",
} },
},
Properties =
{
{ "string", "string" },
},
Resources = new AzureNative.MachineLearningServices.Inputs.JobResourceConfigurationArgs
{
InstanceCount = 1,
InstanceType = "string",
Properties =
{
{ "string", new Dictionary<string, object?>
{
["9bec0ab0-c62f-4fa9-a97c-7b24bbcc90ad"] = null,
} },
},
},
Services =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.JobServiceArgs
{
Endpoint = "string",
JobServiceType = "string",
Port = 1,
Properties =
{
{ "string", "string" },
},
} },
},
Tags =
{
{ "string", "string" },
},
TaskDetails = new AzureNative.MachineLearningServices.Inputs.ImageClassificationArgs
{
LimitSettings = new AzureNative.MachineLearningServices.Inputs.ImageLimitSettingsArgs
{
MaxTrials = 2,
},
ModelSettings = new AzureNative.MachineLearningServices.Inputs.ImageModelSettingsClassificationArgs
{
ValidationCropSize = 2,
},
SearchSpace = new[]
{
new AzureNative.MachineLearningServices.Inputs.ImageModelDistributionSettingsClassificationArgs
{
ValidationCropSize = "choice(2, 360)",
},
},
TargetColumnName = "string",
TaskType = "ImageClassification",
TrainingData = new AzureNative.MachineLearningServices.Inputs.MLTableJobInputArgs
{
JobInputType = "mltable",
Uri = "string",
},
},
},
ResourceGroupName = "test-rg",
WorkspaceName = "my-aml-workspace",
});
});
package main
import (
machinelearningservices "github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices/v2"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewJob(ctx, "job", &machinelearningservices.JobArgs{
Id: pulumi.String("string"),
JobBaseProperties: &machinelearningservices.AutoMLJobArgs{
ComputeId: pulumi.String("string"),
Description: pulumi.String("string"),
DisplayName: pulumi.String("string"),
EnvironmentId: pulumi.String("string"),
EnvironmentVariables: pulumi.StringMap{
"string": pulumi.String("string"),
},
ExperimentName: pulumi.String("string"),
Identity: machinelearningservices.AmlToken{
IdentityType: "AMLToken",
},
IsArchived: pulumi.Bool(false),
JobType: pulumi.String("AutoML"),
Outputs: pulumi.Map{
"string": machinelearningservices.UriFileJobOutput{
Description: "string",
JobOutputType: "uri_file",
Mode: machinelearningservices.OutputDeliveryModeReadWriteMount,
Uri: "string",
},
},
Properties: pulumi.StringMap{
"string": pulumi.String("string"),
},
Resources: &machinelearningservices.JobResourceConfigurationArgs{
InstanceCount: pulumi.Int(1),
InstanceType: pulumi.String("string"),
Properties: pulumi.Map{
"string": pulumi.Any(map[string]interface{}{
"9bec0ab0-c62f-4fa9-a97c-7b24bbcc90ad": nil,
}),
},
},
Services: machinelearningservices.JobServiceMap{
"string": &machinelearningservices.JobServiceArgs{
Endpoint: pulumi.String("string"),
JobServiceType: pulumi.String("string"),
Port: pulumi.Int(1),
Properties: pulumi.StringMap{
"string": pulumi.String("string"),
},
},
},
Tags: pulumi.StringMap{
"string": pulumi.String("string"),
},
TaskDetails: machinelearningservices.ImageClassification{
LimitSettings: machinelearningservices.ImageLimitSettings{
MaxTrials: 2,
},
ModelSettings: machinelearningservices.ImageModelSettingsClassification{
ValidationCropSize: 2,
},
SearchSpace: []machinelearningservices.ImageModelDistributionSettingsClassification{
{
ValidationCropSize: "choice(2, 360)",
},
},
TargetColumnName: "string",
TaskType: "ImageClassification",
TrainingData: machinelearningservices.MLTableJobInput{
JobInputType: "mltable",
Uri: "string",
},
},
},
ResourceGroupName: pulumi.String("test-rg"),
WorkspaceName: pulumi.String("my-aml-workspace"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.Job;
import com.pulumi.azurenative.machinelearningservices.JobArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var job = new Job("job", JobArgs.builder()
.id("string")
.jobBaseProperties(AutoMLJobArgs.builder()
.computeId("string")
.description("string")
.displayName("string")
.environmentId("string")
.environmentVariables(Map.of("string", "string"))
.experimentName("string")
.identity(AmlTokenArgs.builder()
.identityType("AMLToken")
.build())
.isArchived(false)
.jobType("AutoML")
.outputs(Map.of("string", Map.ofEntries(
Map.entry("description", "string"),
Map.entry("jobOutputType", "uri_file"),
Map.entry("mode", "ReadWriteMount"),
Map.entry("uri", "string")
)))
.properties(Map.of("string", "string"))
.resources(JobResourceConfigurationArgs.builder()
.instanceCount(1)
.instanceType("string")
.properties(Map.of("string", Map.of("9bec0ab0-c62f-4fa9-a97c-7b24bbcc90ad", null)))
.build())
.services(Map.of("string", Map.ofEntries(
Map.entry("endpoint", "string"),
Map.entry("jobServiceType", "string"),
Map.entry("port", 1),
Map.entry("properties", Map.of("string", "string"))
)))
.tags(Map.of("string", "string"))
.taskDetails(ImageClassificationArgs.builder()
.limitSettings(ImageLimitSettingsArgs.builder()
.maxTrials(2)
.build())
.modelSettings(ImageModelSettingsClassificationArgs.builder()
.validationCropSize(2)
.build())
.searchSpace(ImageModelDistributionSettingsClassificationArgs.builder()
.validationCropSize("choice(2, 360)")
.build())
.targetColumnName("string")
.taskType("ImageClassification")
.trainingData(MLTableJobInputArgs.builder()
.jobInputType("mltable")
.uri("string")
.build())
.build())
.build())
.resourceGroupName("test-rg")
.workspaceName("my-aml-workspace")
.build());
}
}

CreateOrUpdate Command Job.

using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var job = new AzureNative.MachineLearningServices.Job("job", new()
{
Id = "string",
JobBaseProperties = new AzureNative.MachineLearningServices.Inputs.CommandJobArgs
{
CodeId = "string",
Command = "string",
ComputeId = "string",
Description = "string",
DisplayName = "string",
Distribution = new AzureNative.MachineLearningServices.Inputs.TensorFlowArgs
{
DistributionType = "TensorFlow",
ParameterServerCount = 1,
WorkerCount = 1,
},
EnvironmentId = "string",
EnvironmentVariables =
{
{ "string", "string" },
},
ExperimentName = "string",
Identity = new AzureNative.MachineLearningServices.Inputs.AmlTokenArgs
{
IdentityType = "AMLToken",
},
Inputs =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.LiteralJobInputArgs
{
Description = "string",
JobInputType = "literal",
Value = "string",
} },
},
JobType = "Command",
Limits = new AzureNative.MachineLearningServices.Inputs.CommandJobLimitsArgs
{
JobLimitsType = "Command",
Timeout = "PT5M",
},
Outputs =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.UriFileJobOutputArgs
{
Description = "string",
JobOutputType = "uri_file",
Mode = AzureNative.MachineLearningServices.OutputDeliveryMode.ReadWriteMount,
Uri = "string",
} },
},
Properties =
{
{ "string", "string" },
},
Resources = new AzureNative.MachineLearningServices.Inputs.JobResourceConfigurationArgs
{
InstanceCount = 1,
InstanceType = "string",
Properties =
{
{ "string", new Dictionary<string, object?>
{
["e6b6493e-7d5e-4db3-be1e-306ec641327e"] = null,
} },
},
},
Services =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.JobServiceArgs
{
Endpoint = "string",
JobServiceType = "string",
Port = 1,
Properties =
{
{ "string", "string" },
},
} },
},
Tags =
{
{ "string", "string" },
},
},
ResourceGroupName = "test-rg",
WorkspaceName = "my-aml-workspace",
});
});
package main
import (
machinelearningservices "github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices/v2"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewJob(ctx, "job", &machinelearningservices.JobArgs{
Id: pulumi.String("string"),
JobBaseProperties: &machinelearningservices.CommandJobArgs{
CodeId: pulumi.String("string"),
Command: pulumi.String("string"),
ComputeId: pulumi.String("string"),
Description: pulumi.String("string"),
DisplayName: pulumi.String("string"),
Distribution: machinelearningservices.TensorFlow{
DistributionType: "TensorFlow",
ParameterServerCount: 1,
WorkerCount: 1,
},
EnvironmentId: pulumi.String("string"),
EnvironmentVariables: pulumi.StringMap{
"string": pulumi.String("string"),
},
ExperimentName: pulumi.String("string"),
Identity: machinelearningservices.AmlToken{
IdentityType: "AMLToken",
},
Inputs: pulumi.Map{
"string": machinelearningservices.LiteralJobInput{
Description: "string",
JobInputType: "literal",
Value: "string",
},
},
JobType: pulumi.String("Command"),
Limits: &machinelearningservices.CommandJobLimitsArgs{
JobLimitsType: pulumi.String("Command"),
Timeout: pulumi.String("PT5M"),
},
Outputs: pulumi.Map{
"string": machinelearningservices.UriFileJobOutput{
Description: "string",
JobOutputType: "uri_file",
Mode: machinelearningservices.OutputDeliveryModeReadWriteMount,
Uri: "string",
},
},
Properties: pulumi.StringMap{
"string": pulumi.String("string"),
},
Resources: &machinelearningservices.JobResourceConfigurationArgs{
InstanceCount: pulumi.Int(1),
InstanceType: pulumi.String("string"),
Properties: pulumi.Map{
"string": pulumi.Any(map[string]interface{}{
"e6b6493e-7d5e-4db3-be1e-306ec641327e": nil,
}),
},
},
Services: machinelearningservices.JobServiceMap{
"string": &machinelearningservices.JobServiceArgs{
Endpoint: pulumi.String("string"),
JobServiceType: pulumi.String("string"),
Port: pulumi.Int(1),
Properties: pulumi.StringMap{
"string": pulumi.String("string"),
},
},
},
Tags: pulumi.StringMap{
"string": pulumi.String("string"),
},
},
ResourceGroupName: pulumi.String("test-rg"),
WorkspaceName: pulumi.String("my-aml-workspace"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.Job;
import com.pulumi.azurenative.machinelearningservices.JobArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var job = new Job("job", JobArgs.builder()
.id("string")
.jobBaseProperties(CommandJobArgs.builder()
.codeId("string")
.command("string")
.computeId("string")
.description("string")
.displayName("string")
.distribution(TensorFlowArgs.builder()
.distributionType("TensorFlow")
.parameterServerCount(1)
.workerCount(1)
.build())
.environmentId("string")
.environmentVariables(Map.of("string", "string"))
.experimentName("string")
.identity(AmlTokenArgs.builder()
.identityType("AMLToken")
.build())
.inputs(Map.of("string", Map.ofEntries(
Map.entry("description", "string"),
Map.entry("jobInputType", "literal"),
Map.entry("value", "string")
)))
.jobType("Command")
.limits(CommandJobLimitsArgs.builder()
.jobLimitsType("Command")
.timeout("PT5M")
.build())
.outputs(Map.of("string", Map.ofEntries(
Map.entry("description", "string"),
Map.entry("jobOutputType", "uri_file"),
Map.entry("mode", "ReadWriteMount"),
Map.entry("uri", "string")
)))
.properties(Map.of("string", "string"))
.resources(JobResourceConfigurationArgs.builder()
.instanceCount(1)
.instanceType("string")
.properties(Map.of("string", Map.of("e6b6493e-7d5e-4db3-be1e-306ec641327e", null)))
.build())
.services(Map.of("string", Map.ofEntries(
Map.entry("endpoint", "string"),
Map.entry("jobServiceType", "string"),
Map.entry("port", 1),
Map.entry("properties", Map.of("string", "string"))
)))
.tags(Map.of("string", "string"))
.build())
.resourceGroupName("test-rg")
.workspaceName("my-aml-workspace")
.build());
}
}

