Image Model Distribution Settings Classification Args
data class ImageModelDistributionSettingsClassificationArgs(val amsGradient: Output<String>? = null, val augmentations: Output<String>? = null, val beta1: Output<String>? = null, val beta2: Output<String>? = null, val distributed: Output<String>? = null, val earlyStopping: Output<String>? = null, val earlyStoppingDelay: Output<String>? = null, val earlyStoppingPatience: Output<String>? = null, val enableOnnxNormalization: Output<String>? = null, val evaluationFrequency: Output<String>? = null, val gradientAccumulationStep: Output<String>? = null, val layersToFreeze: Output<String>? = null, val learningRate: Output<String>? = null, val learningRateScheduler: Output<String>? = null, val modelName: Output<String>? = null, val momentum: Output<String>? = null, val nesterov: Output<String>? = null, val numberOfEpochs: Output<String>? = null, val numberOfWorkers: Output<String>? = null, val optimizer: Output<String>? = null, val randomSeed: Output<String>? = null, val stepLRGamma: Output<String>? = null, val stepLRStepSize: Output<String>? = null, val trainingBatchSize: Output<String>? = null, val trainingCropSize: Output<String>? = null, val validationBatchSize: Output<String>? = null, val validationCropSize: Output<String>? = null, val validationResizeSize: Output<String>? = null, val warmupCosineLRCycles: Output<String>? = null, val warmupCosineLRWarmupEpochs: Output<String>? = null, val weightDecay: Output<String>? = null, val weightedLoss: Output<String>? = null) : ConvertibleToJava<ImageModelDistributionSettingsClassificationArgs>
Distribution expressions to sweep over values of model settings.
ModelName = "choice('seresnext', 'resnest50')";
LearningRate = "uniform(0.001, 0.01)";
LayersToFreeze = "choice(0, 2)";
```</example>
For more details on how to compose distribution expressions please check the documentation:
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
For more information on the available settings please visit the official documentation:
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
@property amsGradient Enable AMSGrad when optimizer is 'adam' or 'adamw'.
@property augmentations Settings for using Augmentations.
@property beta1 Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1].
@property beta2 Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1].
@property distributed Whether to use distributer training.
@property earlyStopping Enable early stopping logic during training.
@property earlyStoppingDelay Minimum number of epochs or validation evaluations to wait before primary metric improvement
is tracked for early stopping. Must be a positive integer.
@property earlyStoppingPatience Minimum number of epochs or validation evaluations with no primary metric improvement before
the run is stopped. Must be a positive integer.
@property enableOnnxNormalization Enable normalization when exporting ONNX model.
@property evaluationFrequency Frequency to evaluate validation dataset to get metric scores. Must be a positive integer.
@property gradientAccumulationStep Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
updating the model weights while accumulating the gradients of those steps, and then using
the accumulated gradients to compute the weight updates. Must be a positive integer.
@property layersToFreeze Number of layers to freeze for the model. Must be a positive integer.
For instance, passing 2 as value for 'seresnext' means
freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
@property learningRate Initial learning rate. Must be a float in the range [0, 1].
@property learningRateScheduler Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'.
@property modelName Name of the model to use for training.
For more information on the available models please visit the official documentation:
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
@property momentum Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1].
@property nesterov Enable nesterov when optimizer is 'sgd'.
@property numberOfEpochs Number of training epochs. Must be a positive integer.
@property numberOfWorkers Number of data loader workers. Must be a non-negative integer.
@property optimizer Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'.
@property randomSeed Random seed to be used when using deterministic training.
@property stepLRGamma Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1].
@property stepLRStepSize Value of step size when learning rate scheduler is 'step'. Must be a positive integer.
@property trainingBatchSize Training batch size. Must be a positive integer.
@property trainingCropSize Image crop size that is input to the neural network for the training dataset. Must be a positive integer.
@property validationBatchSize Validation batch size. Must be a positive integer.
@property validationCropSize Image crop size that is input to the neural network for the validation dataset. Must be a positive integer.
@property validationResizeSize Image size to which to resize before cropping for validation dataset. Must be a positive integer.
@property warmupCosineLRCycles Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1].
@property warmupCosineLRWarmupEpochs Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer.
@property weightDecay Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1].
@property weightedLoss Weighted loss. The accepted values are 0 for no weighted loss.
1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2.
Content copied to clipboard
Constructors
Link copied to clipboard
constructor(amsGradient: Output<String>? = null, augmentations: Output<String>? = null, beta1: Output<String>? = null, beta2: Output<String>? = null, distributed: Output<String>? = null, earlyStopping: Output<String>? = null, earlyStoppingDelay: Output<String>? = null, earlyStoppingPatience: Output<String>? = null, enableOnnxNormalization: Output<String>? = null, evaluationFrequency: Output<String>? = null, gradientAccumulationStep: Output<String>? = null, layersToFreeze: Output<String>? = null, learningRate: Output<String>? = null, learningRateScheduler: Output<String>? = null, modelName: Output<String>? = null, momentum: Output<String>? = null, nesterov: Output<String>? = null, numberOfEpochs: Output<String>? = null, numberOfWorkers: Output<String>? = null, optimizer: Output<String>? = null, randomSeed: Output<String>? = null, stepLRGamma: Output<String>? = null, stepLRStepSize: Output<String>? = null, trainingBatchSize: Output<String>? = null, trainingCropSize: Output<String>? = null, validationBatchSize: Output<String>? = null, validationCropSize: Output<String>? = null, validationResizeSize: Output<String>? = null, warmupCosineLRCycles: Output<String>? = null, warmupCosineLRWarmupEpochs: Output<String>? = null, weightDecay: Output<String>? = null, weightedLoss: Output<String>? = null)
Properties
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard