Ai Feature Store Args
A collection of DataItems and Annotations on them. To get more information about Featurestore, see:
How-to Guides
Example Usage
Vertex Ai Featurestore
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.vertex.AiFeatureStore;
import com.pulumi.gcp.vertex.AiFeatureStoreArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEncryptionSpecArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreOnlineServingConfigArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var featurestore = new AiFeatureStore("featurestore", AiFeatureStoreArgs.builder()
.encryptionSpec(AiFeatureStoreEncryptionSpecArgs.builder()
.kmsKeyName("kms-name")
.build())
.forceDestroy(true)
.labels(Map.of("foo", "bar"))
.onlineServingConfig(AiFeatureStoreOnlineServingConfigArgs.builder()
.fixedNodeCount(2)
.build())
.region("us-central1")
.build());
}
}
Vertex Ai Featurestore With Beta Fields
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.vertex.AiFeatureStore;
import com.pulumi.gcp.vertex.AiFeatureStoreArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreOnlineServingConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEncryptionSpecArgs;
import com.pulumi.resources.CustomResourceOptions;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var featurestore = new AiFeatureStore("featurestore", AiFeatureStoreArgs.builder()
.labels(Map.of("foo", "bar"))
.region("us-central1")
.onlineServingConfig(AiFeatureStoreOnlineServingConfigArgs.builder()
.fixedNodeCount(2)
.build())
.encryptionSpec(AiFeatureStoreEncryptionSpecArgs.builder()
.kmsKeyName("kms-name")
.build())
.onlineStorageTtlDays(30)
.forceDestroy(true)
.build(), CustomResourceOptions.builder()
.provider(google_beta)
.build());
}
}
Vertex Ai Featurestore Scaling
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.vertex.AiFeatureStore;
import com.pulumi.gcp.vertex.AiFeatureStoreArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEncryptionSpecArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreOnlineServingConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreOnlineServingConfigScalingArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var featurestore = new AiFeatureStore("featurestore", AiFeatureStoreArgs.builder()
.encryptionSpec(AiFeatureStoreEncryptionSpecArgs.builder()
.kmsKeyName("kms-name")
.build())
.forceDestroy(true)
.labels(Map.of("foo", "bar"))
.onlineServingConfig(AiFeatureStoreOnlineServingConfigArgs.builder()
.scaling(AiFeatureStoreOnlineServingConfigScalingArgs.builder()
.maxNodeCount(10)
.minNodeCount(2)
.build())
.build())
.region("us-central1")
.build());
}
}
Import
Featurestore can be imported using any of these accepted formats
$ pulumi import gcp:vertex/aiFeatureStore:AiFeatureStore default projects/{{project}}/locations/{{region}}/featurestores/{{name}}
$ pulumi import gcp:vertex/aiFeatureStore:AiFeatureStore default {{project}}/{{region}}/{{name}}
$ pulumi import gcp:vertex/aiFeatureStore:AiFeatureStore default {{region}}/{{name}}
$ pulumi import gcp:vertex/aiFeatureStore:AiFeatureStore default {{name}}
Constructors
Properties
If set, both of the online and offline data storage will be secured by this key. Structure is documented below.
If set to true, any EntityTypes and Features for this Featurestore will also be deleted
Config for online serving resources. Structure is documented below.
TTL in days for feature values that will be stored in online serving storage. The Feature Store online storage periodically removes obsolete feature values older than onlineStorageTtlDays since the feature generation time. Note that onlineStorageTtlDays should be less than or equal to offlineStorageTtlDays for each EntityType under a featurestore. If not set, default to 4000 days