AiFeatureStoreEntityType

class AiFeatureStoreEntityType : KotlinCustomResource

An entity type is a type of object in a system that needs to be modeled and have stored information about. For example, driver is an entity type, and driver0 is an instance of an entity type driver. To get more information about FeaturestoreEntitytype, see:

Example Usage

Vertex Ai Featurestore Entitytype

package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.vertex.AiFeatureStore;
import com.pulumi.gcp.vertex.AiFeatureStoreArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreOnlineServingConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEncryptionSpecArgs;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityType;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityTypeArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var featurestore = new AiFeatureStore("featurestore", AiFeatureStoreArgs.builder()
.labels(Map.of("foo", "bar"))
.region("us-central1")
.onlineServingConfig(AiFeatureStoreOnlineServingConfigArgs.builder()
.fixedNodeCount(2)
.build())
.encryptionSpec(AiFeatureStoreEncryptionSpecArgs.builder()
.kmsKeyName("kms-name")
.build())
.build());
var entity = new AiFeatureStoreEntityType("entity", AiFeatureStoreEntityTypeArgs.builder()
.labels(Map.of("foo", "bar"))
.description("test description")
.featurestore(featurestore.id())
.monitoringConfig(AiFeatureStoreEntityTypeMonitoringConfigArgs.builder()
.snapshotAnalysis(AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs.builder()
.disabled(false)
.monitoringIntervalDays(1)
.stalenessDays(21)
.build())
.numericalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs.builder()
.value(0.8)
.build())
.categoricalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs.builder()
.value(10)
.build())
.importFeaturesAnalysis(AiFeatureStoreEntityTypeMonitoringConfigImportFeaturesAnalysisArgs.builder()
.state("ENABLED")
.anomalyDetectionBaseline("PREVIOUS_IMPORT_FEATURES_STATS")
.build())
.build())
.build());
}
}

Vertex Ai Featurestore Entitytype With Beta Fields

package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.vertex.AiFeatureStore;
import com.pulumi.gcp.vertex.AiFeatureStoreArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreOnlineServingConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEncryptionSpecArgs;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityType;
import com.pulumi.gcp.vertex.AiFeatureStoreEntityTypeArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs;
import com.pulumi.gcp.vertex.inputs.AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs;
import com.pulumi.resources.CustomResourceOptions;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var featurestore = new AiFeatureStore("featurestore", AiFeatureStoreArgs.builder()
.labels(Map.of("foo", "bar"))
.region("us-central1")
.onlineServingConfig(AiFeatureStoreOnlineServingConfigArgs.builder()
.fixedNodeCount(2)
.build())
.encryptionSpec(AiFeatureStoreEncryptionSpecArgs.builder()
.kmsKeyName("kms-name")
.build())
.build(), CustomResourceOptions.builder()
.provider(google_beta)
.build());
var entity = new AiFeatureStoreEntityType("entity", AiFeatureStoreEntityTypeArgs.builder()
.labels(Map.of("foo", "bar"))
.featurestore(featurestore.id())
.monitoringConfig(AiFeatureStoreEntityTypeMonitoringConfigArgs.builder()
.snapshotAnalysis(AiFeatureStoreEntityTypeMonitoringConfigSnapshotAnalysisArgs.builder()
.disabled(false)
.monitoringInterval("86400s")
.build())
.categoricalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigCategoricalThresholdConfigArgs.builder()
.value(0.3)
.build())
.numericalThresholdConfig(AiFeatureStoreEntityTypeMonitoringConfigNumericalThresholdConfigArgs.builder()
.value(0.3)
.build())
.build())
.offlineStorageTtlDays(30)
.build(), CustomResourceOptions.builder()
.provider(google_beta)
.build());
}
}

Import

FeaturestoreEntitytype can be imported using any of these accepted formats:

$ pulumi import gcp:vertex/aiFeatureStoreEntityType:AiFeatureStoreEntityType default {{featurestore}}/entityTypes/{{name}}

Properties

Link copied to clipboard
val createTime: Output<String>

The timestamp of when the featurestore was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

Link copied to clipboard
val description: Output<String>?

Optional. Description of the EntityType.

Link copied to clipboard
val etag: Output<String>

Used to perform consistent read-modify-write updates.

Link copied to clipboard
val featurestore: Output<String>

The name of the Featurestore to use, in the format projects/{project}/locations/{location}/featurestores/{featurestore}.

Link copied to clipboard
val id: Output<String>
Link copied to clipboard
val labels: Output<Map<String, String>>?

A set of key/value label pairs to assign to this EntityType.

Link copied to clipboard

The default monitoring configuration for all Features under this EntityType. If this is populated with FeaturestoreMonitoringConfig.monitoring_interval specified, snapshot analysis monitoring is enabled. Otherwise, snapshot analysis monitoring is disabled. Structure is documented below.

Link copied to clipboard
val name: Output<String>

The name of the EntityType. This value may be up to 60 characters, and valid characters are a-z0-9_. The first character cannot be a number.

Link copied to clipboard

Config for data retention policy in offline storage. TTL in days for feature values that will be stored in offline storage. The Feature Store offline storage periodically removes obsolete feature values older than offlineStorageTtlDays since the feature generation time. If unset (or explicitly set to 0), default to 4000 days TTL.

Link copied to clipboard
val pulumiChildResources: Set<KotlinResource>
Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
val region: Output<String>

The region of the EntityType.

Link copied to clipboard
val updateTime: Output<String>

The timestamp of when the featurestore was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.

Link copied to clipboard
val urn: Output<String>