CreateOrUpdate Pipeline Job.

using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var job = new AzureNative.MachineLearningServices.Job("job", new()
{
Id = "string",
JobBaseProperties = new AzureNative.MachineLearningServices.Inputs.PipelineJobArgs
{
ComputeId = "string",
Description = "string",
DisplayName = "string",
ExperimentName = "string",
Inputs =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.LiteralJobInputArgs
{
Description = "string",
JobInputType = "literal",
Value = "string",
} },
},
JobType = "Pipeline",
Outputs =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.UriFileJobOutputArgs
{
Description = "string",
JobOutputType = "uri_file",
Mode = AzureNative.MachineLearningServices.OutputDeliveryMode.Upload,
Uri = "string",
} },
},
Properties =
{
{ "string", "string" },
},
Services =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.JobServiceArgs
{
Endpoint = "string",
JobServiceType = "string",
Port = 1,
Properties =
{
{ "string", "string" },
},
} },
},
Settings = null,
Tags =
{
{ "string", "string" },
},
},
ResourceGroupName = "test-rg",
WorkspaceName = "my-aml-workspace",
});
});
package main
import (
machinelearningservices "github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices/v2"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewJob(ctx, "job", &machinelearningservices.JobArgs{
Id: pulumi.String("string"),
JobBaseProperties: &machinelearningservices.PipelineJobArgs{
ComputeId: pulumi.String("string"),
Description: pulumi.String("string"),
DisplayName: pulumi.String("string"),
ExperimentName: pulumi.String("string"),
Inputs: pulumi.Map{
"string": machinelearningservices.LiteralJobInput{
Description: "string",
JobInputType: "literal",
Value: "string",
},
},
JobType: pulumi.String("Pipeline"),
Outputs: pulumi.Map{
"string": machinelearningservices.UriFileJobOutput{
Description: "string",
JobOutputType: "uri_file",
Mode: machinelearningservices.OutputDeliveryModeUpload,
Uri: "string",
},
},
Properties: pulumi.StringMap{
"string": pulumi.String("string"),
},
Services: machinelearningservices.JobServiceMap{
"string": &machinelearningservices.JobServiceArgs{
Endpoint: pulumi.String("string"),
JobServiceType: pulumi.String("string"),
Port: pulumi.Int(1),
Properties: pulumi.StringMap{
"string": pulumi.String("string"),
},
},
},
Settings: pulumi.Any(map[string]interface{}{}),
Tags: pulumi.StringMap{
"string": pulumi.String("string"),
},
},
ResourceGroupName: pulumi.String("test-rg"),
WorkspaceName: pulumi.String("my-aml-workspace"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.Job;
import com.pulumi.azurenative.machinelearningservices.JobArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var job = new Job("job", JobArgs.builder()
.id("string")
.jobBaseProperties(PipelineJobArgs.builder()
.computeId("string")
.description("string")
.displayName("string")
.experimentName("string")
.inputs(Map.of("string", Map.ofEntries(
Map.entry("description", "string"),
Map.entry("jobInputType", "literal"),
Map.entry("value", "string")
)))
.jobType("Pipeline")
.outputs(Map.of("string", Map.ofEntries(
Map.entry("description", "string"),
Map.entry("jobOutputType", "uri_file"),
Map.entry("mode", "Upload"),
Map.entry("uri", "string")
)))
.properties(Map.of("string", "string"))
.services(Map.of("string", Map.ofEntries(
Map.entry("endpoint", "string"),
Map.entry("jobServiceType", "string"),
Map.entry("port", 1),
Map.entry("properties", Map.of("string", "string"))
)))
.settings()
.tags(Map.of("string", "string"))
.build())
.resourceGroupName("test-rg")
.workspaceName("my-aml-workspace")
.build());
}
}

CreateOrUpdate Sweep Job.

using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var job = new AzureNative.MachineLearningServices.Job("job", new()
{
Id = "string",
JobBaseProperties = new AzureNative.MachineLearningServices.Inputs.SweepJobArgs
{
ComputeId = "string",
Description = "string",
DisplayName = "string",
EarlyTermination = new AzureNative.MachineLearningServices.Inputs.MedianStoppingPolicyArgs
{
DelayEvaluation = 1,
EvaluationInterval = 1,
PolicyType = "MedianStopping",
},
ExperimentName = "string",
JobType = "Sweep",
Limits = new AzureNative.MachineLearningServices.Inputs.SweepJobLimitsArgs
{
JobLimitsType = "Sweep",
MaxConcurrentTrials = 1,
MaxTotalTrials = 1,
TrialTimeout = "PT1S",
},
Objective = new AzureNative.MachineLearningServices.Inputs.ObjectiveArgs
{
Goal = AzureNative.MachineLearningServices.Goal.Minimize,
PrimaryMetric = "string",
},
Properties =
{
{ "string", "string" },
},
SamplingAlgorithm = new AzureNative.MachineLearningServices.Inputs.GridSamplingAlgorithmArgs
{
SamplingAlgorithmType = "Grid",
},
SearchSpace = new Dictionary<string, object?>
{
["string"] = new Dictionary<string, object?>
{
},
},
Services =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.JobServiceArgs
{
Endpoint = "string",
JobServiceType = "string",
Port = 1,
Properties =
{
{ "string", "string" },
},
} },
},
Tags =
{
{ "string", "string" },
},
Trial = new AzureNative.MachineLearningServices.Inputs.TrialComponentArgs
{
CodeId = "string",
Command = "string",
Distribution = new AzureNative.MachineLearningServices.Inputs.MpiArgs
{
DistributionType = "Mpi",
ProcessCountPerInstance = 1,
},
EnvironmentId = "string",
EnvironmentVariables =
{
{ "string", "string" },
},
Resources = new AzureNative.MachineLearningServices.Inputs.JobResourceConfigurationArgs
{
InstanceCount = 1,
InstanceType = "string",
Properties =
{
{ "string", new Dictionary<string, object?>
{
["e6b6493e-7d5e-4db3-be1e-306ec641327e"] = null,
} },
},
},
},
},
ResourceGroupName = "test-rg",
WorkspaceName = "my-aml-workspace",
});
});
package main
import (
machinelearningservices "github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices/v2"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewJob(ctx, "job", &machinelearningservices.JobArgs{
Id: pulumi.String("string"),
JobBaseProperties: &machinelearningservices.SweepJobArgs{
ComputeId: pulumi.String("string"),
Description: pulumi.String("string"),
DisplayName: pulumi.String("string"),
EarlyTermination: machinelearningservices.MedianStoppingPolicy{
DelayEvaluation: 1,
EvaluationInterval: 1,
PolicyType: "MedianStopping",
},
ExperimentName: pulumi.String("string"),
JobType: pulumi.String("Sweep"),
Limits: &machinelearningservices.SweepJobLimitsArgs{
JobLimitsType: pulumi.String("Sweep"),
MaxConcurrentTrials: pulumi.Int(1),
MaxTotalTrials: pulumi.Int(1),
TrialTimeout: pulumi.String("PT1S"),
},
Objective: &machinelearningservices.ObjectiveArgs{
Goal: pulumi.String(machinelearningservices.GoalMinimize),
PrimaryMetric: pulumi.String("string"),
},
Properties: pulumi.StringMap{
"string": pulumi.String("string"),
},
SamplingAlgorithm: machinelearningservices.GridSamplingAlgorithm{
SamplingAlgorithmType: "Grid",
},
SearchSpace: pulumi.Any(map[string]interface{}{
"string": map[string]interface{}{},
}),
Services: machinelearningservices.JobServiceMap{
"string": &machinelearningservices.JobServiceArgs{
Endpoint: pulumi.String("string"),
JobServiceType: pulumi.String("string"),
Port: pulumi.Int(1),
Properties: pulumi.StringMap{
"string": pulumi.String("string"),
},
},
},
Tags: pulumi.StringMap{
"string": pulumi.String("string"),
},
Trial: &machinelearningservices.TrialComponentArgs{
CodeId: pulumi.String("string"),
Command: pulumi.String("string"),
Distribution: machinelearningservices.Mpi{
DistributionType: "Mpi",
ProcessCountPerInstance: 1,
},
EnvironmentId: pulumi.String("string"),
EnvironmentVariables: pulumi.StringMap{
"string": pulumi.String("string"),
},
Resources: &machinelearningservices.JobResourceConfigurationArgs{
InstanceCount: pulumi.Int(1),
InstanceType: pulumi.String("string"),
Properties: pulumi.Map{
"string": pulumi.Any(map[string]interface{}{
"e6b6493e-7d5e-4db3-be1e-306ec641327e": nil,
}),
},
},
},
},
ResourceGroupName: pulumi.String("test-rg"),
WorkspaceName: pulumi.String("my-aml-workspace"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.Job;
import com.pulumi.azurenative.machinelearningservices.JobArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var job = new Job("job", JobArgs.builder()
.id("string")
.jobBaseProperties(SweepJobArgs.builder()
.computeId("string")
.description("string")
.displayName("string")
.earlyTermination(MedianStoppingPolicyArgs.builder()
.delayEvaluation(1)
.evaluationInterval(1)
.policyType("MedianStopping")
.build())
.experimentName("string")
.jobType("Sweep")
.limits(SweepJobLimitsArgs.builder()
.jobLimitsType("Sweep")
.maxConcurrentTrials(1)
.maxTotalTrials(1)
.trialTimeout("PT1S")
.build())
.objective(ObjectiveArgs.builder()
.goal("Minimize")
.primaryMetric("string")
.build())
.properties(Map.of("string", "string"))
.samplingAlgorithm(GridSamplingAlgorithmArgs.builder()
.samplingAlgorithmType("Grid")
.build())
.searchSpace(Map.of("string", ))
.services(Map.of("string", Map.ofEntries(
Map.entry("endpoint", "string"),
Map.entry("jobServiceType", "string"),
Map.entry("port", 1),
Map.entry("properties", Map.of("string", "string"))
)))
.tags(Map.of("string", "string"))
.trial(TrialComponentArgs.builder()
.codeId("string")
.command("string")
.distribution(MpiArgs.builder()
.distributionType("Mpi")
.processCountPerInstance(1)
.build())
.environmentId("string")
.environmentVariables(Map.of("string", "string"))
.resources(JobResourceConfigurationArgs.builder()
.instanceCount(1)
.instanceType("string")
.properties(Map.of("string", Map.of("e6b6493e-7d5e-4db3-be1e-306ec641327e", null)))
.build())
.build())
.build())
.resourceGroupName("test-rg")
.workspaceName("my-aml-workspace")
.build());
}
}

Import

An existing resource can be imported using its type token, name, and identifier, e.g.

$ pulumi import azure-native:machinelearningservices:Job string /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/jobs/{id}

Constructors

Link copied to clipboard
constructor(id: Output<String>? = null, jobBaseProperties: Output<Any>? = null, resourceGroupName: Output<String>? = null, workspaceName: Output<String>? = null)

Properties

Link copied to clipboard
val id: Output<String>? = null

The name and identifier for the Job. This is case-sensitive.

Link copied to clipboard
val jobBaseProperties: Output<Any>? = null

Required Additional attributes of the entity.

Link copied to clipboard
val resourceGroupName: Output<String>? = null

The name of the resource group. The name is case insensitive.

Link copied to clipboard
val workspaceName: Output<String>? = null

Name of Azure Machine Learning workspace.

Functions

Link copied to clipboard
open override fun toJava(): JobArgs