Image Model Distribution Settings Object Detection Args
data class ImageModelDistributionSettingsObjectDetectionArgs(val amsGradient: Output<String>? = null, val augmentations: Output<String>? = null, val beta1: Output<String>? = null, val beta2: Output<String>? = null, val boxDetectionsPerImage: Output<String>? = null, val boxScoreThreshold: Output<String>? = null, val distributed: Output<String>? = null, val earlyStopping: Output<String>? = null, val earlyStoppingDelay: Output<String>? = null, val earlyStoppingPatience: Output<String>? = null, val enableOnnxNormalization: Output<String>? = null, val evaluationFrequency: Output<String>? = null, val gradientAccumulationStep: Output<String>? = null, val imageSize: Output<String>? = null, val layersToFreeze: Output<String>? = null, val learningRate: Output<String>? = null, val learningRateScheduler: Output<String>? = null, val maxSize: Output<String>? = null, val minSize: Output<String>? = null, val modelName: Output<String>? = null, val modelSize: Output<String>? = null, val momentum: Output<String>? = null, val multiScale: Output<String>? = null, val nesterov: Output<String>? = null, val nmsIouThreshold: Output<String>? = null, val numberOfEpochs: Output<String>? = null, val numberOfWorkers: Output<String>? = null, val optimizer: Output<String>? = null, val randomSeed: Output<String>? = null, val stepLRGamma: Output<String>? = null, val stepLRStepSize: Output<String>? = null, val tileGridSize: Output<String>? = null, val tileOverlapRatio: Output<String>? = null, val tilePredictionsNmsThreshold: Output<String>? = null, val trainingBatchSize: Output<String>? = null, val validationBatchSize: Output<String>? = null, val validationIouThreshold: Output<String>? = null, val validationMetricType: Output<String>? = null, val warmupCosineLRCycles: Output<String>? = null, val warmupCosineLRWarmupEpochs: Output<String>? = null, val weightDecay: Output<String>? = null) : ConvertibleToJava<ImageModelDistributionSettingsObjectDetectionArgs>
Distribution expressions to sweep over values of model settings.
ModelName = "choice('seresnext', 'resnest50')";
LearningRate = "uniform(0.001, 0.01)";
LayersToFreeze = "choice(0, 2)";
```</example>
For more details on how to compose distribution expressions please check the documentation:
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
For more information on the available settings please visit the official documentation:
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
@property amsGradient Enable AMSGrad when optimizer is 'adam' or 'adamw'.
@property augmentations Settings for using Augmentations.
@property beta1 Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1].
@property beta2 Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1].
@property boxDetectionsPerImage Maximum number of detections per image, for all classes. Must be a positive integer.
Note: This settings is not supported for the 'yolov5' algorithm.
@property boxScoreThreshold During inference, only return proposals with a classification score greater than
BoxScoreThreshold. Must be a float in the range[0, 1].
@property distributed Whether to use distributer training.
@property earlyStopping Enable early stopping logic during training.
@property earlyStoppingDelay Minimum number of epochs or validation evaluations to wait before primary metric improvement
is tracked for early stopping. Must be a positive integer.
@property earlyStoppingPatience Minimum number of epochs or validation evaluations with no primary metric improvement before
the run is stopped. Must be a positive integer.
@property enableOnnxNormalization Enable normalization when exporting ONNX model.
@property evaluationFrequency Frequency to evaluate validation dataset to get metric scores. Must be a positive integer.
@property gradientAccumulationStep Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
updating the model weights while accumulating the gradients of those steps, and then using
the accumulated gradients to compute the weight updates. Must be a positive integer.
@property imageSize Image size for train and validation. Must be a positive integer.
Note: The training run may get into CUDA OOM if the size is too big.
Note: This settings is only supported for the 'yolov5' algorithm.
@property layersToFreeze Number of layers to freeze for the model. Must be a positive integer.
For instance, passing 2 as value for 'seresnext' means
freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
@property learningRate Initial learning rate. Must be a float in the range [0, 1].
@property learningRateScheduler Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'.
@property maxSize Maximum size of the image to be rescaled before feeding it to the backbone.
Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
Note: This settings is not supported for the 'yolov5' algorithm.
@property minSize Minimum size of the image to be rescaled before feeding it to the backbone.
Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
Note: This settings is not supported for the 'yolov5' algorithm.
@property modelName Name of the model to use for training.
For more information on the available models please visit the official documentation:
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
@property modelSize Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
Note: training run may get into CUDA OOM if the model size is too big.
Note: This settings is only supported for the 'yolov5' algorithm.
@property momentum Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1].
@property multiScale Enable multi-scale image by varying image size by +/- 50%.
Note: training run may get into CUDA OOM if no sufficient GPU memory.
Note: This settings is only supported for the 'yolov5' algorithm.
@property nesterov Enable nesterov when optimizer is 'sgd'.
@property nmsIouThreshold IOU threshold used during inference in NMS post processing. Must be float in the range [0, 1].
@property numberOfEpochs Number of training epochs. Must be a positive integer.
@property numberOfWorkers Number of data loader workers. Must be a non-negative integer.
@property optimizer Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'.
@property randomSeed Random seed to be used when using deterministic training.
@property stepLRGamma Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1].
@property stepLRStepSize Value of step size when learning rate scheduler is 'step'. Must be a positive integer.
@property tileGridSize The grid size to use for tiling each image. Note: TileGridSize must not be
None to enable small object detection logic. A string containing two integers in mxn format.
Note: This settings is not supported for the 'yolov5' algorithm.
@property tileOverlapRatio Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1).
Note: This settings is not supported for the 'yolov5' algorithm.
@property tilePredictionsNmsThreshold The IOU threshold to use to perform NMS while merging predictions from tiles and image.
Used in validation/ inference. Must be float in the range [0, 1].
Note: This settings is not supported for the 'yolov5' algorithm.
NMS: Non-maximum suppression
@property trainingBatchSize Training batch size. Must be a positive integer.
@property validationBatchSize Validation batch size. Must be a positive integer.
@property validationIouThreshold IOU threshold to use when computing validation metric. Must be float in the range [0, 1].
@property validationMetricType Metric computation method to use for validation metrics. Must be 'none', 'coco', 'voc', or 'coco_voc'.
@property warmupCosineLRCycles Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1].
@property warmupCosineLRWarmupEpochs Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer.
@property weightDecay Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1].
Content copied to clipboard
Constructors
Link copied to clipboard
constructor(amsGradient: Output<String>? = null, augmentations: Output<String>? = null, beta1: Output<String>? = null, beta2: Output<String>? = null, boxDetectionsPerImage: Output<String>? = null, boxScoreThreshold: Output<String>? = null, distributed: Output<String>? = null, earlyStopping: Output<String>? = null, earlyStoppingDelay: Output<String>? = null, earlyStoppingPatience: Output<String>? = null, enableOnnxNormalization: Output<String>? = null, evaluationFrequency: Output<String>? = null, gradientAccumulationStep: Output<String>? = null, imageSize: Output<String>? = null, layersToFreeze: Output<String>? = null, learningRate: Output<String>? = null, learningRateScheduler: Output<String>? = null, maxSize: Output<String>? = null, minSize: Output<String>? = null, modelName: Output<String>? = null, modelSize: Output<String>? = null, momentum: Output<String>? = null, multiScale: Output<String>? = null, nesterov: Output<String>? = null, nmsIouThreshold: Output<String>? = null, numberOfEpochs: Output<String>? = null, numberOfWorkers: Output<String>? = null, optimizer: Output<String>? = null, randomSeed: Output<String>? = null, stepLRGamma: Output<String>? = null, stepLRStepSize: Output<String>? = null, tileGridSize: Output<String>? = null, tileOverlapRatio: Output<String>? = null, tilePredictionsNmsThreshold: Output<String>? = null, trainingBatchSize: Output<String>? = null, validationBatchSize: Output<String>? = null, validationIouThreshold: Output<String>? = null, validationMetricType: Output<String>? = null, warmupCosineLRCycles: Output<String>? = null, warmupCosineLRWarmupEpochs: Output<String>? = null, weightDecay: Output<String>? = null)
Properties
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard