Job Args
data class JobArgs(val forceDelete: Output<Boolean>? = null, val hadoopConfig: Output<JobHadoopConfigArgs>? = null, val hiveConfig: Output<JobHiveConfigArgs>? = null, val labels: Output<Map<String, String>>? = null, val pigConfig: Output<JobPigConfigArgs>? = null, val placement: Output<JobPlacementArgs>? = null, val prestoConfig: Output<JobPrestoConfigArgs>? = null, val project: Output<String>? = null, val pysparkConfig: Output<JobPysparkConfigArgs>? = null, val reference: Output<JobReferenceArgs>? = null, val region: Output<String>? = null, val scheduling: Output<JobSchedulingArgs>? = null, val sparkConfig: Output<JobSparkConfigArgs>? = null, val sparksqlConfig: Output<JobSparksqlConfigArgs>? = null) : ConvertibleToJava<JobArgs>
Manages a job resource within a Dataproc cluster within GCE. For more information see the official dataproc documentation. !>Note: This resource does not support 'update' and changing any attributes will cause the resource to be recreated.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const mycluster = new gcp.dataproc.Cluster("mycluster", {
name: "dproc-cluster-unique-name",
region: "us-central1",
});
// Submit an example spark job to a dataproc cluster
const spark = new gcp.dataproc.Job("spark", {
region: mycluster.region,
forceDelete: true,
placement: {
clusterName: mycluster.name,
},
sparkConfig: {
mainClass: "org.apache.spark.examples.SparkPi",
jarFileUris: ["file:///usr/lib/spark/examples/jars/spark-examples.jar"],
args: ["1000"],
properties: {
"spark.logConf": "true",
},
loggingConfig: {
driverLogLevels: {
root: "INFO",
},
},
},
});
// Submit an example pyspark job to a dataproc cluster
const pyspark = new gcp.dataproc.Job("pyspark", {
region: mycluster.region,
forceDelete: true,
placement: {
clusterName: mycluster.name,
},
pysparkConfig: {
mainPythonFileUri: "gs://dataproc-examples-2f10d78d114f6aaec76462e3c310f31f/src/pyspark/hello-world/hello-world.py",
properties: {
"spark.logConf": "true",
},
},
});
export const sparkStatus = spark.statuses.apply(statuses => statuses[0].state);
export const pysparkStatus = pyspark.statuses.apply(statuses => statuses[0].state);
Content copied to clipboard
import pulumi
import pulumi_gcp as gcp
mycluster = gcp.dataproc.Cluster("mycluster",
name="dproc-cluster-unique-name",
region="us-central1")
# Submit an example spark job to a dataproc cluster
spark = gcp.dataproc.Job("spark",
region=mycluster.region,
force_delete=True,
placement={
"cluster_name": mycluster.name,
},
spark_config={
"main_class": "org.apache.spark.examples.SparkPi",
"jar_file_uris": ["file:///usr/lib/spark/examples/jars/spark-examples.jar"],
"args": ["1000"],
"properties": {
"spark_log_conf": "true",
},
"logging_config": {
"driver_log_levels": {
"root": "INFO",
},
},
})
# Submit an example pyspark job to a dataproc cluster
pyspark = gcp.dataproc.Job("pyspark",
region=mycluster.region,
force_delete=True,
placement={
"cluster_name": mycluster.name,
},
pyspark_config={
"main_python_file_uri": "gs://dataproc-examples-2f10d78d114f6aaec76462e3c310f31f/src/pyspark/hello-world/hello-world.py",
"properties": {
"spark_log_conf": "true",
},
})
pulumi.export("sparkStatus", spark.statuses[0].state)
pulumi.export("pysparkStatus", pyspark.statuses[0].state)
Content copied to clipboard
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() =>
{
var mycluster = new Gcp.Dataproc.Cluster("mycluster", new()
{
Name = "dproc-cluster-unique-name",
Region = "us-central1",
});
// Submit an example spark job to a dataproc cluster
var spark = new Gcp.Dataproc.Job("spark", new()
{
Region = mycluster.Region,
ForceDelete = true,
Placement = new Gcp.Dataproc.Inputs.JobPlacementArgs
{
ClusterName = mycluster.Name,
},
SparkConfig = new Gcp.Dataproc.Inputs.JobSparkConfigArgs
{
MainClass = "org.apache.spark.examples.SparkPi",
JarFileUris = new[]
{
"file:///usr/lib/spark/examples/jars/spark-examples.jar",
},
Args = new[]
{
"1000",
},
Properties =
{
{ "spark.logConf", "true" },
},
LoggingConfig = new Gcp.Dataproc.Inputs.JobSparkConfigLoggingConfigArgs
{
DriverLogLevels =
{
{ "root", "INFO" },
},
},
},
});
// Submit an example pyspark job to a dataproc cluster
var pyspark = new Gcp.Dataproc.Job("pyspark", new()
{
Region = mycluster.Region,
ForceDelete = true,
Placement = new Gcp.Dataproc.Inputs.JobPlacementArgs
{
ClusterName = mycluster.Name,
},
PysparkConfig = new Gcp.Dataproc.Inputs.JobPysparkConfigArgs
{
MainPythonFileUri = "gs://dataproc-examples-2f10d78d114f6aaec76462e3c310f31f/src/pyspark/hello-world/hello-world.py",
Properties =
{
{ "spark.logConf", "true" },
},
},
});
return new Dictionary<string, object?>
{
["sparkStatus"] = spark.Statuses.Apply(statuses => statuses[0].State),
["pysparkStatus"] = pyspark.Statuses.Apply(statuses => statuses[0].State),
};
});
Content copied to clipboard
package main
import (
"github.com/pulumi/pulumi-gcp/sdk/v7/go/gcp/dataproc"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
mycluster, err := dataproc.NewCluster(ctx, "mycluster", &dataproc.ClusterArgs{
Name: pulumi.String("dproc-cluster-unique-name"),
Region: pulumi.String("us-central1"),
})
if err != nil {
return err
}
// Submit an example spark job to a dataproc cluster
spark, err := dataproc.NewJob(ctx, "spark", &dataproc.JobArgs{
Region: mycluster.Region,
ForceDelete: pulumi.Bool(true),
Placement: &dataproc.JobPlacementArgs{
ClusterName: mycluster.Name,
},
SparkConfig: &dataproc.JobSparkConfigArgs{
MainClass: pulumi.String("org.apache.spark.examples.SparkPi"),
JarFileUris: pulumi.StringArray{
pulumi.String("file:///usr/lib/spark/examples/jars/spark-examples.jar"),
},
Args: pulumi.StringArray{
pulumi.String("1000"),
},
Properties: pulumi.StringMap{
"spark.logConf": pulumi.String("true"),
},
LoggingConfig: &dataproc.JobSparkConfigLoggingConfigArgs{
DriverLogLevels: pulumi.StringMap{
"root": pulumi.String("INFO"),
},
},
},
})
if err != nil {
return err
}
// Submit an example pyspark job to a dataproc cluster
pyspark, err := dataproc.NewJob(ctx, "pyspark", &dataproc.JobArgs{
Region: mycluster.Region,
ForceDelete: pulumi.Bool(true),
Placement: &dataproc.JobPlacementArgs{
ClusterName: mycluster.Name,
},
PysparkConfig: &dataproc.JobPysparkConfigArgs{
MainPythonFileUri: pulumi.String("gs://dataproc-examples-2f10d78d114f6aaec76462e3c310f31f/src/pyspark/hello-world/hello-world.py"),
Properties: pulumi.StringMap{
"spark.logConf": pulumi.String("true"),
},
},
})
if err != nil {
return err
}
ctx.Export("sparkStatus", spark.Statuses.ApplyT(func(statuses []dataproc.JobStatus) (*string, error) {
return &statuses[0].State, nil
}).(pulumi.StringPtrOutput))
ctx.Export("pysparkStatus", pyspark.Statuses.ApplyT(func(statuses []dataproc.JobStatus) (*string, error) {
return &statuses[0].State, nil
}).(pulumi.StringPtrOutput))
return nil
})
}
Content copied to clipboard
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.dataproc.Cluster;
import com.pulumi.gcp.dataproc.ClusterArgs;
import com.pulumi.gcp.dataproc.Job;
import com.pulumi.gcp.dataproc.JobArgs;
import com.pulumi.gcp.dataproc.inputs.JobPlacementArgs;
import com.pulumi.gcp.dataproc.inputs.JobSparkConfigArgs;
import com.pulumi.gcp.dataproc.inputs.JobSparkConfigLoggingConfigArgs;
import com.pulumi.gcp.dataproc.inputs.JobPysparkConfigArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var mycluster = new Cluster("mycluster", ClusterArgs.builder()
.name("dproc-cluster-unique-name")
.region("us-central1")
.build());
// Submit an example spark job to a dataproc cluster
