Job Args
Azure Resource Manager resource envelope. Uses Azure REST API version 2024-10-01. In version 2.x of the Azure Native provider, it used API version 2023-04-01. Other available API versions: 2021-03-01-preview, 2022-02-01-preview, 2022-05-01, 2022-06-01-preview, 2022-10-01, 2022-10-01-preview, 2022-12-01-preview, 2023-02-01-preview, 2023-04-01, 2023-04-01-preview, 2023-06-01-preview, 2023-08-01-preview, 2023-10-01, 2024-01-01-preview, 2024-04-01, 2024-07-01-preview, 2024-10-01-preview, 2025-01-01-preview. These can be accessed by generating a local SDK package using the CLI command pulumi package add azure-native machinelearningservices [ApiVersion]
. See the ../../../version-guide/#accessing-any-api-version-via-local-packages for details.
Example Usage
CreateOrUpdate AutoML Job.
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var job = new AzureNative.MachineLearningServices.Job("job", new()
{
Id = "string",
JobBaseProperties = new AzureNative.MachineLearningServices.Inputs.AutoMLJobArgs
{
ComputeId = "string",
Description = "string",
DisplayName = "string",
EnvironmentId = "string",
EnvironmentVariables =
{
{ "string", "string" },
},
ExperimentName = "string",
Identity = new AzureNative.MachineLearningServices.Inputs.AmlTokenArgs
{
IdentityType = "AMLToken",
},
IsArchived = false,
JobType = "AutoML",
Outputs =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.UriFileJobOutputArgs
{
Description = "string",
JobOutputType = "uri_file",
Mode = AzureNative.MachineLearningServices.OutputDeliveryMode.ReadWriteMount,
Uri = "string",
} },
},
Properties =
{
{ "string", "string" },
},
Resources = new AzureNative.MachineLearningServices.Inputs.JobResourceConfigurationArgs
{
InstanceCount = 1,
InstanceType = "string",
Properties =
{
{ "string", new Dictionary<string, object?>
{
["9bec0ab0-c62f-4fa9-a97c-7b24bbcc90ad"] = null,
} },
},
},
Services =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.JobServiceArgs
{
Endpoint = "string",
JobServiceType = "string",
Port = 1,
Properties =
{
{ "string", "string" },
},
} },
},
Tags =
{
{ "string", "string" },
},
TaskDetails = new AzureNative.MachineLearningServices.Inputs.ImageClassificationArgs
{
LimitSettings = new AzureNative.MachineLearningServices.Inputs.ImageLimitSettingsArgs
{
MaxTrials = 2,
},
ModelSettings = new AzureNative.MachineLearningServices.Inputs.ImageModelSettingsClassificationArgs
{
ValidationCropSize = 2,
},
SearchSpace = new[]
{
new AzureNative.MachineLearningServices.Inputs.ImageModelDistributionSettingsClassificationArgs
{
ValidationCropSize = "choice(2, 360)",
},
},
TargetColumnName = "string",
TaskType = "ImageClassification",
TrainingData = new AzureNative.MachineLearningServices.Inputs.MLTableJobInputArgs
{
JobInputType = "mltable",
Uri = "string",
},
},
},
ResourceGroupName = "test-rg",
WorkspaceName = "my-aml-workspace",
});
});
package main
import (
machinelearningservices "github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices/v2"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewJob(ctx, "job", &machinelearningservices.JobArgs{
Id: pulumi.String("string"),
JobBaseProperties: &machinelearningservices.AutoMLJobArgs{
ComputeId: pulumi.String("string"),
Description: pulumi.String("string"),
DisplayName: pulumi.String("string"),
EnvironmentId: pulumi.String("string"),
EnvironmentVariables: pulumi.StringMap{
"string": pulumi.String("string"),
},
ExperimentName: pulumi.String("string"),
Identity: machinelearningservices.AmlToken{
IdentityType: "AMLToken",
},
IsArchived: pulumi.Bool(false),
JobType: pulumi.String("AutoML"),
Outputs: pulumi.Map{
"string": machinelearningservices.UriFileJobOutput{
Description: "string",
JobOutputType: "uri_file",
Mode: machinelearningservices.OutputDeliveryModeReadWriteMount,
Uri: "string",
},
},
Properties: pulumi.StringMap{
"string": pulumi.String("string"),
},
Resources: &machinelearningservices.JobResourceConfigurationArgs{
InstanceCount: pulumi.Int(1),
InstanceType: pulumi.String("string"),
Properties: pulumi.Map{
"string": pulumi.Any(map[string]interface{}{
"9bec0ab0-c62f-4fa9-a97c-7b24bbcc90ad": nil,
}),
},
},
Services: machinelearningservices.JobServiceMap{
"string": &machinelearningservices.JobServiceArgs{
Endpoint: pulumi.String("string"),
JobServiceType: pulumi.String("string"),
Port: pulumi.Int(1),
Properties: pulumi.StringMap{
"string": pulumi.String("string"),
},
},
},
Tags: pulumi.StringMap{
"string": pulumi.String("string"),
},
TaskDetails: machinelearningservices.ImageClassification{
LimitSettings: machinelearningservices.ImageLimitSettings{
MaxTrials: 2,
},
ModelSettings: machinelearningservices.ImageModelSettingsClassification{
ValidationCropSize: 2,
},
SearchSpace: []machinelearningservices.ImageModelDistributionSettingsClassification{
{
ValidationCropSize: "choice(2, 360)",
},
},
TargetColumnName: "string",
TaskType: "ImageClassification",
TrainingData: machinelearningservices.MLTableJobInput{
JobInputType: "mltable",
Uri: "string",
},
},
},
ResourceGroupName: pulumi.String("test-rg"),
WorkspaceName: pulumi.String("my-aml-workspace"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.Job;
import com.pulumi.azurenative.machinelearningservices.JobArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var job = new Job("job", JobArgs.builder()
.id("string")
.jobBaseProperties(AutoMLJobArgs.builder()
.computeId("string")
.description("string")
.displayName("string")
.environmentId("string")
.environmentVariables(Map.of("string", "string"))
.experimentName("string")
.identity(AmlTokenArgs.builder()
.identityType("AMLToken")
.build())
.isArchived(false)
.jobType("AutoML")
.outputs(Map.of("string", Map.ofEntries(
Map.entry("description", "string"),
Map.entry("jobOutputType", "uri_file"),
Map.entry("mode", "ReadWriteMount"),
Map.entry("uri", "string")
)))
.properties(Map.of("string", "string"))
.resources(JobResourceConfigurationArgs.builder()
.instanceCount(1)
.instanceType("string")
.properties(Map.of("string", Map.of("9bec0ab0-c62f-4fa9-a97c-7b24bbcc90ad", null)))
.build())
.services(Map.of("string", Map.ofEntries(
Map.entry("endpoint", "string"),
Map.entry("jobServiceType", "string"),
Map.entry("port", 1),
Map.entry("properties", Map.of("string", "string"))
)))
.tags(Map.of("string", "string"))
.taskDetails(ImageClassificationArgs.builder()
.limitSettings(ImageLimitSettingsArgs.builder()
.maxTrials(2)
.build())
.modelSettings(ImageModelSettingsClassificationArgs.builder()
.validationCropSize(2)
.build())
.searchSpace(ImageModelDistributionSettingsClassificationArgs.builder()
.validationCropSize("choice(2, 360)")
.build())
.targetColumnName("string")
.taskType("ImageClassification")
.trainingData(MLTableJobInputArgs.builder()
.jobInputType("mltable")
.uri("string")
.build())
.build())
.build())
.resourceGroupName("test-rg")
.workspaceName("my-aml-workspace")
.build());
}
}
CreateOrUpdate Command Job.
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var job = new AzureNative.MachineLearningServices.Job("job", new()
{
Id = "string",
JobBaseProperties = new AzureNative.MachineLearningServices.Inputs.CommandJobArgs
{
CodeId = "string",
Command = "string",
ComputeId = "string",
Description = "string",
DisplayName = "string",
Distribution = new AzureNative.MachineLearningServices.Inputs.TensorFlowArgs
{
DistributionType = "TensorFlow",
ParameterServerCount = 1,
WorkerCount = 1,
},
EnvironmentId = "string",
EnvironmentVariables =
{
{ "string", "string" },
},
ExperimentName = "string",
Identity = new AzureNative.MachineLearningServices.Inputs.AmlTokenArgs
{
IdentityType = "AMLToken",
},
Inputs =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.LiteralJobInputArgs
{
Description = "string",
JobInputType = "literal",
Value = "string",
} },
},
JobType = "Command",
Limits = new AzureNative.MachineLearningServices.Inputs.CommandJobLimitsArgs
{
JobLimitsType = "Command",
Timeout = "PT5M",
},
Outputs =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.UriFileJobOutputArgs
{
Description = "string",
JobOutputType = "uri_file",
Mode = AzureNative.MachineLearningServices.OutputDeliveryMode.ReadWriteMount,
Uri = "string",
} },
},
Properties =
{
{ "string", "string" },
},
Resources = new AzureNative.MachineLearningServices.Inputs.JobResourceConfigurationArgs
{
InstanceCount = 1,
InstanceType = "string",
Properties =
{
{ "string", new Dictionary<string, object?>
{
["e6b6493e-7d5e-4db3-be1e-306ec641327e"] = null,
} },
},
},
Services =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.JobServiceArgs
{
Endpoint = "string",
JobServiceType = "string",
Port = 1,
Properties =
{
{ "string", "string" },
},
} },
},
Tags =
{
{ "string", "string" },
},
},
ResourceGroupName = "test-rg",
WorkspaceName = "my-aml-workspace",
});
});
package main
import (
machinelearningservices "github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices/v2"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewJob(ctx, "job", &machinelearningservices.JobArgs{
Id: pulumi.String("string"),
JobBaseProperties: &machinelearningservices.CommandJobArgs{
CodeId: pulumi.String("string"),
Command: pulumi.String("string"),
ComputeId: pulumi.String("string"),
Description: pulumi.String("string"),
DisplayName: pulumi.String("string"),
Distribution: machinelearningservices.TensorFlow{
DistributionType: "TensorFlow",
ParameterServerCount: 1,
WorkerCount: 1,
},
EnvironmentId: pulumi.String("string"),
EnvironmentVariables: pulumi.StringMap{
"string": pulumi.String("string"),
},
ExperimentName: pulumi.String("string"),
Identity: machinelearningservices.AmlToken{
IdentityType: "AMLToken",
},
Inputs: pulumi.Map{
"string": machinelearningservices.LiteralJobInput{
Description: "string",
JobInputType: "literal",
Value: "string",
},
},
JobType: pulumi.String("Command"),
Limits: &machinelearningservices.CommandJobLimitsArgs{
JobLimitsType: pulumi.String("Command"),
Timeout: pulumi.String("PT5M"),
},
Outputs: pulumi.Map{
"string": machinelearningservices.UriFileJobOutput{
Description: "string",
JobOutputType: "uri_file",
Mode: machinelearningservices.OutputDeliveryModeReadWriteMount,
Uri: "string",
},
},
Properties: pulumi.StringMap{
"string": pulumi.String("string"),
},
Resources: &machinelearningservices.JobResourceConfigurationArgs{
InstanceCount: pulumi.Int(1),
InstanceType: pulumi.String("string"),
Properties: pulumi.Map{
"string": pulumi.Any(map[string]interface{}{
"e6b6493e-7d5e-4db3-be1e-306ec641327e": nil,
}),
},
},
Services: machinelearningservices.JobServiceMap{
"string": &machinelearningservices.JobServiceArgs{
Endpoint: pulumi.String("string"),
JobServiceType: pulumi.String("string"),
Port: pulumi.Int(1),
Properties: pulumi.StringMap{
"string": pulumi.String("string"),
},
},
},
Tags: pulumi.StringMap{
"string": pulumi.String("string"),
},
},
ResourceGroupName: pulumi.String("test-rg"),
WorkspaceName: pulumi.String("my-aml-workspace"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.Job;
import com.pulumi.azurenative.machinelearningservices.JobArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var job = new Job("job", JobArgs.builder()
.id("string")
.jobBaseProperties(CommandJobArgs.builder()
.codeId("string")
.command("string")
.computeId("string")
.description("string")
.displayName("string")
.distribution(TensorFlowArgs.builder()
.distributionType("TensorFlow")
.parameterServerCount(1)
.workerCount(1)
.build())
.environmentId("string")
.environmentVariables(Map.of("string", "string"))
.experimentName("string")
.identity(AmlTokenArgs.builder()
.identityType("AMLToken")
.build())
.inputs(Map.of("string", Map.ofEntries(
Map.entry("description", "string"),
Map.entry("jobInputType", "literal"),
Map.entry("value", "string")
)))
.jobType("Command")
.limits(CommandJobLimitsArgs.builder()
.jobLimitsType("Command")
.timeout("PT5M")
.build())
.outputs(Map.of("string", Map.ofEntries(
Map.entry("description", "string"),
Map.entry("jobOutputType", "uri_file"),
Map.entry("mode", "ReadWriteMount"),
Map.entry("uri", "string")
)))
.properties(Map.of("string", "string"))
.resources(JobResourceConfigurationArgs.builder()
.instanceCount(1)
.instanceType("string")
.properties(Map.of("string", Map.of("e6b6493e-7d5e-4db3-be1e-306ec641327e", null)))
.build())
.services(Map.of("string", Map.ofEntries(
Map.entry("endpoint", "string"),
Map.entry("jobServiceType", "string"),
Map.entry("port", 1),
Map.entry("properties", Map.of("string", "string"))
)))
.tags(Map.of("string", "string"))
.build())
.resourceGroupName("test-rg")
.workspaceName("my-aml-workspace")
.build());
}
}
CreateOrUpdate Pipeline Job.
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var job = new AzureNative.MachineLearningServices.Job("job", new()
{
Id = "string",
JobBaseProperties = new AzureNative.MachineLearningServices.Inputs.PipelineJobArgs
{
ComputeId = "string",
Description = "string",
DisplayName = "string",
ExperimentName = "string",
Inputs =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.LiteralJobInputArgs
{
Description = "string",
JobInputType = "literal",
Value = "string",
} },
},
JobType = "Pipeline",
Outputs =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.UriFileJobOutputArgs
{
Description = "string",
JobOutputType = "uri_file",
Mode = AzureNative.MachineLearningServices.OutputDeliveryMode.Upload,
Uri = "string",
} },
},
Properties =
{
{ "string", "string" },
},
Services =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.JobServiceArgs
{
Endpoint = "string",
JobServiceType = "string",
Port = 1,
Properties =
{
{ "string", "string" },
},
} },
},
Settings = null,
Tags =
{
{ "string", "string" },
},
},
ResourceGroupName = "test-rg",
WorkspaceName = "my-aml-workspace",
});
});
package main
import (
machinelearningservices "github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices/v2"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewJob(ctx, "job", &machinelearningservices.JobArgs{
Id: pulumi.String("string"),
JobBaseProperties: &machinelearningservices.PipelineJobArgs{
ComputeId: pulumi.String("string"),
Description: pulumi.String("string"),
DisplayName: pulumi.String("string"),
ExperimentName: pulumi.String("string"),
Inputs: pulumi.Map{
"string": machinelearningservices.LiteralJobInput{
Description: "string",
JobInputType: "literal",
Value: "string",
},
},
JobType: pulumi.String("Pipeline"),
Outputs: pulumi.Map{
"string": machinelearningservices.UriFileJobOutput{
Description: "string",
JobOutputType: "uri_file",
Mode: machinelearningservices.OutputDeliveryModeUpload,
Uri: "string",
},
},
Properties: pulumi.StringMap{
"string": pulumi.String("string"),
},
Services: machinelearningservices.JobServiceMap{
"string": &machinelearningservices.JobServiceArgs{
Endpoint: pulumi.String("string"),
JobServiceType: pulumi.String("string"),
Port: pulumi.Int(1),
Properties: pulumi.StringMap{
"string": pulumi.String("string"),
},
},
},
Settings: pulumi.Any(map[string]interface{}{}),
Tags: pulumi.StringMap{
"string": pulumi.String("string"),
},
},
ResourceGroupName: pulumi.String("test-rg"),
WorkspaceName: pulumi.String("my-aml-workspace"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.Job;
import com.pulumi.azurenative.machinelearningservices.JobArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var job = new Job("job", JobArgs.builder()
.id("string")
.jobBaseProperties(PipelineJobArgs.builder()
.computeId("string")
.description("string")
.displayName("string")
.experimentName("string")
.inputs(Map.of("string", Map.ofEntries(
Map.entry("description", "string"),
Map.entry("jobInputType", "literal"),
Map.entry("value", "string")
)))
.jobType("Pipeline")
.outputs(Map.of("string", Map.ofEntries(
Map.entry("description", "string"),
Map.entry("jobOutputType", "uri_file"),
Map.entry("mode", "Upload"),
Map.entry("uri", "string")
)))
.properties(Map.of("string", "string"))
.services(Map.of("string", Map.ofEntries(
Map.entry("endpoint", "string"),
Map.entry("jobServiceType", "string"),
Map.entry("port", 1),
Map.entry("properties", Map.of("string", "string"))
)))
.settings()
.tags(Map.of("string", "string"))
.build())
.resourceGroupName("test-rg")
.workspaceName("my-aml-workspace")
.build());
}
}
CreateOrUpdate Sweep Job.
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AzureNative = Pulumi.AzureNative;
return await Deployment.RunAsync(() =>
{
var job = new AzureNative.MachineLearningServices.Job("job", new()
{
Id = "string",
JobBaseProperties = new AzureNative.MachineLearningServices.Inputs.SweepJobArgs
{
ComputeId = "string",
Description = "string",
DisplayName = "string",
EarlyTermination = new AzureNative.MachineLearningServices.Inputs.MedianStoppingPolicyArgs
{
DelayEvaluation = 1,
EvaluationInterval = 1,
PolicyType = "MedianStopping",
},
ExperimentName = "string",
JobType = "Sweep",
Limits = new AzureNative.MachineLearningServices.Inputs.SweepJobLimitsArgs
{
JobLimitsType = "Sweep",
MaxConcurrentTrials = 1,
MaxTotalTrials = 1,
TrialTimeout = "PT1S",
},
Objective = new AzureNative.MachineLearningServices.Inputs.ObjectiveArgs
{
Goal = AzureNative.MachineLearningServices.Goal.Minimize,
PrimaryMetric = "string",
},
Properties =
{
{ "string", "string" },
},
SamplingAlgorithm = new AzureNative.MachineLearningServices.Inputs.GridSamplingAlgorithmArgs
{
SamplingAlgorithmType = "Grid",
},
SearchSpace = new Dictionary<string, object?>
{
["string"] = new Dictionary<string, object?>
{
},
},
Services =
{
{ "string", new AzureNative.MachineLearningServices.Inputs.JobServiceArgs
{
Endpoint = "string",
JobServiceType = "string",
Port = 1,
Properties =
{
{ "string", "string" },
},
} },
},
Tags =
{
{ "string", "string" },
},
Trial = new AzureNative.MachineLearningServices.Inputs.TrialComponentArgs
{
CodeId = "string",
Command = "string",
Distribution = new AzureNative.MachineLearningServices.Inputs.MpiArgs
{
DistributionType = "Mpi",
ProcessCountPerInstance = 1,
},
EnvironmentId = "string",
EnvironmentVariables =
{
{ "string", "string" },
},
Resources = new AzureNative.MachineLearningServices.Inputs.JobResourceConfigurationArgs
{
InstanceCount = 1,
InstanceType = "string",
Properties =
{
{ "string", new Dictionary<string, object?>
{
["e6b6493e-7d5e-4db3-be1e-306ec641327e"] = null,
} },
},
},
},
},
ResourceGroupName = "test-rg",
WorkspaceName = "my-aml-workspace",
});
});
package main
import (
machinelearningservices "github.com/pulumi/pulumi-azure-native-sdk/machinelearningservices/v2"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
_, err := machinelearningservices.NewJob(ctx, "job", &machinelearningservices.JobArgs{
Id: pulumi.String("string"),
JobBaseProperties: &machinelearningservices.SweepJobArgs{
ComputeId: pulumi.String("string"),
Description: pulumi.String("string"),
DisplayName: pulumi.String("string"),
EarlyTermination: machinelearningservices.MedianStoppingPolicy{
DelayEvaluation: 1,
EvaluationInterval: 1,
PolicyType: "MedianStopping",
},
ExperimentName: pulumi.String("string"),
JobType: pulumi.String("Sweep"),
Limits: &machinelearningservices.SweepJobLimitsArgs{
JobLimitsType: pulumi.String("Sweep"),
MaxConcurrentTrials: pulumi.Int(1),
MaxTotalTrials: pulumi.Int(1),
TrialTimeout: pulumi.String("PT1S"),
},
Objective: &machinelearningservices.ObjectiveArgs{
Goal: pulumi.String(machinelearningservices.GoalMinimize),
PrimaryMetric: pulumi.String("string"),
},
Properties: pulumi.StringMap{
"string": pulumi.String("string"),
},
