Rai Policy Args
data class RaiPolicyArgs(val endpointName: Output<String>? = null, val properties: Output<RaiPolicyPropertiesArgs>? = null, val raiPolicyName: Output<String>? = null, val resourceGroupName: Output<String>? = null, val workspaceName: Output<String>? = null) : ConvertibleToJava<RaiPolicyArgs>
Azure OpenAI Content Filters resource. Uses Azure REST API version 2024-04-01-preview. Other available API versions: 2024-07-01-preview, 2024-10-01-preview, 2025-01-01-preview.
Example Usage
Create Rai policy
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var raiPolicy = new AzureNative.MachineLearningServices.RaiPolicy("raiPolicy", new()
{
EndpointName = "Azure.OpenAI",
Properties = new AzureNative.MachineLearningServices.Inputs.RaiPolicyPropertiesArgs
{
BasePolicyName = "112",
CompletionBlocklists = new[]
{
new AzureNative.MachineLearningServices.Inputs.RaiBlocklistConfigArgs
{
Blocking = false,
BlocklistName = "blocklistName",
},
},
ContentFilters = new[]
{
new AzureNative.MachineLearningServices.Inputs.RaiPolicyContentFilterArgs
{
AllowedContentLevel = AzureNative.MachineLearningServices.AllowedContentLevel.Low,
Blocking = false,
Enabled = false,
Name = "policyName",
Source = AzureNative.MachineLearningServices.RaiPolicyContentSource.Prompt,
},
},
Mode = AzureNative.MachineLearningServices.RaiPolicyMode.Blocking,
PromptBlocklists = new[]
{
new AzureNative.MachineLearningServices.Inputs.RaiBlocklistConfigArgs
{
Blocking = false,
BlocklistName = "blocklistName",
},
},
Type = AzureNative.MachineLearningServices.RaiPolicyType.SystemManaged,
},
RaiPolicyName = "raiPolicyName",
ResourceGroupName = "test-rg",
WorkspaceName = "aml-workspace-name",
});
});
Content copied to clipboard
package main
import (
machinelearningservices "github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices/v2"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewRaiPolicy(ctx, "raiPolicy", &machinelearningservices.RaiPolicyArgs{
EndpointName: pulumi.String("Azure.OpenAI"),
Properties: &machinelearningservices.RaiPolicyPropertiesArgs{
BasePolicyName: pulumi.String("112"),
CompletionBlocklists: machinelearningservices.RaiBlocklistConfigArray{
&machinelearningservices.RaiBlocklistConfigArgs{
Blocking: pulumi.Bool(false),
BlocklistName: pulumi.String("blocklistName"),
},
},
ContentFilters: machinelearningservices.RaiPolicyContentFilterArray{
&machinelearningservices.RaiPolicyContentFilterArgs{
AllowedContentLevel: pulumi.String(machinelearningservices.AllowedContentLevelLow),
Blocking: pulumi.Bool(false),
Enabled: pulumi.Bool(false),
Name: pulumi.String("policyName"),
Source: pulumi.String(machinelearningservices.RaiPolicyContentSourcePrompt),
},
},
Mode: pulumi.String(machinelearningservices.RaiPolicyModeBlocking),
PromptBlocklists: machinelearningservices.RaiBlocklistConfigArray{
&machinelearningservices.RaiBlocklistConfigArgs{
Blocking: pulumi.Bool(false),
BlocklistName: pulumi.String("blocklistName"),
},
},
Type: pulumi.String(machinelearningservices.RaiPolicyTypeSystemManaged),
},
RaiPolicyName: pulumi.String("raiPolicyName"),
ResourceGroupName: pulumi.String("test-rg"),
WorkspaceName: pulumi.String("aml-workspace-name"),
})
if err != nil {
return err
}
return nil
})
}
Content copied to clipboard
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.RaiPolicy;
import com.pulumi.azurenative.machinelearningservices.RaiPolicyArgs;
import com.pulumi.azurenative.machinelearningservices.inputs.RaiPolicyPropertiesArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var raiPolicy = new RaiPolicy("raiPolicy", RaiPolicyArgs.builder()
.endpointName("Azure.OpenAI")
.properties(RaiPolicyPropertiesArgs.builder()
.basePolicyName("112")
.completionBlocklists(RaiBlocklistConfigArgs.builder()
.blocking(false)
.blocklistName("blocklistName")
.build())
.contentFilters(RaiPolicyContentFilterArgs.builder()
.allowedContentLevel("Low")
.blocking(false)
.enabled(false)
.name("policyName")
.source("Prompt")
.build())
.mode("Blocking")
.promptBlocklists(RaiBlocklistConfigArgs.builder()
.blocking(false)
.blocklistName("blocklistName")
.build())
.type("SystemManaged")
.build())
.raiPolicyName("raiPolicyName")
.resourceGroupName("test-rg")
.workspaceName("aml-workspace-name")
.build());
}
}
Content copied to clipboard
Import
An existing resource can be imported using its type token, name, and identifier, e.g.
$ pulumi import azure-native:machinelearningservices:RaiPolicy raiPolicyName /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/endpoints/{endpointName}/raiPolicies/{raiPolicyName}
Content copied to clipboard
Constructors
Link copied to clipboard
constructor(endpointName: Output<String>? = null, properties: Output<RaiPolicyPropertiesArgs>? = null, raiPolicyName: Output<String>? = null, resourceGroupName: Output<String>? = null, workspaceName: Output<String>? = null)
Properties
Link copied to clipboard
Name of the endpoint resource.
Link copied to clipboard
Azure OpenAI Content Filters properties.
Link copied to clipboard
Name of the Rai Policy.
Link copied to clipboard
The name of the resource group. The name is case insensitive.
Link copied to clipboard
Azure Machine Learning Workspace Name