var spark = new Job("spark", JobArgs.builder()
.region(mycluster.region())
.forceDelete(true)
.placement(JobPlacementArgs.builder()
.clusterName(mycluster.name())
.build())
.sparkConfig(JobSparkConfigArgs.builder()
.mainClass("org.apache.spark.examples.SparkPi")
.jarFileUris("file:///usr/lib/spark/examples/jars/spark-examples.jar")
.args("1000")
.properties(Map.of("spark.logConf", "true"))
.loggingConfig(JobSparkConfigLoggingConfigArgs.builder()
.driverLogLevels(Map.of("root", "INFO"))
.build())
.build())
.build());
// Submit an example pyspark job to a dataproc cluster
var pyspark = new Job("pyspark", JobArgs.builder()
.region(mycluster.region())
.forceDelete(true)
.placement(JobPlacementArgs.builder()
.clusterName(mycluster.name())
.build())
.pysparkConfig(JobPysparkConfigArgs.builder()
.mainPythonFileUri("gs://dataproc-examples-2f10d78d114f6aaec76462e3c310f31f/src/pyspark/hello-world/hello-world.py")
.properties(Map.of("spark.logConf", "true"))
.build())
.build());
ctx.export("sparkStatus", spark.statuses().applyValue(statuses -> statuses[0].state()));
ctx.export("pysparkStatus", pyspark.statuses().applyValue(statuses -> statuses[0].state()));
}
}
Content copied to clipboard
resources:
mycluster:
type: gcp:dataproc:Cluster
properties:
name: dproc-cluster-unique-name
region: us-central1
# Submit an example spark job to a dataproc cluster
spark:
type: gcp:dataproc:Job
properties:
region: ${mycluster.region}
forceDelete: true
placement:
clusterName: ${mycluster.name}
sparkConfig:
mainClass: org.apache.spark.examples.SparkPi
jarFileUris:
- file:///usr/lib/spark/examples/jars/spark-examples.jar
args:
- '1000'
properties:
spark.logConf: 'true'
loggingConfig:
driverLogLevels:
root: INFO
# Submit an example pyspark job to a dataproc cluster
pyspark:
type: gcp:dataproc:Job
properties:
region: ${mycluster.region}
forceDelete: true
placement:
clusterName: ${mycluster.name}
pysparkConfig:
mainPythonFileUri: gs://dataproc-examples-2f10d78d114f6aaec76462e3c310f31f/src/pyspark/hello-world/hello-world.py
properties:
spark.logConf: 'true'
outputs:
# Check out current state of the jobs
sparkStatus: ${spark.statuses[0].state}
pysparkStatus: ${pyspark.statuses[0].state}
Content copied to clipboard
Import
This resource does not support import.
Constructors
Link copied to clipboard
constructor(forceDelete: Output<Boolean>? = null, hadoopConfig: Output<JobHadoopConfigArgs>? = null, hiveConfig: Output<JobHiveConfigArgs>? = null, labels: Output<Map<String, String>>? = null, pigConfig: Output<JobPigConfigArgs>? = null, placement: Output<JobPlacementArgs>? = null, prestoConfig: Output<JobPrestoConfigArgs>? = null, project: Output<String>? = null, pysparkConfig: Output<JobPysparkConfigArgs>? = null, reference: Output<JobReferenceArgs>? = null, region: Output<String>? = null, scheduling: Output<JobSchedulingArgs>? = null, sparkConfig: Output<JobSparkConfigArgs>? = null, sparksqlConfig: Output<JobSparksqlConfigArgs>? = null)
Properties
Link copied to clipboard
By default, you can only delete inactive jobs within Dataproc. Setting this to true, and calling destroy, will ensure that the job is first cancelled before issuing the delete.
Link copied to clipboard
The config of Hadoop job
Link copied to clipboard
The config of hive job
Link copied to clipboard
Link copied to clipboard
The config of pag job.
Link copied to clipboard
The config of job placement.
Link copied to clipboard
The config of presto job
Link copied to clipboard
The config of pySpark job.
Link copied to clipboard
The reference of the job
Link copied to clipboard
Optional. Job scheduling configuration.
Link copied to clipboard
The config of the Spark job.
Link copied to clipboard
The config of SparkSql job