SamplingAlgorithm: machinelearningservices.GridSamplingAlgorithm{
SamplingAlgorithmType: "Grid",
},
SearchSpace: pulumi.Any(map[string]interface{}{
"string": map[string]interface{}{},
}),
Services: machinelearningservices.JobServiceMap{
"string": &machinelearningservices.JobServiceArgs{
Endpoint: pulumi.String("string"),
JobServiceType: pulumi.String("string"),
Port: pulumi.Int(1),
Properties: pulumi.StringMap{
"string": pulumi.String("string"),
},
},
},
Tags: pulumi.StringMap{
"string": pulumi.String("string"),
},
Trial: &machinelearningservices.TrialComponentArgs{
CodeId: pulumi.String("string"),
Command: pulumi.String("string"),
Distribution: machinelearningservices.Mpi{
DistributionType: "Mpi",
ProcessCountPerInstance: 1,
},
EnvironmentId: pulumi.String("string"),
EnvironmentVariables: pulumi.StringMap{
"string": pulumi.String("string"),
},
Resources: &machinelearningservices.JobResourceConfigurationArgs{
InstanceCount: pulumi.Int(1),
InstanceType: pulumi.String("string"),
Properties: pulumi.Map{
"string": pulumi.Any(map[string]interface{}{
"e6b6493e-7d5e-4db3-be1e-306ec641327e": nil,
}),
},
},
},
},
ResourceGroupName: pulumi.String("test-rg"),
WorkspaceName: pulumi.String("my-aml-workspace"),
})
if err != nil {
return err
}
return nil
})
}
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azurenative.machinelearningservices.Job;
import com.pulumi.azurenative.machinelearningservices.JobArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var job = new Job("job", JobArgs.builder()
.id("string")
.jobBaseProperties(SweepJobArgs.builder()
.computeId("string")
.description("string")
.displayName("string")
.earlyTermination(MedianStoppingPolicyArgs.builder()
.delayEvaluation(1)
.evaluationInterval(1)
.policyType("MedianStopping")
.build())
.experimentName("string")
.jobType("Sweep")
.limits(SweepJobLimitsArgs.builder()
.jobLimitsType("Sweep")
.maxConcurrentTrials(1)
.maxTotalTrials(1)
.trialTimeout("PT1S")
.build())
.objective(ObjectiveArgs.builder()
.goal("Minimize")
.primaryMetric("string")
.build())
.properties(Map.of("string", "string"))
.samplingAlgorithm(GridSamplingAlgorithmArgs.builder()
.samplingAlgorithmType("Grid")
.build())
.searchSpace(Map.of("string", ))
.services(Map.of("string", Map.ofEntries(
Map.entry("endpoint", "string"),
Map.entry("jobServiceType", "string"),
Map.entry("port", 1),
Map.entry("properties", Map.of("string", "string"))
)))
.tags(Map.of("string", "string"))
.trial(TrialComponentArgs.builder()
.codeId("string")
.command("string")
.distribution(MpiArgs.builder()
.distributionType("Mpi")
.processCountPerInstance(1)
.build())
.environmentId("string")
.environmentVariables(Map.of("string", "string"))
.resources(JobResourceConfigurationArgs.builder()
.instanceCount(1)
.instanceType("string")
.properties(Map.of("string", Map.of("e6b6493e-7d5e-4db3-be1e-306ec641327e", null)))
.build())
.build())
.build())
.resourceGroupName("test-rg")
.workspaceName("my-aml-workspace")
.build());
}
}
Import
An existing resource can be imported using its type token, name, and identifier, e.g.
$ pulumi import azure-native:machinelearningservices:Job string /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/jobs/{id}